

ISSN 0103-9741

Monografias em Ciência da Computação

n° 38/05

Driving and Managing
Architectural Decisions

 with Aspects

Alessandro Fabricio Garcia
Thais Vasconcelos Batista

Awais Rashid
Cláudio Nogueira Sant’Anna

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900

RIO DE JANEIRO – BRASIL

 ii

 i

Monografias em Ciência da Computação, No. 38/05 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena 12, 2005

Driving and Managing Architectural Decisions with
Aspects*

Alessandro Fabricio Garcia1, Thais Vasconcelos Batista2, Awais Rashid1,

Claudio Nogueira Sant’Anna

1Computing Department, Lancaster University (UK)
2Computer Science Department, Federal University of Rio Grande do Norte (UFRN)

garciaa@comp.lancs.ac.uk, thais@ufrnet.br, marash@comp.lancs.ac.uk,

 claudio@les.inf.puc-rio.br

Abstract: Software architects face decisions every day which have a broadly-scoped
impact on the software architecture. These decisions are the core of the architecting
process as they typically have implications in a multitude of architectural elements and
views. Without an explicit representation and management of those crucial choices,
architects can not properly communicate and reason about them and their crosscutting
effects. The result is a number of architectural breakdowns, such as decreased
evolvability, time-consuming trade-off analysis, and unmanageable traceability.
Aspects are a natural way to capture widely-scoped architectural decisions and
promote software architectures with superior modularity.

Keywords: architectural decisions, modularity, composability, aspects.

Resumo: Arquitetos de software se deparam diariamente com decisões que têm um
amplo impacto na arquitetura de software. Essas decisões são essenciais para o
processo de definição da arquitetura, pois tipicamente têm implicações em muitos
elementos e visões arquiteturais. Sem uma representação explícita e gerenciamento
dessas decisões, os arquitetos não são capazes de comunicar e raciocinar sobre elas e
seus efeitos que entrecortam várias partes da arquitetura. Isso resulta em problemas
arquiteturais, tais como diminuição da facilidade de evolução, análise de custo-
benefício difícil de ser feita e dificuldade de gerenciamento da rastreabilidade.
Aspectos são um caminho natural para capturar decisões arquiteturais de amplo
escopo e promover arquiteturas de software com modularidade superior.

Palavras-chave: decisões arquiteturais, modularidade, facilidade de composição,
aspectos.

* This work has been sponsored by the Ministério de Ciência e Tecnologia da Presidência da

República Federativa do Brasil)

 ii

In charge for publications:
Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

 1

1 Motivation
Software architecture is a fundamental element of modern software systems. Architects
strive to develop adaptable architectures that are resilient in the face of changes
especially for systems in volatile business domains such as eCommerce, banking, and
telecommunications. In order to be adaptable, architectures must be modular. This
serves a twofold purpose. If architectures are modular one can reason about individual
architectural elements in isolation. This is termed modular reasoning [1]. At the same
time, the various modules need to relate to each other in a systematic and coherent
fashion to realize the intended architecture. Effective representation and specification
of such relationships makes it possible to reason about the architecture as a whole –
using the modular reasoning outcomes as a basis. We refer to this global reasoning as
compositional reasoning.

Existing software architecture design and analysis approaches are geared towards
supporting such modular and compositional reasoning. Architectural styles and
patterns [9], for instance, are based on the recognition of the effectiveness of specific
organizational principles and structures. This helps one to undertake compositional
reasoning about the elements deployed using a particular architectural pattern or style.
Similarly, the notion of architectural components and connectors supports modular
reasoning about individual architectural elements, i.e. the components, as well as
compositional reasoning based on their relationships captured by the connectors. The
Architecture Trade-off Analysis Method (ATAM) [3] supports modular reasoning by
building and maintaining both quantitative and qualitative models of various
competing quality attributes. These models are then composed to carry out
compositional reasoning for identifying trade-off points. The “4+1” view model [5]
separates an architecture into logical, process, physical, and development views,
derived from the various stakeholders’ perspectives. This makes it possible for an
architect to modularly reason about each of the views. A fifth view, the scenario or use
case view, shows how elements in the other views work together thus supporting
compositional reasoning.

