

ISSN 0103-9741

Monografias em Ciência da Computação

n° 34/05

Aspect-Oriented Composition of Design Patterns:
A Quantitative Assessment

Nélio Alessandro Azevedo Cacho
Eduardo Magno Lages Figueiredo

Cláudio Nogueira Sant’Anna
Alessandro Fabricio Garcia
Thaís Vasconcelos Batista

Carlos José Pereira de Lucena

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 34/05 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena October, 2005

Aspect-Oriented Composition of Design Patterns:
a Quantitative Assessment *

Nélio Alessandro Azevedo Cacho1 Eduardo Magno Lages Figueiredo
Cláudio Nogueira Sant’Anna Alessandro Fabricio Garcia2

Thaís Vasconcelos Batista1 Carlos José Pereira de Lucena
1Computer Science Department – Federal University of Rio Grande do Norte (UFRN)

2Computing Department, Lancaster University, UK
cacho@consiste.dimap.ufrn.br, {emagno,claudios,lucena}@inf.puc-rio.br

a.garcia@lancaster.ac.uk, thais@ufrnet.br

Abstract. Pattern composition has been shown as a challenge to applying design
patterns in real software systems. One of the main problems is that the
implementations of multiple design patterns in a system are not limited to affect the
application classes. They also crosscut each other in multiple heterogeneous ways so
that their separation and composition are far from being trivial. In this context, it is of
paramount importance to systematically verify whether aspect-oriented programming
(AOP) supports improved composability of design patterns. This paper presents a
systematic investigation on how AOP scales up to deal with modularization of pattern-
specific concerns in the presence of pattern interactions. We have made both
qualitative and quantitative assessments of 62 pair-wise compositions taken from 3
medium-sized systems implemented in Java and AspectJ programming languages. Our
analysis has also included the evaluation of compositions involving more than two
patterns. The assessment was based on four fundamental software attributes, namely
separation of concerns, coupling, cohesion, and conciseness.
Keywords: Design patterns, aspect-oriented programming, composability, empirical
studies, metrics.

Resumo. Composição de padrões tem se mostrado um desafio no uso de padrões em
sistemas reais de software. Um dos maiores problemas é que a implementação de
múltiplos padrões de projeto em um sistema não se limita a afetar as classes da
aplicação. Em muitos casos, os padrões interagem entre eles de forma tão heterogênea
que sua separação e composição não é trivial. Neste sentido, é importante uma
verificação sistemática de como a programação orientada a aspectos (POA) pode
suportar a composição de padrões de projeto. Este documento apresenta uma
investigação sistemática de como os mecanismos de AOP auxiliam a modularidade de
interesses específicos na presença de interações entre padrões. Neste estudo foram
feitos tanto avaliações qualitativas quanto quantitativas para 62 pares de composição
de padrões extraídas de 3 sistemas de tamanho médio implementados em Java e
AspectJ. Também foram analisadas composições que envolvem mais de dois padrões
para verificar o quanto às soluções são escaláveis. A avaliação é baseada em quatro
atributos fundamentais da Engenharia de Software: separação de interesses,
acoplamento, coesão e concisão.
Palavras-chave: Padrões de Projeto, Programação Orientada a Aspectos, Composição,
Estudo Empírico, Métricas.

* This work has been partially supported by CAPES for Eduardo Figueiredo and by CNPq for Cláudio

Sant’Anna. The authors are also supported by the PRONEX Project under grant 7697102900, and by
ESSMA under grant 552068/2002-0.

In charge for publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br

 ii

mailto:bib-di@inf.puc-rio.br

Table of Contents

1 Introduction 1
2 Study Format 2

2.1 Modularizing Design Patterns 2
2.2 Pattern Composition Categories 3
2.3 Assessment Procedures 4

2.3.1 Selection and implementation of pattern compositions 5
2.3.2 Measurement process 5

3 Results 7
3.1 Invocation-based composition 7
3.2 Class-level interlacing 8
3.3 Method-level interlacing 10
3.4 Overlapping 13

4 Discussions 16
4.1 General Analysis 16

4.1.1 Does AOP enhance pattern composability? 16
4.1.2 Separation of roles in pattern compositions 17
4.1.3 Coupling, cohesion, and size 19
4.1.4 Scalability of AOP in Complex Compositions 20

4.2 Study Constraints 21
5 Related Work 22

5.1 Pattern Composability 22
5.2 Other Empirical Studies 22

6 Conclusion 23
References 23

 iii

1 Introduction

Design patterns are present in every real system we build in order to assure stringent
modularity principles, such as low coupling, high cohesion, conciseness, and
separation of concerns. A design pattern assigns roles to their participant classes, which
define the functionality of the participants in the pattern context [14]. The application
of design patterns in complex systems is often a result of the composition of two or
more pattern roles rather than their instantiations in an isolated manner. Their object-
oriented (OO) implementations can be composed in different ways [8, 31], ranging
from a simple method invocation between the patterns’ roles to the sharing of one or
more classes by the pattern roles.

Recent systematic studies [12, 15] have shown that a number of design patterns
involve crosscutting concerns in the relationship between the pattern roles and
participant classes in each instance of the pattern. The pattern roles often crosscut
several business classes in a software system. OO abstractions are not able to localize
these pattern-specific concerns and tend to lead to programs with poor modularity
attributes [12]. The situation is even worst in real OO designs; pattern implementations
typically crosscut the implementations of other pattern roles as they need to be
composed. This means that pattern roles are scattered and tangled to each other and
through the participant classes, which in turn leads to the pattern instances to get lost
[27] or degenerate [8] in the system. Also this crosscutting phenomenon potentially has
negative impacts on quality attributes of both pattern-specific and application-specific
implementations.

In this context, it is of paramount importance to systematically verify whether AOP
approaches (such as [20]) support improved composability of design patterns. It
requires an investigation on how AOP scales up to deal with modularization of
crosscutting concerns relative to pattern roles in the presence of pattern interactions. To
the best of our knowledge, there is no systematic evaluation of the effects of AOP on
pattern compositions. Up to now, qualitative and quantitative studies involving the
“aspectization” of design patterns [12, 13, 14, 15] focused on the separation of a
particular design pattern and its participant classes in the application. Although these
first assessments provided initial interesting results, the implementation and
evaluation of the pattern instances were isolated from each other. They were not taken
in the context of existing software systems where interactions between pattern
implementations are recurring and intricate. This problem seriously constrains the
extrapolation of the results and limits our understanding in how aspect-oriented (AO)
solutions scale up to cope with realistic scenarios involving complex pattern instances
and different composition contexts. Hence, a number of questions remain
unaddressed:

(i) does AOP promote improved pattern composability?

(ii) to what extent separation of pattern roles is preserved in realistic contexts
involving pattern compositions?

(iii) what are the positive and negative influences of aspectized pattern
compositions on fundamental software attributes, such as coupling,
cohesion, and conciseness?

 1

(iv) what does happen in more intricate compositions involving 3 or more
patterns? How much do the aspect-oriented implementations scale in these
cases?

To explore these issues, we have performed an empirical study where we have
assessed OO and AO solutions that implement compositions of the Gang-of-Four
(GoF) patterns. It includes the quantitative and qualitative assessments of 62 pair-wise
compositions taken from 3 medium-sized systems implemented in Java [17] and
AspectJ [2] programming languages. Our analysis has also included the evaluation of
compositions involving more than two patterns. The assessments were based on 4
basic modularity attributes, namely separation of concerns (SoC), coupling, cohesion,
and conciseness. This paper also correlates our study findings with the results from
previous studies, contributing to an improved body of knowledge on the scalability of
AOP for addressing the crosscutting property of patterns in a multitude of composition
scenarios.

The remainder of this paper is organized as follows. Section 2 presents our study
setting. Section 3 presents the study results with respect to the investigated modularity
attributes. These results are interpreted and discussed in Section 4, which also points
out some constraints of our study. Section 5 introduces some related work. Section 6
includes some concluding remarks and future work.

2 Study Format

This section first puts our study in perspective of previous work (Section 2.1). It also
describes our categorization defined for pattern compositions (Section 2.2), and the
procedures and metrics used to support our quantitative assessment (Section 2.3.2).

2.1 Modularizing Design Patterns

There are two kinds of pattern roles [15]: defining and superimposed roles. A defining
role defines a participant class completely. In other words, classes playing a defining
role have no functionality outside the pattern. The unique role of the Façade pattern [9]
is an example of defining role. A superimposed role can be assigned to participant
classes that have functionality outside of the pattern. An example of superimposed role
is the Colleague role of the Mediator pattern [9], since a participant class playing this
role usually has functionality not related to the pattern. General-purpose design
patterns, such as GoF patterns, exhibit crosscutting concerns [9, 12]. For example,
consider the Mediator and Colleague roles that are defined in the Mediator pattern. Some
operations that change a Colleague must trigger updates to the corresponding Mediator;
in other words, the act of updating crosscuts one or more operation in each Colleague in
the pattern [12]. Mediator is also usually a superimposed role.

