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Abstract.
Metaheuristics are general high-level procedures that coordinate simple heuristics and

rules to �nd good approximate solutions to computationally di�cult combinatorial opti-
mization problems. Parallel implementations of metaheuristics appear quite naturally as
an e�ective approach to speedup the search for approximate solutions. Besides the ac-
celerations obtained, parallelization also allows solving larger problems or �nding better
solutions. We present in this work four slightly di�ering strategies for the parallelization
of an extended GRASP with ILS heuristic for the mirrored traveling tournament problem,
with the objective of harnessing the bene�ts of grid computing. Computational experi-
ments on a dedicated cluster illustrate the e�ectiveness and the scalability of the proposed
strategies. In particular, we show that the parallel strategy implementing cooperation
through a pool of elite solutions scales better than the others and is able to �nd solutions
that cannot be reached by the others. Computational grids are distributed high latency
environments which o�er signi�cantly more computing power than traditional clusters.
The best parallel strategy was also implemented and tested using a true grid platform.
We report original results from pioneer computational experiments on a shared computa-
tional grid formed by 82 machines distributed over four clusters in three cities, illustrating
the potential of the application of computational grids in the �elds of metaheuristics and
combinatorial optimization.
Keywords: Parallel metaheuristics, grid computing, traveling tournament problem, GRASP,
Iterated local search



Resumo.
Metaheurísticas são procedimentos de alto nível que coordenam heurísticas para en-

contrarem soluções de alta qualidade para problemas de otimização combinatória difíceis.
Implementações paralelas de metaheurísticas surgem muito naturalmente como um padrão
e�ciente para acelerar a busca por soluções aproximadas. Além do desempenho obtido
em relação ao tempo de execução, a paralelização também permite solucionar problemas
maiores ou encontrar melhores soluções. Dessa forma, neste trabalho são apresentadas
quatro diferentes estratégias para a paralelização de uma heurística híbrida GRASP e ILS
para o problema de torneio com viagens espelhado, objetivando aproveitar os benefícios
do Grid computacional. Os experimentos realizados em um cluster dedicado ilustram a
e�ciência e escalabilidade das estratégias propostas. Em particular, é mostrado que a
estratégia paralela implementada com cooperação através de um pool de soluções elite ap-
resenta resultados melhores do que as demais estratégias, e é capaz de encontrar soluções
que não foram encontradas pelas demais estratégias. Grids computacionais são ambientes
distribuídos que caracterizam-se por oferecerem muito mais poder computacional do que
os tradicionais clusters computacionais. A melhor estratégia paralela também foi imple-
mentada e testada usando uma plataforma Grid real. Neste artigo relatou-se os resultados
obtidos a partir dos experimentos em um Grid computacional compartilhado, formado por
82 máquinas distribuídas em 4 clusters pertencentes à três cidades, ilustrando assim o
potencial da aplicação de Grids computacionais na área de metaheurísticas e otimização
combinatória.
Palavras-chave: Metaheurísticas Paralelas, Grid Computacional, Problema de Torneio
com Viagens, GRASP, Busca Local Iterativa
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1 Introduction

The organization and management of sporting events and championships is a worldwide
multi-billion dollar industry. Schedules with minimum traveling times and o�ering similar
costs and conditions to all teams taking part in a competition are of major interest to
teams, leagues, sponsors, fans, and the media. In the case of the Brazilian national soccer
championship, a single trip from Porto Alegre to Belém takes almost a full day's journey,
with numerous connections due to the absence of direct �ights, to cover a distance of
approximately 4,000 kilometers. The total distance traveled becomes a key issue to be
minimized, so as to reduce costs and to give the players more time to train and time o�
along the season that lasts for approximately eight months.

Several authors in di�erent contexts (see e.g. [4, 5, 7, 17, 23, 30, 31, 32, 35, 36]) have
tackled the problem of tournament scheduling for a variety of leagues and sports including
soccer, basketball, hockey, baseball, rugby and cricket, using di�erent techniques such as
integer programming, tabu search, genetic algorithms, simulated annealing, and constraint
programming.

The Traveling Tournament Problem is an inter-mural championship timetabling prob-
lem that abstracts certain characteristics of scheduling problems in sports [9]. It combines
tight feasibility constraints with a di�cult objective function to be optimized. The objec-
tive is to minimize the total distance traveled by the teams, subject to the constraint that
no team can play more than three consecutive games at home or away. Since the total
distance traveled is a major issue for every team taking part in the tournament, solving a
traveling tournament problem may be a starting point for the solution of real timetabling
applications in sports, in general.

Metaheuristics are general high-level procedures that coordinate simple heuristics and
rules to �nd good approximate (often optimal) solutions to computationally di�cult com-
binatorial optimization problems. Among them, we �nd simulated annealing, tabu search,
Greedy Randomized Adaptive Search Procedure (GRASP), genetic algorithms, scatter
search, Variable Neighborhood Search, ant colonies, and others. They are based on dis-
tinct paradigms and o�er di�erent mechanisms to escape from locally optimal solutions.
Metaheuristics are among the most e�ective strategies for solving hard combinatorial op-
timization problems. The customization (or instantiation) of a metaheuristic to a given
problem yields a heuristic for that problem.

