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Abstract. Pattern composition has been shown as a challenge to applying design 
patterns in real software systems. One of the main problems is that the 
implementations of multiple design patterns in a system are not limited to affect the 
application classes. They also crosscut each other in multiple heterogeneous ways so 
that their separation and composition are far from being trivial. In this context, it is of 
paramount importance to systematically verify whether aspect-oriented programming 
(AOP) supports improved composability of design patterns. This paper presents a 
systematic investigation on how AOP scales up to deal with modularization of pattern-
specific concerns in the presence of pattern interactions. We have made both 
qualitative and quantitative assessments of 62 pair-wise compositions taken from 3 
medium-sized systems implemented in Java and AspectJ programming languages. Our 
analysis has also included the evaluation of compositions involving more than two 
patterns. The assessment was based on four fundamental software attributes, namely 
separation of concerns, coupling, cohesion, and conciseness. 
Keywords: Design patterns, aspect-oriented programming, composability, empirical 
studies, metrics. 

Resumo. Composição de padrões tem se mostrado um desafio no uso de padrões em 
sistemas reais de software. Um dos maiores problemas é que a implementação de 
múltiplos padrões de projeto em um sistema não se limita a afetar as classes da 
aplicação. Em muitos casos, os padrões interagem entre eles de forma tão heterogênea 
que sua separação e composição não é trivial. Neste sentido, é importante uma 
verificação sistemática de como a programação orientada a aspectos (POA) pode 
suportar a composição de padrões de projeto. Este documento apresenta uma 
investigação sistemática de como os mecanismos de AOP auxiliam a modularidade de 
interesses específicos na presença de interações entre padrões. Neste estudo foram 
feitos tanto avaliações qualitativas quanto quantitativas para 62 pares de composição 
de padrões extraídas de 3 sistemas de tamanho médio implementados em Java e 
AspectJ. Também foram analisadas composições que envolvem mais de dois padrões 
para verificar o quanto às soluções são escaláveis. A avaliação é baseada em quatro 
atributos fundamentais da Engenharia de Software: separação de interesses, 
acoplamento, coesão e concisão. 
Palavras-chave: Padrões de Projeto, Programação Orientada a Aspectos, Composição, 
Estudo Empírico, Métricas.
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1  Introduction 

Design patterns are present in every real system we build in order to assure stringent 
modularity principles, such as low coupling, high cohesion, conciseness, and 
separation of concerns. A design pattern assigns roles to their participant classes, which 
define the functionality of the participants in the pattern context [14]. The application 
of design patterns in complex systems is often a result of the composition of two or 
more pattern roles rather than their instantiations in an isolated manner. Their object-
oriented (OO) implementations can be composed in different ways [8, 31], ranging 
from a simple method invocation between the patterns’ roles to the sharing of one or 
more classes by the pattern roles. 

Recent systematic studies [12, 15] have shown that a number of design patterns 
involve crosscutting concerns in the relationship between the pattern roles and 
participant classes in each instance of the pattern. The pattern roles often crosscut 
several business classes in a software system. OO abstractions are not able to localize 
these pattern-specific concerns and tend to lead to programs with poor modularity 
attributes [12]. The situation is even worst in real OO designs; pattern implementations 
typically crosscut the implementations of other pattern roles as they need to be 
composed. This means that pattern roles are scattered and tangled to each other and 
through the participant classes, which in turn leads to the pattern instances to get lost 
[27] or degenerate [8] in the system. Also this crosscutting phenomenon potentially has 
negative impacts on quality attributes of both pattern-specific and application-specific 
implementations. 

In this context, it is of paramount importance to systematically verify whether AOP 
approaches (such as [20]) support improved composability of design patterns. It 
requires an investigation on how AOP scales up to deal with modularization of 
crosscutting concerns relative to pattern roles in the presence of pattern interactions. To 
the best of our knowledge, there is no systematic evaluation of the effects of AOP on 
pattern compositions. Up to now, qualitative and quantitative studies involving the 
“aspectization” of design patterns [12, 13, 14, 15] focused on the separation of a 
particular design pattern and its participant classes in the application. Although these 
first assessments provided initial interesting results, the implementation and 
evaluation of the pattern instances were isolated from each other. They were not taken 
in the context of existing software systems where interactions between pattern 
implementations are recurring and intricate. This problem seriously constrains the 
extrapolation of the results and limits our understanding in how aspect-oriented (AO) 
solutions scale up to cope with realistic scenarios involving complex pattern instances 
and different composition contexts. Hence, a number of questions remain 
unaddressed: 

(i) does AOP promote improved pattern composability? 

(ii) to what extent separation of pattern roles is preserved in realistic contexts 
involving pattern compositions? 

(iii) what are the positive and negative influences of aspectized pattern 
compositions on fundamental software attributes, such as coupling, 
cohesion, and conciseness? 
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(iv) what does happen in more intricate compositions involving 3 or more 
patterns? How much do the aspect-oriented implementations scale in these 
cases? 

To explore these issues, we have performed an empirical study where we have 
assessed OO and AO solutions that implement compositions of the Gang-of-Four 
(GoF) patterns. It includes the quantitative and qualitative assessments of 62 pair-wise 
compositions taken from 3 medium-sized systems implemented in Java [17] and 
AspectJ [2] programming languages. Our analysis has also included the evaluation of 
compositions involving more than two patterns. The assessments were based on 4 
basic modularity attributes, namely separation of concerns (SoC), coupling, cohesion, 
and conciseness. This paper also correlates our study findings with the results from 
previous studies, contributing to an improved body of knowledge on the scalability of 
AOP for addressing the crosscutting property of patterns in a multitude of composition 
scenarios.  

The remainder of this paper is organized as follows. Section 2 presents our study 
setting. Section 3 presents the study results with respect to the investigated modularity 
attributes. These results are interpreted and discussed in Section 4, which also points 
out some constraints of our study. Section 5 introduces some related work. Section 6 
includes some concluding remarks and future work. 

2  Study Format 

This section first puts our study in perspective of previous work (Section 2.1). It also 
describes our categorization defined for pattern compositions (Section 2.2), and the 
procedures and metrics used to support our quantitative assessment (Section 2.3.2). 

2.1  Modularizing Design Patterns 

There are two kinds of pattern roles [15]: defining and superimposed roles. A defining 
role defines a participant class completely. In other words, classes playing a defining 
role have no functionality outside the pattern. The unique role of the Façade pattern [9] 
is an example of defining role. A superimposed role can be assigned to participant 
classes that have functionality outside of the pattern. An example of superimposed role 
is the Colleague role of the Mediator pattern [9], since a participant class playing this 
role usually has functionality not related to the pattern. General-purpose design 
patterns, such as GoF patterns, exhibit crosscutting concerns [9, 12]. For example, 
consider the Mediator and Colleague roles that are defined in the Mediator pattern. Some 
operations that change a Colleague must trigger updates to the corresponding Mediator; 
in other words, the act of updating crosscuts one or more operation in each Colleague in 
the pattern [12]. Mediator is also usually a superimposed role. 

