

ISSN 0103-9741

Monografias em Ciência da Computação

n° 42/05

Toward Real-world Trust Policies

Vinicius da Silva Almendra
Daniel Schwabe

Marco Antonio Casanova

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900

RIO DE JANEIRO - BRASIL

 i ii

Monografias em Ciência da Computação, No. 42/05 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena December, 2005

Toward Real-world Trust Policies *
Vinicius da Silva Almendra, Daniel Schwabe,

Marco Antonio Casanova
almendra@inf.puc-rio.br, dschwabe@inf.puc-rio.br, casanova@inf.puc-rio.br

Abstract. The increasing reliance on information gathered from the Web and other
Internet technologies (P2P networks, e-mails, blogs, wikis, etc.) raises the issue of trust.
Trust policies are needed to filter out untrustworthy information. This filtering task can
be leveraged by the increasing availability of Semantic Web metadata describing re-
trieved information. It is necessary, however, to adequately model the concept of
trustworthiness; otherwise one may end up with operational trust measures that lack a
clear meaning. It is also important to have a path from one’s trust requirements to con-
crete trust policies through Semantic Web technologies. This paper proposes a classical
logic model for trust policies, grounded on real-world models of trust, and some guide-
lines to map trust requirements to trust policies. It also presents the implementation of
a case study using Prolog.

Keywords: Semantic Web, Trust Policies, Trust Model.

Resumo. A crescente dependência de informações obtidas através da Web e de outras
tecnologias da Internet (redes P2P, correio eletrônico, blogs, wikis, etc.) levanta a ques-
tão da confiança. Políticas são necessárias para descartar informação não-confiável. Es-
ta tarefa pode ser alavancada pela crescente disponibilidade de metadados descreven-
do as informações obtidas. É necessário, no entanto, modelar adequadamente o concei-
to de confiabilidade; caso contrário, pode-se terminar com medidas de confiança ope-
racionais sem uma semântica clara. Também é importante prover um caminho dos re-
quisitos de confiança a políticas de confiança concretas, passando pelas tecnologias da
Web semântica. Este artigo propõe um modelo baseado em lógica clássica para políti-
cas de confiança, apoiado em modelos de confiança do mundo real, e algumas pautas
para mapear requisitos de confiança em políticas de confiança. Também apresenta a
implementação de um estudo de caso usando Prolog.

Palavras-chave: Web Semântica, Políticas de Confiança, Modelo de Confiança.

* This work has been sponsored by the Ministério de Ciência e Tecnologia da Presidência da Repúbli-

ca Federativa do Brasil.

 iii

In charge for publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

 1

1 Introduction

One of the great challenges of the Web is the problem of trust. Operational measures of
trustworthiness are needed to separate relevant and truthful data from those that are
not [Guha, 2004]. However, to be correctly interpreted, these measures must be linked
with real-world concepts of trust. They must also meet the trust requirements of their
users. Building on the trust concept found in [Gerck, 1998] and [Castelfranchi, 2001],
our work aims to pave the path leading from a user’s trust requirements to operational
trust policies that can be applied to Semantic Web data, while preserving the relation
between the resulting policies and the trust requirements we started with. This relation
is important as it enables the user to find out why a piece of data was found trustful.

We focus on the Semantic Web scenario, where an agent receives some data de-
scribed using Semantic Web metadata. The agent must decide which metadata can be
trusted and then decide if the data is trustful. Our contributions include a concept of
real-world trust policies, a model to represent these policies using classic logic and a
case study applying the proposed model in Prolog. It represents an improvement over
[Almendra, 2005].

In [Bizer, 2005] we find a similar work that describes a Semantic Web browser
which filters information based on trust policies that the user selects. It also offers ex-
planations of why each piece of information was trusted. This proposal offers facilities
to express trust policies as pieces of TriQL queries in such a way that it offers an expla-
nation of why a triple was found trustful. However, it does not address the problem of
building the trust policy. Our work deals with representing trust requirements as trust
policies that preserve real-world trust relationships.

Another similar work is [Nejdl, 2004], which presents an approach for building trust
among unknown agents by the exchange of credentials, or trust negotiation. A creden-
tial asserts that one or more entities hold some property (e.g. being a university stu-
dent). An agent is trusted when he can prove (through the exchange of credentials) that
he has certain properties, as defined by the other party. [Nejdl, 2004] uses logic clauses
(Guarded Distributed Logic Programs) to define trust policies. It also offers a concep-
tual framework for the trust negotiation process, which eases the task of building trust
policies.

