ISSN 0103-9741

Monografias em Ciéncia da Computacao
n° 30/05

Governing Agent Interaction in Open Multi-Agent
Systems

Rodrigo de Barros Paes
Carlos José Pereirade Lucena
Paulo S. C. Alencar

Departamento de Informatica

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE SAO VICENTE, 225 - CEP 22453-900
RIO DE JANEIRO - BRASIL

Monografias em Ciéncia da Computagdo, No. 30/05 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena Agosto, 2005

Governing Agent Interaction in Open Multi-Agent
Systems'

Rodrigo Paes, Carlos Lucena and Paulo Alencar'

! Computer Science Group - University of Waterloo

{rbp,lucena} @inf.puc-rio.br, palencar@csg.uwaterloo.ca

Abstract. Open multi-agent systems are increasingly gaining importance in both academy and
industry. These systems are composed of autonomous distributed agents that can be developed
by independent teams. Furthermore, agents can have different architectures, and even conflict-
ing goals. However, in some applications domains such as electronic commerce, the system as
a whole should inspire confidence in their users and also in the parts involved in the business.
Confidence means basically that the system will act according to what is expected, that is, it is
behaving according to specifications while maintaining the quality that its services are being pro-
vided. However, in an open multi-agent system scenario, the code of the agents are frequently
inaccessible, or even the agents themselves are unknown beforehand. Achieve higher degrees of
confidence claims for mechanism to monitor system execution and verify if the actual behavior is
compatible with what is specified. This paper uses a law-enforcement approach and presents an
object-oriented framework to monitor and verify conformity of agents’ behavior. First it is used
a model to specify agent’s interaction. This model is extended to increase its expressivity. Then,
based on this extended model the object-oriented framework is built. The main goal of this paper
is to share ideas about how a law governing approach can be implemented in a way that it could
serve as ‘how-to-do-it’ models for future work in the same field.

Keywords: multi-agent systems, organizations, interaction protocols, open systems, laws

Resumo. Cada vez mais os sistemas multi-agentes abertos estdo ganhando importancia tanto na
academia quanto na inddstria. Estes sistemas sdo compostos de agentes autdnomos distribuidos
que podem ter sido desenvolvidos por desenvolvedores diferentes. Além disso, agentes podem
possuir arquiteturas diferentes e até mesmo objetivos conflitantes. Entretanto, em alguns dominios
de aplicacgdes tal como comércio eletronico, o sistema como um todo deve inspirar confiabilidade
em seus usudrios e também nas partes que estdo envolvidas com nas negociagdes. Confiabilidade
significa que o sistema ird agir de acordo com o que € esperado, isto €, ele estd se comportando de

I'This work has been sponsored by Ministério de Ciéncia e Tecnologia da Presidéncia da Reptblica Federativa do
Brasil.

acordo com as especificacdes a0 mesmo tempo em que mantém a qualidade dos servigos que ele
prové. Em um sistema multi-agentes aberto, o c6digo dos agentes é frequentemente inacessivel
e mesmo os agentes podem ser desconhecidos a priori. Um mecanismo que monitora a execu¢iao
e verifica se o comportamento do sistema € compativel com o comportamento especificado pode
ser utilizado para alcangar maiores niveis de confiabilidade. Neste artigo, apresenta-se uma abor-
dagem baseada em leis implementada através de um framework orientado a objetos para verificar
a conformidade do comportamento dos agentes em relagdo a especificagio.

Palavras-chave: sistemas multi-agentes, organizagdes, protocolos de interacdo, leis

In charge for publications:

Rosane Teles Lins Castilho

Assessoria de Biblioteca, Documentagdo e Informacgao
PUC-Rio Departamento de Informética

Rua Marqués de Sa@o Vicente, 225 - Gdvea

22453-900 Rio de Janeiro RJ Brasil

Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br

Web site: http://bib-di.inf.puc-rio.br/techreports/

il

1 Introduction

Software has evolved from controllable production environments where the whole system is under
control of one team, and so, artifacts can be inspected and their behavior can be mostly predicted,
to distributed development environments where developers are frequently unknown beforehand.

Nowadays, software may contain dynamically interacting components, each with their own
thread of control, and engaging in complex coordination protocols. These systems are typically
more complex to correctly and efficiently engineer than those that simply compute a function of
some input through a single thread of control [1].

This trend has led to software systems that have no centralized control and that are composed
of autonomous entities. These entities may enter and leave the environment at their will, and they
may even have conflicting interests. Multi-agent auction systems are examples of such open and
distributed applications [2] [3].

Further, open systems need to rely on critical infrastructures that constitute the backbone for
the delivery of their essential services. This is not only because open systems are more prone for
overloads, attacks or failures, but also because they need to deal with uncertainty. While open
system components are often autonomous, they behave unpredictably when unforeseen situations
arise. Taming this uncertainty is a key issue for dependable open software development.

Current techniques to tame this uncertainty focus on predicting the behavior of the components
that compose a system, for example using unit tests or model checking. As in open systems the
internal aspects of the components are frequently unaccessible, these technics become insufficient.
There is a need for specifying and verifying the observable behavior of the components, i.e., how
components behavior in face of the execution environment or in face of other components.

Our approach tackles with the problem by specifying, monitoring and enforcing the interaction
of components that compose an open distributed system, where components are seen as agents.
The conventional approach is to hard-code the interaction specification into all members of a
multi-agent system. Separating the specification from the agents facilitates the dynamic change of
behavior of a distributed system, and also enables reuse of an expert’s knowledge. More specifi-
cally, we refer to a model which provides the concepts required to specify the interaction among
agents. Based on this model, it is presented an object oriented framework that can be used to
monitor and enforce agents’ interaction.

The rest of this paper is organized as follows. Section 2 presents the model of interactions
used to specify agents’ interactions. This model is extended with concepts of constraints and
actions. Section 3 presents the object-oriented framework, which is designed based onn the ex-
tended model. In this section, it is given design decisions and some examples. Section 4 shows
an example of application modeled using the concepts of the interaction model, specified using a
declarative language, called XMLaw, and finally, how the framework behaves in face of a specific
interaction scene. Section 5 presents some works that are in some sense related to this paper.
Finnaly, we depict some discussions about the current paper and ongoing resarch in Section 6.

2 Modelling Interactions

The model presented in this section is used to represent interactions in an open distributed envi-
ronment. Basically, interactions should be analyzed, and after that, described using the concepts
proposed in the model. Then, the concepts are mapped to a declarative language, called XMLaw?>.

2XMLaw can be seen in more details in [4].

Interaction’s definitions are interpreted by a software framework that monitors components’ inter-
action and enforces the behavior specified on the language.

Once interaction is specified and enforced, despite the autonomy of the agents, the system’s
global behavior is better controlled and predicted. Interaction specification of a system is also
called laws of a system. This is because besides the idea of specification itself, interactions are
monitored and enforced. Then, they act as laws in the sense that describe what can be done,
what cannot be done and what should be done. Bellow, we present each concept and their related
representation in XMLaw.

%] Action
0.*
<> $ entrance/creation
LawOrganization o Scene o Agent sends Message
~ 1 | [tttz -template: String 67
1.+| Plays
0.* 0.* -
Clock entrance/creation Role State
-type: String 1.." | -type: String -ref
-tick-period: long 0.* -label: String
requiredNorms 1 1
0.* 0.* to from
Norm ; | Protocol Transition Constraint
-owner: Agent or Role 0.*

0.*
T 0.* activeNorms I

Figure 1: Model of Interaction

This model provides computational concepts that allow specify interaction laws in multi-agent
systems. Most of this model was already reported in [4] and therefore the concepts are very briefly
introduced in this paper to make it self-contained. However two novels abstractions (actions and
constraints) are introduced in the current version and they are detailed in sections 2.1 and 2.2.

The outer concept of this model is the LawOrganization. We can see this element as represent-
ing the interaction laws (or normative dimension [5]) of a multi-agent organization. A LawOrga-
nization is composed of scenes, clocks, norms and actions. Scenes are interaction contexts that
can happen in an organization. They allow to modularize interaction breaking the interaction of
the whole system in smaller parts. Clocks introduce global times which are shared by all scenes.
Norms capture notions of permissions, obligations and prohibitions regarding agents’ interaction
behavior. Actions can be viewed as a consequence of any interaction condition, for example, if an
agent acquires an obligation, then the action ‘A’ should be executed; if an agent that is critical for
the system is overloaded, new replicas for this agent should be created [6].

Scenes define an interaction protocol (from a global point of view), a set of norms and clocks
that are only valid in the context of the scene. Furthermore, scenes also identify which agents
are allowed to start or participate of the scene. Non-deterministic automatons, enhanced by the
constraint element and by the possibility of integration with the other elements from the model,
represent interaction protocols. Constraints are used as conditional firing of protocol transitions
allowing to check complex conditions based on the message contents.

Figure 1 can be viewed as a structural and static view from the concepts used to specify in-
teractions. These elements relate to each other through the associations, dependencies and ag-
gregations relationships showed in this figure. However, to achieve lower coupling levels among
these elements, we also provide a dynamic model based on events that reify the relationships of
the conceptual model in a flexible way.

