

ISSN 0103-9741

Monografias em Ciência da Computação

n° 33/05

A Governance Framework for Instantiating
Supply Chain Management Applications as Open

Systems
Gustavo Robichez de Carvalho
Carlos José Pereira de Lucena

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 33/05 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena Outubro/ October, 2005

A Governance Framework for Instantiating Supply
Chain Management Applications as Open Systems

Gustavo Robichez de Carvalho, Carlos José Pereira de Lucena
Departamento de Informática – PUC-Rio

Rua Marquês de São Vicente, 225, Rio de Janeiro – Brasil, 22453-900
{guga, lucena}@inf.puc-rio.br

Abstract. Governance means that specifications are enforced dynamically at applica-
tion run-time. Governance framework is a technique to design open systems for exten-
sions. We based this proposal on object-oriented framework concepts and adapted
them for distributed agents and interactions. A governance framework reuses general
specifications and some infrastructural services provided by open MAS. Governance
frameworks structure the extensions of open system instances as variations in compo-
nents, defined as roles, and variations in interactions among agents, defined as tem-
plates. Templates are used to gather a core implementation and extension points. Ex-
tension points are “hooks” that will be customized to implement an instance of the
governance framework. During framework instantiation, roles are bound to external
agents and templates are refined to concrete interaction specification. As a proof of
concept experiment, in this paper we propose a framework for instantiating supply
chain management applications as open systems.

Keywords: Reuse, frameworks, multi-agent systems, interaction protocols, open sys-
tems, laws, software engineering.

Resumo. Em um sistema aberto, governança significa que especificações são verifica-
das dinamicamente em tempo de execução. Frameworks de governança é uma técnica
para projeto sistemas abertos para extensão. Baseamos esta proposta em conceitos de
frameworks orientado a objetos e os adaptamos para desenvolver sistemas abertoc com
agentes distribuídos. Um framework de governança reutiliza especificações gerais e
alguns serviços de infra-estrutura oferecidos por um sistema multi-agente aberto. Fra-
meworks de governança estruturam as extensões de uma instância de sistema aberto
como variações em componentes, definidos com papéis, e variações em interações en-
tre agentes, definidos como templates. Templates são utilizados para reunir o núcleo
da solução e pontos de extensão. Pontos de extensão são ganchos que podem ser cus-
tomizados para implementar uma instância de um framework de governança. Durante
a instanciação do framework, papéis são associados a agentes e templates são refinados
em especificações completas de interações. Como uma prova de conceito, neste artigo
propusemos um framework para instanciar aplicações de cadeia de suprimento como
sistemas abertos.

Palavras-chave: Reuso, frameworks, sistemas multi-agentes, protocolos de interação,
sistemas abertos, leis, engenharia de software.

 ii

In charge for publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

 1

1 Introduction

Software permeates every aspect of our society, and it is increasingly becoming a dis-

tributed, open and ubiquitous asset. The greater the dependence of our society on open

distributed applications, the greater will be the demand for new solutions that are

variations of previously existing ones. One of the challenges of software development

is to produce software that is designed to evolve, therefore reducing the maintenance

efforts.

Nowadays, in many situations openness is a characteristic that is crucial for

software. Open systems are environments where autonomous distributed components

interact and may enter and leave the environment at their will [12]. Openness has led

to software systems that can present an emergent or even unpredictable behavior [1].

Multi-agent auction systems are examples of such open and distributed applications

[24].

Software agent technology is considered a promising approach for the devel-

opment of open system applications [22]. The specification of open multi-agent sys-

tems (open MAS) includes the definition of agent roles and any other restrictions that

the environment imposes on an agent to enter and participate in conversations. Agents

are reused as they are required and as they conform to the specifications of the open

MAS. Since open system components are often autonomous [24], sometimes they be-

have unpredictably and unforeseen situations arise. Taming this uncertainty is a key

issue for open software development. The establishment of laws over interaction speci-

fication is a means to define what and when something can happen in an open system,

representing the valid interactions in open MAS applications. When enforced, laws

create a boundary of tolerated autonomous behavior and are used to foster the devel-

opment of trusted systems.

Open MAS should be specified and developed to facilitate extensions. Since

software systems need to be customized according to different purposes and peculiari-

ties, the authors think that it is possible to express evolution as variations related to in-

teractions of open systems and to components that inhabit the environment. Following

this hypothesis, we propose to design open systems using extension points [8] to anno-

tate interaction specification and using laws to customize the agents’ expected behav-

 2

ior. For component variation support, we propose to use specifications of agent roles

[14][16][23]. One of the challenges of this paper is to argue that some specification ele-

ments can be reused and that some predefined “hooks” can be refined to develop a set

of open MAS applications in a specific domain.

We are proposing governance frameworks based on some object-oriented

framework concepts. An object-oriented framework [11] metaphor provides the neces-

sary modeling capabilities for constructing reusable implementations of open systems.

A framework is a set of abstract and concrete elements that embody a semi-complete

solution. A framework instance is a set of concrete elements that specializes abstract

elements to provide an executable system. The motivation for proposing the frame-

work metaphor is to simplify the design and maintenance of a family of applications

and to address the needs for highly customizable applications in an economical man-

ner [5]. Governance frameworks may demonstrate in practice the ability to apply en-

forcement (or, when needed, to relax enforcement) for both complex and changing

specifications. Besides customizations, the compliance of the system to the specification

must continue to be analyzed by a mechanism that governs the laws of interactions in

open MAS. We use the XMLaw description language [19] to map the specification of

interaction rules into a governance mechanism.

