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Abstract. In this paper we explore the advantages of using interpreted languages for
building submitting engines for the grid. In particular, we discuss an example engine,
developed using the interpreted language Lua, for submitting jobs in a cluster, which can
be extended to a grid environment. We claim that the �exibility o�ered by interpreted
languages justi�es the problems related to the intrinsic loss of e�ciency associated with
this kind of languages. The focus of this work is on adaptation and ease of use.
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Resumo. Neste artigo exploramos as vantagens de usar linguagens interpretadas na con-
strução de mecanismos de submissão de tarefas em grades computacionais. Discutimos
uma ferramenta para disparar tarefas em clusters, desenvolvida usando a linguagem Lua,
que pode ser estendida para ambientes de grade. Acreditamos que a �exibilidade oferecida
por linguagens interpretadas compense eventuais perdas de desempenho. O foco do artigo
é em adaptação e facilidade de uso.

Palavras-chave: computação em grade, gerência de tarefas, adaptação, linguagens inter-
pretadas

1This work has been sponsored by Ministério de Ciência e Tecnologia da Presidência da República
Federativa do Brasil, CNPq and PCI/LNCC.



In charge for publications:
Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

ii



1 Introduction

Despite the fact that grid computing potential has been generally accepted, and the emer-
gence of some standards (most of them de facto standards as is the case of the major grid
initiative, the Globus Toolkit), working on grids is not an easy chore [3]. Computer grids
involve, besides the well-known and studied distributed paradigm, a perception of unity
in environments that can be quite heterogeneous as to platforms, software, and user skills.
Besides, they introduce new problems of security and issues related to virtual organizations
(permissions and e�ective collaboration, for instance). This has generated a quest for new
infrastructures, middleware and applications.

We propose a lightweight tool for scheduling and managing jobs submitted through the
grid. It is based on ALua, an extension of the Lua interpreted language for the execution
of parallel and distributed applications. ALua is a lightweight and very portable system
with a dual programming language model that allows building �exible applications without
compromising performance.

The rest of this paper is organized as follows: Section 2 provides the context of this
work. Section 3 explains the motivations for the use of interpreted languages in the grid,
and Section 4 reviews the ALua system. Section 5 describes the implementation and
discusses some security issues. Section 6 presents some preliminary experiments. Finally,
Section 7 summarizes the paper and discusses future work.

2 Background

The Globus Toolkit [6] is a widely accepted de-facto standard middleware for Grid Comput-
ing. It provides basic components to implement resource management, data management,
and information services. The resource management pillar includes the GRAM (Grid Re-
source Allocation Manager) Component [4], which provides support for job execution and
management. GRAM includes the gatekeeper, that receives the job execution request, au-
thenticates the client, maps him to a local account, and then instantiates a Job Manager
to take care of the job and of the communications with the client. A general overview of
GRAM is depicted in Figure 1, taken from [4].

GRAM parses job descriptions written by the user in Resource Speci�cation Language
(RSL) [18]. Globus does not provide a local scheduler (it uses fork by default to execute
processes in the local host), but it o�ers interfaces and the gram-reporter packages for a
group of local schedulers such as Condor [20], LSF [13] and OpenPBS [15], and allows
adding new scheduler-speci�c job managers.

2.1 Schedulers and Job Managers

To avoid misunderstandings due to the frequent reuse of terms in grid computing, we will at
this point de�ne some expressions that will be used in this paper. We will call Job Scheduler
a program that searches for the resources necessary to execute the tasks composing a job.
A Resource Manager is in charge of the ordering, submitting, monitoring and controlling
the jobs. A job is a unit of submission. Every job is composed of one or more tasks, and
may de�ne communication or precedence relationships among these tasks.

Local job schedulers such as LSF (Load Sharing Facility), Sun Grid Engine (SGE),
OpenPBS (Portable Batch System) and Condor allocate resources from a networked pool of
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Figure 1: GRAM Overview

computers to jobs submitted. They provide di�erent sets of features, which include check-
pointing and process migration, authentication and authorization, daemon fault recovery,
staging, and dynamic load balancing. As the grid environment is usually characterized
by changing conditions, there is a need of some kind of adaptation. Adaptability in those
systems is mainly based on job migration. They set the QoS parameters on submitting,
and look for optimal ways to redistribute the tasks upon environmental changes. Condor,
for instance, was developed for scavenging idle computer cycles. It can be con�gured to
kill a guest job when a computer stops being idle, reinitiating in another host.

3 Scripting in the Grid

The bene�ts of using an interpreted language for coordinating applications while main-
taining their core in a compiled language have long been discussed in distributed pro-
gramming [19] . However, in high performance computing, probably due to the focus on
e�ciency, emphasis has been on ignoring multilingual programming. In our view, this will
change with the growth of Computer Grids.