Events are the basis of the communication among law elements, that is, law elements dynam-
ically relate with other elements through event notifications. Basically, we can understand the
dynamic of the elements as a chain of causes and consequences, where an event can activate a law
element; this law element could generate other events and so on. For example, the arrival of a
message generates an event (message arrival), this event may activate a transition (tfransition acti-
vation), transition in its turn may activate a clock (clock activation), which generates a (clock_tick)
event, and lastly it activates a norm (norm activation). Figure 2 shows this chain of causes and
consequences, Figure 3 shows a list of all events generated by the elements from the model, and
Figure 4 summarizes all law elements that can generate and sense events.

time
.................... >
O—0O—=0O0—>=0O0—>0
Message arrival Transition Activation Clock activation Clock-tick Norm activation
Figure 2: Chain of Events
Message Description
message_arrival Message arrives at mediator
transition_activation Transition is fired
clock_tick Time specified in a activated clock has ellapsed
deactivation_event Generic event for any deactivation
norm_activation Norm has been activated
clock_activation Clock has been activated
final_state_reached Afinal state in a protocol has been reached
time_to_live_elapsed Scene’s time to live has been elapsed
successful_scene_completion Scene has been successful completed
failure_scene_completion Scene has been completed with failure
action_activation Action has been called

Figure 3: Event Types

LawElement Event

| | | | | | | |

Transition Clock Norm Protocol Scene Message Action Constraint

Figure 4: Law Elements that Generate and Sense Events

2.1 Constraints

Constraints concern verification on message values. Messages carry information that are verified
in many ways; the attribute message pattern (Section 3.2.2) verifies the shape of messages, de-
scribing the required pattern. However, this attribute does not describe what the allowed values
are on certain parts of messages. For example, a message pattern for the content field could be:

content(television, brand(AnyBrand), price(Amount)). Then, a certain application requires that
the value of Amount variable has to be between 50 and 100. Using only the message pattern this
requirement can not be achieved. Constraint element tackles just this point providing a flexible
way to perform this kind of requirement.

Constraints are specified using a component that implements the functionality. Current imple-
mentation of the model uses Java components to implement constraints. In this way, developers
are free to develop constraints as complex as needed, only bounded by Java limitations.

Although Java enables definition of very expressive constrains, using Java or any other non-
declarative language brings a drawback, it separates the meaning of the constraint from the in-
teraction specification, putting it in the java code. If there were no mechanism to externalize the
meaning, would be necessary inspect the java code to extract any meaning. For this reason, con-
straints have an attribute named Semantics that allows specify the constraint’s semantic. There is
no restriction to the formalism used on semantic’s specification.

In short, constraints acts on message values and have a semantic field. However, once tran-
sitions have only a reference to messages, the same message can be reused in many different
transitions. Then, despite constraints act on messages, constraints are not coupled to messages.
They are coupled to transitions and acts on the message that activates the transition. XML in List-
ing 1 shows how it is done. The attribute class refers to a Java component that implements the
restriction.

<Transition id=‘‘a—transition—id’’ from="‘from—state ’’
to=‘‘to—state’’ message—ref=""rfq’’>
<Constraints>
<Constraint class="‘ajavapackage. AConstraintClass’’>

<Semantic>Semantic for this constraint</Semantic>
</Constraint>
</Constraints>
</Transition>

Listing 1: Constraint Acting on Message “rfq”

2.2 Action

A very important function of nowadays software is to have the skill to dynamically self-adapt in
response to changes on available resources, user needs or system faults [7]. There is an increas-
ing demand for identifying and solving the problems even in highly dynamic and unpredictable
environments. Automated self-healing has appeared as solution to these problems. Automated
self-healing can be defined as the skill of a system to automatically detect, diagnose and recover
software and hardware problems [8].

Action is the element from the model intended to perform automated self-healing. In fact, ac-
tions are domain-specific java components that run tightly integrated to interaction’s specification.
Then, as most of other elements, actions can be activated by transitions, norms, clocks or even
other actions.

The self-healing activity done by actions can be viewed in three phases: monitoring, detection
and healing. Monitoring is done through interaction’s specification, i.e., certain software condi-
tions can be monitored. For example, detecting that an agent is taking too long to communicate.
Detection phase occurs when the condition being monitored happens and the action is called. Fi-
nally, the healing activity is performed by the implementation of the action component. Figure 5
shows these activities.

The declarative specification of actions is done as shown in Listing 2. The class attribute
specifies the java component in charge of performing the healing. The <Activation> tag contains

law monitoring

problem detection

self-healing

Figure 5: Action Activities

references to other elements that can activate the action.

<Actions>
<Action id="anActionld" class="apackage.ActionClass">
<Semantics>Semantics for this action</Semantics>
<Activation>
<Element ref="generatorReference" event—type="type"/>
</ Activation>
</ Action>
</ Actions>

Listing 2: Action in XMLaw

3 Object Oriented Framework for Monitoring and Enforcement

Advances on agent technology relies on development of models, mechanisms and tools to build
high quality systems. Design and implementation of such systems are still expensive and very
error prone. Software frameworks deal with this complexity reifying proven software designs and
implementations in order to reduce the cost and improve the quality of software. In this way,
a framework is a reusable, semi-complete application that can be specialized to produce custom
applications [9].

In this section, we present a framework that supports development of open distributed systems
providing compliance with both the model of interactions proposed previously and the declarative
language XMLaw.

The framework has a set o modules that supports three types of users:

e “Law developer” represents the developer responsible for specifying the laws. Law devel-
opers must understand the application under construction; know the law concepts; and then,
specify the laws for the application.

e “Agent developer” represents the developer responsible for building the agents of a multi-
agent system. Those developers know about the existence of the laws and should design the
agents in compliance with them.

e “Software infrastructure developer” deals with law enforcement software support. Some-
times there is no software infrastructure that implements the law enforcement mechanism
or the existent infrastructures are not suitable for the systems that are under development.
In these cases, software infrastructure developers should modify the existent infrastructure,
or even construct a new one.

The framework provides support for each one of those developers. First, it is provided a declar-
ative language called XMLaw for law developers, which allows the specification and maintenance
of the interactions of multi-agent systems. XMLaw specifications are interpreted and enforced by
the law enforcement framework. The framework provides this software support, which contains
a number of hotspots that can be extended by software infrastructure developers. Lastly, agent
developers are provided with classes and interfaces that support building agents integrated to the
law enforcement software.

The framework is composed of many modules, which are illustrated in Figure 6. This figure
also highlights which modules are hotspots. Finally, Figure 7 shows which modules are related
to each kind of developer. Details of each module such as extension points and usage mode are
provided in the further sections.

Trigger <\

Communication

Constraint

Protocol

Context

~@ =" Hotspot

Figure 6: Framework Modules

Infrastructure Agent Developer

Developer %

Trigger

Communication

Communication

Constraint

Protocol Law Developer

X _ A

Figure 7: Software Infrastructure Developer View of the Framework

Context

3.1 Interaction Model

In open systems, one piece of available information about agents is their observable behavior
through message exchanges. The law enforcement mechanism should intercept these messages,
and then, enforce the desired system behavior. This mechanism acts as a mediator among agents.
This mediator is not necessarily neither one unique entity or centralized. If the mediator is central-
ized, some degree of scalability can be achieved using a pool of mediators. However, in this case,
we still having a unique point of failure. Another solution is to think of mediator as many decen-
tralized entities that monitor the system execution. In this sense, depending on how mediators are
implemented (centralized or decentralized), higher or lower level of scalability can be achieved.
This mediator idea was already reported, with minor variations, in a number of publications such
as controllers [10], governors [11], and inter agents [12].

The law enforcement mechanism life cycle consists of three high-level activities (Figure 8):
(1) interception; (ii) enforcement; and (iii) redirection. In the first stage, the mechanism intercepts
messages exchanged between agents. Then, the mechanism interprets the law specifications and
check if the message complies with the laws. Finally, the mechanism redirects the message to the
real addressee. In this sense, the observable behavior of agents can be controlled and the laws can
be enforced.

The framework presented follows the architecture presented in this section. In the next sec-
tions, it is detailed the main modules that compose the framework.

Agent A Communication Agent B

Law Enforcement
Mechanism
Enforcement

Figure 8: Framework Interaction Architecture

3.2 Communication Module

The communication module is composed of two sub modules: communication layer and message
module. The former is concerned with heterogeneity questions regarded to agent communication
and the latter describe what kind of message agents have to use in order to communicate.

3.2.1 Communication Layer

Agents can communicate using different ways; they can use SOAP [13] based communication,
implement their own communication standard using sockets, or use a more accepted agent stan-
dard such as defined by FIPA [14]. Each application has different requirements for communication
mechanisms; some of them focus on performance issues, flexibility, interoperability, among oth-
ers. The communication layer is concerned with providing an interface that allows domain-specific
applications to change the communication mechanism when it is needed.

The interface ICommunication defines methods for sending and receiving messages. Concrete
communication mechanisms should implement this interface in order to provide methods’ func-
tionalities. The send(Message msg):void method sends the message to the addressees specified.
The waitForMessage():Message blocks the execution until a message arrives, and when it does,
the message is returned. The waitForMessage(long milliseconds) method blocks the execution
until a message arrives or until the time specified in the parameter has elapsed, and returns the just
arrived message or null in case of no message has arrived. This interface defines one more method
named nextMessage():Message, but despite of the waitForMessages methods this method does not
block the execution. The expected behavior of this method is to return the next unread message if
it exists, or null otherwise. This kind of behavior suggests that implementers of /Communication
interface should use some kind of queue to keep all received messages by an agent, and when the
nextMessage is invoked, it returns the first message of the queue.