In this context, systematic studies have investigated the effects of AOP on the 
modularization of design patterns. Hannemann and Kiczales (HK) [15] have 
undertaken a qualitative study in which they have developed and compared Java [17] 
and AspectJ [2] implementations of the 23 GoF patterns [9]. The basic idea was the 
identification of the common part of several patterns and the isolation of their 
implementations in aspectual modules. Some of these modules were defined as 
reusable aspects that are extended in order to instantiate the pattern for a specific 
application. Our previous work [12] focused on the quantitative assessment of the HK 
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implementations for the GoF patterns. Both studies have used modularity attributes as 
assessment criteria. 

However, for each of the 23 patterns these initial studies used a very simple example 
that made use of the pattern. The pattern instances were not taken from realistic 
software systems. More importantly, AOP has not been assessed in the context of 
pattern compositions. The HK study alleged that 15 aspectized patterns had superior 
“composition transparency”. However, this property only captured a narrow view of 
pattern composability; it is related to the ease of composition between the general code 
of a single pattern and their multiple instances [15]. There are additional studies (e.g. 
[22, 23]) related to the aspectization of GoF patterns, but they focus on some specific 
patterns. They also do not assess how AOP scale up to deal with crosscutting concerns 
in the presence of pattern interactions. 

2.2  Pattern Composition Categories 

Pattern compositions involve the combination of their roles. Figure 1 shows an OO 
design slice of an OpenOrb-compliant middleware system [3] in which a number of 
GoF patterns are used and combined to achieve the middleware requirements of high 
customizability and adaptability. In the figure, each number represents a specific 
pattern, and the numbers are associated with methods and attributes. The number 
attachment indicates that the associated method or attribute is part of the 
implementation of the corresponding pattern. For example, the implementation of the 
Decorator pattern (represented by number 1) includes the attribute bind and affects 
several methods, such as makeRequest(), breakBind(), rebind(), 
checkPreMethods(), and checkPosMethods(). 

 

1,8

BindMediator

+ makeRequest (String method, Object[] args) : Object

ConcreteBind
{abstract} 

-
-
-
-
-

nextHandler
bdstate
running
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Legend

 
Figure 1: An OO design slice of the OpenOrb component model [3]: tangling and scattering 

of pattern-related concerns. 

An analysis of Figure 1 also makes it evident that most of the pattern-related concerns 
are scattered over the system classes, as commonly happens in realistic applications. 
The roles of the State pattern affect various methods in the classes ConcreteBind, 
BindConnected, and BindRunning. Pattern roles are also tangled with each other and 
with middleware-specific concerns. For example, the methods rebind() and 
breakBind() in the class ConcreteBind implement middleware-specific 
functionalities, but also incorporate code of the Observer and State patterns. In this 
context, there are different ways in which the patterns interact with each other. The 
pattern compositions vary from a simple method invocation between the patterns’ 
roles to the sharing of one or more classes by the pattern roles. The pair-wise 
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interactions of OO pattern implementations investigated in our study are classified in 4 
categories as described in the following. 

Invocation-based composition. The implementations of the two composed patterns, 
namely P1 and P2, are disjoint and they have no class in common. The roles of P1 and 
P2 are only connected through one or more method calls. This is the simplest form of 
pattern composition. The combination of Chain of Responsibility (CoR) and Prototype 
is included in this category. Figure 1 illustrates the realization of this combination for a 
middleware implementation. Note that the CoR and Prototype patterns are affecting 
different classes. Their composition is based only on a call to the method 
ConcreteBind.makeRequest() (implementing the Prototype pattern) within the 
method handleRequest() of the class ConcreteMetaInvocationHandler (participant 
of the CoR pattern). 

Class-level interlacing. The implementations of patterns P1 and P2 have one or 
more classes in common. The roles of P1 and P2 are implemented by different sets of 
methods and attributes in these shared classes. In other words, the involved patterns 
have coinciding participant classes, but there is no common method or attribute 
implementing roles of both patterns. As a result, the pattern implementations have 
been interlaced (or tangled) at the class level. Examples of this composition category in 
Figure 1 are Memento with Observer, and Prototype with Observer. For example, the 
class Port belongs to both Memento and Observer implementations, but it has no 
method that contains code relative to both patterns. 

Method-level interlacing. Differently from class-level interlacing, the 
implementations of patterns P1 and P2 have one or more methods in common. 
Different pieces of code in these methods are dedicated to implement roles of both P1 
and P2. Hence the pattern implementations are interlaced at the method level. Both 
method- and class-level interlacing produce tangling of concerns, but at different levels 
of abstraction. Some examples of this kind of pattern composition appear in Figure 1: 
Mediator with CoR, and Mediator with Prototype. They can be easily detected in 
Figure 1 as the numbers of the patterns in the composition appear attached to a same 
method. For instance, the method ConcreteBind.makeRequest() is mostly dedicated 
to the implementation of the Mediator role. However, it also contains code relative to 
the Prototype pattern. 

Overlapping. The implementations of patterns P1 and P2 share one or more 
statements, attributes, methods, and classes. This combination style is different from 
method-level interlacing because here the shared elements are entirely part of roles in 
both patterns; in the previous case, the parts of the code in the common method 
implementing the pattern roles are disjoint. An example of overlapping in Figure 1 is 
the combination of Decorator with Mediator: the interface BindMediator and the 
method ConcreteBind.makeRequest() are part of both pattern structures. It may be 
the case that we have a complete overlapping in the sense that the implementation of a 
given pattern is entirely contained by the other pattern. The Decorator pattern, for 
instance, contains the implementation of Template Method (Figure 1). 

2.3  Assessment Procedures 

Our study has focused on the assessment of compositions involving all the 23 GoF 
design patterns. We have used three medium-sized software systems as case studies: 
(1) an OpenOrb-compliant middleware system [3], (2) a measurement tool [6], and (3) 
an agent-based application for supporting paper submission and selection processes 
[10, 11]. Tables 2, 3, 4 and 5 present the compositions and from which system is 
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extracted each one. These systems were selected for several reasons. First, their OO 
implementations are largely based on design patterns due to their requirements of 
maintainability, evolvavility, and reusability. The second reason is the heterogeneity of 
the pattern compositions found in these systems. Third, they encompass different 
characteristics, diverse domains, and different degrees of complexity in terms of 
pattern instances and their compositional nature. The following subsections describe 
how we have obtained and assessed the pattern compositions. 

2.3.1  Selection and implementation of pattern compositions 

We have reengineered the existing Java implementations of the first two systems with 
AspectJ in order to produce the AO versions of those systems. For the third case study, 
we have reused both existing Java and AspectJ implementations [10, 11]. In both OO 
and AO solutions, we have tried to maximize the separation of each pattern with 
respect to both the second pattern in the combination and the application-specific 
concerns. While implementing the AspectJ versions, we have also aimed at preserving 
the use of the original versions of the pattern implementations [15] as much as possible 
in order to correlate the results of this study with previous ones [12,15]. However, due 
to each application’s specificities, in some cases we needed to carry out minor 
modifications in the original AspectJ implementations [15] while trying to achieve the 
intended pattern modularization. Moreover, in other cases we needed to rely on a 
different AspectJ version because the application context required a specific pattern 
variant. 