A proof of concept prototype has been developed based on the specification of

the Trading Agent Competition - Supply Chain Management (TAC SCM) [3][10][21]. In

this example, we discuss how the changes to the laws of open MAS applications can be

represented as templates that structurally “hook” the extension points into the interac-

tion protocol. The goal of this study is to approach the TAC SCM structure by consider-

ing it an open system and, through the analysis of its specifications, we aim to learn

about how to extend the interaction specification and compliance verification in open

system applications. The main purpose of the current investigation is not to contribute

to TAC SCM evolution as a realistic open system for B2B trading, but rather to show

that it is possible to productively specify, analyze and develop open software systems

using extension points.

The contributions of this paper are threefold. First, we propose to use variations

and laws to specify, implement and maintain extension points in open systems. Sec-

ond, we support the implementation of these variations using a law-governed mecha-

 3

nism. Third, we specified and implemented a framework for supply chain manage-

ment applications based on TAC-SCM’s specifications.

The organization of this paper is as follows. Section 2 briefly describes the law-

governed mechanism. In Section 3, we discuss the governance framework approach as

a means to design open system for extensions. Section 4 maps the variations identified

in TAC-SCM’s editions into a governance framework for supply chain management.

Section 5 partly describes two instances of the TAC SCM using our approach. Related

work is described in Section 6. Finally, we describe our conclusions in Section 7.

2 GOVERNING INTERACTIONS IN OPEN SYSTEMS

We consider that distributed software agents are independently implemented, i.e., the

development is done without a centralized control and the only restriction that we im-

pose is that agents communicate using ACL. Furthermore, we assume that every agent

developer may have an a priori access to the open system specification, including pro-

tocol descriptions and interaction laws.

Law governed architectures are designed to guarantee that the specifications will be

obeyed. We developed an infrastructure that includes a modification of a basic com-

munication infrastructure [6] that is provided to agent developers. This architecture

intercepts messages and interprets the laws previously described. Whenever necessary,

a software support [20] permits extending this basic infrastructure to fulfill open sys-

tem requirements or interoperability concerns regarding law monitoring.

In this paper, we use the description language XMLaw [19] to represent the interac-

tion rules of an open system specification. XMLaw (Figure 1) specifies interaction pro-

tocols using time restrictions, norms, or even time sensitive norms. The composition

and interrelationship among elements is done by events. One law element can generate

events to signal something to other elements. Other elements can sense events for

many purposes — for instance, activating or deactivating themselves. Some enhance-

ments on XMLaw proposed in [7][8] will be applied here, including the proposal of ex-

tension points. Those elements are represented in an XML structure like (Code 1).

 4

Figure 1 Conceptual Model

<Laws>

 <LawOrganization id="…" name="…">

 <Scene id="…" time-to-live="…">

 <Creators>…</Creators>

 <Entrance>

 <Participant role="…" limit="…"/>

 </Entrance>

 <Messages>…</Messages>

 <Protocol>

 <States> … </States>

 <Transitions>…</Transitions>

 </Protocol>

 <Norms>... </Norms>

 <Clocks>...</Clocks>

 <Actions>...</Actions>

 </Scene>

 </LawOrganization>

</Laws>

Code 1: XMLaw elements’ structure

3 The Object-Oriented Framework Metaphor for Open Systems

An object-oriented framework is a reusable, semi-complete application that can be spe-

cialized to produce custom applications [11]. A framework is a collection of abstract

entities that encapsulate common algorithms of a family of applications [12]. Abstract

elements provide some “hooks” to other elements implemented or defined within the

framework. A framework instance reuses the framework implementation but has only

concrete elements. Some of the concrete elements are specialized from abstract ones to

provide an executable system [11]. Hooks are a means of representing knowledge

about the place in a framework that can be changed by application developers to pro-

duce an application from the framework [11].

 5

Domain analysis is fundamental for reuse achievement [5]. In open software sys-

tems, the rules that enforce the relationships between agents are not always fully un-

derstood early in the framework life cycle. Still, many more rules are not applied be-

cause of the lack of systems support for changing specifications or the complexity of

the specifications. Inspired by object-oriented frameworks [11], governance frame-

works can deal with this complexity, reifying proven software designs and implemen-

tations in order to reduce the cost and improve the quality of software.

A governance framework is an extensible design for building open multi-agent sys-

tems. A solution for open system development is achieved by relaxing the boundary

between a framework (the common part of the family of applications) and its instantia-

tions (the application-specific part). In a governance framework, certain services and

laws of the open system are abstract, because they are left unspecified or not com-

pletely specified because they would expose details that would vary among particular

executable implementations.

A governance framework is flexible by design. Flexibility works in opposition to the

concept of static interaction specification or enforcement and static bindings of compo-

nents. Customizability ensures the framework may receive new constructs or adapt the

existing ones. For this purpose, a governance framework provides “hooks” for its in-

stances; we define abstract definitions for agents as roles and for interactions as tem-

plates. Governance support and agents’ implementations that have specificities accord-

ing to their applications are fully implemented later, but all common definition and

implementation are present in general specifications or open system services. The re-

alization of abstract interactions and abstract components are deferred to instantiation

time and execution time, respectively.