Figure 9 shows the class diagram for communication layer. Due to its methods definitions,
the interface /Communication has a dependency relationship with the class Message. Moreover,
this figure also shows how we implemented this interface using the JADE framework [15]. JADE
implements a FIPA compliant communication mechanism. This mechanism is encapsulated in the
Jjade.core.Agent class, provided by JADE. Then, JadeCommunication class reuses the implemen-
tation of this mechanism delegating the methods from the ICommunication interface to an instance
of jade.core.Agent class. Listing 3 shows a piece of code of the JadeCommunication class. This
class has an attributed named jadeAgent, instance of jade.core.Agent, which is initialized when a
JadeCommunication instance is created. The send method first transform the framework message
format to JADE specific message format, and delegates the request to the jadeAgent instance.

ICommunication Message

send(Message msg): void
waitForMessage(long millisecs): M
waitForMessage(): Message
nextMessage(): Message

>

JadeComr.nunication jade.core.Agent

Figure 9: Communication Layer

public class JadeCommunication implements ICommunication {

protected Agent jadeAgent;

public JadeCommunication(String name) {

jadeAgent = new Agent();

public void send(Message msg) {
ACLMessage message = this.messageWrapper.transform (msg);
jadeAgent.send (message);

Listing 3: Code Fragment for the Communication Layer using JADE

3.2.2 Message Module

Messages are a very important part of the law enforcement approach. Law enforcement is con-
cerned with enforcing agents’ behavior from interaction standpoint, and agents interact by ex-
changing messages’. Therefore, the enforcing is made through the analysis of exchanged mes-
sages. The Message class represents the messages exchanged among agents.

The Message class contains many pre-specified fields needed for an effective agent communi-
cation. These fields are specified in a pair-value format. Although the number of fields used might
vary, there are five mandatory fields: performative, sender identification, sender role, receiver
identification and receiver role. The performative contains the communicative act that the sender
agent wants to communicate. Sender and receiver identifications are concerned with the identifi-
cation of sender and receiver agents respectively. Sender and receiver roles identify the roles that
sender and receiver agents are playing during a conversation. Other pre-specified fields include
conversation identification, content and scene authorization. Conversation identification allows
identify contexts of conversation. Agents may keep the tracking of all exchanged messages in a
conversation using the conversation identification, or conversation id for short. The content is the

3Despite other communication forms used by agents, such as environment based communication, in this paper only
message exchange is considered.

information that agents send to other agents. At last, scene authorization represents the authoriza-
tion agents must have in order to interact with other agents in a certain scene. This authorization
is issued by the mediator agent, and it can be requested through the Mediator Protocol (Section
3.4.2).

XMLaw defines an element named message-pattern. This element is concerned with how
pattern of messages can be recognized. The framework performs the pattern recognition using
both the format() method of the Message class and the class MessagePattern. The format() method
returns the message in a text-based formatting as shown in Listing 4.

message (performative ,
sender (sender identification , sender role),
receiver(receiver identification , receiver role),
content(content)).

Listing 4: Returned Value of the format() Method

The MessagePattern class manages the creation and destruction of IMessagePatternMatcher
interface implementors. Such interface defines only one method, as shown in Listing 5.

match(String formattedMessage , String template): Hashtable

Listing 5: Interface IMessagePatternMatcher’s method

This method contains two parameters, the formattedMessage resulting of format() method’s
invocation, and the template that the IMessagePatternMatcher should verify if the formattedMes-
sage matches. If the message matches the pattern and if the pattern allows the use of variables,
this method should return a Hashtable containing all the variable bindings.

One alternative for implementing this approach is implementing a Prolog like message pattern.
For example, in Prolog variables are represented capitalizing the first letter, then a possible pattern
would be price(Value), where Value is a variable. Then, an invocation for the match method
receiving match(“price($34,45)”, “price (Value)”) should return a hashtable containing the pair
[“Value”, “$34,45”]. However, other formats of messages can be used just providing different
implementors for the IMessagePatternMatcher interface.

To summarize, message patterns are specified in XMLaw, those patterns must be understood
as a concrete implementation of IMessagePatternMatcher, and the framework is in charge of or-
chestrating all these method invocations. Figure 10 shows the classes that compose the message
module and their relationships.

Message
conversationld
performative

222813{%,@ IMessagePatternMatcher

receiverld
receiverRole
sceneAuthorization match(String formattedMessage, String template): Hashtable

format(): String

>

PatternMatcher PrologPatternMatcher
messagePatternMatcher

match(Message msg, String template): Hashtable

Figure 10: Message Module

10

3.3 Mediator Agent

Most of the framework is implemented as mediator agent modules. The mediator agent monitors
all interactions and makes sure that interactions are compliant with the specifications. The medi-
ator performs a number of activities that are depicted in Figure 11. First, the mediator waits for
receiving messages. Once a message arrived, it checks if the message belongs to the mediator
protocol. If it does, the mediator proceeds with the protocol execution. Otherwise, if the message
belongs to some agent conversation, the mediator starts the process of enforcing, and if the laws
allow, the message is redirected to the addressee agent. This sequence of activities is repeated
while the mediator agent is running.

wait messages

[mediator protocol

proceed protocol

enforce message
redirect message

Figure 11: Mediator Activities

Executing these activities requires that the mediator agent has ability to do things such as
interpret the laws, and since the law enforcement approach is still evolving, this agent should be
flexible and expansible to accommodate future changes. In this way, the mediator agent is based
on nine main modules where each module provides a specific functionality. These modules are
described in the next subsections.

3.3.1 Events

The communication among the modules is mainly based on event notifications. This approach
leads to a low coupling level among modules and also leads to more flexible system designs [16].
In event-based systems, there is a module, named Event Manager, which provides an interface
containing all operations needed for enabling event-based communication. This interface contains
the abstract operations fireEvent, subscribe and unsubscribe. The fireEvent operation is called by
clients named Producers, and this operation notifies all subscribers about the event occurrence.
Producers generate events in the event system. Subscribers registry their interest in certain kind
of events through the subscribe operation. Calling the unsubscribe operation undo the subscribe
operation.

The framework implements an event-based system through the collaboration of several classes
and interfaces. The IEvent interface defines the basic behavior of all events (Figure 12). This
interface extends Ildentifiable, which means that all events have identifications. Moreover, [Event
defines three methods:

o getType():int - returns the type of the event. Although events could have been identified
only by their classes, using integers to identify events allows a faster event notification
implementation through binary arithmetic, and also allows more uncoupled modules once
modules have to know only the type of the event, unlike knowing the class. The class Masks
has constants that identify all types of events contained in the framework.

11

o getinfo():InfoCarrier - Events carry data that might be important for subscribers. The data
is encapsulated in an InfoCarrier object. This object is a table where information can be
stored and retrieved. The method getlnfo returns the object InfoCarrier contained in this
event.

o getEventGenerator(): Ildentifiable - Conceptually, events are generated by Producers. In
the framework, producers can be any Ildentifiable object. This method returns the producer
of this event.

lldentifiable InfoCarrier
getld(): Id addValue(String key, Object value)
setld(ld id) getValue(String key): Object

T]

|Event E

getType(): int
getinfo(): InfoCarrier
getEventGenerator(): lldentifiable

Figure 12: IEvent Interface

The interfaces ISubject and IObserver define respectively the behavior of Event Managers and
Subscribers. Then, subscribers registry interest in certain type of events using the method atfa-
chObserver. This method has two parameters, the former is the observer (or subscriber) itself, and
the latter is a mask related to the type of events that the observer is interested in. The mask can be
formed using as many event types as required. This mask is built using the binary operator ‘I’(OR)
and constants defined in the class Masks. Then, for instance, if an observer is interested in clock
and norm activations, it should call:

attachObserver(this, Masks. CLOCK_ACTIVATION | Masks. NORM_ACTIVATION);

In the framework, there are many implementations for the interface IObserver such as Transi-
tions and Clocks. They are detailed in further sections of this paper. However, the framework only
provides one implementation for ISubject interface. This implementation is provided by the class
Subject. This class has a particular implementation for the fireEvent operation. Usual implementa-

tions run a while loop notifying all observers about the event occurrence, such as shown in Listing
6.

12

. for (int i = 0; i < observers.size(); i++) {
IObserver anObserver = (IObserver) observer.get(i);
anObserver.update (event);

Listing 6: Usual Implementation for the fireEvent Method

However, this implementation has some drawbacks. From the caller of the method fireEvent
point of view, it may wait for too long if there are computer intensive tasks on some observers’
update methods. Unexpected behavior may also happens, once implementations of the update
method can generate other events. It means that events generated latter can arrive at observers first
than events generated earlier.

For example, Figure 13 shows a sequence diagram where a client produces the event A. There
are two observers registered in the subject, the observerl is interested in events As, and the ob-
server? is interested both in events As and Bs. Then, the subject first notifies the observerl of the
occurrence of A. However, the observeri’s update method produces a B event. Then the subject
checks that only the observer?2 is interested in this type of event, and it notifies the observer2 about
the occurrence of B. The update’s implementation for the observer2 requires that A has occurred
before B in order to execute the method operation(). Since observer2 is first notified about B,
operation() is not called. But, in fact, A happened before B, and therefore, operation() should have
been called.

client subject observer1 observer2
(events A) (events A and B)
|

fireEvent(A) update(Event e){
if ((e is B) and (A happened before)X

update(A)) operation();

fireEvent(B)

update(B)

update(A)

Figure 13: Problem with the Usual Implementation of Events Notification

In order to avoid this problem, the subject provided by the framework uses a different strategy.
When clients produce events, the Subject adds the event to be generated in a queue. The Subject
extends the java class Thread and overwrite the method run(). It means that Subject runs in a
different thread of execution. The pseudo code for the run() implementation is shown in Listing 7.
This method contains a loop where it is constantly verified if there are events in the queue. Events
are put in the queue through the method fireEvent. This technique guaranties that the observers
will be notified about event occurrence on the correct order, and the callers do not have to wait for
long event if it exists computer intensive update’s implementations. The Figure 14 shows the class
diagram for the classes related to ISubject and IObserver.