Architectural decisions play a fundamental role in support of such modular and
compositional reasoning as they are the driving force behind the architecture
conception. They encompass critical architectural choices which have both structural
and behavioral implications for the various architectural elements and the architecture
we wish to reason about. It is, therefore, important to document architectural decisions
in a systematic fashion. Tyree and Akerman [6] motivate the need for such
documentation to support conveying of change, implications, rationale and options as
well as facilitate traceability and provide agile documentation. Our experience,
however, shows that documenting architectural decisions alone is not sufficient.
Architectural decisions have a broadly-scoped impact on the architecture.

Take, for instance, the “4+1” view of a software architecture that addresses several
broadly-scoped properties, such as availability. When attempting to understand the
availability-specific architectural decisions and their implications, an architect needs to
reason across the various views, i.e. the logical, process, physical, and development
views. This is because those availability decisions are likely to relate to multiple
elements across more those views. This is particularly challenging as architectural
decisions often lead to addition of new structure or behavior within a view. Since these
implications are scattered across various view elements and views themselves, it is

 2

difficult to undertake modular reasoning about a particular decision. Compositional
reasoning is even more challenging as one needs to understand the combined
implications of various architectural decisions spanning a multitude of elements across
several views.

This implies that, in addition to systematic documentation of a decision, it is
important to capture the additional behavior and structure it introduces into the
various elements in the views. Furthermore, it is important to provide a composition
mechanism that can quantify over the various elements in the views to compose such
additional behavior and structure. This would support an architect to undertake
modular reasoning about a decision and its implications. More importantly, by
systematically exposing the semantics of a decision’s compositional relationship with
architectural elements, we can support an architect to undertake compositional
reasoning about the combined implications and trade-offs of various architectural
decisions.

Our approach to providing such modular and compositional reasoning support is
based on the use of aspect-oriented software development (AOSD) techniques [8, 10].
AOSD techniques provide additional support for modular and compositional
reasoning by separating concerns that would otherwise be interspersed with other
concerns in a software system. We can see from Figure 1a that AOSD techniques make
it possible to modularize such concerns hence supporting modular reasoning about
them. At the same time, they provide a composition mechanism centered on the notion
of join points, which are effectively a composition interface exposed on part of the non-
aspectual elements of a system to facilitate aspect composition. Hence, the notion of a
join point model and the composition specification based on it facilitates compositional
reasoning about broadly-scoped properties in a system. Since decisions have a broadly-
scoped impact on the architecture they lend themselves as natural candidates to be
aspectized.

2 Aspects Driving Architectural Decisions
Software is no longer engineered using a rigid separation of development stages. With
the increasing adoption of iterative and agile methodologies, gone are the times when a
strict separation between requirements engineering, architecture, design,
implementation, and evolution was perceived as good practice. Key architectural
decisions may be taken as early as requirements engineering. This is particularly true
for COTS-based systems development where early risk analysis is important to
understand the implications of using components with different communication
mechanisms, data formats, etc.

Broadly-scoped concerns, whether functional or non-functional, e.g., availability,
security, performance, informational retrieval, etc., identified during requirements
engineering have important architectural implications. Aspect-oriented requirements
engineering techniques [7] make it possible to systematically identify, modularize,
represent, and compose such broadly-scoped concerns. Such techniques, therefore,
make it possible to modularly reason about such concerns as well as undertake
compositional analysis for early identification of trade-offs among them. These
broadly-scoped concerns and their mutual trade-offs provide early insights into the
various architectural decisions facing an architect. As shown in Figure 1b, these
concerns can be perceived to be various nodes of a lattice. Each concern leads to a set of
architectural decisions. The mutual trade-offs exerted by the concerns, and the

 3

decisions driven by them, pull the architecture in various directions. The decisions
need to be elaborated and represented in a modular fashion during architecture design.
Effective modular and compositional reasoning about such architectural decisions is
what helps the architect find the optimum point within the lattice where the final
system architecture, satisfying the stakeholders’ concerns, would reside.

Availability

Availability

Security

Performance

AOSD tools, techniques
and

methodology

Security

Performance

(a) Modular and compositional reasoning about broadly-scoped properties using AOSD. The

colored dots represent join points used by the various aspects that have been modularized. The
colored arrows are the composition specification using these join points.

Architecture

Availability

Security

Performance

(b) Architectural pull exerted by decisions pertaining to aspects. For simplification, we have only
highlighted three lattice nodes. Note that the lattice can have as many number of nodes as the

aspects found in the requirements specification.