Recent years have witnessed huge advances in computer technology and communica-
tion networks. Cung et al. [8] noted that parallel implementations of metaheuristics not
only appear as quite natural alternatives to speed up the search for good approximate
solutions, but also facilitate solving larger problems and �nding improved solutions, with
respect to their sequential counterparts, due to the partitioning of the search space and to
the increased possibilities for search intensi�cation and diversi�cation. As a consequence,
parallelism can improve the e�ectiveness and robustness of metaheuristic-based algorithms.
The latter are less dependent on sophisticated parameter tuning and their success is not
limited to a few or small classes of problems.

The growing computational power requirements of large scale applications and the
high costs of developing and maintaining supercomputers has fuelled the drive for cheaper
high performance computing environments. With the considerable increase in commodity
computers and network performance, cluster computing and, more recently, grid computing
[14, 15] have emerged as a real alternatives to traditional supercomputing environments
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for executing parallel applications that require signi�cant amounts of computing power.
A computing cluster generally consists of a �xed number of homogeneous resources,

interconnected on a single administrative network, which together execute one parallel ap-
plication at a time. Grids in some sense are just the opposite, aiming to harness su�cient
computing power from a diverse pool of resources, available on the internet, to execute a
number of applications simultaneously. Grids aggregate geographically distributed collec-
tions (or sites) of resources which typically belong to di�erent owners and thus are shared
between multiple users. Each of these sites could consist of one or more uni-processor
machines, a symmetric multiprocessor cluster, a distributed memory multicomputer sys-
tem, or a massively parallel supercomputer. Clearly, the physical nature of the resources
and the computing power available are both heterogeneous. Unlike local area network
environments, grids are more susceptible to resource and network failures. Additionally,
since the resources and network are being shared, the computational power available and
communication costs �uctuate. These issues require careful consideration when developing
grid enabled applications. The fact that these resources are distributed, heterogeneous
and non-dedicated, make writing parallel grid-aware applications much more challenging
[13]. While in theory optimization problems should easily bene�t from grid computing,
in practice appropriate design, careful tuning and thorough re-evaluation of parallel im-
plementations are necessary. Most of all, this requires a thorough understanding of how
metaheuristics behave in such environments.

This work aims to investigate the practical bene�ts that large scale parallel process-
ing can bring to metaheuristics for combinatorial optimization problems. In particular,
this paper describes four simple but e�cient strategies for the parallelization in grid envi-
ronments to improve the extended GRASP with ILS heuristic for the mirrored traveling
tournament problem proposed in [29]. The sequential strategy substitutes the local search
phase of a GRASP heuristic by an ILS procedure, obtaining high-quality solutions that
are among the best known in the literature for benchmark instances of this problem [33].

The remainder of the paper is organized as follows. The following section reviews
the formulation of the mirrored traveling tournament problem. Section 3 summarizes
the extended GRASP with ILS sequential heuristic. In Section 4, some important issues
concerning the parallel implementation of metaheuristics are reviewed. Section 5 describes
the four parallel implementations for the mirrored traveling tournament problem. Section 6
presents and compares experimental results obtained with the proposed strategies. Results
on a computational grid employing 82 resources from sites in three di�erent cities are
reported in Section 7. Concluding remarks are made in the last section.

2 The mirrored traveling tournament problem

We consider a tournament played by n teams, where n is an even number. In a sim-
ple round-robin (SRR) tournament, each team plays every other exactly once in n − 1
prescheduled rounds. In a double round-robin (DRR) tournament, each team plays every
other twice, once at home and once away. A mirrored double round-robin (MDRR) tour-
nament is a simple round-robin tournament in the �rst n− 1 rounds, followed by the same
tournament with reversed venues in the last n−1 rounds. We assume that each team in the
tournament has a stadium in its home city and that the distances between the home cities
are known. Each team is located at its home city at the beginning of the tournament, to
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where it returns at the end after playing the last away game. Whenever a team plays two
consecutive away games, it goes directly from the city of the �rst opponent to the other,
without returning to its own home city.

The Traveling Tournament Problem (TTP) was �rst established by Easton et al. [9].
Given n teams and the distances between their home cities, the TTP consists in �nding a
DRR tournament such that every team does not play more than three consecutive home
or away games, no repeaters (i.e., two consecutive games between the same two teams at
di�erent venues) occur, and the sum of the distances traveled by the teams is minimized.
Benchmark instances are available in [33]. To date, even small benchmark instances of
the TTP with n = 10 teams cannot be solved exactly. The largest instance for which the
optimal solution is known (n = 8 teams) took four days of processing time using twenty
processors in parallel [10]. We also refer to this problem as the non-mirrored TTP, for
which both mirrored and non-mirrored solutions are feasible.

The mirrored Traveling Tournament Problem (mTTP) has an additional constraint: the
games played in round k are exactly the same played in round k+(n−1) for k = 1, . . . , n−1,
with reversed venues. Repeaters do not occur in mirrored schedules. Mirrored tournaments
are a common tournament structure in Latin America.

3 Extended GRASP with ILS heuristic

The GRASP (Greedy Randomized Adaptive Search Procedure) metaheuristic [24] is a
multi-start or iterative process, in which each iteration consists of two phases: construction
and local search. The construction phase builds a feasible solution, whose neighborhood is
investigated during the local search phase until a local minimum is found. The best overall
solution is kept as the result.

The construction and local search phases are problem-dependent and should be cus-
tomized for each problem. GRASP has experienced continued development and has been
applied in a wide range of areas [12]. Resende and Ribeiro [24, 25] described success-
ful implementation techniques and parameter tuning strategies, as well as enhancements,
extensions, and hybridizations of the original algorithms.