A tally of 62 compositions was chosen in the 3 case studies. Most of these 
compositions are documented through the GoF pattern catalogue [9]. Each pattern 
participated at least in 2 compositions, and each composition category (Section 2.2) 
involved the minimum of 9 different composition instances. The measurement process 
was preceded by the isolation of each composition instance from the application 
implementation so that we could perform the proper measurements. 

In order to compare the two implementations of the compositions, we had to ensure 
that both Java and AspectJ versions were implementing the same functionalities. 
Therefore, some minor modifications were realized in the code of the patterns. 
Examples of such kinds of changes were: (i) to add or remove a functionality – a 
method, a class or an aspect – in the aspect-oriented (or object-oriented) 
implementation of the composed patterns in order to ensure the equivalence between 
the two versions; we decided to add or remove a functionality to the implementation 
by evaluating its relevance for the pattern implementation; and (ii) to ensure that both 
versions were using the same coding styles due to the fine granularity of our metrics. 

2.3.2  Measurement process 

The quantitative assessment was based on the application of a metrics suite [10, 24] to 
the 62 compositions. These metrics are useful to capture important modularity 
dimensions in the pattern compositions, namely separation of concerns, coupling, 
cohesion, and size. The coupling, cohesion, and size metrics are extensions of 
traditional and OO metrics in order to be applied in a paradigm-independent way, and 
support the generation of comparable results between Java and AspectJ solutions. The 
metrics suite also encompasses new metrics for measuring separation of concerns. The 
separation of concerns metrics measure the degree to which a single concern in the 
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system maps to the design components (classes and aspects), operations (methods and 
advices), and lines of code. 

The used metrics are briefly described in Table 1; an extensive explanation and 
justification about them are out of the scope of this work and can be found at [10, 24]. 
Table 1 presents a brief definition of each metric, and associates them with the 
attributes measured by each one. These metrics have already been extensively used 
and proved to be useful quality indicators in several studies [7, 10, 11, 12, 14, 26]. We 
have applied the chosen metrics to both Java and AspectJ versions. We analyzed the 
results, and also compared them with the results gathered in the two main previous 
studies (Section 4.1).  

In the measurement process, the data was partially gathered by our own 
measurement tool [6]. It supports all the metrics, except the metrics of separation of 
concerns (CDC, CDO, and CDLOC). The data collection of the separation of concerns 
metrics was preceded by the shadowing of every class, interface and aspect in both 
implementations of the pattern compositions. Their code was shadowed according to 
the pattern roles that they implement. We treated each design pattern as a concern in 
order to investigate its crosscutting structure in pattern compositions. After the 
shadowing, the data of the separation of concerns metrics (CDC, CDO, and CDLOC) 
was manually collected. 

 
Table 1: The Metrics Suite [7, 18]. 

 
Attributes Metrics Definitions 

Concern Diffusion 
over Components 

(CDC) 

Counts the number of classes and aspects whose main purpose is to 
contribute to the implementation of a concern and the number of other 
classes and aspects that access them. 

Concern Diffusion 
over Operations 

(CDO) 

Counts the number of methods and advices whose main purpose is to 
contribute to the implementation of a concern and the number of other 
methods and advices that access them. 

Separation 
of Concerns 

Concern Diffusions 
over LOC (CDLOC) 

Counts the number of transition points for each concern through the 
lines of code. Transition points are points in the code where there is a 
“concern switch”. 

Depth Inheritance 
Tree 

 

Coupling Between 
Components (CBC) 

Counts the number of other classes and aspects to which a class or an 
aspect is coupled. Coupling 

Number of Children 
(NOC) 

Counts how many children a class or aspect has. 

Cohesion Lack of Cohesion in 
Operations (LCOO) 

Measures the lack of cohesion of a class or an aspect in terms of the 
amount of method and advice pairs that do not access the same 
instance variable. 

Lines of Code (LOC) Counts the lines of code. 

Number of Attributes 
(NOA) 

Counts the number of attributes of each class or aspect. 

Size 
Weighted Operations 

per Component 
(WOC) 

Counts the number of methods and advices of each class or aspect and 
the number of its parameters. 
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3  Results 

This section presents the measurement results for the 62 compositions, which are 
grouped in the respective composition categories. For each category, we focus first on 
the presentation of results related to separation of concerns. Afterwards, we show how 
the aspectization of the pattern compositions impacted on the other software attributes. 
In order to illustrate the results, some specific compositions are used as representatives 
in the following subsections. The discussion about the interplay among all the results is 
concentrated in Section 4. Section 4 also discusses the relationships between our 
study’s results and the conclusions obtained in previous case studies (Section 2.1). 

Graphics are used to represent the data gathered in the measurement process. The 
graphic Y-axis presents the absolute values gathered by the metrics. Each pair of bars is 
attached to a percentage value, which represents the difference between the AO and 
OO results. A positive percentage means that the AO implementation was superior, 
while a negative percentage means that the AO implementation was inferior. These 
graphics support an analysis of how both solutions for the pattern compositions affect 
the selected measures. There are two kinds of graphics: (i) the graphics for SoC 
measures, and (ii) the graphics for the coupling, cohesion, and size attributes. The first 
one shows how each pattern was isolated in the pattern composition in terms of the 3 
SoC measures. The results shown in the other graphics were gathered according to the 
entire composition point of view; that is, they represent the tally of metric values 
associated with all the classes and aspects involved in the pattern composition as a 
whole. 

3.1  Invocation-based composition 

For this category, 9 compositions were investigated (Table 2). The AO solution was 
superior in terms of SoC for 5 compositions against 1 of the OO solution. For 3 
compositions no difference was observed. In general, the interactions between the 
patterns in this category are not addressed in the aspectization process. Their 
implementations are basically disjoint, with no shared method or class. The method 
calls that connect them typically were not part of the functionality defined by the 
superimposed roles and usually were not aspectized. As a result, the composition 
quality for this category largely depended on the patterns being combined. 
Considering the compositions analyzed, if at least one pattern presents good results in 
its individual aspectization, the consequence is an overall improvement of separation 
of concerns in terms of the whole composition implementation. Similarly, the OO 
solution is better when the composition contains patterns that do not achieve 
satisfactory modularization in AO implementations. 

Table 2: Invocation-based pattern compositions. 
Composition 

Pattern A Pattern B System 

Singleton Iterator Middleware 
Façade Singleton Middleware 
Façade Memento Middleware 
Command Builder Middleware 
CoR Prototype Middleware 
Abstract Factory State Measurement Tool 
Interpreter Iterator Measurement Tool 
Interpreter State Measurement Tool 
Proxy Interpreter Measurement Tool 

 7



 

For example, the successful aspectization of the Interpreter pattern has a positive 
influence on the general result of its composition with the State pattern. As illustrated 
in Figure 2, this composition presents better results in terms of the number of transition 
points (CDLOC) and also in the diffusion over components (CDC). This result is due to 
the effectiveness of AspectJ mechanisms to localize the Interpreter pattern. This AO 
solution transfers the methods in charge of performing interpretations from the classes 
to the Interpreter aspect. As a consequence, the number of operations is not reduced 
(CDO) the diffusion over components (CDC) is reduced from 14 to 1 and the number 
of transition points is reduced from 26 to 2 (Figure 2). 