3.1 Variations in Open Multi-Agent Systems

Software variability is the ability of a software system or artifact to be changed, cus-

tomized or configured for its use in a particular context [4]. A high degree of variability

allows the use of software in a broader range of contexts [4]. Besides reusability, we

extend this idea, posing that the variability is also a means to specify the flexibility that

a software system design has to adapt itself, preserving some previously specified

characteristics.

 6

A comparison with object-oriented frameworks can be made. The fixed part deter-

mines what definition is common to all instances and the flexible part defines different

ways to configure an open MAS instance. The combination of the fixed part and the

flexible part produces an instance that is equivalent to a specific definition of an appli-

cation [11]. In open MAS, we have identified two categories of elements that can pre-

sent variations: open system components and the interaction elements (Figure 2). Be-

low, we detail extensions regarding both categories. Templates and roles are the defini-

tion of how extensions can be made; and they will be realized by interaction specifica-

tions and external agents, respectively.

Open Systems Application

Frameworks for Open Systems
Open System Components Interaction Elements

General
Interaction Templates

External
Agents

Interaction Specification
(Laws…)

Binding

Refinement

Agents

Roles

Figure 2 - Governance Framework Structure Overview

Open system components are software agents that participate in some collaboration

in an open system. Agents are encapsulated entities that are rarely self-sufficient [24]

and so present social skills. The semantics of an agent is largely defined by its relation-

ship or interdependencies with other agents. Agent interdependencies can be ex-

pressed as collaborations. Collaboration is a collection of roles that encapsulates rela-

tionships across its corresponding agents. A role identifies the type of an agent and as-

sociates it with the set of characteristics that are expected from them in a collaboration.

The collaboration structure defines the agent roles and their relationships. Roles can be

specified as a general description for agents’ responsibilities in an organization and

they are bound with real software agents in open system execution.

Each component in the open MAS has a role associated with it. While playing roles,

agents acquire the obligation of obeying the law that is specified for their responsibili-

ties and it is possible to enforce the laws prescribed in the protocol. Roles specify a sort

of interface that defines the responsibilities, characteristics and any other information

that an agent playing this role has to fulfill. Our main purpose is not to discuss how to

structure the component reuse as agent roles [14][16][23]. Rather, we intend to use an

 7

agent role as a means to identify an extension point that describes agents’ responsibili-

ties in a collaboration and it will be realized by external software agents.

The definition of how the components interact is very important to understand the

open MAS. The interaction elements comprehend the specification of dynamical con-

cerns of an open system, including the protocol and law specification. The interaction

specification is composed of interaction laws and interaction protocols. Interaction pro-

tocols define the context and the sequence of messages of a conversation between agent

roles. The fixed part of interaction specifications is called general interaction. General

interactions can be derived by analyzing the application domain. If any interaction

element is common to all intended instances, this element is attached to the core defini-

tion of the framework.

Concerning interactions, the variability implies a more flexible protocol that specifies

some alternatives and options to the execution of the open system components. Each

interaction element in the open MAS is a potential extension point. The specification of

interaction protocols can be made flexible enough to permit the inclusion of some

norms, constraints and actions that define the desired behavior for the open MAS ap-

plications. Templates are part of the flexibility of the open MAS interactions [8]. In

governance frameworks, templates are defined as “hooks” for elements of the interac-

tion specification that will be refined during open system instantiation. Even with ex-

tension points, we still need to monitor the entire application; to gather information

about its execution, and also to analyze the compliance of the system components with

the previously specified desired behavior. This means that the governance mechanism

must support this peculiarity.

4 Governance Framework for Open Supply Chain Management

An important characteristic of a good framework is that it provides mature runtime

functionality and rules within the specific domain in which it is to be applied [11].

Hence, we based our proof of concept prototype on the specification of the Trading

Agent Competition - Supply Chain Management (TAC SCM) [3][10][21]. The rules of

the game have been updated over the last three years. This evolution was achieved by

the observation of the behavior of different agents during the last editions and their

consequences (e.g. interaction rules were defined to protect agents from malicious par-

 8

ticipants). In our prototype, each set of rules can be used to configure a different in-

stance of a framework for instantiating an open supply chain management system. We

reuse this experience as a means to achieve the domain knowledge required for pro-

posing a governance framework.

The TAC-SCM System [3] has been designed with a simple set of rules to capture the

complexity of a dynamic supply chain. Assembler agents need to negotiate with sup-

plier agents to buy components to produce PCs. A bank agent is used to monitor the

progress of the agents. In the real TAC SCM architecture, there is a TAC Server that

simulates the behavior of the suppliers, customers, and factories. We converted part of

the simulation components present in TAC SCM to external agents or the open sys-

tem’s services of a prototypical version [7]. We continue to have the TAC SCM Server,

but this server aims to monitor and to analyze the compliance of agents’ behavior to

laws that were previously established.

Analyzing the evolution of TAC SCM’s requirements, we can perceive evidences

that interaction protocols have a core definition. We can also identify some extension

points in this specification and then they can be customized to provide different in-

stances of the supply chain. As mentioned before, extension points can specify tem-

plates that will be “hooked” into the “stable” conversation among agents. The results

of this observation are presented below.