The ILS (Iterated Local Search) metaheuristic [19] starts from a locally optimal feasible
solution. A random perturbation is applied to the current solution, which is then followed
by a local search. If the local optimum obtained after these steps satis�es some acceptance
criterion, then it is accepted as the new current solution, otherwise the latter does not
change. The best solution is, if necessary, updated and the above steps are repeated until
some stopping criterion is met.

A hybridization of the GRASP and ILS metaheuristics into an e�ective hybrid heuristic
for the mTTP was proposed in [29]. Basically, the authors substituted the local search
phase of GRASP by an ILS procedure. The pseudo-code in Algorithm 1 summarizes the
main steps of the GRILS-mTTP heuristic for �nding approximate solutions for the mirrored
traveling tournament problem.

The outer while loop in Algorithm 1 executes a GRASP construction phase followed
by an ILS local search phase, until a stopping criterion is met. Typically, the algorithm
continues executing until a solution is found with a cost that is as good as or better than
a given target value, or until a given period of time has elapsed.

During the GRASP phase of each iteration, an initial solution S is constructed to which
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Procedure GRILS-mTTP();
1. while .NOT.StoppingCriterion do
2. S ← BuildGreedyRandomizedSolution();
3. S, S ← LocalSearch(S);
4. repeat
5. S′ ← Perturbation(S);
6. S′ ← LocalSearch(S′);
7. S ← AcceptanceCriterion(S, S′);
8. S∗ ← UpdateGlobalBestSolution(S, S∗);
9. S ← UpdateIterationBestSolution(S, S);
10. until ReinitializationCriterion;
11. end;
12. return ∗S;

Figure 1: Pseudo-code of the GRASP with ILS heuristic for the mTTP.

a local search algorithm is then applied, returning a new current solution S. This solution
is also used to initialize the best solution S in the current iteration.

The ILS phase of the iteration is the inner repeat loop which applies a perturbation to
the current solution S obtaining a new solution S′. A local search algorithm is applied to S′,
where four neighborhood structures are used. The �rst three are simple exchanges in which
TS (team swap), HAS (home-away swap) and PRS (partial round swap) neighborhoods
are explored by local searches. The GR (game rotation) ejection chain neighborhood,
explored only as a diversi�cation move, is performed less frequently by the heuristic as a
perturbation.

A �rst-improving strategy similar to the VND (Variable Neighborhood Descent) pro-
cedure [16] was used to implement the local search algorithm. Once a local optimum with
respect to the TS neighborhood is found, a quick local search using the HAS neighborhood
is performed. Next, the PRS neighborhood is investigated, followed again by a local search
using the HAS neighborhood. This scheme is repeated until a local optimum with respect
to these three neighborhoods is found.

In this context, the new solution S′ is accepted or not as the new current solution,
depending on an acceptance criterion. The best overall solution S∗ and the best solution
in the current GRASP iteration are updated, if necessary, and a new cycle starts with the
perturbation of the current solution, until a re-initialization criterion is met.

A new GRASP iteration starts if 50 consecutive deteriorating moves to neighbor so-
lutions have been accepted since the last time S (the best solution found in this GRASP
iteration) was updated. Re-initialization occurs if too many perturbations followed by local
search are performed without improving the best solution in the current GRASP iteration.
It is important to notice that a GRASP iteration is not interrupted if the current solution
S is still being improved.

The parallelization of this algorithm does not only aim to reduce the total running
time, but also to improve its e�ectiveness and robustness. The use of several processors
concurrently to explore di�erent search trajectories, as described in Section 5, may lead to
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a more thorough investigation of the neighborhoods.

4 Parallel implementation of metaheuristics

Programming paradigms commonly used to develop low communication parallel programs
on distributed clusters include the master-slave (also often referred to as task farming) and
the client-server models [13]. These approaches are especially attractive, since they can
generally be applied to take advantage of all available resources in a grid environment.

Cung et al. [8] reviewed some major issues on parallel implementations of metaheuris-
tics, such as the types of parallelism as well as appropriate parallel programming models
and parallelization strategies for this class of heuristics. With respect to parallelization
strategies [8, 34], two main approaches are used: single-walk and multiple-walk. Each
iteration of a metaheuristic generally starts with the construction of an initial solution,
followed by a search to improve the solution. New neighboring solutions are evaluated
by making a series of minor alterations to a given solution. The sequence of solutions
evaluated is known as a walk or trajectory . In the case of a single-walk parallelization,
one unique search trajectory is traversed in the solution space and the search for the best
neighbor at each iteration is performed in parallel. The neighborhood search is performed
faster in parallel, but the search trajectory is the same as the one followed in the corre-
sponding sequential implementation. On the other hand, a multiple-walk parallelization
strategy is characterized by the investigation in parallel of multiple trajectories, each of
them performed by a di�erent processor. A search �thread� is a process running in each
processor traversing a walk in the solution space. These processes can be either indepen-
dent (where no information is exchanged among processes) or cooperative (the information
collected along a trajectory is disseminated and used by other processes to improve or to
speed up the search).

Cooperative strategies are the most general and promising, but often incur in additional
costs in terms of communication and storage. However, if cooperation is well explored and
implemented, it can globally lead to better solutions in smaller computation times even if
each individual iteration may take longer, see e.g. [27].