13

while (true){
while (events.size ()>0){

IEvent event = (IEvent)events.pop();
Vector observers = get all observers for this event;
for (int i = 0; i < observers.size(); i++) {

IObserver anObserver = (IObserver) observers.get(i);

anObserver.update (event);

}

wait () ;

Listing 7: Subject’s run() Method

ISubject
|Observer
Tava.lang. Thread attachObserver(IObserver observer, int mask)
detachObserver(IObserver observer, int mask) update(IEvent event)

run() fireEvent(IEvent event)

JAN

D

|
Subject
eventQueue

Figure 14: Observer and Subject

3.3.2 Trigger

Triggers are software components that may be activated by events if certain conditions are satis-
fied, and once activated they execute some action. This idea is similar to Event-Condition-Action
(ECA) systems, and it is largely used in database systems [17]. The framework contains a trigger
module that specifies a set of classes and interfaces, which are used for implementing this idea.

In fact, as the communication among framework’s modules is mainly based on event notifica-
tions, the trigger module acts as an observer (or consumer) of generated events in order to activate
or deactivate triggers. Many important concepts of the model, such as Clocks and Norms, are
implemented as triggers. It brings as benefits reuse and reliability, once trigger module is used and
tested by many other modules.

A trigger is represented by the interface ITrigger. This interface contains methods for adding
conditions that activate and deactivate a trigger. Those conditions are expressed as an occurrence
of types of events generated by some producer. That is because many different producers may
generate the same kind of event, then specifying both producer and type of event makes possible
to specify that only a specific producer activates the trigger.

Triggers are able to generate events indicating their activation. The method gefActivationEvent
returns the event that is generated when the trigger is activated. According with the ECA model
discussed earlier, when a trigger is activated an action should be executed. In this framework,
trigger actions are represented by the abstract class TriggerFiring, and triggers have the method
getTriggerFiring that returns an instance of TriggerFiring class. Then, for instance, once a clock
(ITrigger) is activated, it creates a TriggerFiring that starts counting the time.

Once created, TriggerFirings are not running yet. Basically, they can be in one of these three
states: created, running and stopped. The created state occurs just after the instantiation. Trigger-
Firings enter into running state when their method start() is called, and they only leave this state
and go into stopped state when the method stop() is invoked.

14

There is a component in charge of controlling when to call the ITrigger’s methods, such as
getTriggerFiring, and as well as managing TriggerFirings’ life cycle. The TriggerManager is the
framework’s class in charge of those responsibilities. It can be viewed on Figure 15, which depicts
the class diagram of trigger module.

TriggerManager keeps the list of all Triggers. It also implements the IObserver interface,
and therefore, it listens for all events that happen in the framework. In its update’s method, the
TriggerManager controls the activation and deactivation of triggers. Listing 8 shows the idea of
triggers activation. Basically, when an event happens, for each trigger, it is verified if the trigger is
activated by the event. If it is, then the trigger is requested to return the action as consequence of its
activation, TriggerFiring. The action is then started, and an event related to the trigger activation
is scheduled to be thrown. The deactivation of triggers occur in a similar way, as illustrated in
Listing 9.

for (int i = 0; i < triggers.size(); i++) {

ITrigger trigger = (ITrigger) triggers.elementAt(i);

if (trigger.isActivatedBy (event)){
TriggerFiring activeTrigger = trigger.getTriggerFiring (info);
enabledElements.add(activeTrigger);
activeTrigger.start();
IEvent eventToThrow = trigger.getActivationEvent(info); // fires it latter
eventsToThrowList.add(eventToThrow) ;

Listing 8: Triggers Activation

for (int i = 0; i < enabledElements.size (); i++) {
TriggerFiring enabledEvent = (TriggerFiring) enabledElements.elementAt(i);
if (enabledEvent.isDeactivatedBy (event)){
this.enabledElements.remove(enabledEvent);
enabledEvent.stop () ;
IEvent eventToThrow = enabledEvent. getDeactivationEvent(info);
eventsToThrowList.add(eventToThrow) ;

Listing 9: Triggers Deactivation

I Trigger InfoCarrier

isActivatedBy(IEvent event): boolean
isDeactivatedBy(IEvent event): boolean lidentifiable
addActivation(lldentifiable eventGenerator, int eventType)

addDeactivation(lldentifiable eventGenerator, int eventType)

getTriggerFiring(InfoCarrier info): TriggerFiring [Event
getActivationEvent(InfoCarrier info): IEvent
|Observer
. .:) TriggerFiring
triggers E myTrigger - 1d
i | enabledElements start()
TriggerManager stop()
isDeactivatedBy(IEvent event): boolean

isEnabled(ITrigger trigger, InfoCarrier info): boolean abstract getDeactivationEvent(InfoCarrier info): |[Event
update(IEvent event) abstract isSatisfied(InfoCarrier info): boolean

Figure 15: Trigger Module

15

3.3.3 Contexts

Contexts are usually hierarchic and limit the visibility of actions and information. The idea is
similar to a file system structure. In a file system, each directory may contain a number of files
and other directories. In this way, each directory provides a context for the files contained in it.

A law specification may be composed of law definitions for many organizations, and each or-
ganization’s law is composed of scenes. Those compositions define contexts, where law elements
defined in an organization context are visible to all scenes, but elements defined in a scene context
are only visible to the scene.

In the framework, contexts limit the visibility of events and triggers. Each scene instance has
an associated context, which is child of an organization context. Then, whatever happens in a
scene instance is visible both to the scene instance itself and to the organization which the scene
instance belongs to. Due to this visibility schema, its is possible that events inside scenes such as
transitions activate clocks specified at the organization context. It is also possible that scenes use,
for example, norms at the organization context as prerequisite to transition activations.

The Context class represents contexts, and its structure is shown in Figure 16. Since contexts
limit visibility of events and triggers, the class Context reuse the implementation of classes Subject
and TriggerManager. A context encapsulates those classes in the way that scenes, organizations
and other elements have to know just the Context class, to generate and receive events. The Context
class delegates the implementation of the methods attachObserver, detachObserver and fireEvent
to the class Subject, that acts as an event manager; and it also delegates the implementation of the
methods isEnabled and addTrigger to the TriggerManager class.

Context

eventManager Subject

attachObserver(IObserver, int)

detachObserver(IObserver, int)
fireEvent(IEvent) TriggerManager

parent |isEnabled(ITrigger, InfoCarrier) %

addTrigger(ITrigger trigger)

Figure 16: Context Class

Context classes have an attribute called parent that references the parent context if it exists or
null in the case of being an organization context (root). When an event is generated in a Context
object, the event is also propagated to its parent context. Furthermore, the verification if a certain
trigger is active or not should be done also in the parent context, in case of the trigger is not
active. Those propagations are implemented in the methods fireEvent and isEnabled, and Listing
10 shows a pseudo-implementation.

public boolean isEnabled (ITrigger trigger, InfoCarrier info) {
if (!triggerManager.isEnabled(trigger ,info)){
if (parentContext!=null){
return parentContext.isEnabled (trigger ,info);
}else {
return false;
}
}
return true;

}

public void fireEvent(IEvent event) {
eventManager. fireEvent (event);
if (parentContext!=null){
parentContext.fireEvent(event);

16

Listing 10: Event Propagation and Trigger Verification

3.3.4 Clocks

Clocks are implemented extending trigger and event modules. The Clock class represents a Clock
element from conceptual model and extends the interface ITrigger. Clocks generate instances of
ActivatedClock in response to callings of its getTriggerFiring method (inherited from ITrigger
interface). ActivatedClock extends Runnable interface and, therefore, runs as a separated thread
of execution. Once started by TriggerManagers, an ActivatedClock instance begins to count the
time, and when the time elapsed is equal to its timeout attribute, it generates a ClockTick event.
Figure 17 shows the class diagram for the clock module.

Ildentifiable ITrigger TriggerFiring Runnable
AN AN Soene AN
| 5 e : ZLI presee- :

Clock /I\ /I\ ActivatedClock

timeout: long timeout: long

" generates TR >
|Event

generates generates

ClockActivation ClockTick

.[>
.[>

>

Figure 17: Clock Module

3.3.5 Norms

Norms are represented by the class Norm. As the clock module, norms are implemented extending
trigger and event modules. Norms are triggers listening for events that activate and deactivate
themselves. Once activated, norms generate instances of NormActivation and then an activated
norm (ActivatedNorm class) is created and put in a context. Furthermore, a norm can be of three
types: Obligation, Permission and Forbidden. Figure 18 shows those classes.