We focus on the negotiation between suppliers and assemblers to buy supplies to

produce PCs. Besides these two roles, there is the bank role. Although not specified in

the TAC SCM proposal, suppliers also have an account to manage their revenues and

payments. There are six assembler agents that produce PCs participating in each TAC

SCM instance. These participants interact with both suppliers and a bank agent. There

are eight different supplier agents in each supply chain. Only one bank agent is re-

sponsible for managing payments accounts. The diagram (Figure 3) depicts the roles

and their relationships. Figure 3 is based on ANote’s agent class diagram [9].

We decided to organize this scenario into two scenes: one for the negotiation process

between assemblers and suppliers, and the other for the payment involving the assem-

bler and the bank agent. Code 2 details the initial specification of the scene that repre-

sents the negotiation between the supplier and the assembler. Each negotiation scene is

valid over the duration of the competition, which is 3300000ms (220 days x 15000ms).

 9

The Code 3 describes the payment process. We decided not to specify any time out to

the payment scene and this is represented by the “infinity” value assigned by the at-

tribute time-to-live.

Figure 3 - Roles, relationships and cardinalities

<Scene id="negotiation" time-to-live="3300000">

 <Creators>

 <Creator role="assembler"/>

 </Creators>

 <Entrance>

 <Participant role="assembler" limit="6"/>

 <Participant role="supplier" limit="8"/>

 </Entrance>

</Scene>

Code 2: Roles, relationships and cardinalities of negotiation scene
<Scene id="payment" time-to-live="infinity">

 <Creators>

 <Creator role="any"/>

 </Creators>

 <Entrance>

 <Participant role="assembler" limit="1"/>

 <Participant role="bank" limit="1"/>

 </Entrance>

</Scene>

Code 3: Roles, relationships and cardinalities of payment scene

4.1 Interaction Protocol Specification

The negotiation between assemblers and suppliers is related to the interaction be-

tween the assembler role and the bank role. Basically, a payment is made through a

payment message sent by the assembler to the bank and the bank’s reply with a con-

firmation response, represented by the receipt message (Figure 4). The specification in

XMLaw of this interaction is listed below (Code 4). Figure 4 is based on ANote’s inter-

action diagram [9].

Figure 4 Payment Interaction

 10

<Messages>

 <Message id="payment" template="..."/>

 <Message id="receipt" template="..."/>

</Messages>

<Protocol>

 <States>

 <State id="p1" type="initial"/>

 <State id="p2" type="execution"/>

 <State id="p3" type="success"/>

 </States>

 <Transitions>

 <Transition id="payingTransition"

 from="p1" to="p2" message-ref="payment"/>

 <Transition id="paymentConcludedTransition"

 from="p2" to="p3" message-ref="receipt"/>

 </Transitions>

</Protocol>

Code 4: Payment interaction protocol description

The negotiation between assemblers and suppliers is carried out in five steps, four

messages (Figure 5) and six transitions. Below (Code 5, Code 6, Code 7), we describe

this scene in detail using XMLaw. Figure 5 is based on ANote’s interaction diagram [9].

Figure 5 Negotiation interaction diagram

<Messages>

 <Message id="rfq" template="..."/>

 <Message id="offer" template="..."/>

 <Message id="order" template="..."/>

 <Message id="delivery" template="..."/>

</Messages>

Code 5: Negotiation interaction protocol description: Messages

<States>

 <State id="as1" type="initial"/>

 <State id="as2" type="execution"/>

 <State id="as3" type="execution"/>

 <State id="as4" type="execution">

 <State id="as5" type="success"/>

</States>

Code 6: Negotiation interaction protocol description: States

 11

<Transitions>

 <Transition id="rfqTransition" from="as1" to="as2"

 message-ref="rfq">...</Transition>

 <Transition id="newRFQTransition" from="as2" to="as2"

 message-ref="rfq">...</Transition>

 <Transition id="otherRFQTransition" from="as3" to="as2"

 message-ref="rfq">...</Transition>

 <Transition id="offerTransition" from="as2" to="as3"

 message-ref="offer">...</Transition>

 <Transition id="orderTransition" from="as3" to="as4"

 message-ref="order"/>

 <Transition id="deliveryTransition" from="as4" to="as5"

 message-ref="delivery">...</Transition>

</Transitions>

Code 7: Negotiation interaction protocol description

4.2 Specification Refinement

During the refinement of roles and services, it is possible to detail abstract elements

or any information required by the open system specification. We need to represent the

concrete relationships that are available, i.e., the relationships between domain specific

or general implementations of agent roles that will be further implemented.

We specified the bank role as being realized by an agent that is common to all open

system instances. The implementation of this agent is provided within the framework

core implementation. The assembler and the supplier roles were left to be bound with

external agents. During the execution of the open system, at most six agents will play

the assembler role and eight agents will play the supplier role.

4.2.1 General Interaction Specification

To illustrate the use of general specifications, we identified the stable interactions in

the last three editions of TAC SCM and we implemented it using XMLaw. This specifi-

cation is reused in every instance of our governance framework. It defines the relation

between a request for quote (RFQ) sent by an assembler and an offer that will be sent

by a supplier. Below, we briefly describe the specification according to [3][10][21].