Developing and tuning e�cient parallel implementations of metaheuristics require a
thorough programming e�ort and keen implementation skills. In the context of grid com-
puting, where communication is at a premium, one of the most di�cult aspects to be
determined is the nature of the information to be shared, in order to improve the search
without taking too much additional memory or time to be collected, as well as the fre-
quency at which this information is exchanged. The information shared by the search
threads can be implemented either as global variables stored in a shared memory, or as
a pool in the local memory of a dedicated central processor. In the case of the latter,
information is exchanged with the other processors via message passing.

5 Parallel strategies for the extended GRASP with ILS heuris-

tic

This section presents four simple, but e�cient, strategies for the parallelization of the best
known algorithm (the hybrid heuristic GRILS-mTTP [29] summarized in Section 3) for solv-
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ing the mTTP. Besides obtaining speedups in execution times, improvements in solution
quality are also sought. All four versions are based on the master-worker programming
paradigm and adopt a multiple-walk search strategy. This work aims to investigate how de-
grees of cooperation and increased diversity (in terms of number of trajectories investigated
and the amount of information being shared) a�ect the GRILS-mTTP heuristic.

Initially, the master process generates and distributes distinct seeds to be used by
the pseudo-random number generator of each worker process. As the number of workers
increases, this will foster greater diversity. In order to reduce the chance that processes
search the same neighborhood (i.e., evaluate the same solutions), each process uses a
di�erent sequence of pseudo-random numbers. The Mersenne Twister random number
generator of Matsumoto and Nishimura [20] was chosen based on the recommendation
in [28].

5.1 Parallel strategy with independent processes

This version, denoted by PAR-I, is representative of executing the sequential algorithm
simultaneously on multiple machines independently of each other (e.g. as a parameter
sweep application). After receiving their seeds, each worker starts a cycle in which it
generates a new solution during a GRASP construction phase and then executes an ILS
local search phase until the re-initialization criterion is met. This cycle is repeated until
a solution with a cost equal to or better than a given target value (used as a stopping
criterion) is found. Although no communication takes place between the independent
searches, once the stopping criterion has been met, a controller process (master) receives
and records the solution found and responds by broadcasting a halt message to each worker
to terminate their execution.

5.2 Parallel strategy with one-o� cooperation

This version, PAR-O, is identical to the previous one, with the exception of the �rst
iteration of the main loop. After each worker executes the GRASP phase, the best initial
solution encountered by each of them is sent to the master, which in turn selects and
broadcasts back to all the workers the best overall solution. Therefore, all workers will
execute the ILS local search phase of the �rst iteration using the same initial solution. The
following iterations are executed independently. This is called one-o� cooperation because
this exchange only occurs during the �rst iteration.

5.3 Parallel strategy with one elite solution

One of the possible shortcomings of the previous versions is the lack of continuous cooper-
ation between the workers during their execution, i.e., each worker process does not learn
from searches carried out in parallel (or from solutions found) in previous iterations by
other workers. In the earlier strategies, the current best solution is not available to all
workers. Information gathered from good solutions should be used to implement more ef-
fective strategies [11, 26]. Typically, in these history-based parallel cooperative strategies,
the master manages the exchange of information collected along the trajectories investi-
gated by each worker.

In this version, PAR-1P, the master keeps the best (or elite) solution received from
any worker. Each time the best solution is improved, the master broadcasts the solution's
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cost to all workers to avoid unnecessary communication from them. The intuition is to use
this information not only to converge faster to a target solution, but also to �nd better
solutions than the independent search strategies.

In PAR-1P, there is no one-o� cooperation during the �rst iteration. Instead, each
time a worker completes the ILS local search phase, it will compare the cost of the solution
found with that of the best solution held by the master. If it is lower, the worker sends its
solution to the master, otherwise the solution is discarded. After this, two outcomes are
possible. Either, the worker requests the best solution held by the master to repeat the
ILS local search phase with this solution, or the worker continues with the next iteration
(i.e. re-initialization causes a new initial solution during the GRASP construction phase to
be created and proceeds with the next steps of the sequential heuristic) as in the previous
versions. The probability of each outcome is denoted by Q and 1−Q, respectively. In this
way, workers indirectly exchange elite solutions found along their search trajectories. This
parallel cooperative strategy promotes a more thorough search of the space around good
solutions, characteristic of single-walk parallelization approaches.

5.4 Parallel strategy with a pool of elite solutions

In this cooperative strategy, PAR-MP, the master is dedicated to managing a centralized
pool of elite solutions (and their costs), including collecting and distributing them upon
request. As in the previous version, workers start their searches from di�erent initial
solutions and can exchange and share elite solutions found along their search trajectories.

The master will update the elite solution pool with a newly received solution according
to given criteria which are based on the quality of the solutions already in the pool (as
described below). When a worker completes an iteration, it can either request an elite
solution from the pool or construct a new initial solution randomly, again with probabilities
of Q and 1−Q, respectively.

Pool management

A very important aspect of this strategy is the management of the pool of elite solutions.
Empirically, previous research (see e.g. [11]) observed that history-based heuristics are less
likely to be successful if the recorded solutions are very similar. Therefore, it is necessary
to take into account not only solution quality, but also diversity when dealing with pools
of elite solutions.

The pool consists of a limited number M of positions, which are initialized with null
solutions. The pool manager supports two essential operations: the insertion of a new
solution into its appropriate position in the pool and the selection of a solution from the
pool from which a worker will initiate a new search.