Parallel programmers have traditionally placed very strong emphasis on the perfor-
mance of the tools they use. This has caused most of them to choose simple programming
environments based on a single conventional programming language, such as C and FOR-
TRAN, and a communication library, such as MPI. In environments such as a computer
cluster � maybe the most popular parallel system in the nineties � this choice works well.
Clusters are typically highly homogeneous environments. Issues like load balance and fault
tolerance do not play a signi�cant role in cluster programming, because the programmer
often has complete control over the system while his application is running.

However, the scenario is quite di�erent with computer grids. Grids provide an econom-
ically convenient alternative for processor-hungry applications: di�erent institutions can
place parts of their computing resources in a pool from which many may bene�t. This pool
of resources becomes a virtual machine spanning di�erent administrative and geographical
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domains. In this scenario, the programmer has no control over the global availability of
resources, which tends to su�er great variability. Under such circumstances, coordinating
the use of resources becomes much more complex than in a local, homogeneous environ-
ment. Besides, in general, programs that can bene�t from running on a computational
grid are long-running applications. It often does not make sense to stop the application
and launch it again in order to improve resource usage. It becomes important to be able
to act upon the application while it is running [1].

The use of an interpreted scripting language as a coordination tool can bring several
advantages in this setting. One of the important characteristics of an interpreted language
is interactivity: with an interpreted coordination language, the programmer may use a
console to control the application. New chunks of code can be added dynamically, and
existing functions can be rede�ned, thus allowing the programmer to tune the application
without having to restart it. This provides a new dimension of adaptation, in which not
only tasks can be redistributed according to execution conditions, but the code they are
running can also be modi�ed, either because of execution conditions or as a consequence
of partial application results. In [22] we discuss an example of such facilities over the
implementation of an A-Team (asynchronous agent team) application. In that case, the
program itself was based on the dual Lua/C model, keeping the processing core in C and
communication in Lua. We show how ALua allows us to monitor the application and to
rede�ne some of its parts on the �y, for instance adding a log �le, with information about
transmitted messages.

Scripting languages typically allows the programmer to code complex tasks with small
e�ort: the programmer can, with a few lines of code, insert new monitoring and logging
facilities in a running application. Programs implemented using interpreted languages are
also highly portable. In environments like the Grid, where the destination of the execution
is usually unknown, portability is an important issue.

Another facility associated with interpreted languages is a more �exible type system,
with features such as dynamic typing, functions as �rst-order values, and support for
closures. These features are important in building abstractions that help the programmer
deal with low-level mechanisms at the level of detail that he needs [17]. The cognitive
weight of learning to use libraries and services needed to control Grid environments, such
as the ones o�ered by Globus, may be well above what some application programmers can
take; however, these libraries and services will probably be much easier to learn if seen at
a higher level of abstraction.

On the other hand, all this �exibility calls for a self-disciplined programming style to
allow for the base code to be easily maintainable.

4 ALua

ALua [22] is an event-oriented extension of the interpreted language Lua [9] for the de-
velopment of distributed applications. ALua inheritates from Lua the ease of integration
with C code, thus supporting the use of a dual programming mode that takes advantages
of both worlds: computationally hard tasks are typically executed in C, and Lua is used
as the programming language for communication, collaboration, and dynamic adaptation.

ALua processes communicate by exchanging asynchronous messages, consisting of chunks
of Lua code. There is a single communication primitive, alua.send. The arrival of a mes-
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sage is handled as an event, and the handler for this event executes the received chunk
of code. All the messages are executed atomically: every event is handled to completion,
eliminating the need for concurrency management. ALua applications are environments
within which processes can exchange messages(a little like communicators in MPI).

ALua's implementation is based on daemons that run on every machine, mediating the
communication among processes. In version 4, ALua has been improved by migrating all
the code to Lua, modifying the API and adding the possibility of di�erent applications
to coexist in a set of daemons. As a consequence, new processes can join an existing
application and exchange messages with running processes, and a process may belong to
various applications. The installation depends only on the luasocket and luaposix libraries
(both extremely portable, although not yet supported by Windows).

ALua's application in grid environments has been explored before. [21] reports an
experience integrating ALua with Globus for the monitoring of grid resources and the
dynamic adaptation of the application.

5 Implementation

The motivation of our implementation was the need of submitting applications through
the grid to clusters and machines where the Globus Toolkit for some reason is not installed.
For instance, in clusters with virtual addressing we would not be allowed to use Globus.
Alternative solutions as Condor can be too heavy and/or di�cult to install and con�gure
for the job we need them to do. Besides, instability in the load and frequent exclusive
access requests made adaptability a requirement.