In this context, systematic studies have investigated the effects of AOP on the
modularization of design patterns. Hannemann and Kiczales (HK) [15] have
undertaken a qualitative study in which they have developed and compared Java [17]
and AspectJ [2] implementations of the 23 GoF patterns [9]. The basic idea was the
identification of the common part of several patterns and the isolation of their
implementations in aspectual modules. Some of these modules were defined as
reusable aspects that are extended in order to instantiate the pattern for a specific
application. Our previous work [12] focused on the quantitative assessment of the HK

 2

implementations for the GoF patterns. Both studies have used modularity attributes as
assessment criteria.

However, for each of the 23 patterns these initial studies used a very simple example
that made use of the pattern. The pattern instances were not taken from realistic
software systems. More importantly, AOP has not been assessed in the context of
pattern compositions. The HK study alleged that 15 aspectized patterns had superior
“composition transparency”. However, this property only captured a narrow view of
pattern composability; it is related to the ease of composition between the general code
of a single pattern and their multiple instances [15]. There are additional studies (e.g.
[22, 23]) related to the aspectization of GoF patterns, but they focus on some specific
patterns. They also do not assess how AOP scale up to deal with crosscutting concerns
in the presence of pattern interactions.

2.2 Pattern Composition Categories

Pattern compositions involve the combination of their roles. Figure 1 shows an OO
design slice of an OpenOrb-compliant middleware system [3] in which a number of
GoF patterns are used and combined to achieve the middleware requirements of high
customizability and adaptability. In the figure, each number represents a specific
pattern, and the numbers are associated with methods and attributes. The number
attachment indicates that the associated method or attribute is part of the
implementation of the corresponding pattern. For example, the implementation of the
Decorator pattern (represented by number 1) includes the attribute bind and affects
several methods, such as makeRequest(), breakBind(), rebind(),
checkPreMethods(), and checkPosMethods().

1,8

BindMediator

+ makeRequest (String method, Object[] args) : Object

ConcreteBind
{abstract}

-
-
-
-
-

nextHandler
bdstate
running
connected
observers

: Port
: BindState
: BindState
: BindState
: HashSet

+
+
+
+
+
+
+
+
+
+

getTargetMethod (String method, Object[] args, Class oClass)
getRealArgs (String method, Object[] args)
makeRequest (String method, Object[] args)
rebind (Port newRecept)
breakBind ()
setNextHandler (Port nextHandler)
getNextHandler ()
addObserver (MetaObserver o)
removeObserver (MetaObserver o)
notifyObservers ()

: Method
: Object[]
: Object
: void
: void
: void
: Port
: void
: void
: void

BindState

+
+
+

rebind (Port recpt)
breakBind ()
clone ()

: void
: void
: Object

BindRunning

+
+
+

rebind (Port recpt)
breakBind ()
clone ()

: void
: void
: Object

BindConnected

- bind : BindMediator

+
+
+

rebind (Port recpt)
breakBind ()
clone ()

: void
: void
: Object

DecoratorBind
{abstract}

bind : BindMediator

+
+
+
+
+

checkPreMethods (String method, Object[] args)
checkPosMethods (String method, Object[] args)
makeRequest (String method, Object[] args)
rebind (Port newRecept)
breakBind ()

: void
: void
: Object
: void
: void

MetaBind

+
+

checkPreMethods (String method, Object[] args)
checkPosMethods (String method, Object[] args)

: void
: void

Port
{abstract}

#
-

bind
observers

: BindMediator
: HashSet

+
+
+
+
+
+
+

setName (String name)
getName ()
setMemento (CapturerMetaState meta)
createMemento ()
addObserver (MetaObserver o)
removeObserver (MetaObserver o)
notifyObservers ()

: void
: String
: void
: CapturerMetaState
: void
: void
: void

Interface

BankStub

+
+
+

deposit (double value)
withdraw (double value)
balance ()

: void
: void
: double

1,8

Decorator - 1
Mediator - 2
Memento - 3
Observer - 4
Prototype - 5

1,2

1,8

1

1

2
7

5

4

1,2,5,7

4,7

2

4

7

5

7

5

7

5

Bank

+
+
+

deposit (double value)
withdraw (double value)
balance ()

: void
: void
: double

2

3

4

4

4

2,6 6

Proxy - 6
State - 7
Template Method - 8
Chain of Responsibility - 9

ConcreteMetaInvocationHandler

-
+

successor
mediator

: MetaInvocationHandler
: BindMediator

+
+
+

handleRequest (Object[] args)
setSuccessor (MetaInvocationHandler next)
getSuccessor ()

: void
: void
: MetaIn

2, 9

9

2
9

Legend

Figure 1: An OO design slice of the OpenOrb component model [3]: tangling and scattering

of pattern-related concerns.

An analysis of Figure 1 also makes it evident that most of the pattern-related concerns
are scattered over the system classes, as commonly happens in realistic applications.
The roles of the State pattern affect various methods in the classes ConcreteBind,
BindConnected, and BindRunning. Pattern roles are also tangled with each other and
with middleware-specific concerns. For example, the methods rebind() and
breakBind() in the class ConcreteBind implement middleware-specific
functionalities, but also incorporate code of the Observer and State patterns. In this
context, there are different ways in which the patterns interact with each other. The
pattern compositions vary from a simple method invocation between the patterns’
roles to the sharing of one or more classes by the pattern roles. The pair-wise

 3

interactions of OO pattern implementations investigated in our study are classified in 4
categories as described in the following.

Invocation-based composition. The implementations of the two composed patterns,
namely P1 and P2, are disjoint and they have no class in common. The roles of P1 and
P2 are only connected through one or more method calls. This is the simplest form of
pattern composition. The combination of Chain of Responsibility (CoR) and Prototype
is included in this category. Figure 1 illustrates the realization of this combination for a
middleware implementation. Note that the CoR and Prototype patterns are affecting
different classes. Their composition is based only on a call to the method
ConcreteBind.makeRequest() (implementing the Prototype pattern) within the
method handleRequest() of the class ConcreteMetaInvocationHandler (participant
of the CoR pattern).

Class-level interlacing. The implementations of patterns P1 and P2 have one or
more classes in common. The roles of P1 and P2 are implemented by different sets of
methods and attributes in these shared classes. In other words, the involved patterns
have coinciding participant classes, but there is no common method or attribute
implementing roles of both patterns. As a result, the pattern implementations have
been interlaced (or tangled) at the class level. Examples of this composition category in
Figure 1 are Memento with Observer, and Prototype with Observer. For example, the
class Port belongs to both Memento and Observer implementations, but it has no
method that contains code relative to both patterns.

Method-level interlacing. Differently from class-level interlacing, the
implementations of patterns P1 and P2 have one or more methods in common.
Different pieces of code in these methods are dedicated to implement roles of both P1
and P2. Hence the pattern implementations are interlaced at the method level. Both
method- and class-level interlacing produce tangling of concerns, but at different levels
of abstraction. Some examples of this kind of pattern composition appear in Figure 1:
Mediator with CoR, and Mediator with Prototype. They can be easily detected in
Figure 1 as the numbers of the patterns in the composition appear attached to a same
method. For instance, the method ConcreteBind.makeRequest() is mostly dedicated
to the implementation of the Mediator role. However, it also contains code relative to
the Prototype pattern.

Overlapping. The implementations of patterns P1 and P2 share one or more
statements, attributes, methods, and classes. This combination style is different from
method-level interlacing because here the shared elements are entirely part of roles in
both patterns; in the previous case, the parts of the code in the common method
implementing the pattern roles are disjoint. An example of overlapping in Figure 1 is
the combination of Decorator with Mediator: the interface BindMediator and the
method ConcreteBind.makeRequest() are part of both pattern structures. It may be
the case that we have a complete overlapping in the sense that the implementation of a
given pattern is entirely contained by the other pattern. The Decorator pattern, for
instance, contains the implementation of Template Method (Figure 1).

2.3 Assessment Procedures

Our study has focused on the assessment of compositions involving all the 23 GoF
design patterns. We have used three medium-sized software systems as case studies:
(1) an OpenOrb-compliant middleware system [3], (2) a measurement tool [6], and (3)
an agent-based application for supporting paper submission and selection processes
[10, 11]. Tables 2, 3, 4 and 5 present the compositions and from which system is

 4

extracted each one. These systems were selected for several reasons. First, their OO
implementations are largely based on design patterns due to their requirements of
maintainability, evolvavility, and reusability. The second reason is the heterogeneity of
the pattern compositions found in these systems. Third, they encompass different
characteristics, diverse domains, and different degrees of complexity in terms of
pattern instances and their compositional nature. The following subsections describe
how we have obtained and assessed the pattern compositions.