Figure 1. AOSD and Architectural Decisions

3 Crosscutting Architectural Decisions
Although the explicit handling and representation of architectural decisions are of
paramount importance, they are not trivial tasks. Many decisions associated with
relevant architectural concerns are crosscutting by their very nature and, as result, they
need to be treated as such. They cut through the primary modularities of the
architecture description, which is often consisted of one or more views. An
architectural concern can affect several elements in an architecture description, such as

 4

components and their interfaces, relationships, processes, and also the decisions
associated with other concerns.

In order to understand these problems, consider the architecture of a context-
sensitive tour guide system. Figure 2 shows a partial description of the software
architecture for this example based on a component-and-connector view [2] and on
additional views from the “4+1” view model [5]. The upper left depicts a structural
diagram with the component-and-connector view. The visitors use a Navigator to
navigate through a tour, to create a customized tour, and to update information about
the navigation preferences. The Navigator component contacts the InformationRetrieval
component to recover information from the system. The Navigator also contacts the
ExternalServices component to connect the visitor to external services. The
LocationManager provides the identification of the current location of a visitor. This
identification is used by the InformationRetrieval component that provides tourist
information according to his/her current location. The TouristInfoManager allows the
tourist centre to update information in the system.

In this structural perspective of the tour guide architecture, it is also clear that the
decisions with respect to the availability requirement affect several points of the
architecture specification. Although availability-specific choices are somewhat
localized in the ReplicationManager component, they largely impact on the definition
of several interfaces and components, which do not have the primary purpose of
addressing availability issues. Availability-related decisions crosscut multiple
components, including InformationRetrieval, LocationManager, and
TouristInfoManager. As availability support requires the replication of critical
components and the consistency management of their replicas, specific components
and interfaces need to be created and added to those affected components. The
crosscutting phenomenon also involves other concerns, such as security and
performance.

The crosscutting manifestation leads to two major problems at the architectural
level, the so-called scattering and tangling. Architectural scattering is the manifestation
of architectural decisions, which belong to one specific concern, in several architectural
units encapsulating architectural decisions referred to other architectural concerns. For
example, the replication-related interfaces are scattered over multiple architectural
components, such as LocationManager, InformationRetrieval, TouristInfoManager
components (upper left of Figure 2). Architectural tangling is the mix of multiple
concerns together in the same architectural elements. For instance, tangling is evident
in the InformationRetrieval component since it is realizing an availability-related
interface in addition to its primary functionality of providing information.

As previously mentioned, there are some architectural aspects which bring deeper
problems to the software architects; they can even crosscut other architectural views in
addition to the structural view, as it is the case for the availability concern. The
availability-specific decisions are scattered and tangled within elements of other
concerns over the four architectural views. Availability requires not only the inclusion
of components, interfaces, and connectors (component-and-connector view), but also
the definition of two separate threads to manage both replication and consistency
(process view), the conception of the management layer together with other
supplementary managers (development view), and the distribution of replication
elements through different servers (physical view).

 5

Component-and-Connector View Development View

Physical ViewProcess View

Security
Performance

Availability

Legend:

C
on

ce
rn

s

Replication Manager
Module

Cryptograph Manager
Module

Location Manager
Module

Information Retrieval
Module

Navigator
Module

External Services
Module

TouristInfo Manager
Module

Performance Manager
Module

Replication Manager
process

Replica Controller
task

Consistency Controller
task

Navigator
process

TouristInfo
Manager process

External Services
process

Location Manager
process

Cryptograph Manager
process

Information Retrieval
process

Performance Manager
process

End-user computer

Location Manager
process

Information Retrieval
process

External Services
process

Navigator
process

Main-server

External Services
process

Replication Manager
process

Information Retrieval
process

TouristInfo Manager
Process

Cell-server 1

External Services
process

Replication Manager
process

Information Retrieval
process

Location Manager
process

Cell-server 2 Cell-server 3 Cell-server 4

Cryptograph Manager
process

Performance Manager
process

Cryptograph Manager
process

IR_Replica

LM_Replica

TIM_Replica

TouristInfo
Manager

Information
Retrieval

provide_info

Location
Manager

get_location

add_Info

remove_Info

modify_Info

External
Services

require_Serv

Navigator

navigate

Replication
Manager

Cryptograph
Manager

decrypt

crypt

Performance
Manager

checkRespTime

syncpri

syncpri

syncpri

syncsec

syncsec

syncsec

replicate

makeConsistent

set_nav_properties

ext_service

get_info

provide_Serv

provide_location

Figure 2. Tangling and Scattering in an Architecture Description

Traditional architectural approaches such as 4+1 view model [5], ATAM [3], tatics