Our goal was to develop a mechanism for the allocation of resources for computational
jobs submitted through the grid. The requisites for our system would be the portability and
simplicity of the installation and con�guration, that it be lightweight and highly �exible
without compromising e�ciency, and high availability (no need to stop the system for
recon�guration). For the moment, no support will be provided for interactive jobs.

Although the current version (Globus Toolkit 4) has an attractive group of features,
most of them related to web services, we chose the distribution 2.4 (Pre-WS), thinking in
e�ciency. To interface between our local scheduler with the Globus GRAM job manager we
wrote a Perl module as suggested in [7]. It allows submitting and managing jobs through
the grid using the Globus commands. Figure 2 shows the system architecture.

Users who want their job to be managed by the ALua Job Manager just need to submit
a regular Globus RSL descriptor and specify ALua as the job manager. The ALua Resource
Manager, upon receiving a request, will enqueue it until it is time for execution, and will
return to the user an ID that can be used to control the job, that is, to investigate the state
of the job or cancel it. Using ALua allows new processes to join an enqueued or already
executing application. This means that the running processes and the new process can
freely communicate with each other.

When it is the turn of our job to be executed, the Resource Manager will create a
process (that will be called a Task Manager) to take care of this particular job. This Task
Manager process spawns the number of processes speci�ed in the RSL descriptor on the
hosts chosen by the Job Scheduler, which selects the best available resources based on
monitoring information and pre-de�ned policies. The Task Manager also controls the state
of the created processes and the load in the nodes where they are running, so it is possible
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Figure 2: Architecture

to specify Service Level Parameters that should be respected during execution. In this
way, the behavior of the system can range from scavenging to a guarantee of the quality
of service for the user. When a node's load increases and it does not satisfy requirements
anymore, all the job managers controlling processes in that node whose expectations would
be violated are noti�ed so they can cancel their respective processes and ask to the scheduler
for a new host to re-initiate them. In conclusion, we have a job manager hierarchy where a
job dispatcher takes the jobs from the queue and creates a new job manager to watch the
job until its end. In case of a request for the creation of a new process (or processes), the
corresponding job manager asks the Job Scheduler for an available host in which to create
the process.

The control of the job and of the load parameters is based on the information gathered
by the monitoring system. It is implemented by the collection agents and the noti�cation
engine. The collection agents are ALua programs running in every execution host. They
collect information about CPU load (and can be easily extended to any other collectable
parameter) at programmable intervals. The information is sent (using a push model) to
the scheduler who analyzes the data during the resources selection process, and to the
job managers, so they can be aware of the state of the execution environment where their
respective processes are running. The interested consumers (e.g., the scheduler and the job
managers) subscribe to the collection agents of their interest. In order to avoid unnecessary
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communication, the engine has been designed so that new information will be sent only in
case of state changes. The granularity of those changes can also be speci�ed, and can be
altered at run time.

For the noti�cation engine we used LuaMonitor, an implementation whose original
version, developed for CORBA, is described in [5]. Lua Monitor is an extensible monitoring
mechanism written in Lua. It is based on the concept of properties, aspects and observers.
Properties are the parameters to be observed: for instance, in our case we de�ned the CPU
load as a property. An aspect of a property allows observers to watch not only the value,
but also its behavior, for instance along time (increase, dramatic change, etc). The function
that evaluates an aspect can be changed at run-time, and new aspects can be created, so
the requirements can be dynamically adapted. The observer speci�es the property/aspect
of interest and a callback so that it can be noti�ed when a certain aspect (or aspects) of a
property becomes true.

It is very easy to subscribe to a monitor using this framework, as shown in this line of
code:

LuaMonitor:attachEventObserver({

notifyEvent=function(self, event)

alua.send("taskmanager","monitor_alarm()");

end},"CPUIncrease","$CPU:Increasing")

This code registers a function as callback for an event, which in this case is the increase
of CPU load. In the example shown, if the event occurs, a message will be sent to the
taskmanager process to execute function monitor_alarm(). It allows for a customizable
response to events taking place in processes that the observer process (the Task Manager
in this case) is controlling. The noti�cation function could be changed at any time, and
so could the parameters that generate this event, allowing for adaptation in reaction to
changes in the environment without the need of reinitiating the system.

5.1 Security issues

A major reason against the use of interpreted languages for infrastructure tools are some
security issues intrinsic to the �exibility that they o�er.

The ALua system currently does not o�er support for authentication. The idea here is
to exploit the security framework o�ered by the Globus Toolkit for sign-on. However, the
problem of authenticating messages still remains. With no authentication for the messages
received and executed by the daemons, it is possible for a user inside the cluster to execute
(unknowingly) a script on behalf of another user. We will address this matter in future
work.