 
Figure 2: Results of an invocation-based composition: Interpreter with State. 

The invocations among the patterns involved in the composition can be aspectized or 
not; it depends on the patterns involved in the composition. There were only 3 cases 
where the inter-pattern invocations were isolated in the aspects. We have observed that 
when the invocations are necessarily transferred to the aspect code, the overall 
coupling of the composition tended to be worse. This problem has happened in the 
AspectJ implementation of the combination of Interpreter with State (Figure 2). 
Similarly to the SoC measures, the other metrics, NOA and WOC, depended on each 
pattern involved in the composition due to the loose connection between the patterns. 

3.2  Class-level interlacing 

For the 12 compositions investigated in this category, all AspectJ solutions have in 
general shown significant superiority in terms of SoC measures. The compositions in 
this category are shown in Table 3. The improvements come primarily of disentangling 
the pattern concerns in the shared classes. The Java implementations of those classes 
typically include significant code from both patterns in addition to the business-related 
concerns. As a result, the OO solutions exhibited inferior separation of concerns as they 
encompass classes with mixed concerns. Moreover the shared classes in Java 
implementations presented low cohesion as their internal operations have a weaker 
coupling between them. Figures 3 and 4 respectively illustrate the SoC and cohesion 
superiorities of AO solutions through example pattern compositions in this category. 

With respect to separation of concerns, the pattern compositions can be further 
classified in 3 groups. The first group includes the compositions where the two 
patterns were aspectized, and the AspectJ implementations of both of them have 
presented better separation of concerns. The combination involving Observer and 
Prototype (Figure 3) is a representative of this situation: the roles of both patterns were 
better localized in terms of components (CDC), operations (CDO), and transition points 
(CDLOC). In some measures, the superiority of AspectJ was higher than 20% for both 
patterns involved in the composition. 
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Table 3: Pattern compositions with class-level interlacing. 
Composition 

Pattern A Pattern B System 

CoR Observer Middleware 
Proxy Singleton Middleware 
Mediator Observer Middleware 
Observer Memento Middleware 
Observer Prototype Middleware 
Observer Strategy Middleware 
Observer Template Method Middleware 
Observer Visitor Middleware 
Observer Bridge Middleware 
Decorator Observer Middleware 
Abstract Factory Interpreter Measurement Tool 
Proxy Singleton Measurement Tool 

The second group of compositions also encompassed the aspectization of both patterns 
being composed. However, the AspectJ implementations have only shown SoC 
improvements for one of the composed patterns, as is the case of the combination of 
Abstract Factory with Interpreter. Benefits were observed only in the AO solution of 
the Interpreter (Figure 3). Finally, the compositions in the third group involved the 
aspectization of only one in each pair-wise composition. For example, the Observer 
pattern was the sole aspectized pattern in the composition with the Bridge pattern. The 
aspectized pattern was typically responsible for improvements in the separation of 
pattern-specific concerns in the composition (Figure 3). However, the AspectJ 
superiority for the Interpreter pattern has decisively contributed to the overall SoC of 
the composition. Specific constraints in the application implementation or in the 
pattern combinations were the reasons for not aspectizing one of the patterns (see 
Section 4.1.4 for further details).  
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Figure 3: Separation of concerns in pattern compositions with class-level interlacing. 

Interestingly, for all the 3 groups mentioned above, the AspectJ pattern 
implementations that presented improved SoC are exactly the ones that have exhibited 
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superior results when analyzed in isolation in the previous studies [12, 15]. It means 
that the modularity of their AO solutions have scaled well in more complicate pattern 
instances and in the presence of pattern interactions with class-level interlacing. The 
AspectJ implementations of specific patterns that did not show improvements (e.g. 
Abstract Factory in Figure 3) also confirmed results observed in our previous 
assessments [12]. 
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Figure 4: Pattern compositions with class-level interlacing: coupling, cohesion, and size 

measures. 

Considering the other measures, the pattern combinations with class-level interlacing 
did not repeat the results in the previous composition category. As discussed before, 
invocation-based compositions (Section 3.1) have revealed much more influence of the 
two combined patterns in the overall results of the respective compositions. The main 
reason is that they encompass loose pattern interaction (i.e. simple method calls). 
Differing from those compositions, the outcomes here for all the 12 combinations with 
class-level interlacing were very similar, independently from the patterns taking part 
in the compositions. The presence of tight coupling between the composed patterns 
(i.e. one or more classes in common) led to similar benefits in the AspectJ 
implementations (Figure 4): (i) higher cohesion (LCOO metric), (ii) reduced number of 
attributes (NOA metric), and (iii) reduced number of operations and parameters (WOC 
metric). These recurring benefits are due to the reduction of tangling and scattering 
relative to the pattern-specific concerns in the classes shared by the composed patterns. 
The AspectJ implementations have also presented similar drawbacks in this category: 
more lines of code and stronger coupling (CBC metric). However, these drawbacks will 
be discussed in Section 4.1.3 because similar findings were obtained for these measures 
through all the composition categories. 

3.3  Method-level interlacing 

We have analyzed 17 compositions with method-level interlacing (Table 4), which we 
have classified in 4 groups according to the similarities in the measurement outcomes. 
The first group involved three combinations: Mediator with CoR, Observer with 
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Composite, and CoR with Strategy. The SoC measures for this group have shown no 
benefits in favor of AspectJ. These compositions involve an interesting scenario: the 
AspectJ implementation of one pattern explicitly interferes in the separation of 
concerns relative to the second pattern. The aspect of the first pattern inevitably 
contains code of the second one. It directly contributed to no SoC improvements even 
in the combinations involving AspectJ pattern implementations qualified as superior in 
previous studies [12, 15], such as Observer, CoR, and Composite. 

 
Table 4: Pattern compositions with method-level interlacing. 

Composition 
Pattern A Pattern B System 

Bridge Composite Middleware 
Bridge Visitor Middleware 
Bridge CoR Middleware 
CoR Strategy Middleware 
Mediator CoR Middleware 
State Observer Middleware 
Decorator Prototype Middleware 
Decorator State Middleware 
Mediator Prototype Middleware 
Mediator State Middleware 
Observer Composite Middleware 
Prototype Strategy Middleware 
Prototype Template Method Middleware 
State Strategy Middleware 
State Template Method Middleware 
Factory Method Memento Middleware 
Interpreter Composite Measurement Tool 

For example, the Java implementation of the method 
ConcreteMetaInvocationHandler.handleRequest() have code of both Mediator 
and CoR patterns (Figure 1). The aspectization of the CoR pattern [15] implements this 
method as an inter-type declaration. As a result, the CoR aspect also contains code of 
the Mediator pattern, thereby leading to the increment of one in the CDC measure 
(Figure 5a). This means the Mediator code is inevitably scattered over an additional 
component in the AspectJ solution for this combination. Even if we try to refactor the 
method handleRequest(), it still will contain a method call that is part of the 
Mediator behavior. As we will discuss in Section 4.1.4, the Mediator pattern has not 
been aspectized in this combination. The size, coupling, and cohesion measures for this 
group have varied from composition to composition. 