2.3.1 Selection and implementation of pattern compositions

We have reengineered the existing Java implementations of the first two systems with
AspectJ in order to produce the AO versions of those systems. For the third case study,
we have reused both existing Java and AspectJ implementations [10, 11]. In both OO
and AO solutions, we have tried to maximize the separation of each pattern with
respect to both the second pattern in the combination and the application-specific
concerns. While implementing the AspectJ versions, we have also aimed at preserving
the use of the original versions of the pattern implementations [15] as much as possible
in order to correlate the results of this study with previous ones [12,15]. However, due
to each application’s specificities, in some cases we needed to carry out minor
modifications in the original AspectJ implementations [15] while trying to achieve the
intended pattern modularization. Moreover, in other cases we needed to rely on a
different AspectJ version because the application context required a specific pattern
variant.

A tally of 62 compositions was chosen in the 3 case studies. Most of these
compositions are documented through the GoF pattern catalogue [9]. Each pattern
participated at least in 2 compositions, and each composition category (Section 2.2)
involved the minimum of 9 different composition instances. The measurement process
was preceded by the isolation of each composition instance from the application
implementation so that we could perform the proper measurements.

In order to compare the two implementations of the compositions, we had to ensure
that both Java and AspectJ versions were implementing the same functionalities.
Therefore, some minor modifications were realized in the code of the patterns.
Examples of such kinds of changes were: (i) to add or remove a functionality – a
method, a class or an aspect – in the aspect-oriented (or object-oriented)
implementation of the composed patterns in order to ensure the equivalence between
the two versions; we decided to add or remove a functionality to the implementation
by evaluating its relevance for the pattern implementation; and (ii) to ensure that both
versions were using the same coding styles due to the fine granularity of our metrics.

2.3.2 Measurement process

The quantitative assessment was based on the application of a metrics suite [10, 24] to
the 62 compositions. These metrics are useful to capture important modularity
dimensions in the pattern compositions, namely separation of concerns, coupling,
cohesion, and size. The coupling, cohesion, and size metrics are extensions of
traditional and OO metrics in order to be applied in a paradigm-independent way, and
support the generation of comparable results between Java and AspectJ solutions. The
metrics suite also encompasses new metrics for measuring separation of concerns. The
separation of concerns metrics measure the degree to which a single concern in the

 5

system maps to the design components (classes and aspects), operations (methods and
advices), and lines of code.

The used metrics are briefly described in Table 1; an extensive explanation and
justification about them are out of the scope of this work and can be found at [10, 24].
Table 1 presents a brief definition of each metric, and associates them with the
attributes measured by each one. These metrics have already been extensively used
and proved to be useful quality indicators in several studies [7, 10, 11, 12, 14, 26]. We
have applied the chosen metrics to both Java and AspectJ versions. We analyzed the
results, and also compared them with the results gathered in the two main previous
studies (Section 4.1).

In the measurement process, the data was partially gathered by our own
measurement tool [6]. It supports all the metrics, except the metrics of separation of
concerns (CDC, CDO, and CDLOC). The data collection of the separation of concerns
metrics was preceded by the shadowing of every class, interface and aspect in both
implementations of the pattern compositions. Their code was shadowed according to
the pattern roles that they implement. We treated each design pattern as a concern in
order to investigate its crosscutting structure in pattern compositions. After the
shadowing, the data of the separation of concerns metrics (CDC, CDO, and CDLOC)
was manually collected.

Table 1: The Metrics Suite [7, 18].

Attributes Metrics Definitions

Concern Diffusion
over Components

(CDC)

Counts the number of classes and aspects whose main purpose is to
contribute to the implementation of a concern and the number of other
classes and aspects that access them.

Concern Diffusion
over Operations

(CDO)

Counts the number of methods and advices whose main purpose is to
contribute to the implementation of a concern and the number of other
methods and advices that access them.

Separation
of Concerns

Concern Diffusions
over LOC (CDLOC)

Counts the number of transition points for each concern through the
lines of code. Transition points are points in the code where there is a
“concern switch”.

Depth Inheritance
Tree

Coupling Between
Components (CBC)

Counts the number of other classes and aspects to which a class or an
aspect is coupled. Coupling

Number of Children
(NOC)

Counts how many children a class or aspect has.

Cohesion Lack of Cohesion in
Operations (LCOO)

Measures the lack of cohesion of a class or an aspect in terms of the
amount of method and advice pairs that do not access the same
instance variable.

Lines of Code (LOC) Counts the lines of code.

Number of Attributes
(NOA)

Counts the number of attributes of each class or aspect.

Size
Weighted Operations

per Component
(WOC)

Counts the number of methods and advices of each class or aspect and
the number of its parameters.

 6

3 Results

This section presents the measurement results for the 62 compositions, which are
grouped in the respective composition categories. For each category, we focus first on
the presentation of results related to separation of concerns. Afterwards, we show how
the aspectization of the pattern compositions impacted on the other software attributes.
In order to illustrate the results, some specific compositions are used as representatives
in the following subsections. The discussion about the interplay among all the results is
concentrated in Section 4. Section 4 also discusses the relationships between our
study’s results and the conclusions obtained in previous case studies (Section 2.1).

Graphics are used to represent the data gathered in the measurement process. The
graphic Y-axis presents the absolute values gathered by the metrics. Each pair of bars is
attached to a percentage value, which represents the difference between the AO and
OO results. A positive percentage means that the AO implementation was superior,
while a negative percentage means that the AO implementation was inferior. These
graphics support an analysis of how both solutions for the pattern compositions affect
the selected measures. There are two kinds of graphics: (i) the graphics for SoC
measures, and (ii) the graphics for the coupling, cohesion, and size attributes. The first
one shows how each pattern was isolated in the pattern composition in terms of the 3
SoC measures. The results shown in the other graphics were gathered according to the
entire composition point of view; that is, they represent the tally of metric values
associated with all the classes and aspects involved in the pattern composition as a
whole.

3.1 Invocation-based composition

For this category, 9 compositions were investigated (Table 2). The AO solution was
superior in terms of SoC for 5 compositions against 1 of the OO solution. For 3
compositions no difference was observed. In general, the interactions between the
patterns in this category are not addressed in the aspectization process. Their
implementations are basically disjoint, with no shared method or class. The method
calls that connect them typically were not part of the functionality defined by the
superimposed roles and usually were not aspectized. As a result, the composition
quality for this category largely depended on the patterns being combined.
Considering the compositions analyzed, if at least one pattern presents good results in
its individual aspectization, the consequence is an overall improvement of separation
of concerns in terms of the whole composition implementation. Similarly, the OO
solution is better when the composition contains patterns that do not achieve
satisfactory modularization in AO implementations.

Table 2: Invocation-based pattern compositions.
Composition

Pattern A Pattern B System

Singleton Iterator Middleware
Façade Singleton Middleware
Façade Memento Middleware
Command Builder Middleware
CoR Prototype Middleware
Abstract Factory State Measurement Tool
Interpreter Iterator Measurement Tool
Interpreter State Measurement Tool
Proxy Interpreter Measurement Tool

 7

For example, the successful aspectization of the Interpreter pattern has a positive
influence on the general result of its composition with the State pattern. As illustrated
in Figure 2, this composition presents better results in terms of the number of transition
points (CDLOC) and also in the diffusion over components (CDC). This result is due to
the effectiveness of AspectJ mechanisms to localize the Interpreter pattern. This AO
solution transfers the methods in charge of performing interpretations from the classes
to the Interpreter aspect. As a consequence, the number of operations is not reduced
(CDO) the diffusion over components (CDC) is reduced from 14 to 1 and the number
of transition points is reduced from 26 to 2 (Figure 2).

Figure 2: Results of an invocation-based composition: Interpreter with State.

The invocations among the patterns involved in the composition can be aspectized or
not; it depends on the patterns involved in the composition. There were only 3 cases
where the inter-pattern invocations were isolated in the aspects. We have observed that
when the invocations are necessarily transferred to the aspect code, the overall
coupling of the composition tended to be worse. This problem has happened in the
AspectJ implementation of the combination of Interpreter with State (Figure 2).
Similarly to the SoC measures, the other metrics, NOA and WOC, depended on each
pattern involved in the composition due to the loose connection between the patterns.

3.2 Class-level interlacing

For the 12 compositions investigated in this category, all AspectJ solutions have in
general shown significant superiority in terms of SoC measures. The compositions in
this category are shown in Table 3. The improvements come primarily of disentangling
the pattern concerns in the shared classes. The Java implementations of those classes
typically include significant code from both patterns in addition to the business-related
concerns. As a result, the OO solutions exhibited inferior separation of concerns as they
encompass classes with mixed concerns. Moreover the shared classes in Java
implementations presented low cohesion as their internal operations have a weaker
coupling between them. Figures 3 and 4 respectively illustrate the SoC and cohesion
superiorities of AO solutions through example pattern compositions in this category.

With respect to separation of concerns, the pattern compositions can be further
classified in 3 groups. The first group includes the compositions where the two
patterns were aspectized, and the AspectJ implementations of both of them have
presented better separation of concerns. The combination involving Observer and
Prototype (Figure 3) is a representative of this situation: the roles of both patterns were
better localized in terms of components (CDC), operations (CDO), and transition points
(CDLOC). In some measures, the superiority of AspectJ was higher than 20% for both
patterns involved in the composition.