To guarantee the diversity within the pool, the insertion of a new solution depends on
the state of the pool and on how the solution was generated. When the new candidate
solution has been derived from an elite solution in the pool, the cost of the new solution
must be better than the cost of the elite solution from which it was generated. If true, the
new solution will obligatorily take the place of that elite solution. On the other hand, if
the solution was derived from a solution produced by the GRASP construction phase, the
solution can be inserted directly into any vacant position. In the case where the pool is
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full, the solution is inserted only if it is as good as the worst elite solution already in the
pool (thus replacing the latter).

When a worker process requests an elite solution from the master, a solution is selected
at random from the pool and sent back to worker process.

6 Experimental results

The four parallel algorithms PAR-I, PAR-O, PAR-1P, and PAR-MP, described in Sec-
tion 5, were implemented using C++ and version 7.0.6 of the LAM grid-enabled imple-
mentation [18] of the message passing interface standard MPI [21]. For evaluation purposes,
the experiments reported in this section were executed in isolation on a dedicated cluster
(of 1.7 GHz Pentium 4 processors, each of which with 256 Mbytes of RAM memory, inter-
connected by a Fast Ethernet network) to avoid external in�uences in performance. Each
processor has a local copy of the executable code and the problem data.

Two sets of benchmark instances have been proposed for the traveling tournament
problem[9]. The �rst is made up of circle instances, arti�cially generated to represent
easier instances. The name circn is used to denote a circle instance with 4 ≤ n ≤ 20
teams. Each circle instance is built from a graph, generated as follows. Nodes are placed
at equal unit distances along a circumference and labeled 0, 1, . . . , n− 1. There are edges
only between nodes i and i + 1 mod n, for i = 0, 1, . . . , n− 1. In the corresponding circle
instance, the distance between the home cities of teams i and j (with i > j) is given by the
length of the shortest path between them in the graph and is equal to the smaller of i− j
and j− i+n. The second set are realistic instances generated using the distances between
the home cities of a subset of teams playing in the National League of the MLB (Major
League Baseball) in the United States. These national league instances are denoted by
nln, with 4 ≤ n ≤ 16. We did not consider the smaller instances with n = 4 and n = 6,
for which optimal solutions have already been found. Furthermore, an additional real-life
instance has been created by Ribeiro and Urrutia [29], named br24. This instance is made
up of the home cities of the 24 teams playing in the �rst division of the 2003 edition of the
Brazilian soccer championship. All instances and their best known solutions are available
from [33].

The experiments aim to investigate how parallel computing can be used to harness
cooperation and diversity, improving solution quality and convergence when executing the
GRILS-mTTP heuristic in distributed computing environments. The parameter M was set
to P , where P is the number of worker processes used in the parallel execution. The
probability, Q, of choosing a solution from the pool was �xed at 10%.

Table 1 displays, for each instance, the cost of the best known solution at the time of
writing obtained by the sequential implementation of the GRILS-mTTP heuristic after �ve
days of processing time [33]. These are compared with the cost of the best solutions found
during the following experiments by the four parallel implementations of the GRILS-mTTP
heuristic. The execution time required varies with the number of processors used and these
details are described in the following experiments. Notice that PAR-I, PAR-O, and PAR-
1P found the same cost solutions for each of the benchmark instances, while the PAR-MP
implementation was able to improve the best solution found by the three others in the case
of three instances. The last column gives the relative improvement obtained by PAR-MP
over the cost of the best known sequential solution.
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Table 1: Solutions found by the sequential and parallel implementations.

Instance Sequential PAR-I/O/1P PAR-MP Improvement (%)
circ8 140 140 140 -
circ10 276 272 272 1.45
circ12 456 456 456 -
circ14 714 714 714 -
circ16 1004 984 978 2.59
circ18 1364 1308 1306 4.25
circ20 1882 1882 1882 -
nl8 41928 41928 41928 -
nl10 63832 63832 63832 -
nl12 120655 120655 120655 -
nl14 208086 208086 208086 -
nl16 285614 280174 279618 2.09
br24 506433 503158 503158 0.65

In the experiments reported next, the costs of the best solutions found by the sequential
heuristic, as reported in Table 1, are referred to as the easy targets. The costs of the
solutions obtained by the PAR-I, PAR-O, and PAR-1P implementations are referred to
as the medium targets, for the instances for which the best solution obtained by these
versions improved the easy targets (instances circ10, circ16, circ18, nl16, and br24). The
PAR-MP implementation further improved the best known solutions for three of these
instances, and these best solution costs are referred to as the hard targets (for instances
circ16, circ18, and nl16).

The scalability of the parallel strategies was evaluated to study the bene�ts of searching
an increasing number of multiple trajectories. Executing with more processes o�ers a
greater diversity due to the use of multiple distinct initial seeds and solutions. Table 2
(resp. Table 3) shows the average execution times over �ve runs with di�erent seeds for
the sequential and the PAR-I and PAR-O (resp. PAR-1P and PAR-MP) parallel versions.
These tables present the time in seconds required to �nd a solution whose cost is at
least as good as the corresponding easy target, using one processor for the sequential
implementation and eight, 16, and 24 processors for each parallel version.

The parallel versions converged faster than the sequential one for all instances. As the
number of processors used increases, all parallel versions were able to �nd the corresponding
easy targets faster, as re�ected by the speedups presented in Tables 4 and 5. The speedups
of the PAR-MP parallel version were greater than those of the other implementations.
For example, the average speedups of the four algorithms on 24 processors were 12.40 for
PAR-I, 12.41 for PAR-O, 13.19 for PAR-1P and 13.40 for PAR-MP.