The second group includes only the composition Interpreter with Composite. To 
some extent, this combination presents a characteristic similar to the previous group: 
the Interpreter aspect is forced to have two calls to the Composite aspect, which are 
implemented using aspectOf. Nevertheless, the overall separation of concerns of the 
AO solution for this combination is superior (Figure 5). The Java implementation of 
Interpreter classes was highly tangled with Composite code, which is effectively 
modularized in the AspectJ implementation. In addition those two calls located at the 
Interpreter aspect are in two different classes of the Java solution, contributing to the 
AspectJ victory. As Figure 6 shows, this composition has revealed a high cohesion 
(LCOO), fewer attributes (NOA), and fewer operations and parameters (WOC). 
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Figure 5: Separation of concerns in pattern compositions with method-level interlacing. 

The third group is formed by 9 combinations: Decorator with Prototype, Decorator 
with State, Mediator with Prototype, Mediator with State, Prototype with Strategy, 
State with Strategy, Prototype with Template Method, and State with Template 
Method. In these cases, the AspectJ implementation of one pattern does not interfere in 
the separation of concerns relative to the second pattern. An explicit separation of 
concerns was achieved between the two patterns because each aspect isolates all the 
crosscutting code relative to the corresponding pattern. Their aspectization also 
separates the code of the two patterns that is mixed in the methods they have in 
common in the Java implementation.  

For instance, the implementation of the method ConcreteBind.makeRequest() 
includes pieces of code from both Decorator and State patterns (Figure 1). The AO 
solution of this combination modularizes those pieces of code in the advices of the 
aspects implementing each pattern. Both aspects define the execution of the method 
makeRequest() as join point of interest. This method is not aspectized because it is 
part of the Mediator pattern, which has not been refactored as an aspect in the 
middleware case study (Section 4.1.4). In fact, we can see in Figure 6 that the AspectJ 
solution presents improved locality of pattern-specific concerns for this combination. 
However, since both aspects in this combination are affecting the same join point, an 
order in their executions needs to be established using declare precedence. This 
feature introduces additional coupling in the AO solution (Figure 6). Although with 
distinct implementation strategies, similar results are obtained for the other 8 pattern 
compositions in this group. 
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Figure 6: Pattern compositions with method-level interlacing: coupling, cohesion, and size 

measures. 

The last group in this category encompasses 3 different compositions involving the 
Bridge pattern, and the combination of Factory Method with Memento. In these 
combinations, one of the patterns has not been modularized as aspects in the AspectJ 
implementation. The aspect of the second pattern modularizes its code that was 
tangled in the “interlaced” method. In this way, the separation of concerns and 
cohesion for the compositions in this group were notoriously improved. 

3.4  Overlapping 

We have analyzed 24 compositions with overlapping which are presented in Table 5. 
We have classified in 4 groups according to the similarities of the overlapping nature: 
attribute overlapping, statement overlapping, partial class overlapping and total or 
complete overlapping. We have not found any pattern combination involving method 
overlapping in the 62 compositions analyzed. Table 5 also shows which pattern 
compositions were classified in each group. 

Attribute overlapping occurs when two or more patterns share a same attribute. In 
the 3 investigated compositions with attribute overlapping, the shared attribute was 
transferred to one of the aspects and accessed by the other pattern aspect through the 
invocation of aspectOf. As a consequence, the separation of pattern roles is increased, 
but the coupling is stronger. For instance, in the composition of Composite and Visitor 
patterns, an attribute is responsible for maintaining the reference to the composite 
object, and it also plays the ObjectStructure role of the Visitor pattern.  It means that a 
same attribute is used in a different way for each pattern. In the aspectization process, 
the attribute is maintained in the Visitor pattern and is removed of the Composite and 
replaced by an invocation to aspectOf. In spite of the stronger coupling, this strategy 
led to a stronger cohesion (LCOO) and the reduction of operations and parameters 
(WOC) in the AO implementation. These positive results are illustrated in Figure 8. In 
the other 2 compositions with attribute overlapping, the results were not similar 
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because there were so many inter-aspect invocations due to the shared attribute. This 
problem led to a reduction of separations of concerns (in terms of the three measures) 
and an augment on the coupling between components. In Figure 7, which depicts the 
composition of Composite and Visitor, the influence of attribute overlapping is lower 
because there is only one invocation of aspectOf. 

 
Table 5: Pattern compositions with overlapping. 

Composition 
Pattern A Pattern B System 

Factory Method CoR Middleware 
Flyweight Command Middleware 
Command Proxy Middleware 
Decorator Bridge Middleware 
Decorator Strategy Middleware 
Bridge Factory Method Middleware 
Factory Method Command Middleware 
Factory Method Observer Middleware 
Factory Method Visitor Middleware 
Factory Method Composite Middleware 
Factory Method Flyweight Middleware 
Flyweight Adapter Middleware 
Mediator Decorator Middleware 
Mediator Strategy Middleware 
Mediator Template Method Middleware 
Proxy Adapter Middleware 
Proxy Builder Middleware 
Proxy Flyweight Middleware 
Template Method Bridge Middleware 
Composite Visitor Middleware 
State Prototype Middleware 
Decorator Template Method Middleware 
Proxy Composite Measurement Tool 
Strategy Template Method Agent Application 

We have analyzed 4 compositions with statement overlapping, in which the involved 
patterns share, at least, one statement. In the combination of Prototype and State a 
given statement creates a clone and also modifies the state of a variable that represents 
the current state. We have observed for the 4 compositions that, in general, the 
aspectization leads to the augment of separation of concerns and tends to increase the 
coupling between the patterns. This stronger coupling is because aspect code is 
intermingled with the invocations to the other pattern aspect. Thus, similarly to the 
attribute overlapping, the coupling between components is increased after 
aspectization due to the inter-aspect coupling in addition to: (i) the natural coupling 
between the business classes, and (ii) the coupling between the classes and the aspects.  
Figure 8 shows the augment of coupling, lack of cohesion and WOC in the combination 
of Prototype with State.  

In the 17 other compositions occurs a class overlapping. This overlapping occurs 
when at least one class is shared by patterns involved in a composition. This 
overlapping can be total or partial. The total overlapping (3 compositions) is when a 
pattern is completely contained in another pattern. The composition of the Template 
Method and the Decorator patterns is an example of total overlapping (Figure 1) where 
the Decorator and ConcreteDecorator roles of the Decorator pattern contain the 
AbstractClass and ConcreteClass roles of the Template Method. The aspectization 
process of the dominant pattern (Decorator) removed the subordinated pattern 
(Template method). This feature impacts on the SoC metrics (Figure 7) with the 
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reduction of CDC and also the number of transition points.  Coupling, LOC and WOC 
are also reduced (Figure 8).  
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Figure 7: Separation of concerns in pattern compositions with overlapping. 
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Figure 8: Pattern compositions with overlapping: coupling, cohesion, and size measures 

With respect to the partial class overlapping, 14 compositions were found in our case 
studies. In these combinations, part of the involved patterns share one or more classes. 
For instance, the composition of Decorator with Bridge shared two classes that played 
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two Bridge roles (Implementor and ConcreteImplementor) and two Decorator roles 
(Decorator and ConcreteDecorator). The original classes of the Bridge pattern shared by 
the Decorator pattern are transferred to the Decorator aspect and “removed” from the 
application. In general, the aspectization process of compositions with partial class 
overlapping, the aspectization of a pattern implies that the second pattern is not 
aspectized. Similarly to other 13 combinations, the aspectization of the Decorator 
pattern combined with the Bridge pattern resulted in improved SoC and also a slightly 
reduction of coupling, LOC and WOC. 