 8

Table 3: Pattern compositions with class-level interlacing.
Composition

Pattern A Pattern B System

CoR Observer Middleware
Proxy Singleton Middleware
Mediator Observer Middleware
Observer Memento Middleware
Observer Prototype Middleware
Observer Strategy Middleware
Observer Template Method Middleware
Observer Visitor Middleware
Observer Bridge Middleware
Decorator Observer Middleware
Abstract Factory Interpreter Measurement Tool
Proxy Singleton Measurement Tool

The second group of compositions also encompassed the aspectization of both patterns
being composed. However, the AspectJ implementations have only shown SoC
improvements for one of the composed patterns, as is the case of the combination of
Abstract Factory with Interpreter. Benefits were observed only in the AO solution of
the Interpreter (Figure 3). Finally, the compositions in the third group involved the
aspectization of only one in each pair-wise composition. For example, the Observer
pattern was the sole aspectized pattern in the composition with the Bridge pattern. The
aspectized pattern was typically responsible for improvements in the separation of
pattern-specific concerns in the composition (Figure 3). However, the AspectJ
superiority for the Interpreter pattern has decisively contributed to the overall SoC of
the composition. Specific constraints in the application implementation or in the
pattern combinations were the reasons for not aspectizing one of the patterns (see
Section 4.1.4 for further details).

0

5

10

15

20

25

Observer Prototype Abstract
Factory

Interpreter Observer Bridge

N
um

be
r o

f C
om

po
ne

nt
s

Observer
with

Prototype

Abstract Factory
with

Interpreter

Observer
with

Bridge

71%

25%

-4%

93%

0%
71%

AO
OO
AO
OO

0

5

10

15

20

25

30

Observer Prototype Abstract
Factory

Interpreter Observer Bridge

N
um

be
r o

f O
pe

ra
tio

ns

63%

20%

-0,6%

0%
0%

63%

Observer
with

Prototype

Abstract Factory
with

Interpreter

Observer
with

Bridge170
165

164

AO
OO
AO
OO

(a) CDC measures (b) CDO measures

90%

0%

92%

50%

90%

AO
OO

0

5

10

15

20

25

30

Observer Prototype Abstract
Factory

Interpreter Observer Bridge

N
um

be
r o

f T
ra

ns
iti

on
 P

oi
nt

s

7%

Observer
with

Prototype

Abstract Factory
with

Interpreter

Observer
with

Bridge

90%

0%

92%

50%

90%

AO
OO
AO
OO

0

5

10

15

20

25

30

Observer Prototype Abstract
Factory

Interpreter Observer Bridge

N
um

be
r o

f T
ra

ns
iti

on
 P

oi
nt

s

7%

Observer
with

Prototype

Abstract Factory
with

Interpreter

Observer
with

Bridge

(c) CDLOC measures

Figure 3: Separation of concerns in pattern compositions with class-level interlacing.

Interestingly, for all the 3 groups mentioned above, the AspectJ pattern
implementations that presented improved SoC are exactly the ones that have exhibited

 9

superior results when analyzed in isolation in the previous studies [12, 15]. It means
that the modularity of their AO solutions have scaled well in more complicate pattern
instances and in the presence of pattern interactions with class-level interlacing. The
AspectJ implementations of specific patterns that did not show improvements (e.g.
Abstract Factory in Figure 3) also confirmed results observed in our previous
assessments [12].

0

5

10

15

20

25

30

35

40

CBC LCOO NOC NOA

0

50

100

150

200

250

300

LOC WOC

Observer with Prototype

-19%

42%

54% 8%

-12%

2%

AO
OO
AO
OO

0

20

40

60

80

100

120

140

160

CBC NOC NOA
0

200

400

600

800

1000

1200

1400

1600

1800

LCOO LOC WOC

AbstractFactory with Interpreter
-13%

33%

1%

8%

-2%

3%

AO
OO
AO
OO

0

5

10

15

20

25

30

35

40

45

CBC LCOO NOC NOA
0

50

100

150

200

250

LOC WOC

Observer with Bridge

-4%

49%

56%

8%

-7%

8%

AO
OO
AO
OO

Figure 4: Pattern compositions with class-level interlacing: coupling, cohesion, and size

measures.

Considering the other measures, the pattern combinations with class-level interlacing
did not repeat the results in the previous composition category. As discussed before,
invocation-based compositions (Section 3.1) have revealed much more influence of the
two combined patterns in the overall results of the respective compositions. The main
reason is that they encompass loose pattern interaction (i.e. simple method calls).
Differing from those compositions, the outcomes here for all the 12 combinations with
class-level interlacing were very similar, independently from the patterns taking part
in the compositions. The presence of tight coupling between the composed patterns
(i.e. one or more classes in common) led to similar benefits in the AspectJ
implementations (Figure 4): (i) higher cohesion (LCOO metric), (ii) reduced number of
attributes (NOA metric), and (iii) reduced number of operations and parameters (WOC
metric). These recurring benefits are due to the reduction of tangling and scattering
relative to the pattern-specific concerns in the classes shared by the composed patterns.
The AspectJ implementations have also presented similar drawbacks in this category:
more lines of code and stronger coupling (CBC metric). However, these drawbacks will
be discussed in Section 4.1.3 because similar findings were obtained for these measures
through all the composition categories.

3.3 Method-level interlacing

We have analyzed 17 compositions with method-level interlacing (Table 4), which we
have classified in 4 groups according to the similarities in the measurement outcomes.
The first group involved three combinations: Mediator with CoR, Observer with

 10

Composite, and CoR with Strategy. The SoC measures for this group have shown no
benefits in favor of AspectJ. These compositions involve an interesting scenario: the
AspectJ implementation of one pattern explicitly interferes in the separation of
concerns relative to the second pattern. The aspect of the first pattern inevitably
contains code of the second one. It directly contributed to no SoC improvements even
in the combinations involving AspectJ pattern implementations qualified as superior in
previous studies [12, 15], such as Observer, CoR, and Composite.

Table 4: Pattern compositions with method-level interlacing.

Composition
Pattern A Pattern B System

Bridge Composite Middleware
Bridge Visitor Middleware
Bridge CoR Middleware
CoR Strategy Middleware
Mediator CoR Middleware
State Observer Middleware
Decorator Prototype Middleware
Decorator State Middleware
Mediator Prototype Middleware
Mediator State Middleware
Observer Composite Middleware
Prototype Strategy Middleware
Prototype Template Method Middleware
State Strategy Middleware
State Template Method Middleware
Factory Method Memento Middleware
Interpreter Composite Measurement Tool

For example, the Java implementation of the method
ConcreteMetaInvocationHandler.handleRequest() have code of both Mediator
and CoR patterns (Figure 1). The aspectization of the CoR pattern [15] implements this
method as an inter-type declaration. As a result, the CoR aspect also contains code of
the Mediator pattern, thereby leading to the increment of one in the CDC measure
(Figure 5a). This means the Mediator code is inevitably scattered over an additional
component in the AspectJ solution for this combination. Even if we try to refactor the
method handleRequest(), it still will contain a method call that is part of the
Mediator behavior. As we will discuss in Section 4.1.4, the Mediator pattern has not
been aspectized in this combination. The size, coupling, and cohesion measures for this
group have varied from composition to composition.

The second group includes only the composition Interpreter with Composite. To
some extent, this combination presents a characteristic similar to the previous group:
the Interpreter aspect is forced to have two calls to the Composite aspect, which are
implemented using aspectOf. Nevertheless, the overall separation of concerns of the
AO solution for this combination is superior (Figure 5). The Java implementation of
Interpreter classes was highly tangled with Composite code, which is effectively
modularized in the AspectJ implementation. In addition those two calls located at the
Interpreter aspect are in two different classes of the Java solution, contributing to the
AspectJ victory. As Figure 6 shows, this composition has revealed a high cohesion
(LCOO), fewer attributes (NOA), and fewer operations and parameters (WOC).

 11

0

2

4

6

8

10

12

Mediator CoR Decorator State Interpreter Composite

N
um

be
r o

f C
om

po
ne

nt
s

Mediator
with
CoR

Decorator
with
State

Interpreter
with

Composite

-13%

0%
75% 0%

73%

89%
AO
OO
AO
OO

0

5

10

15

20

25

30

35

40

45

50

Mediator CoR Decorator State Interpreter Composite

N
um

be
r o

f O
pe

ra
tio

ns

0%
- 11%

82% -9%

39%

0%

AO
OO
AO
OO

Mediator
with
CoR

Decorator
with

State

Interpreter
with

Composite

(a) CDC measures (b) CDO measures

0

5

10

15

20

25

30

35

40

45

Mediator CoR Decorator State Interpreter Composite

N
um

be
r o

f T
ra

ns
iti

on
 P

oi
nt

s

0%

25% 75%

56%

86%

90%

AO
OO
AO
OO

Mediator
with
CoR

Decorator
with

State

Interpreter
with

Composite
65

64

(c) CDLOC measures

Figure 5: Separation of concerns in pattern compositions with method-level interlacing.