“On the following day of the arrival of a request for quotation, the supplier sends

back to each agent an offer for each RFQ, containing the price, adjusted quantity, and

due date. It is possible that the supplier will not be able to supply the entire quantity

requested in the RFQ by the due date. In this situation, the supplier may respond by

issuing up to two amended offers, each of which relaxes one of the two constraints,

 12

quantity and due date: (i) a partial offer is generated with the quantity of items relaxed;

or (ii) an earliest complete offer is generated with the due date relaxed. Offers are re-

ceived the day following the submission of RFQs, and the assembler must choose

whether to accept them. In the case an agent attempts to order both the partial offer

and the earliest complete offer, only the order that arrives earlier will be considered

and the others will be ignored.”

The implementation of this rule in XMLaw is illustrated in the Code 8 and Code 9. A

permission was created to define a context in the conversation that is used to control

when the offer message is valid, considering the information sent by an RFQ. For this

purpose, two constraints were defined into the permission context, one determining

the possible configurations of offer attributes that a supplier can send to an assembler,

while the other constraint verifies if a valid offer message was generated — that is, if

the offer was sent one day after the RFQ. This permission is only valid if both of the

constraints are true. Below, we illustrate the offerTransition (Code 8) and describe the

permission RestrictOfferValues and its XMLaw specification (Code 9).

<Transition id="offerTransition" from="as2" to="as3"

 message-ref="offer">

 <ActiveNorms>

 <Norm ref="RestrictOfferValues"/>

 </ActiveNorms>

</Transition>

Code 8: General Transition Specification

XMLaw includes the context concept. Elements in the same context share the same lo-

cal memory to share information, i.e., putting, getting and updating any value that is

important for other law elements. Code 9 depicts one example of context usage. The

keepRFQInfo Action preserves the information present in the rfq message to be later

used by the checkAttributes and checkDates Contraints.

 13

<Norms>

 <Permission id="RestrictOfferValues">

 <Owner>Supplier</Owner>

 <Activations>

 <Element ref="rfqTransition"

 event-type="transition_activation"/>

 </Activations>

 <Deactivations>

 <Element ref="offerTransition"

 event-type="transition_activation"/>

 </Deactivations>

 <Actions>

 <Action id="keepRFQInfo"

 class="tacscm.norm.actions.KeepRFQAction">

 <Element ref="rfqTransition"

 event-type="transition_activation"/>

 </Action>

 </Actions>

 <Constraints>

 <Constraint id="checkDates"

 class="tacscm.norm.constraints.CheckValidDay"/>

 <Constraint id="checkAttributes"

 class="tacscm.norm.constraints.CheckValidMessage"/>

 </Constraints>

 </Permission>

<Norms>

Code 9: General Norm specification

4.2.2 The Framework’s Extension Points

Code 10 is an example of a template. This permission is about the maximum number

of requests for quotation that an assembler can submit to a supplier. According to TAC

SCM specifications [3][10][21], each day each agent may send up to a maximum num-

ber of RFQs. But the precise number of RFQs has changed over the last editions of TAC

SCM, so it is possible to defer this specification to instantiation time. We use a template

for this purpose; in the template some hooks will guide the specialization of an in-

stance of this framework.

<Transition id="rfqTransition" from="as1" to="as2"

 message-ref="rfq">

 <Constraints>

 <Constraint id="checkDueDate"/>

 </Constraints>

 <ActiveNorms>

 <Norm ref="AssemblerPermissionRFQ"/>

 </ActiveNorms>

</Transition>

Code 10: Permission and Constraint over RFQ message Templates

 14

In this example, we opted to keep the attribute class-id of the constraint check-

DueDate not specified, that is, it will be set during framework instantiation. The con-

straint over the acceptable due date of an RFQ (checkCounter) regulates the same in-

teraction point, the request for quote message. The constraint checkDueDate (Code 10)

is associated with the transition rfqTransition. It means that if the verification is not

true the transition will not be fired.

The scenario described above is the same for a constraint over the acceptable due

date of an RFQ (checkCounter), and it has changed over the last editions of TAC SCM

(Code 11). The constraint checkCounter is associated with the permission Assembler-

PermissionRFQ. It means that if the verification is not true the norm will not be valid,

even if it is activated. The action ZeroCounter is defined under the permission Assem-

blerPermissionRFQ and it is triggered by a clock-tick every day, zeroing the value of

the counter of the number of requests issued by the assembler during this day. The

other action orderID is activated by every transition transitionRFQ and is used to count

the number of RFQs issued by the assembler, updating a local counter. The class that

implements this action was not specified because its implementation varies according

to TAC SCM editions. Finally, a clock nextDay is used to mark the day period, and this

mark is used to zero the counter of RFQs by the action ZeroCounter.

<Norms>

 <Permission id="AssemblerPermissionRFQ">

 <Owner>Assembler</Owner>

 <Activations>

 <Element ref="negotiation" event-type="scene_creation"/>

 </Activations>

 <Deactivations>

 <Element ref="orderTransition"event-type="transition_activation"/>

 </Deactivations>

 <Constraints>

 <Constraint id="checkCounter"/>

 </Constraints>

 <Actions>

 <Action id="permissionRenew"

 class="tacscm.norm.actions.ZeroCounter">

 <Element ref="nextDay" event-type="clock_tick"/>

 </Action>

 <Action id="orderID">

 <Element ref="rfqTransition" event-type="transition_activation"/>

 </Action>

 </Actions>

 </Permission>

</Norms>

Code 11: Norm description Template

 15

Another example of template is used to specify the relationship between orders and

offers of the negotiation protocol. According to [3], agents confirm supplier offers by

issuing orders. After that, an assembler has a commitment with a supplier, and this

commitment is expressed as an obligation. It is expected that suppliers receive a pay-

ment for its components. But when they will receive the payment is not completely

specified in this law. Another template was used to map variations on TAC SCM edi-

tions. This template only specifies the structure of the ObligationToPay obligation, de-

fining that it will be activated by an order message and that it will be deactivated with

the delivery of the components and also with the payment.