On the other hand, currently, jobs are executed with the same rights as those of the
Resource Manager process. This does not allow for distinguishing among di�erent users
submitting their jobs to the same Manager and for enforcing their individual resource
limitations. One solution would be to create a di�erent daemon per user on each executing
node, but this does not scale well and is not compatible with centralized scheduling. A
better solution would be to have a single daemon per node, executing as a special user,
creating user environments [11] with the correct rights for each submitted job.
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5.2 Scheduling on the Grid

The tool we developed allows for the execution of jobs submitted through the grid and the
publication of the data in the MDS, but there is still a lot of work to do for achieving a
real integration with the Grid environment. In this initial stage we are, there is neither
meta-scheduling nor communication with processes outside the ALua site. ALua processes
should to be able to communicate transparently with the other processes executing tasks
belonging to the same job, with independence of the locality and local resource manager
of the remote site. This will lead to the inclusion of global addressing and of mechanisms
to allow for site-to-site e�ective and secure communications (probably using the Globus
XIO API).

We also intend to add some facilities for dynamic interaction with the application itself.
Using Lua support tools, we can use information from .h application header �les to make
some global variables automatically available in a surrounding ALua environment. This
would allow programmers to, through a console, monitor the state of running applications,
and eventually interact with them, by changing parameters or resource allocation decisions.

6 Experimental results

We have performed a set of experiments to analyze the overhead generated by our tool
compared to the execution using remote command execution (rsh). We also measured the
overhead caused by the monitoring system. For the experiments we used the heuristic
proposed in [16] for the traveling tournament problem. The tasks are independent; there
is no communication among them. Only one process was allocated per processor. The
experiments were performed on a set of Intel Pentium II CPUs with 398 Mhz and 280 MB
of RAM.

Table 1: Performance results
Instance Remote ALua ALua with

execution monitors
nl14 295.34 295.56 295.72
nl16 2291.54 2293.668 2295.352

Table 1 shows timing in seconds for the execution of the algorithm with two instances.
The results of the table show that the execution using remote command execution was
only slightly faster than with ALua.

We can also observe that the expected increase on the computational time when the
monitoring system is operating is negligible (about 0.05 percent of the computational time).
We concluded that our tool satisfy our requirements of low computational overhead.

7 Final remarks

Interpreted languages are often applied in the grid to simplify operations like process au-
tomation, error checking, sophisticated analysis and display applications, as in GrADS [8],
which o�ers a proprietary script language, and Chimera Grid Tools [2], which contains a
library of Tcl language. Another application of interpreted languages in computer grids are
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the Commodity grid Kits (CoG Kits) [12]. They aim to provide wrappers between Globus
and particular commodity frameworks. Examples are the Perl Cog Kit [14] (for Perl) and
pyGlobus [10] (for Python).

We have no knowledge of a scheduler implemented using interpreted languages. Our
tool allows for deploying parallel and distributed applications in grid clusters (even with
virtual IPs) without much overhead. Computationally expensive procedures could be com-
piled and accessed directly from ALua, allowing for e�ciency and �exibility. Other ad-
vantages of this approach include the rapid development intrinsic to the Lua language and
the simplicity of installation and con�guration of ALua. These factors allow us to easily
experiment with di�erent policies and con�gurations.

The system allows for opportunistic computing and also for dedicated clusters. Adap-
tation is achieved by modifying the number of processes composing an application or by
job migration. The job migration is initiated after detecting a performance degradation
surpassing the pre-de�ned expectations. However, another level of adaptation can be car-
ried out by modifying the running application itself, dynamically inserting new code in
running processes or even new processes.

The �exibility o�ered by our approach allows, for instance, including at run time a new
metric in the scheduler's view of the system state. This may imply adding a new property
to the monitor to extract the parameter, subscribing to be noti�ed when the parameter
changes and changing the scheduler function to take in account that new information. It
can be simply done by:

1. creating a new process and joining it to the Job Manager application;

2. sending a message to every monitor with the new sensor function, the property
registration request and the noti�cation request;

3. sending a message to the scheduler containing the function that implements the new
algorithm that takes into account the included parameter. This could be written in
Lua or encapsulated in a dynamic library.

Provisions must be taken to guarantee that only users with administrator privileges would
be able to perform such simples but powerful operations.

The major disadvantage of our proposal is the compromise between �exibility and
security. We plan on modifying ALua to include messaging authentication.

As mentioned before, the presented work is still in progress, and is part of a larger
project that investigates what may be gained from the �exibility an interpreted language
o�ers in grid environments. We intend to complete the integration of the scheduling tool
with the grid, as discussed in Section 5.2. We are also creating an API to allow for the
execution of MPI programs inside ALua clusters, and developing better monitoring facilities
and �ne-grain management. On a longer perspective, we are looking for ways to link our
work with application scheduling, for building application-aware resource managers able
to optimize the resources allocation.
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