[2], and architectural styles or patterns [9] have different complementary purposes.
However, they are not aimed at supporting the separate handling of crosscutting
architectural decisions as exemplified in Figure 2. It brings in turn a number of
substantial pitfalls, such as:

• Hindering of modular and compositional reasoning. Tangling and scattering of
decisions hinder both modular and compositional reasoning at the architectural
stage. The architects are unable to reason about an architectural concern while
looking only at its description, including its core decisions and structural and
behavioral implications. Hence its analysis inevitably forces architects to consider
all the architectural artifacts in an ad hoc manner. For example, the architects
treating the availability and security concerns in Figure 2 need to consult the
definitions and decisions associated with all other architectural concerns across all
the different views.

• Traceability is unmanageable. Many of the concerns in the requirements specification
entail crosscutting architectural decisions. The mapping of those concerns to the

 6

respective decisions is awkward as the developers do not have proper ways to
easily check whether and how the requirements are met in the software
architecture. For example, the association of availability-specific requirements with
their architectural implications is cumbersome and far from being trivial. This
obstacle makes it difficult to assess the goodness of the software architecture even
in the presence of a good requirements engineering process.

• Decreasing evolvability. Architecture degeneration is becoming very common in an
age where software systems are always changing. Architecture artifacts are often
key deliverables in the evolution process. As a consequence, the architects have
additional work to answer recurring questions: What happens if we decide to
change security-related components of our system? Has this decision been affected
by which architectural concerns? As a complex architecture probably reflects
thousands of crosscutting decisions, finding the answers for these questions is
naturally time-consuming, especially when the original architects are no longer
available.

• Loosing essential information. With traditional approaches, software architects are not
able to locally express the structural and behavioral implications of a given
architectural decision in several architectural elements and views. The result is that
important information is irrecoverable just because the lack of support for properly
specifying them. Not only the final choices can be lost, but also the crosscutting
rationale and competing options the architects considered.

• Reducing reuse possibilities. Tangling and scattering are two of the main anti-reuse
factors in the software lifecycle. The lack of a clear separation of concerns generates
undesirable burdens on architectural reuse. For example, software architects may
want to recycle, or at least remember, a comprehensive list of decisions and the
rationale associated with an architectural concern in posterior projects. It would be
certainly beneficial in order to empower software architects to reuse successful
crosscutting architectural choices from previous projects.

4 Capturing Architectural Decisions as Aspects
In the light of the mentioned problems, we conjecture that crosscutting architectural
decisions should be handled as separate architectural aspects. The idea is to have
proper abstractions to enable their representation as first-class elements, and also
provide the means to facilitate their further composition. Aspects were originally
conceived to address crosscutting concerns at the programming level [10]. It is then
natural to believe that the key for capturing crosscutting architectural decisions is
exploiting some AOSD concepts [8] at the architectural level.

Architectural aspects are units of modularity to capture the decisions associated
with broadly-scoped concerns, letting the architects to represent all the structural and
behavioral implications in a single place. Figure 3 shows templates to specify
architectural aspects with essential information to capture crosscutting decisions:

• name of the architectural aspect;

• structural and behavioral architectural decisions, such as the inclusion of
components, interfaces, relationships, processes, and so forth, which were made
with the sole purpose of contemplating issues related to the architectural aspect;

 7

• composition rules to describe how the crosscutting decisions with respect to this
architectural aspect affects other architectural elements and alternatively other
aspects;

• a reasoning section that captures the rationale behind those decisions.

The crosscutting decisions affect several architecture elements, which are named
architectural joint points. An architectural join point is an element of interest in the
software architecture description through which two or more architectural decisions
may be composed. Examples of join points are: a component, an interface, a process, an
architectural aspect, or even an architectural decision. Architectural composition rules
support the composition specification and enable compositional reasoning. They are
means of referring to collections of architectural join points and describing some
architectural decisions to be applied at those join points.