The third group is formed by 9 combinations: Decorator with Prototype, Decorator
with State, Mediator with Prototype, Mediator with State, Prototype with Strategy,
State with Strategy, Prototype with Template Method, and State with Template
Method. In these cases, the AspectJ implementation of one pattern does not interfere in
the separation of concerns relative to the second pattern. An explicit separation of
concerns was achieved between the two patterns because each aspect isolates all the
crosscutting code relative to the corresponding pattern. Their aspectization also
separates the code of the two patterns that is mixed in the methods they have in
common in the Java implementation.

For instance, the implementation of the method ConcreteBind.makeRequest()
includes pieces of code from both Decorator and State patterns (Figure 1). The AO
solution of this combination modularizes those pieces of code in the advices of the
aspects implementing each pattern. Both aspects define the execution of the method
makeRequest() as join point of interest. This method is not aspectized because it is
part of the Mediator pattern, which has not been refactored as an aspect in the
middleware case study (Section 4.1.4). In fact, we can see in Figure 6 that the AspectJ
solution presents improved locality of pattern-specific concerns for this combination.
However, since both aspects in this combination are affecting the same join point, an
order in their executions needs to be established using declare precedence. This
feature introduces additional coupling in the AO solution (Figure 6). Although with
distinct implementation strategies, similar results are obtained for the other 8 pattern
compositions in this group.

 12

0

5

10

15

20

25

30

35

40

CBC LCOO NOC NOA
0

50

100

150

200

250

LOC WOC

Mediator with CoR

-48%

0%

61%

0%

-16%

-11%

AO
OO
AO
OO

0

5

10

15

20

25

30

35

40

CBC LCOO NOC NOA
0

20

40

60

80

100

120

140

160

LOC WOC

Decorator with State

-17%

9%

71% 38%

-1%

28%

AO
OO
AO
OO

0

10

20

30

40

50

60

70

80

90

CBC NOC NOA
0

100

200

300

400

500

600

700

800

900

LCOO LOC WOC

Interpreter with Composite

6%

45%

9%

63%

6%

18%

AO
OO
AO
OO

Figure 6: Pattern compositions with method-level interlacing: coupling, cohesion, and size

measures.

The last group in this category encompasses 3 different compositions involving the
Bridge pattern, and the combination of Factory Method with Memento. In these
combinations, one of the patterns has not been modularized as aspects in the AspectJ
implementation. The aspect of the second pattern modularizes its code that was
tangled in the “interlaced” method. In this way, the separation of concerns and
cohesion for the compositions in this group were notoriously improved.

3.4 Overlapping

We have analyzed 24 compositions with overlapping which are presented in Table 5.
We have classified in 4 groups according to the similarities of the overlapping nature:
attribute overlapping, statement overlapping, partial class overlapping and total or
complete overlapping. We have not found any pattern combination involving method
overlapping in the 62 compositions analyzed. Table 5 also shows which pattern
compositions were classified in each group.

Attribute overlapping occurs when two or more patterns share a same attribute. In
the 3 investigated compositions with attribute overlapping, the shared attribute was
transferred to one of the aspects and accessed by the other pattern aspect through the
invocation of aspectOf. As a consequence, the separation of pattern roles is increased,
but the coupling is stronger. For instance, in the composition of Composite and Visitor
patterns, an attribute is responsible for maintaining the reference to the composite
object, and it also plays the ObjectStructure role of the Visitor pattern. It means that a
same attribute is used in a different way for each pattern. In the aspectization process,
the attribute is maintained in the Visitor pattern and is removed of the Composite and
replaced by an invocation to aspectOf. In spite of the stronger coupling, this strategy
led to a stronger cohesion (LCOO) and the reduction of operations and parameters
(WOC) in the AO implementation. These positive results are illustrated in Figure 8. In
the other 2 compositions with attribute overlapping, the results were not similar

 13

because there were so many inter-aspect invocations due to the shared attribute. This
problem led to a reduction of separations of concerns (in terms of the three measures)
and an augment on the coupling between components. In Figure 7, which depicts the
composition of Composite and Visitor, the influence of attribute overlapping is lower
because there is only one invocation of aspectOf.

Table 5: Pattern compositions with overlapping.

Composition
Pattern A Pattern B System

Factory Method CoR Middleware
Flyweight Command Middleware
Command Proxy Middleware
Decorator Bridge Middleware
Decorator Strategy Middleware
Bridge Factory Method Middleware
Factory Method Command Middleware
Factory Method Observer Middleware
Factory Method Visitor Middleware
Factory Method Composite Middleware
Factory Method Flyweight Middleware
Flyweight Adapter Middleware
Mediator Decorator Middleware
Mediator Strategy Middleware
Mediator Template Method Middleware
Proxy Adapter Middleware
Proxy Builder Middleware
Proxy Flyweight Middleware
Template Method Bridge Middleware
Composite Visitor Middleware
State Prototype Middleware
Decorator Template Method Middleware
Proxy Composite Measurement Tool
Strategy Template Method Agent Application

We have analyzed 4 compositions with statement overlapping, in which the involved
patterns share, at least, one statement. In the combination of Prototype and State a
given statement creates a clone and also modifies the state of a variable that represents
the current state. We have observed for the 4 compositions that, in general, the
aspectization leads to the augment of separation of concerns and tends to increase the
coupling between the patterns. This stronger coupling is because aspect code is
intermingled with the invocations to the other pattern aspect. Thus, similarly to the
attribute overlapping, the coupling between components is increased after
aspectization due to the inter-aspect coupling in addition to: (i) the natural coupling
between the business classes, and (ii) the coupling between the classes and the aspects.
Figure 8 shows the augment of coupling, lack of cohesion and WOC in the combination
of Prototype with State.

In the 17 other compositions occurs a class overlapping. This overlapping occurs
when at least one class is shared by patterns involved in a composition. This
overlapping can be total or partial. The total overlapping (3 compositions) is when a
pattern is completely contained in another pattern. The composition of the Template
Method and the Decorator patterns is an example of total overlapping (Figure 1) where
the Decorator and ConcreteDecorator roles of the Decorator pattern contain the
AbstractClass and ConcreteClass roles of the Template Method. The aspectization
process of the dominant pattern (Decorator) removed the subordinated pattern
(Template method). This feature impacts on the SoC metrics (Figure 7) with the

 14

reduction of CDC and also the number of transition points. Coupling, LOC and WOC
are also reduced (Figure 8).

0

1

2

3

4

5

6

7

8

9

Composite Visitor Decorator Bridge Prototype State

N
um

be
r o

f C
om

po
ne

nt
s

50%

33%

75%

20%

0%50%

AO
OO
AO
OO

Composite
with

Visitor

Decorator
with

Bridge

Prototype
with
State

0

5

10

15

20

25

Composite Visitor Decorator Bridge Prototype State

N
um

be
r o

f O
pe

ra
tio

ns

76%

0%
82% 25% -9%

60%

AO
OO
AO
OO

Composite
with

Visitor

Decorator
with

Bridge

Prototype
with
State

(a) CDC measures (b) CDO measures

0

5

10

15

20

25

Composite Visitor Decorator Bridge Prototype State

N
um

be
r o

f T
ra

ns
iti

on
 P

oi
nt

s

86%

67%

75%
-20%

56%

86%

AO
OO
AO
OO

Composite
with

Visitor

Decorator
with

Bridge

Prototype
with
State

(c) CDLOC measures

Figure 7: Separation of concerns in pattern compositions with overlapping.

0

2

4

6

8

10

12

14

CBC LCOO NOC NOA
0

20

40

60

80

100

120

LOC WOC

Composite with Visitor

-23%

100% 33%
0%

-16%

30%

AO
OO
AO
OO

0

5

10

15

20

25

30

35

40

45

CBC LCOO NOC NOA
0

20

40

60

80

100

120

140

160

180

LOC WOC

Decorator with Bridge

12%

7%

57%
18%

10%

26%

AO
OO
AO
OO

0

5

10

15

20

25

CBC NOC NOA
0

20

40

60

80

100

120

140

LCOO LOC WOC

Prototype with State

-48%

25%

0% -16%

-29%

-16%

AO
OO
AO
OO

Figure 8: Pattern compositions with overlapping: coupling, cohesion, and size measures

With respect to the partial class overlapping, 14 compositions were found in our case
studies. In these combinations, part of the involved patterns share one or more classes.
For instance, the composition of Decorator with Bridge shared two classes that played

 15

two Bridge roles (Implementor and ConcreteImplementor) and two Decorator roles
(Decorator and ConcreteDecorator). The original classes of the Bridge pattern shared by
the Decorator pattern are transferred to the Decorator aspect and “removed” from the
application. In general, the aspectization process of compositions with partial class
overlapping, the aspectization of a pattern implies that the second pattern is not
aspectized. Similarly to other 13 combinations, the aspectization of the Decorator
pattern combined with the Bridge pattern resulted in improved SoC and also a slightly
reduction of coupling, LOC and WOC.