A very important aspect of the norm module is related to the attributes ownerVariable and
ownerValue in the classes Norm and ActivatedNorm. Norms, such as a permission are conceded
to a specific agent or to a certain agent role. It means that norms allow specify that agent X has
permission P, or every agent playing role R has the obligation O. The way of obtaining this func-
tionality is implemented through ownerVariable and ownerValue. The ownerVariable specifies
who is the owner of a certain norm. This variable should exist in the information carried through
the InfoCarrier object (Section 3.3.1). Usually the first event in the system is the MessageArrival.
This event puts in the InfoCarrier some information about the message that just arrived. Protocol
receives this event and checks if some transition will be activated. The transition in its turn exe-
cutes the pattern matching and then, it is made a binding of every variable defined in the message

17

|Event Ildentifiable ITrigger TriggerFiring

AN AN AN Zﬁ

H H

...... - r
H
H H H

NormActivation generates Norm = f============2 ActivatedNorm
-------------- ownerVariable ownerVariable
ownerValue

f: generator

Permission Obligation Forbidden

Figure 18: Norms

pattern, and those bindings are put in the InfoCarrier object. From this moment on, listeners of
transition activation events have access to those bindings, and they also propagate those bindings to
further events. When a norm is activated, it looks for the ownerVariable in the InfoCarrier object
and retrieve its value. This pair ownerVariable and its value is stored in the class ActivatedNorm,
which means that a norm was activated to an specific agent or agent role.

3.3.6 Protocol

The protocol module implements a non-deterministic finite state machine [18] where interaction
protocol of agents can be specified. The class Protocol (Figure 19) represents this machine. Pro-
tocol implements the IObserver* interface, and it listens for events of arrival of messages. The
Protocol class also keeps a reference to the initial state and to a list of all current states.

States are represented by the class State, and they have a list of all outgoing transitions. Then,
once the protocol receives a message, it executes the algorithm shown in Listing 11. Basically, the
protocol controls the list of current states, but the logic of changing of states is delegated to the
states themselves. States in turn have their algorithmic shown in Listing 12. This listing shows
that states manage the list of next states delegating the responsibility to transitions. In Fact, it is
the Transition class that “knows” if the protocol should change the state. Transitions execute the
activities shown in Figure 20. First, it is verified if the message just arrived has the same pattern as
specified in the XMLaw. Then, it is checked if all norms that should be enabled are really enabled.
The same is done for the norms that should be disabled. Lastly, the constraints are executed. If
all those conditions are satisfied, then the transition is fired and a transition activation event is
generated.

List futureStates = new List(); for each current state{
futureStates.add(state.step());

}

if (futureStates.size == 0){
sendMessage (Message not allowed);
Yelse{
currentStates <— futureStates;
redirectMessage;

/

Listing 11: Protocol’s Pseudo-Code

4]Observer is described in Section 3.3.1

18

|Observer

>

Protocol State Transition

initialState outgoingTransitions

currentStates

Figure 19: Protocol Module

List nextStates = new List(); for each outgoing transition {
if transition fires{
nextStates.add(transition.getDestinationState ())
}

} return nextStates;

Listing 12: State’s Pseudo-Code

match pattern

verify required
enabled norms

verify required
disabled norms

verify constraints

Figure 20: Transition Activities

3.3.7 Scene

Scenes are represented by the Scene class. This class defines a context for events, norms, clocks
and other law concepts. This class acts as an /Observer of its own context, and acts as a ISubject
delegating the requisitions to its context object. In this way, other classes such as Norms and
Clocks have only to know the Scene where they are placed, asking the Scene to generate and
inform about events.

Figure 21 shows the class diagram for Scenes. Scenes have reference to its interaction protocol
(Procotol class), to the context that it is defined for the scene, to a list of all required norms in order
to begin a scene execution, and to the organization that the scene belongs to. Furthermore, scene’s
life cycle is implemented through the methods initialization() and finalization(). They are called
by the framework when a scene have to be created and destroyed, respectively.

3.3.8 Constraints

Figure 22 shows the class diagram for the constraints module. The interface IConstraint defines
only one operation: constrain. This operation is called by transition objects. It should return true if

19

|Observer ISubject

z x

Organization 1 n Scene Norm

requiredNorms
n

initialization()
start()
finalization()

v V

Protocol Context

Figure 21: Scene Module

the transition should be constrained by this constraint, and false otherwise. Listing 13 shows an ex-
ample of constraint implementation. This example is the same example presented earlier in this pa-
per, where messages’ content have the pattern: content(television,brand(AnyBrand),price(Amount));
and the Amount variable must have a value between 50 and 100.

IConstraint

Transition

constrain(InfoCarrier info): boolean

Figure 22: Constraints

public class RangeValue implements IConstraint{

public boolean constrain(InfoCarrier info) {

String value = (String)info.getValue("Amount");
if (value==null) return true;
int intValue = Integer.parselnt(value);

if (intValue >50 && intValue<100){
return false; // OK, Should not constrain
telse{
return true; // Value out of range, constrain
}
}
}

Listing 13: Example of Constraint Implementation

3.3.9 Actions

The implementation of actions reuses the trigger module, and at the same time hides from im-
plementors of actions the details of triggers. Then, from the point of view of an implementor of
actions, only one interface is available: IActionFiring. This interface provides an execute method
that should be implemented to provide self-healing capabilities.

This transparency and facility of use for implementing actions is achieved through the classes
shown in Figure 23. The Action class implements [7rigger interface, and therefore, it is able to
listen for events and execute some behavior once the event occurs. This behavior is represented
by the class TriggerFiring, which is extended by the class ActionFiringAdapter. The Action-

20

FiringAdapter acts as an Adapter [19] and delegates its behavior to the interface IActionFiring.
Then, the action behavior is defined by implementing the IActionFiring interface.

IEvent ITrigger

>
>

ActionActivation Action

TriggerFiring

IActionFiring

:...> ActionFiringAdapter

myTrigger

execute(InfoCarrier info)

Figure 23: Action Module

3.4 Support for agent developers

Distribution and concurrency distract developers from the application functionalities when devel-
oping multi-agent systems. When interaction laws are also present in the system, developers have
to design their agents in compliance with the laws, and therefore, the developer’s job gets a bit
more complex.

The framework do not ignores this problem, and implements a module that support the job
done by developers. The module hides agent communication details and provides a set of methods
for interact to the law enforcer. Asking for example, which scenes are available. Next sections,
provide more details about this module.

34.1 Agent

Basically, there are two ways of creating a new agent: building it from scratch or extending the
class Agent provided by the framework. That class has methods for support the sending and
receiving of messages. Moreover, it is fully integrated with the mediator agent and consequently
to XMLaw and the interaction model. Even if for some reason, the agent to be developed has
to extend another class, it is possible to reuses the Agent class functionality through delegation
technique.

Agent class has an instance of the class /Communication as one of its attributes. It represents
the channel to where agents send and receive messages. Sending of messages through this channel
can be done as follows.

this.comunication.send (message) ;

However, this communication channel is hidden in the Agent class, which provides the meth-
ods shown in Listing 14.

public void send(Message msg) {
communication.send (msg) ;

} public Message nextMessage () {
return communication.nextMessage () ;

21

} public Message waitForMessage () {
return communication. waitForMessage () ;

} public Message waitForMessage(long milliseconds) {
return communication.waitForMessage (milliseconds);

}

Listing 14: Sending and Receiving Messages in Agent class

3.4.2 Communicating with Mediator: Mediator Protocol

Most of the time agents are unaware of the existence of a mediator. This is because the intercep-
tion and enforcement of messages is done transparently by the communication module (Section
3.2). However, agents can also communicate with the mediator for asking information about laws
specification and execution. Furthermore, mediators may autonomously send messages to agents
informing about some law aspects. Those messages are composed of three parts: performative,
which specifies the communicative act; content or operation, which specifies either the operation
being requested or just some information being transmitted; and a set of parameters, which may
be void.

Figure 24 shows the messages that agents can send to the mediator. Such messages request
authorization to participate of an organization, request a list of all available organizations under
control of the mediator, request some scene instantiation, request scene participation, request a list
of all scenes of an organization, and request a list of all scenes that are running.

Mediator agent answers those entire requests through a set of messages shown in Figure 25.
Furthermore, mediators can also send messages informing about some situation while enforcing
messages. For example, the message lawException is sent to an agent when the message sent by
the agent to other agent is not allowed according to the specifications.

Performative Message Description
request enterOrganization Request authorization to enter in an organization
request listOrganizations Request a list of all organizations
request startScene Request to start a scene execution
request enterlnScene Request authorization to enter in a scene
request listScenes Request a list of all scenes of an organization
request listRunningScenes Request a list of all running scenes of a specific scene

Figure 24: Mediator Protocol - Messages that Agents can Send

Performative Message Description
inform sceneAuthorization Inform a scene authorization
failure invalidSceneAuthorization Inform the scene authorization provided is not valid
inform organizationAuthorization Inform a organization authorization
failure invalidOrganizationAuthorization| Inform the organization authorization provided is not valid
failure organizationDoesNotExist Organization that agent said does not exist
failure sceneDoesNotExist Scene agent said does not exist
inform organizationList List of all organizations loaded in the mediator
inform scenelList List of all scenes of a certain organization
inform runningSceneList List of all running scenes of a specific scene
failure lawException Law definitions do not allow the message sent
failure undefined Unexpected behavior of the mediator agent

Figure 25: Mediator Protocol - Messages that the Mediator can Send

22

The Agent class also provides a set of methods to support communication with the mediator
agent. Each of these methods sends a message to the mediator, wait for an answer, put the answer
in a specific java object and makes this object available to agent’s developers. The class Agent is
shown in Figure 26.

Agent

communication : ICommunication
myAid : Agentldentification

send(Message msg): void

waitForMessage(long millisecs): Message

waitForMessage(): Message

nextMessage(): Message

enterlnOrganization(String orgld): OrganizationAuthorization

listOrganizations(): List

startScene(OrganizationAuthorization org, String sceneld, String role): SceneAuthorization
enterlnScene(OrganizationAuthorization org, String scenelnstld, String role): SceneAuthorization
listScenes(OrganizationAuthorization org): List

listRunningScenes(OrganizationAuthorization org, String sceneld): List

Figure 26: Agent Class

4 An example: Trading in a Shopping Center

The example presented in this section is useful to illustrate the using of both the elements from
conceptual model and the XMLaw specification. Besides, Section 4.3 shows the framework’s
modules runtime dynamics when facing the arrival scene.