Figure 3 shows how to use the notion of architectural aspects to support the
modular description of the availability, security and performance concerns in our
running example. All the availability-specific decisions are clearly captured in the first
template, including the creation of a ReplicationManager and system replicas, and the
definition of two processes for controlling the system replicas and their global
consistency. The rationale behind the availability decisions are reported in the
reasoning section of the template. The reasons are related to structural and behavioral
decisions as well as the composition decisions. In a similar way, the security-related
and performance-related decisions are respectively isolated in the second and third
templates.

As a result, the template-based specification is a cohesive manner to describe those
broadly-influencing concerns which otherwise would be scattered and tangled over the
architecture description and its multiple views. Notice that this approach is general
and agnostic to different architectural representations that the software developers are
relying on, whether graphical or textual, such as ADLs (Architectural Description
Languages), UML-based or XML-based notations. The software architect can also use
the templates in conjunction with multiple architectural views, and any existing
notations for reflective design, where design rationale is extensively recorded [6]. In
fact, the template can be used to describe all the kinds of architectural decisions and
rationale, including assumptions, constraints, positions, arguments, status, and the
like.

 8

Aspect: Availability

Structural Decisions

Replication
Manager

replicate

make
Consistent

Replicasyncsec

Behavioral Decisions

Replication Manager
process

Replica Controller
task

Consistency Controller
task

 Aspect: Security

 Structural Decisions Behavioral Decisions

Cryptograph
Manager

decrypt

crypt

Cryptograph ManagerCryptograph Manager
processprocess

Composition Rules
crypt(Navigator.get_info, before)
decrypt(Navigator.get_info, after)
decrypt(InformationRetrieval.provide_info, before)
crypt(InformationRetrieval.provide_info, after)

Composition Rules
componentSet = InformationRetrieval, LocationManager,
TouristInfoManager.
replicaQuantity = 1
replicaSet = replicate(componentSet, replicaQuantity)
makeConsistent(replicaSet, componentSet)

 Reasoning
CryptographManager is responsible for encrypting and
decrypting information using the crypt and decrypt
interfaces. It affects the get_info service of the Navigator
component. The parameters of get_info are encrypted. The
encrypted solicitation is sent to the InformationRetrieval.
This component decrypts the data to identify the solicitation,
processes it, and encrypts the desired information before
sending them back to the get_info service. Then, the final
step is to decrypt the returned information.

Reasoning
ReplicationManager is in charge of replicating the critical
components through the replicate interface in order to
increase the availability of their provided services. N-
Version programming is the software replication technique
chosen due its implementation simplicity. Consistency is
achieved through the interface makeConsistent, which
synchronizes the replica results with the primary
component results; thus the unification of the results also
allows for other client components viewing the pairs of
primary and backup elements as a single component.
Each Replica component must provide a syncsec interface
to collaborate with the primary component before the result
of the component services are delivered to the client.
The ReplicationManager process is decomposed into two
processes, ReplicaController and Consistency Controller, in
order to decouple these two tasks.

 Aspect: Performance

Structural Decisions Behavioral Decisions

Performance
Manager

checkRespTime
Performance ManagerPerformance Manager
processprocess

Composition Rules
monitoredServices = navigate, ext_service, get_info.
checkRespTime(monitoredServices, during)
constrain(Availability.replicaQuantity <=2)

Reasoning
PerformanceManager is responsible for encapsulating a
timer and monitoring through checkRespTime the response
time of critical services of Navigator. Performance also
imposes an important upper bound in the number of replicas
(replicaQuantity) defined in the Availability aspect.

Figure 3. Modularizing and Composing Architectural Aspects

 9

5 Composing Architectural Decisions
Properly documenting the composition of architecture decisions is critical because
architects make them in complex environments and they involve trade-offs. The
architects can use a high-level composition language to facilitate the registration and
communication of broadly-scoped choices and enhance compositional reasoning.
Figure 3 shows how to work with a high-level language to describe those choices as
architectural composition rules. The naming of the architectural decisions is intuitive as
it actually captures the architectural operation associated with the crosscutting
decisions.