4  Discussions 

This section provides a more general analysis of the previously observed results in 
Section 3, and discussions about the constraints on the validity of our empirical 
evaluation. 

4.1  General Analysis 

This section introduces a more qualitative analysis by discussing the four questions 
raised in the introduction and using the collected quantitative data (Section 3) as the 
basis. When appropriate, we also correlate through the sections below the findings in 
our evaluation with claims and results from previous systematic case studies [12, 15] 
(Section 2.1). 

4.1.1  Does AOP enhance pattern composability? 

For the context of this study, we consider that a pattern implementation has a “good” 
composability if it can be directly reused and smoothly extended to different 
composition contexts. A transparent pattern composition would require only 
concretizing abstract aspects and extending abstract pointcuts and methods. The core 
implementation of the pattern roles should not be aware of the composition 
specificities. Moreover the aspectization of the pattern composition should not impact 
negatively on the modularity attributes. The results reported in Section 3 suggest that 
the success or failure for supporting a straightforward composition aspectization 
depended basically on two key complementary factors: (i) the suitability of AOP to 
modularize a given design pattern, and (ii) the intricacies of the pattern composition 
instance at hand. The predominance of a factor over the other depended on the 
composition category. 

The first factor predominated when we had two patterns taking part in an 
invocation-based composition (Section 3.1) or simply having one or more classes in 
common (Section 3.2). There is a loose connection between the involved patterns in 
these cases. As a result, the composition transparency and the achieved modularity 
degree depended mostly on the adequacy of AspectJ mechanisms to isolate the 
crosscutting concerns relative to each separate pattern. The particularities of 
compositions based on invocations and class-level interlacing did not impose major 
problems. For most of the investigated compositions, we were able to use the reusable 
pattern implementations as proposed in [15] without changes to the core structure of 
the patterns. We have used in few cases a different implementation, but because in 
such situations the application circumstances required pattern variants. In fact, most 
measures for the patterns participating in such compositions in this study were similar 
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to the measures we have obtained for each individual pattern in our previous 
quantitative study [12]. 

However, an important finding of this study is that the presence of more intricate 
relationships between two patterns can hinder a smooth composition process and, 
sometimes, affect negatively the modularity attributes of the patterns being composed. 
As reported in Sections 3.3 and 3.4, some pattern compositions with intra-method 
interlacing and overlapping required additional restructuring steps in the original 
pattern implementations as proposed in [15]. For example, sometimes we need to 
change the original structure of the pattern and use inter-type declarations in one 
pattern aspect so that the second pattern aspect can be properly combined with the 
former. This means that the aspectual design of the pattern needed to be aware of the 
composition context and the generic pattern aspect could not be directly reused.  

This scenario happened in the AspectJ implementation of State with Observer for 
the middleware case study. The Observer aspect was interested in events related to 
invocations of methods of the State aspect. These steps were often required even for 
patterns which have been qualified as reusable and/or pluggable [15] in the previous 
case studies, such as State, Adapter, and Strategy. Such refactoring steps do not 
necessarily led to negative effects on the modularity attributes of the pattern 
composition. Indeed a number of cases indicated that the AspectJ solutions were 
superior, such as the composition of State with Observer mentioned above.   

However, as discussed through Section 3, the aspectization of some specific 
compositions with strong coupling between the patterns can bring modularity 
problems. For example, there were compositions where a pattern aspect inevitably 
contained code of the second one, thereby affecting negatively the overall separation of 
concerns (Section 3.3). Moreover the aspectization of different types of overlapping-
based compositions tended to present SoC improvements, but also typically resulted in 
additional couplings between the modules participating in the composition (Section 
3.4). Interestingly, some cases involved design patterns that have shown superiority for 
AspectJ implementations in previous studies [12, 15], such as CoR and Adapter. 
Section 4.1.4 shows that some additional issues can emerge in compositions involving 
more than two patterns. 

4.1.2  Separation of roles in pattern compositions 

Section 3 has focused the discussion of the results for separation of concerns under the 
composition point of view. This section summarizes and discusses the results for 
separation of concerns in terms of each design pattern. Previous evaluations [12, 15] 
have centered the assessment on individual instances of design patterns. In this study, 
our goal is to understand to what extent separation of each pattern roles is preserved in 
contexts involving pattern compositions. 

Table 6 summarizes the findings on separation of concerns (SoC) for each GoF 
design pattern. The rows of the table present all 23 design patterns, while the columns 
show the main SoC conclusions of the other experiments and this study. The second 
and third columns respectively describe the SoC results (locality) of the HK study [15] 
and of our first study [12]. The fourth column summarizes the SoC findings related to 
each pattern in our composition-oriented evaluation. The last two columns are 
respectively concerned with the number of compositions each pattern participates and 
if the used version follows the original implementation proposed by Hannemann and 
Kiczales [15]. In second column’s cells, the value “yes” means that the corresponding 
AspectJ pattern implementation was qualified with a good localization in terms of its 
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roles. With respect to the second and third columns, we have classified an AspectJ 
(labeled "AO") or Java (labeled "OO") solution as superior when it has achieved better 
results for separation of concerns. In the third column, the conclusion was based on the 
analysis of how many compositions a given OO or AO solution were better when 
compared with the results of the other solution. The AspectJ solutions that achieved 
the best results (more than 35% in all SoC measures) for all compositions are marked 
with the symbol “+” in the third column. Finally, the symbol “*” in the last column 
means that the pattern was not aspectized in this study (Section 4.1.4). 