4.1 The Scenario

Nowadays, large airports do more than just be a place to land and take off airplanes. Shopping
centers with hundreds of shops, movie theaters, hotels, business centers, and even gastronomic
centers are some of the attractions of modern airports. The large number of potential users and
the variety of services offered in a same place turns airports a very promising domain to the
development of applications such as flight tickets trading.

The adopted scenario in this example simulates a situation where a person gets at the airport
using a mobile device. The airport is equipped with a network of pervasive systems that provides
services for movie theaters, dating, searching and trading. When the person (user) gets at the
airport, the user requests what services are being provided by the airport. The airport uses a
server, named announcer, to send the list of available services to the user. Once the user chooses
one of the available services, the announcer informs the user the more specific options related
to the selected service. For example, if the user selects the trading service, then the announcer
provides the user with a list of the products available to trade. In the example presented in this
paper, we focus on the trading service.

Once the user chose the trading service and received a list of all products available to trade,
the user selects one of these products and receives a list of all shops that sell the selected product.
Then, the user selects one of these shops and starts a negotiation process. If the negotiation
succeeds, the user initiates a payment process. In the payment process, one more participant
appears: the bank. The bank provides a service that supports the payment of products. In this way,

23

the user should pay to the bank the product that was negotiated previously. The bank gives the
user an electronic receipt that is used to take the product from the shop.

This airport trading system must provide a good level of confidence to their users. It means that
users should be protected against malicious behavior of the airport’s shops and also the airport’s
shops should be protected against malicious users. As both parts are interacting using well-defined
and public available laws, the confidence in the system as a whole tends to increase.

The next section (Section 4.2) presents how this example uses the elements from the concep-
tual model and XMLaw to specify the interaction laws.

4.2 Specifying the laws

Interactions between agents that compose the system are modularized using the scene idea. Four
scenes are identified: arrival, selection, negotiation and payment. In the first scene, users receives
the available services at the airport. In the second one, users select the trading service, receives a
list of all products that they can buy, choose one of the products and receives a list of all sellers
(shops) for the selected product. In the negotiation scene, users choose one of the sellers and start
a negotiation process that may succeed or fail. Finally, in the payment users pay to the bank the
dealt product. Figure 27 shows these scenes.

Announcement Selection Negotiation Payment

Figure 27: Scenes modularizing interactions

Next, we present the details about each of these scenes. These scenes are represented both
through the (informal) graphic notation introduced in Figure 28 and through XMLaw.

»O initial state

O execution state

O success state

{ failure state

& clock

& action

- transition

® norm

participant entrance
& ---» clock tick, after time, activates something

£ clock activation

-& clock deactivation

Figure 28: Symbols used to graphically represent scenes

Scene: arrival

Each scene specifies the interaction protocol that agents should follow, and consequently what
the valid messages are. Figure 29 shows the laws for the arrival scene. The interaction protocol
of this scene is illustrated in Figure 30 and it is specified using the XMLaw of Listing 15. It is
considered that the whole interaction can not last more than 10 seconds (time-to-live). The scene
can be created by any agent playing any role (tag Creator). However, only agents playing either

24

customer or announcer roles can participate of interactions (tag Participant). Agents can only
participate of this scene if the protocol’s state is in the state sO for customers participation or s/
for announcers participation. Only two messages are exchanged in this scene. One of them is
sent from the customer to the announcer informing that the customer has arrived at the airport
(message ml). The other one is the announcer’s reply to such informing, which contains a list of
the available services at the airport (message m2). A clock is activated when an customer agent
sends a message requesting the available services. The goal of this clock is to verify if the systems
is achieving a good reply-time. Then, if the announcer does not reply within this time, an action
(announcer-is-down) is activated and a new announcer is turned on.

Scene: Arrival

1. ltis allowed that every agent creates this scene.

2. Agents playing the “customer” role can only enter in the scene if the protocol is in the
initial state, thatis, no conversation has occured.

3. Agents playing the “announcer” role can only enter in the scene after an agent
“customer” has started the conversation.

4. In order to start a conversation, the “customer” agent should send a message
introducing itself to the agent “announcer”, that in its turn replies with a list of available
services.

5. When the “customer” agent starts the conversation, the “announcer” agent has 5
seconds to send a reply. In case of no reply after the 5 seconds, it could mean that, for
example, the “announcer” agent is not working properly or there are some network
communication problems. In this case, an action should be executed in order to try to
recover from the failure.

Figure 29: Arrival Scene’s Laws

Figure 30: Scene: arrival

25

<Scene id="anouncement" time—to—live="10000"> <!— 10 sec. —>
<Creators>
<Creator agent="any" role="any"/>
</Creators>
<Entrance>
<Participant agent="any" role="customer">
<StatesRef>
<StateRef ref="s0"/>
</StatesRef>
</Participant>
<Participant agent="any" role="announcer">
<StatesRef>
<StateRef ref="sl"/>
</StatesRef>
</Participant>
</Entrance>
<Messages>
<Message id="ml" template="message(request ,sender(_,customer),receiver(_,announcer),content(hello))."/>
<Message id="m2" template="message(inform ,hsender(_,announcer),receiver (CustomerAgent,customer),content(
services ([_1_1)))."/>
</Messages>
<Protocol>
<States>
<State id="s0" type="initial" label="Initial _state"/>

<State id="sl" type="execution" label="Message_sent"/>
<State id="s2" type="success" label="Response_answered"/>
</States>
<Transitions>
<Transition id="tl1" from="s0" to="s1" message—ref="ml"/>

<Transition id="t2" from="s1" to="s2" message—ref="m2"/>
</Transitions>
</Protocol>
<Clocks>
<Clock id="time—for—answering—hello" type="regular" tick—period="5000"> <!— 5 sec. —>
<Activations>
<Element ref="tl" event—type="transition_activation"/>
</ Activations>
<Deactivations>
<Element ref="t2" event—type="transition_activation"/>
</Deactivations>
</Clock>
</Clocks>
<Actions>
<Action id="announcer—is—down" class="br.pucrio.inf.les.law.app.airport.repairactions.HealAnnouncerAction">
<Element ref="time—for—answering—hello" event—type="clock_tick"/>
</ Action>
</ Actions>
</Scene>

Listing 15: Arrival Scene: XMLaw

Scene: selection

This scene may last up to 5 minutes, which approximates the amount of time given to the user
(customer agent) to choose among the services and products. The first message is sent from
the customer to the announcer informing the selected service. This message causes the firing of
transition ¢3 (in the XMLaw). The announcer’s reply contains the list of available products for
the requested service® (message m4). The customer chooses one of the products and requests the
list of sellers (message m5). Finally, the list of sellers is informed through message m6 and the
protocol reaches the success state s7. Then, both protocol and scene finish.

<Scene id="selection" time—to—live="300000"> <!— 5 min. —>
<Creators>
<Creator agent="any" role="any"/>
</Creators>
<Entrance>
<Participant agent="any" role="customer">
<StatesRef>
<StateRef ref="s3"/>
</States>
</Participant>
<Participant agent="any" role="announcer">
<StatesRef>
<StateRef ref="s4"/>
</StatesRef>

5In this case study only the trading service is considered.

26

Scene: selection

1. ltis allowed that every agent creates this scene.

2. “Customer” agents are in charge of starting the conversation and, therefore, they
can only enterin the scene if the protocol is in the initial state.

3. An “announcer” agent is only allowed to enter in this scene when replying a
previous message sent by a “customer” agent.

Figure 31: Selection Scene’s Laws

X X
’@ m3 >@ m4 >@ m5 >@ m6 >@

Figure 32: Scene: selection

</Participant>
</Entrance>
<Messages>
<Message id="m3" template="message(request ,sender(_,customer),receiver(_,announcer),content(option(Service))).
">
<Message id="m4" template="message(inform,sender(_,announcer),receiver(_,customer),content(products(
ListOfProducts)))."/>
<Message id="m5" template="message(request ,sender(_,customer),receiver(_,announcer),content(sellers—of(Product

).
<Message id="m6" template="message(inform,sender(_,announcer),receiver(Customer,customer),content(sellers ([_I_
D))."r>
</Messages>
<Protocol>
<States>
<State i " type="initial" label="Ready_to_ask_for_options"/>

<State i " type="execution" label="List_of_products_requested"/>
<State i " type="execution" label="List_of_products_informed"/>
<State i " type="execution" label="List_of_sellers _requested"/>
<State id="s7" type="success" label="List_of_sellers _informed"/>
</States>
<Transitions>
<Transition id="t3" from="s3"
<Transition id="t4" from=" " message—ref="m4"/>
<Transition id="t5" from=" " message—ref="m5"/>
<Transition id="t6" from="s6" to="s7" message—ref="mo6"/>
</Transitions>
</Protocol>
</Scene>

" message—ref="m3"/>

Listing 16: Selection Scene: XMLaw

Scene: negotiation

The interaction protocol used in this scene is based on FIPA-CONTRACT-NET [20]. The first
message is sent from a costumer to a seller requesting a proposal for the selected product. This
message contains some information about the maximum price customer can pay for the product
and about the preferred brand. Sellers can only send proposals with value less or equal the max-
imum price specified by the customer. This price constraint is implemented through the class
EnforceValue, showed in Listing 18. This class is called by the constraints in the transitions ¢7
and 9. In #7 the maximum price is obtained and in 9 the informed value is verified. Sellers can
reply a customer request through a proposal (message m8 and transition s9 to s/0) or refusing to
send a proposal (message m11). If the seller refuses, then the protocol finishes in the s/3 failure
state. Otherwise, when the customer agent receives a proposal, it has 20 seconds to decide whether

27

accepting or rejecting the proposal. If after the 20 seconds the customer has not decided yet, the
seller receives a permission to cancel the proposal previously made. This law is important because
it protects the seller in the case where another client is interested in the same product but the seller
cannot sell because it has already started a negotiation for this product. The state s/5 represents
when a seller has cancelled a proposal after the 20 seconds of "customer indecision". The state s/4
means that the customer has not accepted the proposal made by a seller. Finally, if the customer
has accepted the proposal, the protocol goes to state s// and the seller informs where the payment
should be done (message m10).