For example, the third composition rule in the first template (Figure 3), named
replicate, captures the fact that a list of architectural components should be replicated
due to availability purposes. Auxiliary declarations can be made in order to facilitate
the quantification process, such as the use of componentSet and replicaSet. The first
rule uses componentSet to quantify the architectural join points affected by the
replicate decision. Those points are critical components to be duplicated with different
implementation versions, namely InformationRetrieval, LocationManager, and
TouristInfoManager. The rule makeConsistent abstracts the process of including
architectural elements to address the consistency of the primary components and their
replicas.

To facilitate the composition of architectural decisions, the rules can pick out
different types of architectural join points, such as interfaces or even rules defined in
other architectural aspects. Figure 3 shows the crypt and decrypt decisions in the
security aspect affect interfaces of Navigator and InformationRetrieval. The third rule of
the performance aspect, named constrain, influences an availability rule that specifies
the number of replicas. This rule represents a recurring scenario faced by software
architects: several aspectual decisions affect each other. The aspect-oriented templates
promote composition interfaces that allow for the architect to make it explicit the
relationships and mutual influences of broadly-scoped concerns, which are not easily
captured in traditional architectural views. In fact, this architectural constraint
involving performance and availability components was not explicitly represented by
any of the views in Figure 2. Some behavioral information can also be part of the
composition rules. For instance, the specification of the security aspect also includes
“when” the crypt and decrypt decisions should actuate over specific architectural
elements, i.e. “before” and “after” requests of services of Navigator and
InformationRetrieval.

As previously mentioned, architectural aspects can influence decisions made in
several views. The architect may want now to review together the crosscutting
decisions and the architectural views with the rest of the project team and the project
stakeholders. Hence once the architectural aspects have been defined, the actual effect
of the decisions in the multiple views may need to be specified and analyzed. The next
alternative step then would be to use underlying composition mechanisms to support
the mapping of aspectual decisions in terms of elements of the other architectural
views. Those mechanisms can rely on mapping rules that simply translate the
aspectual decisions in terms of the corresponding elements in the architectural views.
Figure 4a shows how those mapping rules could be applied for mapping availability,
security, and performance decisions to elements of a component-and-connector view.
A similar mapping process could be carried out for the other architectural views.
Figure 4b shows a table with a foundational set of mapping rules.

 10

Component-and-Connector View

IR_Replica

LM_Replica

TIM_Replica

TouristInfo
Manager

Information
Retrieval

provide_info

Location
Manager

get_location

add_Info

remove_Info

modify_Info

External
Services

require_Serv

Navigator

navigate

Replication
Manager

Cryptograph
Manager

decrypt

crypt

Performance
Manager

checkRespTime

syncpri

syncpri

syncpri

syncsec

syncsec

syncsec

replicate

makeConsistent

set_nav_properties

ext_service

get_info

IR_Replica

LM_Replica

TIM_Replica

TouristInfo
Manager

Information
Retrieval

provide_info

Location
Manager

get_location

add_Info

remove_Info

modify_Info

External
Services

require_Serv

Navigator

navigate

Replication
Manager

Cryptograph
Manager

decrypt

crypt

Performance
Manager

checkRespTime

syncpri

syncpri

syncpri

syncsec

syncsec

syncsec

replicate

makeConsistent

set_nav_properties

ext_service

get_info

constrain(Availability.replicaQuantity <=2)
checkRespTime(monitoredServices, during)

monitoredServices = navigate, ext_service, get_info.
Forall S in monitoredServices

Connect PerformanceMan.CheckRespTime to Navigator.S [during]

Performance

Crypt(Navigator.get_info, before)
Decrypt(Navigator.get_info, after)

DeCrypt(InformationRetrieval.provide_info, before)
Crypt(InformationRetrieval.provide_info, after)

Connect CryptographManager.Crypt to Navigator.get_info [before]
Connect CryptographManager.Decrypt to Navigator.get_info [after]
Connect CryptographManager.Decrypt to InformationRetrieval.provide_info [before]
Connect CryptographManager.Crypt to InformationRetrieval.provide_info [after]

Security

replicateSet = replicate(componentSet, replicaQuantity)
makeConsistent(replicaSet, componentSet)

Availability
ComponentSet = InformationRetrieval, LocationManager, TouristInfoManager
Add constrain replicaQuantity=1 to ReplicationManager
Forall C in ComponentSet

Create Replica(replicaQuantity)
ReplicaSet = IR_Replica, LM_Replica, TIM_Replica
Forall C in ComponentSet