A supplier will only deliver the product if the assembler has the obligation to pay for

them (Code 12). The assembler can only enter into the payment scene if it has an obli-

gation to pay for the products (Code 13). An assembler cannot enter into another nego-

tiation if it has obligations that were not fulfilled (Code 14).

<Transition id="orderTransition" from="as3" to="as4"

 message-ref="order"/>

<Transition id="deliveryTransition" from="as4" to="as5"

 message-ref="delivery">

 <ActiveNorms>

 <Norm ref="ObligationToPay"/>

 </ActiveNorms>

</Transition>

Code 12: Negotiation Scene and the Payment Scene

<Scene id="payment" time-to-live="infinity">

 <ActiveNorms>

 <Norm ref="ObligationToPay"/>

 </ActiveNorms>

 ...

</Scene>

Code 13: Agents must have the norm to enter the payment scene

<Scene id="negotiation" time-to-live="3300000">

 <DeActivatedNorms>

 <Norm ref="ObligationToPay"/>

 </DeActivatedNorms>

 ...

</Scene>

Code 14: Agents must not have the norm to enter the negotiation scene

 16

<Norms>

 <Obligation id="ObligationToPay">

 <Owner>Assembler</Owner>

 <Activations>

 <Element ref="orderTransition"

 event-type="transition_activation"/>

 </Activations>

 <Deactivations>

 <Element ref="payingTransition"

 event-type="transition_activation"/>

 </Deactivations>

 </Obligation>

</Norms>

Code 15: Norms of the organization

5 TAC SCM editions as Framework's Instances

In this section, we present two examples of instantiations of the framework for open

supply chain management. We were inspired by the TAC SCM 2004 and 2005 editions.

In this prototypical version, we considered the source of assemblers and suppliers

agents as unknown. Thus, these two roles will be fulfilled during the execution of the

open system. Below, we present the refinements proposed to the templates described

above.

5.1 TAC SCM 2004

According to [3], on each day each agent may send up to ten RFQs to each supplier.

An RFQ with DueDate beyond the end of the negotiation will not considered by the

supplier. For this purpose, we implemented the constraint class ValiDate (Code 16).

The constraint class CounterLimit (Code 17) checks if the local attribute for controlling

the number of RFQs is below the limit of 10. The RFQCounter action increments the

same attribute when receiving new messages.

According to [3], supplier will receive assembler’s payment after the delivery of

components and at this time the cost of the order placed before will be fully charged.

We implemented the payment as an action where the system forces the agent to pay

the entire debit at the end of the negotiation (Code 18).

 17

<Transition id="rfqTransition" from="as1" to="as2"

 message-ref="rfq">

 <Constraints>

 <Constraint id="checkDueDate"

 class="tacscm.constraints.ValiDate"/>

 </Constraints>

 ...

</Transition>

Code 16: Constraint checkDueDate instance for TAC SCM 2004

<Permission id="AssemblerPermissionRFQ">

 <Constraints>

 <Constraint id="checkCounter" class="tacscm.norm.constraints.CounterLimit"/>

 </Constraints>

 <Actions>

 ...

 <Action id="orderID" class="tacscm.norm.actions.RFQCounter">...</Action>

 </Actions>

</Permission>

Code 17: AssemblerPermissionRFQ instance for TAC SCM 2004

<Obligation id="ObligationToPay">

 <Owner>Assembler</Owner>

 <Activations>

 <Element ref="orderTransition" event-type="transition_activation"/>

 </Activations>

 <Deactivations>

 <Element ref="payingTransition" event-type="transition_activation"/>

 </Deactivations>

 <Actions>

 <Action id="supplierPayment" class="tacscm.norm.actions.SupplierPayment100">

 <Element ref="deliveryTransition" event-type="transition_activation"/>

 </Action>

 </Actions>

</Obligation>

Code 18: ObligationToPay instance for TAC SCM 2004

5.2 TAC SCM 2005

According to [10]: (i) Each day each agent may send up to five RFQs to each supplier

for each of the products offered by that supplier, for a total of ten RFQs per supplier.

Another action named RFQCounter2005 is provided (Code 19). It counts the number of

RFQs according to the type of component. The CounterLimit2005 was also updated to

consider a specific counter for each type of component that a supplier provides;

(ii) An RFQ with DueDate beyond the end of the game will not be considered by the

supplier. RFQs with due dates beyond the end of the game, or with due dates earlier

than two days in the future, will not be considered. It is implemented by the constraint

ValiDate2005 (Code 20).