The following experiment considers the computation times taken by the parallel versions
to �nd solutions at least as good as the medium targets (exclusively for the instances for
which the latter are smaller than the corresponding easy targets), addressing the bene�ts of
exchanging information between the workers instead of letting them execute independently.
The average processing times in seconds, based on �ve executions, on 24 processors are
reported in Table 6. Results show that PAR-MP presents the smallest computation time
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Table 2: Average computation times in seconds to �nd the easy targets on eight, 16, and
24 processors (PAR-I and PAR-O parallel versions).

Sequential PAR-I PAR-O
Instance P = 1 P = 8 P = 16 P = 24 P = 8 P = 16 P = 24
circ8 0.87 0.27 0.15 0.14 0.26 0.15 0.14
circ10 197.64 26.32 18.32 15.98 26.31 18.32 15.97
circ12 4.48 1.33 1.11 0.55 1.32 1.11 0.54
circ14 3.46 0.87 0.82 0.73 0.86 0.73 0.71
circ16 413.73 56.54 33.93 24.78 56.58 33.97 24.77
circ18 175.14 43.19 30.06 13.62 43.24 29.99 13.62
circ20 800.94 177.28 82.99 43.47 176.67 83.05 43.47
nl8 0.79 0.23 0.08 0.07 0.22 0.08 0.06
nl10 453.54 113.22 39.03 19.52 113.22 39.03 19.51
nl2 22.13 4.23 1.83 1.34 4.23 1.83 1.33
nl4 33.23 5.32 4.80 4.34 5.32 4.80 4.35
nl6 1433.05 474.12 243.14 73.62 474.26 243.11 73.58
br24 156.32 40.87 33.83 29.08 40.54 33.70 28.97

in most cases. Note that this version makes use of a cooperative strategy based on a pool
of M elite solutions (M = 24). Although PAR-1P also shares information, it only records
one elite solution. Therefore, the degree of diversity is smaller than in PAR-MP, possibly
leading the workers to search the same region and, consequently, taking longer to converge
to the target.

Results in Table 1 have shown that the PAR-MP implementation found better solu-
tions than those obtained by the three other parallel implementations for three instances.
Table 7 summarizes the results obtained by PAR-MP and gives the average overall com-
putation times (based on �ve executions), in seconds, required to �nd the new solutions
using 24 processors and the relative improvement with respect to the best solutions found
by the other parallel implementations (i.e. the medium targets). We notice that the so-
lution obtained by PAR-MP for instance circ18 is also the best known solution for the
corresponding instance of the non-mirrored version of the TTP. Nevertheless, PAR-MP
still requires just under six hours on average to �nd the solution.

The following experiment addresses the robustness of the parallel implementations from
another point of view. Compared to the times needed by version PAR-MP to �nd the hard
targets, we investigate whether PAR-I, PAR-O, and PAR-1P can also manage the same
feat. Given the time taken by PAR-MP to �nd the best known solutions reported in the
Table 7, the other parallel versions PAR-I, PAR-O, and PAR-1P were allowed to run for
approximately twice this time, again using 24 processors. The values of the best solutions
found by each version for each instance are presented in Table 8. These results show
that the other parallel implementations were not able to �nd solutions as good as those
obtained by PAR-MP, even if signi�cantly more processing time is given, illustrating the
e�ectiveness of the cooperation scheme implemented in the latter.

We used time-to-target solution value plots [1, 2] for the measured computation times to
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Table 3: Average computation times in seconds to �nd the easy targets on eight, 16, and
24 processors (PAR-1P and PAR-MP parallel versions).

Sequential PAR-1P PAR-MP
Instance P = 1 P = 8 P = 16 P = 24 P = 8 P = 16 P = 24
circ8 0.87 0.19 0.16 0.12 0.19 0.15 0.11
circ10 197.64 26.31 17.04 15.97 26.31 17.04 15.96
circ12 4.48 1.33 0.39 0.35 1.33 0.38 0.34
circ14 3.46 0.65 0.53 0.52 0.65 0.53 0.51
circ16 413.73 55.30 33.93 24.45 55.31 33.94 24.50
circ18 175.14 24.73 21.96 13.60 24.70 23.96 13.62
circ20 800.94 106.34 70.50 43.47 106.30 70.47 43.46
nl8 0.79 0.17 0.10 0.08 0.16 0.08 0.07
nl10 453.54 113.21 39.01 19.52 125.43 39.05 19.51
nl12 22.13 3.91 1.61 1.33 3.91 1.64 1.33
nl14 33.23 5.85 4.80 4.35 5.84 4.80 4.34
nl16 1433.05 323.33 236.36 73.59 322.27 223.61 73.54
br24 156.32 33.99 25.29 20.23 30.77 23.71 16.55

further evaluate and compare the behavior of the four parallel versions running on di�erent
numbers of processors. This approach is based on plots showing empirical distributions
of the random variable time-to-target solution value. To plot the empirical distribution,
we �rst �x a given problem instance and a target solution value. Next, each algorithm is
executed N times, recording the running time to �nd the �rst solution as least as good as
the target value. For each algorithm, we associated with the i-th sorted running time ti a
probability pi = (i− 1

2)/N and plot the points zi = (ti, pi), for i = 1, . . . , N .
Figure 2 displays the empirical distributions of the time-to-target solution value for the

four parallel versions associated with the instance nl16 and the target cost of 284000 (a
value between the easy and medium target), obtained from N = 200 independent runs of
each version on P = 8 processors. Version PAR-MP behaves better than the other versions,
�nding the target value in less than 1,400 seconds with probability 95% compared to 2,445
seconds with the same probability for the next fastest amongst the others (PAR-1P).
PAR-MP took at most approximately 1,500 seconds in the slowest run, while PAR-1P
took more than 4,300 seconds in the worst run. The behavior depicted in this plot is
common to di�erent instances and target values. The plot of the empirical distribution
associated with the PAR-MP strategy is clearly to the left of those of the other versions,
illustrating that the former is more robust since it is able to �nd with higher probabilities
the same solutions found by the others in the same computation time.