Add interface syncpri to C
Forall R in ReplicaSet

Add interface syncsec to R
Connect Information_Retrieval.syncpri to IR_Replica.syncsec
Connect Location_Manager.syncrpri to LM_Replica.syncsec
Connect TouristInfoManager.syncpri to TIM_Replica.syncsec

(a) The Effects of Architectural Aspects in the Component-and-Connector View

MAPPING RULE DESCRIPTION

Add <elem_type > <elem_name1 [=value]>
to <elem_name2>

introduces an architectural element of type <elem_type> and
name <elem_name1>, optionally set its value, to other
architectural element <elem_name2>

Modify <elem_name1> to
<elem_name2|value>

changes the semantics of an architectural element by
modifying its name from <elem_name1> to <elem_name2>
or setting a new value to <elem_name1>

Remove <elem_type> <elem_name1> from
< elem_namet2>

removes an architectural element of type <elem_type> and
name <elem_name1> from other architectural element
<elem_name2>

Split <elem_type > <elem_name> into
<elem_name_list>

separates an architectural element of type <elem_type> and
name <elem_name> into two or more elements defined in
<elem_name_list>

Unify <elem_type ><elem_name_list> into
<elem_name>

groups two or more architectural elements defined in
<elem_name_list> in the architectural element
<elem_name>

Connect <elem_name1> to <elem_name2> defines a relationship between the elements <elem_name1>
and <elem_name2>

Disconnect <elem_name1> from
<elem_name2>

removes a relationship between the elements <elem_name1>
and <elem_name2>

(b) Mapping Rules

Figure 4. Mapping Architectural Aspects to Architectural Views

 11

6 What are the Benefits?
In the beginning, we identified numerous problems in conventional architecture-
centric development approaches. By aspectizing crosscutting architectural decisions,
we were able to address those issues and bring additional benefits:

• Promoting modular and compositional reasoning of architectural decisions. With
aspectual templates architects can reason about the otherwise crosscutting concerns
in isolated and combined manners. In fact, the template sections describing the
reasoning and the composition rules are more than just simple decisions – they also
communicate the compositional rationale, and from were the structural and
behavioral decisions came from.

• Ease of traceability. Architectural aspectization lets you trace decisions back to
concerns in requirements (such as, availability, performance, and security). It also
improves the identification of candidates to design and implementation aspects,
linking them with their counterparts in the design and implementation artifacts.
Moreover the composition rules inform the design team that those architectural
elements are potential structures and behaviors to be modularized as design and
implementation aspects.

• Enhancing evolvability. In architectural evolution processes, the aspectual templates
let architects by and large know the effects the previous design decisions had in the
evolving system. Without such an explicit handling of architectural choices, the
evolution process would likely lead to the violation of relevant crosscutting
assumptions and influences that were not properly documented just because there
was no proper support for their expression.

• Promoting knowledge management and reuse. An aspect-oriented approach enriches
the knowledge embedded in architectural models. We explicitly model the
implications of broadly-scoped properties, in the same way we model components,
interfaces, processes, or a design space of possible architectural solutions. This
externalizes architectural knowledge present in a development team or
organization, and is the basis for reuse.

• Achieving Simplicity. Anybody can read the templates and respective composition
rules in Figure 3, and understand how the team developed them. The architects do
not need to change the way that they work while expressing architectural aspects.
The aspectual templates can be seen as a complementary architectural view in
addition to the views commonly used by the architects.

7 Aspectization of Software Architectures: Where Do We Go
From Here?

The importance of software architecture to the software development process is now
widely recognized. Nowadays companies rely on architectural design reviews as
critical points. Architects recognize the importance of making explicit tradeoffs within
the architectural design space. However, the management of broadly-scoped
architectural concerns is still made in an idiosyncratic fashion, with limited support for
their modular and compositional reasoning. The next 10 years of research on software

 12

architecture will certainly have to face this problem. The marriage of software
architecture and aspect-orientation is a key to address this challenge at different levels:

Identification and modeling of architectural aspects and their crosscutting
decisions. The crosscutting nature of architectural decisions can manifest in several
ways. As a result, architectural aspects require proper mechanisms and notations to
identify, represent, and compose them.