4 Discussions

This section provides a more general analysis of the previously observed results in
Section 3, and discussions about the constraints on the validity of our empirical
evaluation.

4.1 General Analysis

This section introduces a more qualitative analysis by discussing the four questions
raised in the introduction and using the collected quantitative data (Section 3) as the
basis. When appropriate, we also correlate through the sections below the findings in
our evaluation with claims and results from previous systematic case studies [12, 15]
(Section 2.1).

4.1.1 Does AOP enhance pattern composability?

For the context of this study, we consider that a pattern implementation has a “good”
composability if it can be directly reused and smoothly extended to different
composition contexts. A transparent pattern composition would require only
concretizing abstract aspects and extending abstract pointcuts and methods. The core
implementation of the pattern roles should not be aware of the composition
specificities. Moreover the aspectization of the pattern composition should not impact
negatively on the modularity attributes. The results reported in Section 3 suggest that
the success or failure for supporting a straightforward composition aspectization
depended basically on two key complementary factors: (i) the suitability of AOP to
modularize a given design pattern, and (ii) the intricacies of the pattern composition
instance at hand. The predominance of a factor over the other depended on the
composition category.

The first factor predominated when we had two patterns taking part in an
invocation-based composition (Section 3.1) or simply having one or more classes in
common (Section 3.2). There is a loose connection between the involved patterns in
these cases. As a result, the composition transparency and the achieved modularity
degree depended mostly on the adequacy of AspectJ mechanisms to isolate the
crosscutting concerns relative to each separate pattern. The particularities of
compositions based on invocations and class-level interlacing did not impose major
problems. For most of the investigated compositions, we were able to use the reusable
pattern implementations as proposed in [15] without changes to the core structure of
the patterns. We have used in few cases a different implementation, but because in
such situations the application circumstances required pattern variants. In fact, most
measures for the patterns participating in such compositions in this study were similar

 16

to the measures we have obtained for each individual pattern in our previous
quantitative study [12].

However, an important finding of this study is that the presence of more intricate
relationships between two patterns can hinder a smooth composition process and,
sometimes, affect negatively the modularity attributes of the patterns being composed.
As reported in Sections 3.3 and 3.4, some pattern compositions with intra-method
interlacing and overlapping required additional restructuring steps in the original
pattern implementations as proposed in [15]. For example, sometimes we need to
change the original structure of the pattern and use inter-type declarations in one
pattern aspect so that the second pattern aspect can be properly combined with the
former. This means that the aspectual design of the pattern needed to be aware of the
composition context and the generic pattern aspect could not be directly reused.

This scenario happened in the AspectJ implementation of State with Observer for
the middleware case study. The Observer aspect was interested in events related to
invocations of methods of the State aspect. These steps were often required even for
patterns which have been qualified as reusable and/or pluggable [15] in the previous
case studies, such as State, Adapter, and Strategy. Such refactoring steps do not
necessarily led to negative effects on the modularity attributes of the pattern
composition. Indeed a number of cases indicated that the AspectJ solutions were
superior, such as the composition of State with Observer mentioned above.

However, as discussed through Section 3, the aspectization of some specific
compositions with strong coupling between the patterns can bring modularity
problems. For example, there were compositions where a pattern aspect inevitably
contained code of the second one, thereby affecting negatively the overall separation of
concerns (Section 3.3). Moreover the aspectization of different types of overlapping-
based compositions tended to present SoC improvements, but also typically resulted in
additional couplings between the modules participating in the composition (Section
3.4). Interestingly, some cases involved design patterns that have shown superiority for
AspectJ implementations in previous studies [12, 15], such as CoR and Adapter.
Section 4.1.4 shows that some additional issues can emerge in compositions involving
more than two patterns.

4.1.2 Separation of roles in pattern compositions

Section 3 has focused the discussion of the results for separation of concerns under the
composition point of view. This section summarizes and discusses the results for
separation of concerns in terms of each design pattern. Previous evaluations [12, 15]
have centered the assessment on individual instances of design patterns. In this study,
our goal is to understand to what extent separation of each pattern roles is preserved in
contexts involving pattern compositions.

Table 6 summarizes the findings on separation of concerns (SoC) for each GoF
design pattern. The rows of the table present all 23 design patterns, while the columns
show the main SoC conclusions of the other experiments and this study. The second
and third columns respectively describe the SoC results (locality) of the HK study [15]
and of our first study [12]. The fourth column summarizes the SoC findings related to
each pattern in our composition-oriented evaluation. The last two columns are
respectively concerned with the number of compositions each pattern participates and
if the used version follows the original implementation proposed by Hannemann and
Kiczales [15]. In second column’s cells, the value “yes” means that the corresponding
AspectJ pattern implementation was qualified with a good localization in terms of its

 17

roles. With respect to the second and third columns, we have classified an AspectJ
(labeled "AO") or Java (labeled "OO") solution as superior when it has achieved better
results for separation of concerns. In the third column, the conclusion was based on the
analysis of how many compositions a given OO or AO solution were better when
compared with the results of the other solution. The AspectJ solutions that achieved
the best results (more than 35% in all SoC measures) for all compositions are marked
with the symbol “+” in the third column. Finally, the symbol “*” in the last column
means that the pattern was not aspectized in this study (Section 4.1.4).

Table 6: Overview of the main findings of the three studies.
 Previous Study This Study

Pattern
 H

K
 S

tu
dy

 (L

oc
al

ity
)

 O
ur

 F
ir

st
 S

tu
dy

 (S

oC
)

 S
ep

ar
at

io
n

of

 C
on

ce
rn

s

 N
um

be
r o

f
 C

om
po

si
tio

n

 O
ri

gi
na

l
 Im

pl
em

en
ta

tio
ns

Abstract Factory no OO = 2 yes
Adapter yes AO = 2 yes
Bridge no OO = 7 no*
Builder no OO = 2 yes
CoR yes AO = 6 yes
Command yes AO = 4 yes
Composite yes AO AO+ 6 yes
Decorator yes AO AO+ 7 yes
Façade Same Implementation

for Java and AspectJ
2 yes

Factory Method no OO OO 8 yes
Flyweight yes OO = 4 yes
Interpreter no = AO 4 no
Iterator yes AO AO 4 yes
Mediator yes AO = 7 no*
Memento yes AO AO 3 yes
Observer yes AO AO+ 11 yes
Prototype yes AO AO 7 yes
Proxy yes AO AO 8 yes
Singleton yes AO AO 4 yes
State yes = AO 8 yes
Strategy yes AO AO 7 no
Template Method yes OO AO 7 no*
Visitor yes AO AO 4 yes

Table 6 shows that only one design pattern has clearly presented superior separation of
pattern-related concerns in Java implementations. Factory Method pattern provided
better results in separation of concern for OO version and this finding confirms our
first study result (column 2). In addition, the AspectJ implementations of 13 patterns in
this study have shown better results in terms of separation of concerns, and 9 patterns
presented similar (or not conclusive) results in both OO and AO implementations. For
the 13 patterns that have shown SoC superiority in AspectJ implementations, only two
(Interpreter and State) refuted findings of our previous study, when they were
analyzed in isolation. In the previous study, they were classified as “similar results in
both OO and AO implementations”. However, the Interpreter solution used in this
study was different from original HK implementation, which was also used in our
previous evaluation. Due to different application constraints, all interpret() methods

 18

were moved to the aspect and introduced to classes by inter-type mechanisms (Section
3.1).

The State pattern had its modularity improved in most of AO compositions (6
against 2). The two cases where no SoC improvement was detected, the AspectJ
implementations were exactly the same as proposed by the HK study. In the HK
implementations, the state transitions are located in Java classes that play the State
role, which is usually defining (Section 2.1). For example, this result was observed in
the combination of State with Interpreter (Section 3.1). Differently from the original HK
implementation, the state transitions in the other 6 implementations occur in the
classes that play the Context role in the State pattern [9]. This role is typically
superimposed, and the state transitions in those classes result in high tangling and
scattering of the pattern implementation. In these cases, the aspectization process is
also effective to remove the state transitions from the business classes and other pattern
implementations, reducing the tangling and scattering. The AspectJ superiority for
these State instances can be observed in combinations appearing in Figures 5 and 7,
where the difference is higher than 56 % for the CDLOC measures. The Java
implementation is superior in the CDO measures, but it is because the State aspects
have an additional operation. In addition, the difference is lower than 10 %, which can
be considered as insignificant.