In section 2 we describe the concept of real-world trust on which we based our
work. In section 3 we present a formal model to build trust policies following the con-
cept of trust shown in section 2. In section 4 we present a case study: an implementa-
tion of some trust policies using Prolog. In section 5 we conclude our work and point
future directions.

2 A Model of Trust

2.1 A Motivating Scenario

The scenario we focus on is based on the Semantic Web Publishing scenario [Carroll,
2004], the DBin project [Tummarello, 2005] and the Piggy Bank software [Huynh,
2005]. The Semantic Web Publishing scenario has agents embodying two roles: infor-
mation providers and information consumers. An information provider publishes RDF

 2

graphs, which contain information and its metadata, such as provenance, publishing
date, etc. An information consumer gathers these graphs and decides what to do with
them, provided that these graphs can be seen as claims of the information provider,
rather than definitive facts. The formal meaning of these claims, that is, what state-
ments about the world are being made, is given by a set of accepted graphs, which is a
subset of the graphs the information consumer receives. It is assumed that the agent
will act based solely on information contained in accepted graphs.

The Semantic Web Publishing proposal also enables the user to specify a trust pol-
icy, that is, a set of conditions that the received information should meet to be ac-
cepted. An example of a policy would be “trust all information that comes from direct
friends and is about computers”.

This scenario can be integrated with the one outlined in [Tummarello, 2005], which
is a P2P network where people exchange RDF graphs of interest and store all the re-
ceived graphs in a local database. Filtering can be applied to hide triples that do not
match the user’s criteria. One use for this is the implementation of trust policies. The
set of visible triples, which we call accepted triples, is similar to the set of accepted
graphs described above.

The Piggy Bank software shows a possible path to integrate the World Wide Web
and the Semantic Web, based on the idea of a browser extension that stores semantic
data collected from Web pages. This offers a scenario for trust policies, where an appli-
cation will analyze the trustfulness of metadata much in the same way a human ana-
lyzes the trustfulness of data (i.e. the Web pages).

These scenarios are only examples of possible uses of trust and trust policies within
the Semantic Web context. Other scenarios are possible, such as Semantic Social Desk-
tops [Decker, 2004].

2.2 A Concept of Trust

To build a suitable trust model, we start eliciting attributes of real-world trust, trying to
capture its essence. We do this based on [Gerck, 1998] and [Castelfranchi, 2001].

[Castelfranchi, 2001] defines trust in the context of multi-agent systems, where
agents are endowed with goals. In this context, he asserts that trust is “a mental state, a
complex attitude of an agent x towards another agent y about the behavior/action α
relevant for the result (goal) g. This attitude leads the agent x to the decision of relying
on y having the behavior/action α, in order to achieve the goal g.

[Gerck, 1998] presents a definition of trust as “what an observer knows about an en-
tity and can rely upon to a qualified extent”. This definition is closely related to the
previous one: the observer is the agent who trusts; the entity is trusted agent; the quali-
fied extent is the behavior/action. Both also link trust with reliance. However, the for-
mer definition mentions explicitly the goal-oriented nature of trust, which is an impor-
tant aspect, as agents lacking goals do not really need trust [Castelfranchi, 2001].

From both definitions, we observe that trust implies reliance: when an agent trusts
something, he relies on its truth to achieve some goal without further analysis – even if
he is running the risk of taking an inappropriate or even damaging action if the object
of trust is false.

Trust implies reliance, but not necessarily action. For example, John may trust
Mary’s bookstore without buying anything there, nevertheless, if John needs a book
and Mary offers it under good conditions of price, placement, payment etc., John will

 3

buy the book without further questions. At the same time, he may refuse to buy the
same book under better conditions at a bookstore that he does not trust. So, the trust
attitude comprises a “potential” relying action on the object of trust.

We may also ask what the object of trust is. In this case, it could be described as
“Mary’s bookstore is a good one”. John believes this and will act upon it when neces-
sary to achieve some goal; using the definition of [Gerck, 1998], John knows that
“Mary’s bookstore is a good one” and is relies on this. So, trust is particular form of
knowledge: a reliable knowledge.

However, there is another important question: how did John decide to trust Mary’s
bookstore? This is the problem of justification [Gerck, 1998]. [Castelfranchi, 2001]
grounds the trust decision on the beliefs of the trusting agent. In our example, John
may have decided to trust Mary’s bookstore because he believes Mary is an honest and
competent person and that the business runs under her strict control. If one of these
beliefs were absent, then John would not trust.