An aspect-oriented architectural view. As the architecture of a system are
represented by several views, each providing a distinct perspective of the system, the
crosscutting concerns must be also modularly represented in the multi-view scenario.
An aspect-oriented architectural view and the provision of multi-view “weavers”
(which automate their composition) can simplify the architecting process and give a
better picture of the system overall structure.

Aspectization of ADLs. There is a need for development of methodologies and
tools to bridge the gap between the decisions specification and the ADL-based artifacts
in order to maintain the integrity of architectural decisions. How to represent the
architectural decisions at the ADL level? Although recently various proposals [4] that
integrate aspect-orientation and ADLs have been emerged, they do not cope with
crosscutting architectural choices. Some works extend the component-connector
abstraction to represent architectural aspects and composition rules as first-class
elements. Others include this concept inside the component-connector abstraction.

Assessing Aspect-Oriented Software Architectures. It is almost always cost-
effective to assess the crosscutting design choices as early as possible in the life cycle.
Thus, to foster the benefits of more modular software architectures, we also need
architecture design analysis methods to evaluate if the architecture reflects a proper
modularization and composition of architectural aspects. Traditional methods for
architecture assessment, such as ATAM, can be extended to deal with those issues.

To address these challenges we can benefit from current notations, methodologies,
languages, and tools and go a step further by adapting them to the new dimension of
architecture design – the architectural crosscutting concerns and their composition. The
adaptation of existing methodologies and tools avoid the need of the industry to deal
with the burden of adopting new products in order to take advantage of the benefits of
separation of concerns at the architectural level.

8 Conclusions
Architectural decisions are in the heart of the software development process because
they provide the bridge between the problem space and the solution space. The
promotion of modular and compositional reasoning about architectural decisions is
essential to help software developers to understand if they got an architecture right
according to their requirements. It is also a critical success factor for further system
design and implementation. However, the broadly-scoped nature of early design
choices imposes a number of problems to software engineers. In fact, architectural
crosscutting concerns are even more challenging than implementation crosscutting
concerns. While the latter typically impacts a single artifact (source code) often based
on a single programming language, crosscutting concerns at the architectural level
impacts a multitude of views with heterogeneous representations. Using only
conventional approaches architects often get in trouble because important influences
are scattered and tangled in the architectural views.

 13

Based on our experience, AOSD techniques can certainly help organizations to
improve their state of practice of software architecture. They support software
architects with enhanced modular and compositional reasoning, which are imperative
throughout all the software development phases. They also complement existing
architecture-centric development approaches, both upstream and downstream.
Upstream, aspect-oriented abstractions provide a natural way to modularize and
compose decisions that are directly influenced by broadly-scoped concerns coming
from the requirements. At the same time, downstream, explicit representation of
architectural aspects facilitates the satisfaction of top-level crosscutting decisions at the
detailed design and implementation stages.

9 References
[1] KICZALES, G.; MEZINI, M. Aspect-Oriented Programming and Modular
Reasoning. Proc. of ICSE’05, May 2005.

[2] BASS, L.; CLEMENTS, P.; KAZMAN, R. Software Architecture in Practice. Addison
Wesley, 2nd Edition, 2003.

[3] CLEMENTS, P.; KAZMAN, R.; KLEIN, M. Evaluating Software Architectures:
Methods and Case Studies. Addison Wesley, 2002.

[4] CUESTA, C.; et al. Architectural Aspects of Architectural Aspects. 2nd European
Workshop on Software Architecture (EWSA), LNCS 3527, pp. 247-262, 2005.

 [5] KRUCHTEN, P. Architectural Blueprints – The “4+1” View Model of Software
Architecture. IEEE Software 12 (6), November 1995, pp. 42-50.

[6] TYREE, J.; AKERMAN, A. Architecture Decisions: Demystifying Architecture. IEEE
Software, March/April 2005, pp. 19-27.

[7] RASHID, A.; MOREIRA, A.; ARAÚJO, J. Modularization and Composition of
Aspectual Requirements. Proceedings of AOSD 2003, pp. 11-20.

[8] FILMAN, R.; et al. Aspect-Oriented Software Development. Addison-Wesley, 2004.

[9] SHAW, M.; GARLAN, D. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall. 1996

[10] KICZALES, G.; et al. Aspect-Oriented Programming. In Proc. of ECOOP, pp. 220–
242, 1997.