 
Table 6: Overview of the main findings of the three studies. 
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Abstract Factory no OO = 2 yes 
Adapter yes AO = 2 yes 
Bridge no OO = 7 no* 
Builder no OO = 2 yes 
CoR yes AO = 6 yes 
Command yes AO = 4 yes 
Composite yes AO AO+ 6 yes 
Decorator yes AO AO+ 7 yes 
Façade Same Implementation 

for Java and AspectJ 
2 yes 

Factory Method no OO OO 8 yes 
Flyweight yes OO = 4 yes 
Interpreter no = AO 4 no 
Iterator yes AO AO 4 yes 
Mediator yes AO = 7 no* 
Memento yes AO AO 3 yes 
Observer yes AO AO+ 11 yes 
Prototype yes AO AO 7 yes 
Proxy yes AO AO 8 yes 
Singleton yes AO AO 4 yes 
State yes = AO 8 yes 
Strategy yes AO AO 7 no 
Template Method yes OO AO 7 no* 
Visitor yes AO AO 4 yes 

 

Table 6 shows that only one design pattern has clearly presented superior separation of 
pattern-related concerns in Java implementations. Factory Method pattern provided 
better results in separation of concern for OO version and this finding confirms our 
first study result (column 2). In addition, the AspectJ implementations of 13 patterns in 
this study have shown better results in terms of separation of concerns, and 9 patterns 
presented similar (or not conclusive) results in both OO and AO implementations. For 
the 13 patterns that have shown SoC superiority in AspectJ implementations, only two 
(Interpreter and State) refuted findings of our previous study, when they were 
analyzed in isolation. In the previous study, they were classified as “similar results in 
both OO and AO implementations”. However, the Interpreter solution used in this 
study was different from original HK implementation, which was also used in our 
previous evaluation. Due to different application constraints, all interpret() methods 
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were moved to the aspect and introduced to classes by inter-type mechanisms (Section 
3.1).  

The State pattern had its modularity improved in most of AO compositions (6 
against 2). The two cases where no SoC improvement was detected, the AspectJ 
implementations were exactly the same as proposed by the HK study. In the HK 
implementations, the state transitions are located in Java classes that play the State 
role, which is usually defining (Section 2.1). For example, this result was observed in 
the combination of State with Interpreter (Section 3.1). Differently from the original HK 
implementation, the state transitions in the other 6 implementations occur in the 
classes that play the Context role in the State pattern [9]. This role is typically 
superimposed, and the state transitions in those classes result in high tangling and 
scattering of the pattern implementation. In these cases, the aspectization process is 
also effective to remove the state transitions from the business classes and other pattern 
implementations, reducing the tangling and scattering. The AspectJ superiority for 
these State instances can be observed in combinations appearing in Figures 5 and 7, 
where the difference is higher than 56 % for the CDLOC measures. The Java 
implementation is superior in the CDO measures, but it is because the State aspects 
have an additional operation. In addition, the difference is lower than 10 %, which can 
be considered as insignificant. 

The 9 patterns with similar results for AO e OO versions (represented by “=” in 
column 4) can be classified in two main situations. The first situation includes three 
patterns - Bridge, Mediator and Template Method, which were not aspectized because 
application constraints or composition particularities (Section 4.1.4). In the second case, 
the pattern aspectization has not produced SoC improvements in almost all the 
compositions those patterns participated. This category included: Abstract Factory, 
Adapter, Builder, CoR, Command, and Flyweight. We have identified 3 main factors 
that determine the negative performance of AspectJ for modularizing those patterns: (i) 
the composition particularities that the pattern participated, (ii) the pattern instance 
size, i.e. the number of classes playing the pattern roles, and (iii) the aspectization 
approach. The CoR pattern, for instance, is an example in which the performance was 
influenced by the compositions it took part. The method-level interlacing composition 
“CoR with Strategy” have shown no benefits in favor of AspectJ because the 
aspectization of Strategy brings code of the CoR pattern to its aspect (Section 3.3). The 
Command pattern has also not exhibited an improved separation of concerns in the 
AspectJ implementations. In this case, the main factor was the instance size. There 
were not too many classes in the application playing the roles Command, Receiver and 
Invoker. The Abstract Factory, Builder and Flyweight patterns have presented no 
modularity improvements, confirming the findings of previous case studies (columns 2 
and 3 of Table 6). 

4.1.3  Coupling, cohesion, and size 

Based on the results presented in Section 3, we have observed that the measures 
relative to cohesion (LCOO), complexity of operations (WOC), and number of 
attributes (NOA) also depend both on the composition category and on the involved 
patterns. In general, the AO solutions were superior in terms of NOC measures, since 
the use of AspectJ reduces the overuse of inheritance mechanisms. However, as 
illustrated in Figures 4, 6, and 8, most measures indicated that AspectJ 
implementations resulted in higher coupling (CBC) and more lines of code (LOC) than 
the respective Java implementations. 
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However, a careful analysis of the implementations show that these higher CBC and 
LOC values for AO solutions in general are related to presence of generic aspects in 
several AspectJ pattern implementations, which have the intention of making the 
pattern solutions more reusable. As several investigated compositions involve few 
participant classes playing the pattern roles, the presence of generic aspects artificially 
has lead to higher values for LOC and CBC. This effect was more evident when we 
compared the composition instances taken from the middleware implementation with 
the composition instances obtained from the agent-based application and the 
measurement tool. The former ones often involve few participant classes while the 
other ones typically consist of several participant classes. For example, the composition 
Interpreter with Composite (Figure 6) was taken from the measurement tool and has 
exhibited favorable LOC and CBC values for the AspectJ implementation. 

Nevertheless, it is important to highlight that in several cases a higher CBC value 
was in fact a clear indicator of stronger coupling in the AspectJ solution. For example, 
this problem happened in some invocation-based compositions when the inter-pattern 
invocations were inevitably transferred to the code of the aspects (Section 3.1). As there 
was an implicit connection between the base classes, the aspect-class and inter-aspect 
dependencies just introduced new sources of coupling in the composition 
implementation. Similar coupling problems were identified in compositions with intra-
method interlacing (Section 3.3) and overlapping (Section 3.4). 

4.1.4  Scalability of AOP in Complex Compositions 

The previous sections focused on discussing how the aspectization of pair-wise 
compositions impacts different modularity attributes. This section discusses how AOP 
scaled in compositions involving a greater number of patterns in terms of such 
modularity attributes and pattern composability. We have implemented and analyzed 
different compositions with 3, 4, 5, 6, and 7 patterns, such as the one represented in 
Figure 1. In general, we have observed that the measures tended to be similar in these 
more complex compositions, especially when they mostly involved invocation-based 
and intra-class compositions. However, we have detected some problems when the 
combination included a high incidence intra-method interlacings and overlappings. 

In some situations, these problems hindered the aspectization of certain design 
patterns, such as Proxy and Mediator. The aspectization of certain patterns, as 
proposed in [15], can cause some design conflicts. As a consequence, it is necessary to 
carefully analyze which patterns should be aspectized and which patterns should not. 
Consider for example the composition of Proxy, Flyweight, and Adapter patterns. The 
Adapter, FlyweightFactory, and RealSubject roles have a class in common.  The HK 
implementation of the Flyweight pattern suggests the transformation of 
FlyweightFactory into an aspect. On the other hand, the Adapter implementation 
requires the removal of the Adapter class, and the use of inter-type declarations to 
insert its methods in the class is playing the Adaptee role. The Proxy pattern acts as a 
client in this composition. With the divergence of these two suggestions, it is necessary 
to choose which pattern should be aspectized and if the Proxy pattern will invoke the 
aspect represented by FlyweightFactory or will invoke a method defined in the Adaptee. 
In the implementation of the middleware system we have chosen to aspectize the 
Adapter pattern because this approach would reduce the coupling among the elements 
of the composition. The decision of aspectizing the Adapter pattern made the 
aspectization of Flyweight impossible. This also reveals that the results of the 
aspectization of Proxy with Flyweight and Proxy with Adapter are different from the 
aspectization of the combination of such three patterns:  Proxy, Flyweight and 
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Adapter. As a result, in evolution scenarios, these pair-wise combinations may need to 
be restructured in the need of adding a third pattern.  