 18

<Permission id="AssemblerPermissionRFQ">

 <Constraints>

 <Constraint id="checkCounter" class="tacscm.norm.constraints.CounterLimit2005"/>

 </Constraints>

<Actions>

 <Action id="orderID" class="tacscm.norm.actions.RFQCounter2005">...</Action>

</Actions>

</Permission>

Code 19: AssemblerPermissionRFQ instance for TAC SCM 2005

According to [10], suppliers wishing perhaps to protect themselves from defaults will

bill agents immediately for a down payment on the cost of each order placed. The re-

mainder of the value of the order will be billed when the order is shipped. In TAC

SCM 2005, the down payment ratio is 10%. We implemented the payment process as

two actions, one for the down payment and the other for the remainder of the debit at

the end of the negotiation (Code 21).

<Transition id="rfqTransition" from="as1" to="as2"

 message-ref="rfq">

 <Constraints>

 <Constraint id="checkDueDate" class="tacscm.constraints.ValiDate2005"/>

 </Constraints>

 ...

</Transition>

Code 20: Constraint checkDueDate instance for TAC SCM 2005

<Obligation id="ObligationToPay">

 <Owner>Assembler</Owner>

 <Activations>

 <Element ref="orderTransition" event-type="transition_activation"/>

 </Activations>

 <Deactivations>

 <Element ref="payingTransition" event-type="transition_activation"/>

 </Deactivations>

 <Actions>

 <Action id="supplierDownPayment" class="law.tacscm.norm.actions.SupplierPayment10">

 <Element ref="orderTransition" event-type="transition_activation"/>

 </Action>

 <Action id="supplierPayment" class="law.tacscm.norm.actions.SupplierPayment90">

 <Element ref="deliveryTransition" event-type="transition_activation"/>

 </Action>

 </Actions>

</Obligation>

Code 21: ObligationToPay instance for TAC SCM 2005

6 Related Work

We address the problem of constructing a family of governance mechanisms that en-

sure that agents will conform to a well defined customizable specification. Our main

 19

goal was to contribute on the engineering on how we can productively use and reuse

laws. Below we discuss some related work.

Ao and Minksy [2] propose an approach that enhances LGI with the concept of pol-

icy-hierarchy to support that different internal policies are formulated independently

of each other, achieving a flexibility support by this means. Different from our ap-

proach, Ao and Minsky consider confidentiality as a requirement for their solution.

The goal of the extensions that we have presented until now is to support open system

law maintenance, rather than flexibility for the purpose of confidentiality.

COSY [13] views a protocol as an aggregation of primitive protocols. Each primitive

protocol can be represented by a tree where each node corresponds to a particular

situation and transitions correspond to possible messages an agent can either receive or

send, i.e., the various interaction alternatives. In AgenTalk’s [17], protocols inherit from

one another. They are described as scripts containing the various steps of a possible

sequence of interactions. Beliefs also are embedded into scripts. Koning and Huget [15]

deal with the modeling of interaction protocols for multi-agent systems, outlining a

component-based approach that improves flexibility, abstraction and protocol reuse.

All of these approaches are useful instruments to promote reuse, they can be seen as

instruments for specifying laws in governance frameworks, and their effectiveness will

be evaluated in future experiments.

Singh [18] proposes a customizable governance service, based on skeletons. His ap-

proach formally introduces traditional scheduling ideas into an environment of

autonomous agents without requiring unnecessary control over their actions, or de-

tailed knowledge of their designs. Skeletons are equivalent to state based machines and

we could try to reuse their formal model focusing on the implementation of a family of

applications. But [18] has few implementation details and examples where allowing us

to understand how his proposal was implemented.

7 Conclusions

In open multi-agent systems, in which components are autonomous and heteroge-

neous, trust is crucial. This paper presented an approach to ensure trust and augment

reliability on customizable open systems. The approach is based on governing the in-

teractions in the system. This is a non-intrusive method, which allows the independent

 20

development of the agents of the open system – they are only required to follow the

protocols specified for the system.

The purpose of this paper was to derive an approach that could be useful to facilitate

extensions on governance mechanisms for open systems. Interaction and roles are first

order abstractions in open system specification reuse. Here, we illustrated how interac-

tion could be easily designed for reuse. We can also conclude that while analyzing the

open software system domain, it is possible to distinguish two kinds of interaction

specification: fixed (stable) and flexible (extensible). The challenge to developers is to

deliver a specification that identifies the aspects of the open MAS that will not change

and cater the software to those areas. Stability is characterized by the interaction proto-

col and some general rules that are common to all open MAS instances. Extensions on

interaction rules will impact the open MAS and the agents and extensions are speci-

fied.

The experiment showed that this is an interesting and promising approach; it im-

proves the open system design by incorporating reliability aspects that can be custom-

ized according to application requirements and it improves maintainability. The appli-

cation development experience showed us that it is possible to obtain benefits from the

use of proper engineering concepts for its specification and construction. However,

more experiments with real-life MAS applications are needed to evaluate and validate

the proposed approach.

Acknowledgments

We gratefully acknowledge the financial support provided by the CNPq as part of

individual grants and of the ESSMA project (552068/2002-0).

8 References

1. Agha, G. A. Abstracting Interaction Patterns: A Programming Paradigm for
Open Distributed Systems, In (Eds) E. Najm and J.-B. Stefani, Formal Methods for
Open Object-based Distributed Systems IFIP Transactions, Chapman & Hall, 1997.

2. Ao, X. and Minsky, N. Flexible Regulation of Distributed Coalitions. In Proc. of
the 8th European Symposium on Research in Computer Security (ESORICS). Gjøvik
Norway, October, 2003.