Scene: negotiation

1. ltis allowed that every agent creates this scene.

2. “Customer” agents are in charge of starting the conversation and, therefore, they
canonly enter in the scene if the protocol is in the initial state.

3. A‘seller” agent is only allowed to enter in this scene when replying a previous
message sentby a “customer” agent.

4. “Customer” agents have 20 seconds to decide whether they accept or reject a
proposal sent by a “seller”. When the 20 seconds has elapsed, the “seller” obtains a
permission to cancel the negotiations with the “customer” agent.

5. Agents that play the “seller” role must send proposals with the price always less or
equals to the suggested price by the “customer”.

Figure 33: Negotiation Scene’s Laws

Hior®

Figure 34: Scene: negotiation

28

<Scene id="negotiation" time—to—live="infinity">
<Creators>
<Creator agent="any" role="any"/>
</Creators>
<Entrance>
<Participant agent="any" role="customer">
<StatesRef>
<StateRef ref="s8"/>
</StatesRef>
</Participant>
<Participant agent="any" role="seller">
<StatesRef>
<StateRef ref="s9"/>
</StatesRef>
</Participant>
</Entrance>
<Messages>
<Message id="m7" template="message(cfp,sender(_,customer),receiver(_,seller),content(product—details (product(
Product) ,maxprice (Price),brand (Brand))))."/>
<Message id="m8" template="message(propose ,sender(SellerAgent,h seller),receiver(_,customer),content(product(
name (Product) ,price (Price) ,brand(Brand))))."/>
<Message id="m9" template="message(accept—proposal ,sender(_,customer) ,receiver(_,seller),content(_))."/>
<Message id="ml0" template="message (inform ,sender(_,seller),receiver (CustomerAgent,customer),content(payto (
Bank)))."/>
<Message id="mll" template="message(refuse ,sender(_,seller),receiver(_,customer),content(Reason))."/>
<Message id="ml2" template="message(reject—proposal ,sender(_,customer) ,receiver(_,seller),content(Reason))."/>
<Message id="ml3" template="message(cancel ,sender(_,seller),receiver(_,customer),content(Reason))."/>
</Messages>
<Protocol>

<States>
<State id="s8" type="initial" label="Ready_for_starting_negotiations"/>
<State i "execution" label="Call_for_proposal_requested"/>
<State "execution" label="Proposal_sent"/>
<State "execution" label="Proposal_accepted"/>
<State success" label="Bank_informed"/>

<State id="s13" type="failure" label="Refuse_sending _proposal"/>
<State id="s14" type="failure" label="Proposal_rejected"/>
<State id="s15" type="failure" label="Too_long time_to _decide"/>
</States>
<Transitions>
<Transition id="t7" from="s8" to="s9" message—ref="m7">
<Constraints>
<Constraint class="br.pucrio.inf.les.law.app.airport.repairactions.EnforceValue">
<Semantic>Gets value on price</Semantic>
</Constraint>
</Constraints>
</ Transition>
<Transition id="t8" from="s9" to="s10" message—ref="m8">
<Constraints>
<Constraint class="br.pucrio.inf.les.law.app.airport.repairactions.EnforceValue">
<Semantic>Enforces value on price</Semantic>
</Constraint>
</Constraints>
</ Transition>
<Transition id="t9" from="s10" to="s11" message—ref="m9"/>

<Transition t10" from="s11" to="sI12" message—ref="ml0"/>
<Transition "tl11" from="s59" to="s13" message—ref="mll"/>
<Transition id="t12" from="s10" to="sl14" message—ref="ml2"/>

<Transition id="t13" from="s10" to="sI15" message—ref="ml3">
<ActiveNorms>
<Norm ref="seller —permission—to—cancel"/>
</ ActiveNorms>
</ Transition>
</Transitions>
</Protocol>
<Clocks>
<Clock id="time—to—decide" type="regular" tick—period="20000"> <!— 20 sec. —>
<Activations>
<Element ref="t8" event—type="transition_activation"/>
</ Activations>
<Deactivations>
<Element ref="t9" event—type="transition_activation"/>
<Element ref="t12" event—type="transition_activation"/>
</Deactivations>
</Clock>
</Clocks>
<Norms>
<Permission id="seller —permission—to—cancel">
<Owner>SellerAgent</Owner>
<Activations>
<Element ref="time—to—decide" event—type="clock_tick"/>
</ Activations>
</Permission>
</Norms>
</Scene>

Listing 17: Negotiation Scene: XMLaw

29

public class EnforceValue implements IConstraint{

private double maxPrice;
private double price;

public boolean constrain(InfoCarrier info) {

Message msg = (Message)info.getValue(Constants .MESSAGE_INFO_KEY) ;
if (msg.getPerformative ().equals(Message.CALL_FOR_PROPOSAL)) {
maxPrice = Double. parseDouble ((String)info.getValue("Price"));
}else if (msg.getPerformative ().equals(Message.PROPOSE)) {
price = Double.parseDouble ((String)info.getValue("Price"));
if (price <= maxPrice){
return false:
}else{
return true;
}
}

return false;

Listing 18: Contraining the price

Scene: payment

The creation of a payment scene can be only be performed by agents playing the customer role
and that have the permission permission-to-pay. This permission is obtained when a customer
agent successfully completes a negotiation scene. This permission is specified in the context of
the organization, and therefore it is global. Listing 19 shows the specification of this permission.

</Scenes>
<Norms>
<Permission id="permission—to—pay">
<Owner>CustomerAgent</Owner>
<Activations>
<Element ref="negotiation" event—type="sucessful_scene_completion"/>
</ Activations>
<Deactivations>
<Element ref="payment" event—type="sucessful_scene_completion"/>
</Deactivations>
</Permission>
</Norms>
</LawOrganization>

Listing 19: Permission specification: limiting the access to payment scene

Except for the access control introduced through the permission permission-to-pay, this scene
is very simple and its specification is presented in Figure 36 and Listing 20.

Scene: payment

1. Only “customer” agents that have successful completed the negotiation scene can
enterin this payment scene.

2."“Customer” agents can only enter in this scene if the protocol is in the initial state.

3. A “bank” agent is only allowed to enter in this scene when replying a previous
message sent by a “customer” agent.

Figure 35: Payment Scene’s Laws

30

X

14 +§m15
—>()—>)

Figure 36: Scene: payment

<Scene id="payment" time—to—live="infinity">
<Creators>
<Creator agent="any" role="customer">
<ActiveNorms>
<Norm ref="permission—to—pay"/>
</ ActiveNorms>
</Creator>
</Creators>
<Entrance>
<Participant agent="any" role="customer">
<StatesRef>
<StateRef ref="s16"/>
</StatesRef>
</Participant>
<Participant agent="any" role="bank">
<StatesRef>
<StateRef ref="s17"/>
</StatesRef>
</Participant>
</Entrance>

<Messages>
<Message id="ml4" template="message(request , sender(_, initiator),receiver(_, participant),content(pay(amount(
Amount) ,to(Seller))))."/>
<Message id="ml5" template="message (inform ,sender(_, participant),receiver(_,initiator),content(receipt(number(

Number))))."/>
</Messages>
<Protocol>
<States>
<State id="sl6" type="initial" label="Ready_for_payment"/>
<State id="sl17" type="execution" label="Payment_order_emitted"/>
<State id="s18" type="success" label="Receipt_sent"/>
</States>
<Transitions>
<Transition id="tl4" from="s16" to="s17" message—ref="ml4"/>
<Transition id="tl5" from="s17" to="s18" message—ref="ml5"/>
</Transitions>
</Protocol>
</Scene>

Listing 20: Payment Scene: XMLaw

4.3 Modules Dynamics

This section shows how the main modules of the framework behave in face of an interaction in the
context of the arrival scene. It is described in a sequence of steps showing the consequence of the
agents’ interactions and the law specification.

1. Customer agent sends the message through the Agent class’ method sendMessage.
message(request, sender(maria@JADE,customer),receiver(jose @ JADE,announcer),

content(hello)).

2. Message gets at the agent communication module, which redirects the message to the me-
diator agent.

3. The mediator agent receives the message from its communication module, identifies to
which scene the message is addressed and fires a message arrival event in the context of
the scene.

31

4. The protocol of the scene class is an observer of message arrival events that occurs in the
context of the scene. Hence, the protocol is notified about the message arrival.

5. It verifies that the current state is "s0" and there is a transition from "s0" to "s1" that is should
fire when a message matches the template of message "m1". The charging of performing
this matching is delegated to the PatternMatcher class. Then, as the pattern matches, the
transition "t1" is fired and a transition activation event is generated in the context of the
scene.