The plot in Figure 3 further illustrates the scalability of the parallel version PAR-MP,
as already shown in Tables 2 and 3. This plot depicts the empirical distributions for four,
eight, 16, and 24 processors, obtained from N = 200 runs on instance br24 using the easy
target.
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Table 4: Speedups on eight, 16, and 24 processors (PAR-I and PAR-O parallel versions).

PAR-I PAR-O
Instance P = 8 P = 16 P = 24 P = 8 P = 16 P = 24
circ8 3.23 5.69 5.87 3.28 5.70 5.95
circ10 7.50 10.79 12.37 7.51 10.79 12.38
circ12 3.37 4.02 8.21 3.39 4.03 8.21
circ14 3.99 4.21 4.74 4.00 4.72 4.74
circ16 7.32 12.20 16.70 7.31 12.18 16.71
circ18 4.06 5.83 12.87 4.05 5.84 12.86
circ20 4.52 9.65 18.42 4.53 9.64 18.43
nl8 3.51 9.36 9.68 3.61 9.38 9.72
nl10 4.01 11.62 23.24 4.01 11.62 23.25
nl2 5.23 12.09 16.56 5.23 12.12 16.63
nl4 6.25 6.93 7.65 6.24 6.93 7.64
nl6 3.02 5.89 19.47 3.02 5.89 19.48
br24 3.83 4.62 5.38 3.86 4.64 5.40
average 4.60 7.91 12.40 4.62 7.96 12.41

7 Grid implementation and experiments

Numerous scientists and engineers, from diverse scienti�c and technological �elds, are show-
ing interest in exploiting the potential of grid computing. This section brie�y highlights a
number of observations with respect to executing metaheuristics on a computational grid.
For performance evaluation purposes, the experiments presented earlier in Section 6 were
necessarily obtained with exclusive access to a dedicated cluster of processors, since grids
are inherently shared computing environments. This sharing, together with the fact that
grid resources are heterogeneous, means that the computing power available from resources
is neither identical nor constant.

As computational environments scale to hundreds of individual computational re-
sources, failures are more likely to occur especially during the execution of long-running
applications. Users naturally want their programs to adapt to both faults and changes in
available performance in order to continue executing e�ciently. While the current imple-
mentations of MPI are suitable for use in the static environments like computing clusters,
in practice they are not robust enough for computational grids. For example, grid enabled
implementations of MPI do not provide support for dynamic rescheduling of processes.
Furthermore, a single process failure will cause the whole application to abort.

In an e�ort to hide the intricacies of grid environments, grid engineers have been devel-
oping grid middleware (an intermediate layer of software) to provide tools which insulate
users from the underlying complexities, and management systems, that automatically and
e�ciently adapt grid-enabled applications to the dynamically changing characteristics of
the grid.

The EasyGrid AMS middleware [6] provides for a robust and e�cient execution of
programs in grid environments. Parallel MPI applications are transformed automatically
into system-aware versions by incorporating grid middleware into the user's application
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Table 5: Speedups on eight, 16, and 24 processors (PAR-1P and PAR-MP parallel ver-
sions).

PAR-1P PAR-MP
Instance P = 8 P = 16 P = 24 P = 8 P = 16 P = 24
circ8 4.62 5.64 7.40 4.63 5.65 7.51
circ10 7.51 11.60 12.37 7.51 11.60 12.39
circ12 3.38 11.64 12.67 3.38 11.58 13.07
circ14 5.30 6.50 6.54 5.29 6.54 6.57
circ16 7.48 12.19 16.92 7.48 12.19 16.89
circ18 7.08 7.98 12.87 7.09 7.31 12.86
circ20 7.53 11.36 18.42 7.53 11.37 18.43
nl8 4.80 8.23 9.58 4.99 9.90 9.95
nl10 4.01 11.63 23.24 3.62 11.62 23.25
nl2 5.66 13.75 16.59 5.67 13.50 16.64
nl4 5.68 6.92 7.65 5.68 6.92 7.66
nl6 4.43 6.06 19.47 4.45 6.06 19.49
br24 4.60 6.18 7.73 5.08 6.59 9.45
average 5.54 9.21 13.19 5.57 9.29 13.40

Table 6: Computation times in seconds to �nd solutions at least as good as the medium
targets.

Instance Target PAR-I PAR-O PAR-1P PAR-MP
circ10 272 5,768.81 4,650.31 7,209.82 3,725.68
circ16 984 5,366.12 735.73 3,881.09 959.24
circ18 1308 9,323.88 8,565.20 13,972.76 10,620.86
nl16 280174 12,207.18 11,488.44 7,058.52 3,171.40
br24 503158 4,322.45 4,268.41 5,046.40 2,220.69

without modi�cation to the latter. These system-aware applications or Smart G-Apps are
adaptive, robust to resource failure (fault tolerant), self-scheduling programs capable of
reacting to changes which occur in shared, dynamic, unstable distributed environments
like computational grids.