The 9 patterns with similar results for AO e OO versions (represented by “=” in
column 4) can be classified in two main situations. The first situation includes three
patterns - Bridge, Mediator and Template Method, which were not aspectized because
application constraints or composition particularities (Section 4.1.4). In the second case,
the pattern aspectization has not produced SoC improvements in almost all the
compositions those patterns participated. This category included: Abstract Factory,
Adapter, Builder, CoR, Command, and Flyweight. We have identified 3 main factors
that determine the negative performance of AspectJ for modularizing those patterns: (i)
the composition particularities that the pattern participated, (ii) the pattern instance
size, i.e. the number of classes playing the pattern roles, and (iii) the aspectization
approach. The CoR pattern, for instance, is an example in which the performance was
influenced by the compositions it took part. The method-level interlacing composition
“CoR with Strategy” have shown no benefits in favor of AspectJ because the
aspectization of Strategy brings code of the CoR pattern to its aspect (Section 3.3). The
Command pattern has also not exhibited an improved separation of concerns in the
AspectJ implementations. In this case, the main factor was the instance size. There
were not too many classes in the application playing the roles Command, Receiver and
Invoker. The Abstract Factory, Builder and Flyweight patterns have presented no
modularity improvements, confirming the findings of previous case studies (columns 2
and 3 of Table 6).

4.1.3 Coupling, cohesion, and size

Based on the results presented in Section 3, we have observed that the measures
relative to cohesion (LCOO), complexity of operations (WOC), and number of
attributes (NOA) also depend both on the composition category and on the involved
patterns. In general, the AO solutions were superior in terms of NOC measures, since
the use of AspectJ reduces the overuse of inheritance mechanisms. However, as
illustrated in Figures 4, 6, and 8, most measures indicated that AspectJ
implementations resulted in higher coupling (CBC) and more lines of code (LOC) than
the respective Java implementations.

 19

However, a careful analysis of the implementations show that these higher CBC and
LOC values for AO solutions in general are related to presence of generic aspects in
several AspectJ pattern implementations, which have the intention of making the
pattern solutions more reusable. As several investigated compositions involve few
participant classes playing the pattern roles, the presence of generic aspects artificially
has lead to higher values for LOC and CBC. This effect was more evident when we
compared the composition instances taken from the middleware implementation with
the composition instances obtained from the agent-based application and the
measurement tool. The former ones often involve few participant classes while the
other ones typically consist of several participant classes. For example, the composition
Interpreter with Composite (Figure 6) was taken from the measurement tool and has
exhibited favorable LOC and CBC values for the AspectJ implementation.

Nevertheless, it is important to highlight that in several cases a higher CBC value
was in fact a clear indicator of stronger coupling in the AspectJ solution. For example,
this problem happened in some invocation-based compositions when the inter-pattern
invocations were inevitably transferred to the code of the aspects (Section 3.1). As there
was an implicit connection between the base classes, the aspect-class and inter-aspect
dependencies just introduced new sources of coupling in the composition
implementation. Similar coupling problems were identified in compositions with intra-
method interlacing (Section 3.3) and overlapping (Section 3.4).

4.1.4 Scalability of AOP in Complex Compositions

The previous sections focused on discussing how the aspectization of pair-wise
compositions impacts different modularity attributes. This section discusses how AOP
scaled in compositions involving a greater number of patterns in terms of such
modularity attributes and pattern composability. We have implemented and analyzed
different compositions with 3, 4, 5, 6, and 7 patterns, such as the one represented in
Figure 1. In general, we have observed that the measures tended to be similar in these
more complex compositions, especially when they mostly involved invocation-based
and intra-class compositions. However, we have detected some problems when the
combination included a high incidence intra-method interlacings and overlappings.

In some situations, these problems hindered the aspectization of certain design
patterns, such as Proxy and Mediator. The aspectization of certain patterns, as
proposed in [15], can cause some design conflicts. As a consequence, it is necessary to
carefully analyze which patterns should be aspectized and which patterns should not.
Consider for example the composition of Proxy, Flyweight, and Adapter patterns. The
Adapter, FlyweightFactory, and RealSubject roles have a class in common. The HK
implementation of the Flyweight pattern suggests the transformation of
FlyweightFactory into an aspect. On the other hand, the Adapter implementation
requires the removal of the Adapter class, and the use of inter-type declarations to
insert its methods in the class is playing the Adaptee role. The Proxy pattern acts as a
client in this composition. With the divergence of these two suggestions, it is necessary
to choose which pattern should be aspectized and if the Proxy pattern will invoke the
aspect represented by FlyweightFactory or will invoke a method defined in the Adaptee.
In the implementation of the middleware system we have chosen to aspectize the
Adapter pattern because this approach would reduce the coupling among the elements
of the composition. The decision of aspectizing the Adapter pattern made the
aspectization of Flyweight impossible. This also reveals that the results of the
aspectization of Proxy with Flyweight and Proxy with Adapter are different from the
aspectization of the combination of such three patterns: Proxy, Flyweight and

 20

Adapter. As a result, in evolution scenarios, these pair-wise combinations may need to
be restructured in the need of adding a third pattern.

In some cases, the aspectization of a given design pattern in complex compositions
has not been revealed as a good design option according to application requirements.
Consider the example illustrated in Figure 1 involving the Mediator pattern as a central
design element. In this case, the Mediator and Proxy patterns are combined to
implement the LocalBind mechanism of OpenOrb. The Proxy pattern is used to
maintain the contracts defined between the components. In this example the BankStub
class is used as a Proxy to access the implementations defined by the Bank Subject. The
Mediator pattern supports the dynamic adaptation mechanism of OpenOrb. In this
case, the BankStub class also plays the Colleague role by inheriting the bind attribute
from the Interface and Port classes. This attribute supports the invocation of
bindlocal() of the ConcreteBind class. The aspectization of these two patterns
would require the definition of an advice to handle each method provided by the
client’s interfaces. In addition, all invocations would be forwarded to the abstract
Mediator aspect. As a result, the Mediator pattern has not been aspectized because this
strategy would insert a bottleneck in the invocation of the middleware platform and, as
a consequence, the performance would be reduced.

4.2 Study Constraints

The use of the GoF patterns could be pointed out as a constraint in our experimental
evaluation. However, we have focused first on this pattern catalogue for two main
reasons. First, they are domain-independent and widely-used solutions. Second, this
strategy allowed us to compare our results with previous case studies that exploited
these patterns, and understand how the pattern implementations scaled in the
presence of pattern interactions. As previous work has not systematically investigated
the influence of AOP on pattern composability, we believe this study improves the
current knowledge base about the aspectization of these general-purpose patterns.
Other researchers can reuse our study format as a basis for further studies intended to
investigate other design patterns.

There are a number of other existing metrics and other modularity dimensions that
we could exploited in our study. We have to decide to focus on the metrics described in
Section 2.3.2 because they have already been proved to be useful in several previous
case studies to be useful quality indicators in several case studies [7, 10, 11, 12, 26]. In
fact, despite the well-known limitations of these metrics, as already discussed in [12],
they complement each other and are very useful when analyzed together. In addition,
there is no way in a single study to explore all the possible measures. For every
possible metrics suite that you take, there will be always some dimensions that will
remain uncovered. In addition, future case studies can use additional metrics and
assess the pattern compositions in terms of different modularity dimensions.

It is also important to notice that the scope of our experience is limited to: (i) the
patterns selected for this comparative study, (ii) the specific Java and AspectJ
implementations mostly based on the GoF book [9] and the HK study [15], (iii) the Java
and AspectJ programming languages, (iv) the composition categories described in
Section 2.2, and (v) our 3 case studies. Although our study covers a huge number of
pattern compositions and different composition categories, it obviously does not cover
all the composition possibilities. For instance, it does not exploit method overlapping.
However, we believe that this first empirical study on the aspectization of pattern

 21

compositions provided interesting evidences about benefits and drawbacks the use of
AO abstractions might bring, as discussed in Sections 3 and 4.1.

5 Related Work

Related work can be categorized into two groups: those related to pattern
composability and those that empirically investigates aspectization of multiple
crosscutting concerns. However, none of them investigates the impact of AOP on the
aspectization of pattern compositions in the light of fundamental software attributes.

5.1 Pattern Composability

There are several ways of classifying relationships between design patterns according
to different purposes [27, 31]. Zimmer [31] have proposed a classification of the
relationships between the GoF design patterns. The following categories were
proposed: (i) X uses Y, (ii) X is similar to Y, (ex.: Abstract Factory, Prototype and
Builder deal with object creation; Glue and Mediator decouple objects); and (iii) X can
be combined with Y (a Factory Method is typically called in a Template Method;
Composite and Decorator are often used together). However, this is a higher-level
classification used with the purpose of improving the documentation of pattern
languages. The classification used in this work was focused on the composition of the
implementations for pattern solutions; indeed, it was abstracted from pattern
realizations in several real system implementations [3, 7, 11] and our own extensive
experience on pattern compositions.

Murali et al [22] discusses the use of design patterns and AOP in a middleware
implementation. They claim that the combination of AOP and design patterns lead to
many benefits to the middleware in terms of reusabilility, modularity, and
adaptability. Rouvellou et al. [23] have discussed how middleware modularity can be
improved by using separation of concerns strategies. They have theoretically stated
that the entanglement between middleware components is low when they are highly
separable. However, these authors do not apply any metrics to assess the
implementation and do not give an empirical support for such conclusions. In
addition, they do not analyze the composition of patterns used in the implementation.