6. The clock "time-for-answering-hello" is waiting for the occurrence of the activation of tran-
sition "t1" to be activated. As this event just happened, this clock is then activated is starts
to count the time. In other words, a Clock object generates an instance of ClockActivation
class, which represents an event, and after that, the clock object also creates an instance of
ActivatedClock that starts to count the time.

7. Supposing that after 5 seconds the agent (jose @JADE,announcer) has not replied the previ-
ous request message, the ActivatedClock generates a ClockTick instance, which is an event.

8. Then to finalize, the action "announcer-is-down" is waiting for the occurrence of clock ticks
events, which also just happened. This action is then activated, and a new instance of the
class specified in the XMLaw is created, and its execute method is invoked. In this case, the
action is implemented by the Heal AnnouncerAction class.

5 Related Work

Related work regarding this paper is done in two ways. The first one relates the implementation of
other law approaches with the one presented here. The second one could compare the model used
to specify interaction with other existent models.

Following the first option, the work presented in this paper implements a law enforcement ap-
proach as an object-oriented framework, which brings the benefits of reuse and flexibility. More-
over, to the best of our knowledge, other law-based approaches have not published their imple-
mentations, which make tough comparing with this one. In this sense, we believe that the design
strategy presented throughout this paper is a novel and important contribution to the field of law-
based approaches.

Regarding the second approach, it is possible to cite at least three important researches with
goals very similar to the conceptual model used here. In Esteva [11] approach, scenes are similar
to the protocol elements proposed in this paper. Both Esteva scenes and protocol elements specify
the interaction protocol using a global view of the interaction. It means that all the interaction
among the agents is specified in only one protocol in opposite to individual agent views, where
many partial views of the protocol (one of each agent) are specified. The time aspect is represented
in Esteva approach as timeouts. Timeouts allow activating transitions after a given number of time
units passed since a state was reached. On the other hand, due to our event model, the clock
element proposed in this paper can both activate and deactivate not only transitions, but also other
clocks and norms. Connecting clocks to norms allows a more expressive normative behavior;
norms become time sensitive elements. Furthermore, we also include the concept of actions,
which allows execution of java code in response to some interaction situation.

OMNI [21] is a framework for modeling agent organizations. This framework is composed
of three dimensions: normative, organizational and ontological. These dimensions aim to cover

32

from analysis to implementation of agent organizations. In the normative dimension, developers
specify the mechanisms of social order, in terms of common norms and rules, which members
are expected to adhere to. The organizational dimension describes the structure of an organiza-
tion. The ontological dimension defines environment and contextual relations and communication
aspects in organizations. In addition, each one of these dimensions can be viewed in three abstrac-
tion levels: abstract, concrete and implementation. In the abstract level, the general organization
goals are defined in a high level of abstraction. It also contains the definition of the ontology of the
model itself. Based on the abstract level, norms, rules, roles, interaction protocols and concrete
ontological concepts are defined. The implementation level assumes a given multi-agent architec-
ture as basis for the implementation of the organizational model, and also mechanisms for role
enactment and norm enforcement.

Minsky [22, 23] proposes a coordination and control mechanism called law governed inter-
action (LGI). This mechanism is based in two basic principles: the local nature of the LGI laws
and a decentralization of law enforcement. The local nature of LGI laws means that a law can
regulate explicitly only local events at individual home agents, where home agent is the agent be-
ing regulated by the laws; the ruling for an event e can depend only on e itself, and on the local
home agent’s context; and the ruling for an event can mandate only local operations to be carried
out at the home agent. On the other hand, the decentralization of law enforcement is an architec-
tural decision argued as necessary for achieving scalability. Furthermore, it provides a language to
specify laws and it is concerned with architectural decisions to achieve a high degree of robustness.
In contrast, our approach provides a explicit conceptual model and focuses on different concepts
such as Scenes, Norms and Clocks.

6 Conclusions

This paper presented an object-oriented framework that supports a model for specifying agent’s
interaction. The framework monitors agent’s interactions and verify if they are in accordance with
the XMLaw specification. The framework is flexible once it provides hotspots to plug in different
communication mechanisms and different content languages (prolog, DAML+OIL). Moreover, the
report given in this paper provides a guide in the sense that new agent enforcement frameworks
can appear based on ideas presented here.

We believe that development of open multi-agent systems requires new techniques and ab-
stractions to deal with the many sources of complexity that arises in the scenario, and the pro-
posed framework tackles a very specific and important point to achieve higher levels of system’s
confidence: taming agent’s autonomy.

However, we believe that more sophisticated mechanisms should be incorporated in the frame-
work, such as reputation mechanisms, fault-tolerance techniques, and a more scalable strategy to
mediate the messages (as opposed to the centralized mediator presented in this framework).

Two current research trends are being done. One is related on how to incorporate in the agents
the ability to reason about the laws in order to plan their actions. The other trend is related to
improving the conceptual model to allow composition of elements. For example, we could specify
a generic scene and extend this scene to a more specific context.

33

References

[1]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

M. Wooldridge, G. WeiB3, P. Ciancarini (Eds.), Agent-Oriented Software Engineering II, Sec-
ond International Workshop, AOSE 2001, Montreal, Canada, May 29, 2001, Revised Papers
and Invited Contributions, Vol. 2222 of Lecture Notes in Computer Science, Springer, 2002.

N. Sadeh, R. Arunachalam, J. Eriksson, N. Finne, S. Janson, Tac-03: a supply-chain trading
competition, Al Mag. 24 (1) (2003) 92-94.

F. Zambonelli, N. Jennings, M. Wooldridge, Developing multiagent systems: The gaia
methodology, ACM Trans. Softw. Eng. Methodol. 12 (3) (2003) 317-370.

R. Paes, G. Carvalho, C. Lucena, P. Alencar, H. Almeida, V. T. da Silva, Specifying laws
in open multi-agent systems, in: Agents, Norms and Institutions for Regulated Multiagent
Systems - ANIREM, Utrecht, The Netherlands, 2005.

J. F. Hubner, J. S. Sichman, O. Boissier, A model for the structural, functional, and deon-
tic specification of organizations in multiagent systems, in: XVI Brazilian Symposium on
Artificial Intelligence, Porto de Galinhas, Brazil, 2002.

Z. Guessoum, N. Faci, J.-P. Briot, Adaptive replication of large-scale multi-agent systems
- towards a fault-tolerant multi-agent platform, in: Software Engineering for Large-Scale
Multi-Agent Systems - SELMAS’05, St. Louis, Missouri - USA, 2005.

WOSS ’02: Proceedings of the first workshop on Self-healing systems, ACM Press, 2002.

J. O. Kephart, D. M. Chess, The vision of autonomic computing, IEEE Computer Magazine
36 (1) (2003) 41-50.

M. Fayad, D. C. Schmidt, Object-oriented application frameworks, Communications of
ACM 40 (10) (1997) 32-38.

T. Murata, N. H. Minsky, On monitoring and steering in large-scale multi-agent systems,
in: Selmas’03 2nd International Workshop on Software Engineering for Large-Scale Multi-
Agent Systems, Portland, Oregon, 2003.

M. Esteva, Electronic institutions: from specification to development, Ph.D. thesis, Institut
d’Investigacié en Intel.ligencia Artificial, Catalonia - Spain (October 2003).

F. J. Martin, E. Plaza, J. A. Rodriguez-Aguilar, An infrastructure for agent-based systems:
an interagent approach, International Journal of Intelligent Systems (IJIS) (1999) 217-240.

D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen, S. Thatte,
D. Winer, Simple object access protocol (soap) 1.1 (May 2000).
URL http://www.w3.org/TR/SORP/

Fipa, Foundation for intelligent physical agents (2003).
URL http://www.fipa.org/

F. Bellifemine, A. Poggi, G. Rimassa, Jade: a fipa2000 compliant agent development envi-
ronment, in: Proceedings of the fifth international conference on Autonomous agents, ACM
Press, 2001, pp. 216-217.

34

[16] G. Cugola, E. D. Nitto, A. Fuggetta, Exploiting an event-based infrastructure to develop com-
plex distributed systems, in: Proceedings of the 20th international conference on Software
engineering, IEEE Computer Society, 1998, pp. 261-270.

[17] J. Widom, S. Ceri, Active Database Systems: Triggers and Rules For Advanced Database
Processing., Morgan Kaufmann, 1996.

[18] P. B. Menezes, Linguagens Formais e Autdmatos, Série Livros Didaticos, Sagra Luzzato
Editores, Porto Alegre, 1997.

[19] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: elements of reusable object-
oriented software, Addison-Wesley, 1995.

[20] E. F. for Intelligent Physical Agents, Fipa contract net interaction protocol specification (De-
cember 2002).
URL http://www.fipa.org/ specs/ fipa00029/

[21] J. Vazquez-Salceda, V. Dignum, F. Dignum, Organizing multiagent systems, Tech. rep., In-
stitute of Information & Computing Sciences (March 2004).

[22] N. H. Minsky, T. Murata, On manageability and robustness of open multi-agent systems,
in: C. Lucena, A. Garcia, A. Romanovsky, J. Castro, P. Alencar (Eds.), Software Engineer-
ing for Multi-Agent Systems II: Research Issues and Practical Application, Vol. 2940/2004,
Springer-Verlag Heidelberg, 2004, pp. 189-206.

[23] N. H. Minsky, V. Ungureanu, Law-governed interaction: a coordination and control mecha-
nism for heterogeneous distributed systems, ACM Trans. Softw. Eng. Methodol. 9 (3) (2000)
273-305.

35