 21

3. Arunachalam, R; Sadeh, N; Eriksson, J; Finne, N; Janson, S. The Supply Chain
Management Game for the Trading Agent Competition 2004. CMU-CS-04-107, July
2004

4. Bachmann, F and Bass, L. "Managing variability in software architectures,"
presented at Proceedings of the 2001 symposium on Software reusability: putting
software reuse in context, Toronto, Canada.

5. Batory, D; Cardone, R. and Smaragdakis, Y. “Object-Oriented Frameworks and
ProductLines”, 1st Software Product-Line Conference, Denver, Colorado, August 2000.

6. Bellifemine, F; Poggi, A; Rimassa, G. (2001) Jade: a fipa2000 compliant agent
development environment, in: Proceedings of the fifth international conference on
Autonomous agents, ACM Press, 2001, pp. 216–217

7. Carvalho, Gustavo; Paes, Rodrigo; Lucena, Carlos. Governing the Interactions
of an Agent-based Open Supply Chain Management System. MCC nº 29/05, Dpto de
Informática, PUC-Rio, 27 p., 2005.

8. Carvalho, Gustavo; Paes, Rodrigo; Lucena, Carlos. Extensions on Interaction
Laws in Open Multi-Agent Systems. In: First Workshop on Software Engineering for
Agent-oriented Systems (SEAS 05), 19th Brazilian Symposium on Software
Engineering. Uberlândia, Brasil

9. Choren, R. and Lucena, C.J.P. Modeling Multi-agent systems with ANote.
Software and Systems Modeling 4(2), 2005, p. 199 - 208.

10. Collins, J; Arunachala,R; Sadeh,N; Eriksson,J; Finne,N; Janson,S. (2005) The
Supply Chain Management Game for the 2005 Trading Agent Competition. CMU-ISRI-
04-139. http://www.sics.se/tac/tac05scmspec_v157.pdf

11. Fayad, M; Schmidt, D.C.; Johnson, R.E. Building application frameworks :
object-oriented foundations of framework design. ISBN 0471248754, New York: Wiley,
1999.

12. Fredriksson M. et al. First international workshop on theory and practice of
open computational systems. In Proceedings of twelfth international workshop on
Enabling technologies: Infrastructure for collaborative enterprises (WETICE),
Workshop on Theory and practice of open computational systems (TAPOCS), pp. 355 -
358, IEEE Press, 2003.

13. Haddadi, A. Communication and Cooperation in Agent Systems: A Pragmatic
Theory, volume 1056 of Lecture Notes in Computer Science. Springer Verlag, 1996.

14. Kendall, E. “Role Modelling for Agent Systems Analysis, Design and
Implementation”, IEEE Concurrency, 8(2):34-41, April-June 2000.

15. Koning, J.L. and Huget, M.P.. A component-based approach for modeling
interaction protocols. In H. Kangassalo and E. Kawaguchi, editors, 10th European-
Japanese Conference on Information Modelling and Knowledge Bases, Frontiers in
Artificial Intelligence and Applications.IOS Press, 2000

16. Kristensen, B. B., Østerbye, K. “Roles: Conceptual Abstraction Theory &
Practical Language Issues”, Special Issue of Theory and Practice of Object Systems on
Subjectivity in Object-Oriented Systems, Vol. 2, No. 3, pp. 143-160, 1996.

17. Kuwabara, K; Ishida, T; and Osato, N. AgenTalk: Coordination protocol
description for multiagent systems. In First International Conference on MultiAgent
Systems (ICMAS-95), San Francisco, June 1995. AAAI Press. Poster.

 22

18. Singh, M. P., "A Customizable Coordination Service for Autonomous Agents,"
Intelligent Agents IV: Agent Theories, Architectures, and Languages, Munindar P.
Singh et al. ed., Springer, Berlin, 1998, pp. 93-106.

19. Paes, R. B.; Carvalho G. R.; Lucena, C.J.P.; Alencar, P. S. C.; Almeida H.O.; Silva,
V. T. Specifying Laws in Open Multi-Agent Systems. In: Agents, Norms and
Institutions for Regulated Multi-agent Systems (ANIREM), AAMAS2005, 2005.

20. Paes, R.B; Lucena, C.J.P; Alencar, P.S.C. A Mechanism for Governing Agent
Interaction in Open Multi-Agent Systems MCC nº 30/05, Depto de Informática, PUC-
Rio, 31 p., 2005

21. Sadeh, N; Arunachalam, R; Eriksson, J; Finne, N; Janson, S. TAC-03: a supply-
chain trading competition, AI Mag. 24 (1) 92–94, 2003.

22. Wooldridge, M; Weiss, G; Ciancarini, P. (Eds.) Agent-Oriented Software
Engineering II, Second International Workshop, AOSE 2001, Montreal, Canada, May
29, 2001, Revised Papers and Invited Contributions, Vol. 2222 of Lecture Notes in
Computer Science, Springer, 2002.

23. Yu, L; Schmid, B.F. “A conceptual framework for agent-oriented and role-based
workflow modelling”, the 1st International Workshop on Agent-Oriented Information
Systems, Heidelberg, June 1999.

24. Zambonelli, F, Jennings, N; Wooldridge, M. Developing multiagent systems:
The gaia methodology, ACM Trans. Softw. Eng. Methodol. 12 (3) 317–370, 2003.