5.2 Other Empirical Studies

There are a number of quantitative studies (such as [7, 11, 12, 14]) that apply the same
metrics used in this work. However, none of them applies the metrics upon pattern
compositions. Godil and Jacobsen [14] have applied the metrics to evaluate an aspect-
oriented version of a database system refactored using the horizontal decomposition
principle. Although they applied the metrics to assess an AO implementation, they do
not use design patterns in such a system.

Soares [26] focuses on the investigation of AOP to modularize distribution and
persistence concerns. He has used specific design patterns to implement Java and
AspectJ versions of a web-based system. The author has concluded that the AspectJ
implementation is better than the corresponding Java implementation. However, this
study has also not assessed the suitability of AOP to isolate pattern implementations in
the presence of intricate pattern interactions.

 22

6 Conclusion

Since the publication of the first catalog containing the 23 Gang-of-Four patterns [9],
design patterns have quickly been recognized to be useful and important in successful
software development. It is well recognized that programming languages affect pattern
implementation. Hence it is natural to explore the effect of AOP techniques on the
implementation of the GoF patterns. This paper presented an empirical study that
investigated the scalability of AOP for composing GoF design patterns. We have used 3
medium-sized systems implemented in Java and AspectJ, and evaluated 62
compositions in these systems.

We also compared this study results with the findings from previous studies,
contributing to an improved body of knowledge on the scalability of AOP. We defined
a categorization of pattern compositions, and the relationships with different ways of
crosscutting. For each category, we analyzed the compositions, determined the
aspectization approach, applied the metrics, and presented in this paper a depth
analysis of the results. The study shows that the aspectization results depend on the
patterns involved, the composition intricacies, and the application requirements. In
some situations, the aspectization of the pattern composition is not straightforward
and several design options need to be considered. Sometimes, it requires a global
reasoning in order to understand that impact of each design option in the context of the
whole system implementation. In order to extend the body of knowledge on the
aspectization of design patterns, as a future work we intend to use other AO
programming languages, such as Caesar [21] and Hyper/J [28], and apply the same
metrics used in this work.

References

[1] Alencar, P. et al. A Query-Based Approach for Aspect Measurement and
Analysis. TR CS-2004-13, School of Computer Science, Univ. of Waterloo, Canada,
Feb 2004.

[2] AspectJ Team. The AspectJ Guide. http://eclipse.org/aspectj/.

[3] Blair, G., Costa, F., Saikoski, K., Parlavantzas. The Design and Implementation of
Open ORB version 2. IEEE Distributed Systems Online Journal, 2(6), 2001.

[4] Chidamber, S. and Kemerer, C. A Metrics Suite for OO Design. IEEE Transaction
on Software Engineering.,20-6, June 1994, 476-493.

[5] Fenton, N. and Pfleeger, S. Software Metrics: A Rigorous Practical Approach.
London: PWS, 1997.

[6] Figueiredo, E., Garcia, A, Sant’Anna, C., Kulesza, U., Lucena, C. Assessing Aspect-
Oriented Artifacts: Towards a Tool-Supported Quantitative Method. Proceedings
of the 9th ECOOP Workshop on Quantitative Approaches in OO Software
Engineering (QAOOSE.05), Glasgow, July 2005.

[7] Filho, F., Rubira, C., Garcia, A. A Quantitative Study on the Aspectization of
Exception Handling. Proceedings of the ECOOP Workshop on Exception
Handling in OO Systems, in conjunction with the ECOOP’05 Conference,
Glasgow, Scotland, July 2005.

 23

[8] Florijn, G., Meijers, M., Winsen, P. van. Tool Support for Object-Oriented Patterns.
Proceedings of European Conference on Object-Oriented Programming
(ECOOP), 1997.

[9] Gamma, E. et al. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[10] Garcia, A. From Objects to Agents: An Aspect-Oriented Approach. Doctoral
Thesis, PUC-Rio, Rio de Janeiro, Brazil, April 2004.

[11] Garcia, A. et al. Separation of Concerns in Multi-Agent Systems: An Empirical
Study. In Software Engineering for Multi-Agent Systems II, Springer, LNCS 2940,
Jan 2004.

[12] Garcia, A. et al. Modularizing Patterns with Aspects: A Quantitative Study.
Proceedings of the 4th International Conference on Aspect-Oriented Software
Development, 2005, 3 - 14

[13] Garcia, A., Silva, V., Chavez, and C., Lucena, C. Engineering Multi-Agent
Systems with Aspects and Patterns. Journal of the Brazilian Computer Society, 1,
8 (July 2002), 57-72.

[14] Godil, I., Jacobsen, H. Horizontal Decomposition of Prevayler. In Proceedings
of Conference of the Centre for Advanced Studies on Collaborative Research
2005 (CASCON), Richmond Hill, Canada, October 2005.

[15] Hannemann, J., Kiczales, G. Design Pattern Implementation in Java and
AspectJ. Proceedings of Conference On Object-Oriented Programming, Systems,
Languages & Applications (OOPSLA’02). Nov 2002, 161-173.

[16] Henderson-Sellers, B. Object-Oriented Metrics: Measures of Complexity.
Prentice Hall, 1996.

[17] Java Reference Documentation.
http://java.sun.com/reference/docs/index.html.

[18] Kersten, M. and Murphy, G. Atlas: A Case Study in Building a Web-based
Learning Environment Using Aspect-Oriented Programming. Proceedings of
Conference On Object-Oriented Programming, Systems, Languages &
Applications (OOPSLA’99). November 1999.

[19] Kiczales, G. et al. Aspect-Oriented Programming. Proceedings of European
Conference on Object-Oriented Programming ECOOP’97, LNCS 1241, Finland,
June 1997, 220-242.

[20] Lopes, C. D: A Language Framework for Distributed Programming. PhD
Thesis, Northeastern University, 1997.

[21] Mezini, M. and Ostermann, K. Conquering Aspects with Caesar. In
Proceedings of the ACM International Conference on Aspect-Oriented Software
Development (AOSD’05), Chicago, USA, pp. 90-99, (2005).

[22] Murali, T., Pawlak, R., Younessi, H. Applying Aspect Orientation to J2EE
Business Tier Patterns. Aspects, Components and Patterns for Infrastructure
Software Workshop (AOSD2004), pp 55-61, 2004, Lancaster, UK

[23] Rouvellou, I., Sutton, S. and Tai, Stefan. Multidimensional Separation of
Concerns in Middleware. Workshop on Multi-Dimensional Separation of
Concerns in Software Engineering (ICSE 2000), Ireland, 2000.

 24

[24] Sant’Anna, C. et al. On the Reuse and Maintenance of Aspect-Oriented
Software: An Assessment Framework. Proceedings of Brazilian Symposium on
Software Engineering (SBES’03), Manaus, Brazil, Oct 2003, 19-34.

[25] Sant’Anna, C. et al. Design Patterns as Aspects: A Quantitative Assessment.
Proceedings of Brazilian Symposium on Software Engineering (SBES’04), Brazil,
Oct 2004.

[26] Soares, S. An Aspect-Oriented Implementation Method. Doctoral Thesis,
Federal Univ. of Pernambuco, Oct 2004.

[27] Soukup, J. Implementing Patterns. In: Coplien J. O., Schmidt, D. C. (eds.)
Pattern Languages of Program Design. Addison-Wesley 1995, pp. 395-412.

[28] Tarr, P. et al. N Degrees of Separation: Multi-Dimensional Separation of
Concerns. Proceedings International Conference on Software Engineering
(ICSE’99), May 1999, 107-119.

[29] Zhao, J. Towards a Metrics Suite for Aspect-Oriented Software. TR
SE200213625,Inf. Proc. Society of Japan, 2002.

[30] Zhao, J. and Xu, B. Measuring Aspect Cohesion. Proceedings Conference on
Fundamental Approaches to Software Engineering (FASE'04), LNCS 2984,
Barcelona, March 2004, 54-68.

[31] Zimmer, W. Relationships between Design Patterns. Pattern Languages of
Program Design, pp. 345 – 364, 1995

[32] Zuse, H. History of Software Measurement. Available on-line at: irb.cs.tu-
berlin.de/~zuse/metrics/History_00.html.

[33] Yacoub, S. and Ammar, H. Composition of Design Patterns. Addison Wesley,
2003.

 25

	Table of Contents
	Introduction
	Study Format
	Modularizing Design Patterns
	Pattern Composition Categories
	Assessment Procedures
	Selection and implementation of pattern compositions
	Measurement process

	Results
	Invocation-based composition
	Class-level interlacing
	Method-level interlacing
	Overlapping

	Discussions
	General Analysis
	Does AOP enhance pattern composability?
	Separation of roles in pattern compositions
	Coupling, cohesion, and size
	Scalability of AOP in Complex Compositions

	Study Constraints

	Related Work
	Pattern Composability
	Other Empirical Studies

	Conclusion
	References