This approach aims to relieve programmers and users of the task of enabling (existing)
applications to execute e�ciently in grid environments. Turning aspects related to the grid
transparent to the programmer avoids the need to develop one version of the application for
a local cluster computing platform and another for the grid. The methodology is based on
application-centric middleware which provides services (e.g. static and dynamic scheduling,
and integrated fault tolerance strategies) speci�cally tuned to the needs of each individual
application [22].

Given that the PAR-MP implementation produced the best results for the mTTP when
compared to the other parallel strategies, a grid enabled version of PAR-MP based on the
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Table 7: New best solutions obtained by the parallel version PAR-MP.

Instance New best solution cost Improvement (%) Time (s)
circ16 978 0.61 4,690.83
circ18 1306 0.15 20,883.81
nl16 279618 0.20 14,586.73

Table 8: Solutions found by PAR-I, PAR-O, and PAR-1P when executed for twice the
time taken by PAR-MP.

Instance Time (s) Target PAR-I PAR-O PAR-1P
circ16 10,000 978 984 984 984
circ18 40,000 1306 1308 1308 1308
nl16 30,000 279618 280174 280174 280174

EasyGrid AMS was evaluated in a real grid environment. Grid Sinergiacomputational grid
is an initiative to create and operate a research oriented, production level computational
grid across three states (Rio de Janeiro, São Paulo, and Espírito Santo) in the south east
of Brazil. The objectives include providing researchers with a realistic and practical envi-
ronment for distributed computing research and o�ering system administrators practical
experience in management and operation of grid computing environments. Grid Sinergia
currently employs the Globus Toolkit middleware [3] across the participating sites which
are interconnected by the Brazilian National Research Network's experimental high speed
(10Gbit) optical network Rede Giga.

An initial experiment was carried out employing 82 resources from the following three
sites of Grid Sinergia, located in three di�erent cities within the state of Rio de Janeiro:
(a) two clusters in the city of Rio de Janeiro, one with 30 Linux PCs (Pentium II 400
MHz) and the other with 24 Linux PCs (Pentium IV 1.7GHz), each of them connected by
a fast ethernet network; (b) in Niterói (a distance of 40 Km from cluster (a)), a cluster
of 26 Linux PCs (Pentium IV 2.6 GHz) interconnected via Gigabit switches; (c) and in
Petrópolis (approximate 100 Km from both clusters (a) and (b)) two Linux PCs (Pentium
IV 3.2 GHz).

Table 9 displays the average processing times (measured over �ve runs) in seconds
required to �nd a solution whose cost is at least as good as the corresponding medium
target, on the shared resources of the computational grid during the day (i.e. normal
working hours) and during the night (after working hours, the resources tend to be utilized
less). We notice that, although the resources were being shared with other users, the
practical bene�ts obtained with the computational grid were outstanding. For example, in
the case of instance circ18, for the medium target, an almost four fold improvement was
achieved by the grid with respect to the dedicated 24-processor cluster.
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Figure 2: Empirical distributions of the random variable time-to-target solution value for
the parallel versions PAR-I, PAR-O, PAR-1P, and PAR-MP using 8 processors on instance
nl16.

8 Concluding remarks

Metaheuristics have found their way into the standard toolkit of combinatorial optimization
methods. Parallel implementations of metaheuristics can be applied to hard combinatorial
optimization problems, often allowing reductions in computation times. Although inde-
pendent strategies can already obtain good computational results, parallelizations based
on cooperative search strategies lead to more robust implementations.

The computational results reported in this paper show that the sequential heuristic
for the mirrored traveling tournament problem bene�ts from low communication parallel
implementations, which are capable of �nding better solutions with respect to their sequen-
tial counterpart. In particular, the use of a pool of elite solutions o�ers a diversity of high
quality solutions from which workers can restart their searches for better solutions. The

Table 9: Average processing times of the parallel cooperative strategy PAR-MP when
executed in 82 resources from three sites of Grid Sinergia.

Time (seconds)
Instance Dedicated cluster Shared grid Shared grid

(24 CPUs) (82 CPUs, working hours) (82 CPUs, after hours)
circ10 3,725.68 1,077.38 333.48
circ16 959.24 747.94 513.63
circ18 10,620.86 2,376.76 2,313.73
data16 3,171.40 1,044.31 908.95
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Figure 3: Empirical distributions of the random variable time-to-target solution value for
the parallel version PAR-MP using 4, 8, 16, and 24 processors for the instance br24.

pool also provides a mean to implement cooperation and to achieve faster convergence.
Consistent speedups were obtained on experiments performed on a dedicated cluster

with up to 24 processors. The cooperative implementation PAR-MP obtained average
results systematically better than the others. In particular, it was able to improve the
hard targets to several instances and to disclose previously unknown solutions.

This parallel strategy was also implemented and tested using a true grid platform. We
reported original results from pioneer computational experiments on a shared computa-
tional grid formed by 82 machines distributed over four clusters in three cities, illustrating
the potential of the application of computational grids in the �elds of metaheuristics and
combinatorial optimization.

Given the above favorable results and the enormous potential of computational grids,
a broader investigation is underway, exploring the use of a signi�cantly larger number of
processors and investigating new programming challenges.
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