In some cases, the aspectization of a given design pattern in complex compositions 
has not been revealed as a good design option according to application requirements. 
Consider the example illustrated in Figure 1 involving the Mediator pattern as a central 
design element. In this case, the Mediator and Proxy patterns are combined to 
implement the LocalBind mechanism of OpenOrb. The Proxy pattern is used to 
maintain the contracts defined between the components. In this example the BankStub 
class is used as a Proxy to access the implementations defined by the Bank Subject. The 
Mediator pattern supports the dynamic adaptation mechanism of OpenOrb. In this 
case, the BankStub class also plays the Colleague role by inheriting the bind attribute 
from the Interface and Port classes. This attribute supports the invocation of 
bindlocal() of the ConcreteBind class. The aspectization of these two patterns 
would require the definition of an advice to handle each method provided by the 
client’s interfaces. In addition, all invocations would be forwarded to the abstract 
Mediator aspect. As a result, the Mediator pattern has not been aspectized because this 
strategy would insert a bottleneck in the invocation of the middleware platform and, as 
a consequence, the performance would be reduced. 

4.2  Study Constraints 

The use of the GoF patterns could be pointed out as a constraint in our experimental 
evaluation. However, we have focused first on this pattern catalogue for two main 
reasons. First, they are domain-independent and widely-used solutions. Second, this 
strategy allowed us to compare our results with previous case studies that exploited 
these patterns, and understand how the pattern implementations scaled in the 
presence of pattern interactions. As previous work has not systematically investigated 
the influence of AOP on pattern composability, we believe this study improves the 
current knowledge base about the aspectization of these general-purpose patterns. 
Other researchers can reuse our study format as a basis for further studies intended to 
investigate other design patterns.   

There are a number of other existing metrics and other modularity dimensions that 
we could exploited in our study. We have to decide to focus on the metrics described in 
Section 2.3.2 because they have already been proved to be useful in several previous 
case studies to be useful quality indicators in several case studies [7, 10, 11, 12, 26]. In 
fact, despite the well-known limitations of these metrics, as already discussed in [12], 
they complement each other and are very useful when analyzed together. In addition, 
there is no way in a single study to explore all the possible measures. For every 
possible metrics suite that you take, there will be always some dimensions that will 
remain uncovered. In addition, future case studies can use additional metrics and 
assess the pattern compositions in terms of different modularity dimensions. 

It is also important to notice that the scope of our experience is limited to: (i) the 
patterns selected for this comparative study, (ii) the specific Java and AspectJ 
implementations mostly based on the GoF book [9] and the HK study [15], (iii) the Java 
and AspectJ programming languages, (iv) the composition categories described in 
Section 2.2, and (v) our 3 case studies. Although our study covers a huge number of 
pattern compositions and different composition categories, it obviously does not cover 
all the composition possibilities. For instance, it does not exploit method overlapping. 
However, we believe that this first empirical study on the aspectization of pattern 
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compositions provided interesting evidences about benefits and drawbacks the use of 
AO abstractions might bring, as discussed in Sections 3 and 4.1. 

5  Related Work 

Related work can be categorized into two groups: those related to pattern 
composability and those that empirically investigates aspectization of multiple 
crosscutting concerns. However, none of them investigates the impact of AOP on the 
aspectization of pattern compositions in the light of fundamental software attributes. 

5.1  Pattern Composability 

There are several ways of classifying relationships between design patterns according 
to different purposes [27, 31]. Zimmer [31] have proposed a classification of the 
relationships between the GoF design patterns. The following categories were 
proposed: (i) X uses Y, (ii) X is similar to Y, (ex.: Abstract Factory, Prototype and 
Builder deal with object creation; Glue and Mediator decouple objects); and (iii) X can 
be combined with Y (a Factory Method is typically called in a Template Method; 
Composite and Decorator are often used together). However, this is a higher-level 
classification used with the purpose of improving the documentation of pattern 
languages. The classification used in this work was focused on the composition of the 
implementations for pattern solutions; indeed, it was abstracted from pattern 
realizations in several real system implementations [3, 7, 11] and our own extensive 
experience on pattern compositions. 

Murali et al [22] discusses the use of design patterns and AOP in a middleware 
implementation.  They claim that the combination of AOP and design patterns lead to 
many benefits to the middleware in terms of reusabilility, modularity, and  
adaptability. Rouvellou et al. [23] have discussed how middleware modularity can be 
improved by using separation of concerns strategies. They have theoretically stated 
that the entanglement between middleware components is low when they are highly 
separable. However, these authors do not apply any metrics to assess the 
implementation and do not give an empirical support for such conclusions. In 
addition, they do not analyze the composition of patterns used in the implementation. 

5.2  Other Empirical Studies 

There are a number of quantitative studies (such as [7, 11, 12, 14]) that apply the same 
metrics used in this work. However, none of them applies the metrics upon pattern 
compositions. Godil and Jacobsen [14] have applied the metrics to evaluate an aspect-
oriented version of a database system refactored using the horizontal decomposition 
principle. Although they applied the metrics to assess an AO implementation, they do 
not use design patterns in such a system. 

Soares [26] focuses on the investigation of AOP to modularize distribution and 
persistence concerns. He has used specific design patterns to implement Java and 
AspectJ versions of a web-based system. The author has concluded that the AspectJ 
implementation is better than the corresponding Java implementation. However, this 
study has also not assessed the suitability of AOP to isolate pattern implementations in 
the presence of intricate pattern interactions. 
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6  Conclusion 

Since the publication of the first catalog containing the 23 Gang-of-Four patterns [9], 
design patterns have quickly been recognized to be useful and important in successful 
software development. It is well recognized that programming languages affect pattern 
implementation. Hence it is natural to explore the effect of AOP techniques on the 
implementation of the GoF patterns. This paper presented an empirical study that 
investigated the scalability of AOP for composing GoF design patterns. We have used 3 
medium-sized systems implemented in Java and AspectJ, and evaluated 62 
compositions in these systems. 

We also compared this study results with the findings from previous studies, 
contributing to an improved body of knowledge on the scalability of AOP. We defined 
a categorization of pattern compositions, and the relationships with different ways of 
crosscutting. For each category, we analyzed the compositions, determined the 
aspectization approach, applied the metrics, and presented in this paper a depth 
analysis of the results. The study shows that the aspectization results depend on the 
patterns involved, the composition intricacies, and the application requirements.  In 
some situations, the aspectization of the pattern composition is not straightforward 
and several design options need to be considered. Sometimes, it requires a global 
reasoning in order to understand that impact of each design option in the context of the 
whole system implementation. In order to extend the body of knowledge on the 
aspectization of design patterns, as a future work we intend to use other AO 
programming languages, such as Caesar [21] and Hyper/J [28], and apply the same 
metrics used in this work. 
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