The problem is not solved yet, as we may ask where these beliefs come from. John
relies on those beliefs to take a decision (in this case, the decision to trust Mary’s book-
store), what characterizes John’s trust on those beliefs. So, the trust decisions may be
recursive: to trust Mary’s bookstore, John also has to trust that she is competent and
honest. Nevertheless, these trust decisions do not need to be simultaneous: John may
have decided to trust Mary’s competence many years before she had a bookstore.

There are some kinds of beliefs widely used to justify trust. One of these is the self-
trust belief: a person normally trusts facts that are evident to him. Provenance belief is
also an important one: when deciding the truthfulness of a statement, one of the first
questions is who stated it. In fact, the word statement implies a provenance: a state-
ment has been stated by someone.

The justification of trust based on beliefs links trust with belief revision: if some of
the beliefs that justified trust are discredited, trust may eventually be lost. If John dis-
covers that several friends bought defective books with Mary, the belief of competence
could be revised. Then, trust on Mary’s bookstore would become unjustified and might
be lost. This is a situation where new evidence hampers previously acquired trust, as
this trust was based on the assumption that Mary was competent. It might have been a
good assumption, but was shown to be false due to contradictory evidence.

Another characteristic is that trust is subjective: different agents may have different
beliefs, different goals and require different degrees of justification to trust something.
Continuing with the example, Mike might not trust Mary’s bookstore, as he beliefs she
is not competent, she does not know Japanese literature well and she does not worry
about the decoration of the bookstore. Here, we face contradictory beliefs and also dif-
ferent demands to consider a bookstore to be trustful. The difference between beliefs
may be due to the goals: John might be an occasional reader, while Mike is an artist
interested in Japanese culture. Note that this is not just a matter of opinions: both take
decisions based on these beliefs.

Trust also evolves with time: John may lose his trust on Mary’s bookstore even
without any change in his beliefs about her. At the same time, may start trusting air-
planes as a safe transportation means, again without any change is his beliefs about
airplanes. What changes herein these cases is the justification required for trustfulness.

 4

3 Formalizing Trust

3.1 Outline of a Trust Model

Based on the trust concept formulated above, we build an informal model of trust,
which comprises the following elements: facts, contexts, knowledge bases, trust poli-
cies, trust decisions, justification, beliefs and, trusting agents,

A fact is a statement about the reality, following the semantic of RDF triples. We
recognize that a triple’s interpretation demands a fourth element: the context [Guha,
2004b; Decker, 2005; Bizer, 2004]. Contexts help define the provenance of the facts (who
stated), the circumstances (date, time, reason, etc. [Marchiori, 2004]), and, more gener-
ally, help situating a fact in order to allow its correct interpretation.

The set of facts that an agent knows is its knowledge base. An asserted fact is a
known fact and a trusted fact is an asserted fact that can be trusted. For example, when
someone reads a newspaper, he may augment his knowledge base with several as-
serted facts, but he may only trust some of them (or none!).

A trust policy is a set of rules hat the trusting agent uses to test the trustfulness of a
fact. Different trusting agents may use different trust policies and, hence, they can
make different trust decisions, even when exposed to the same facts, characterizing the
subjective nature of trust. The same trusting agent may change his trust policy in order
to match his current goals. This characterizes trust dynamism.

A trust decision is the act of testing if an asserted fact meets a trust policy, that is, a
decision to rely on that fact’s truthfulness. A trust decision is in fact the process of find-
ing a deduction, which we call a justification, that the asserted fact can indeed be
trusted. Only trusted facts can be used in a justification. Here we go through a simplifi-
cation: we will use only classic logic, whereas in real world, people also reason with
uncertain facts.

3.2 A Formal Model

We will proceed to formalize the model outlined in the previous section, using definite
(horn) clauses to model trust policies. We will later discuss the introduction of “nega-
tion as failure” and its consequences.

We assume that the knowledge base of the trusting agent has a domain theory that
defines all predicates unrelated to the trust model.

Facts will be modeled as RDF triples (subject, predicate and object) plus a context, simi-
larly to other approaches [Carroll, 2004; Decker, 2005], yielding a quadruple. A context
may also be the subject of a fact. The knowledge base of the trusting agent contains a
set of unit clauses of the form assertedFact(S,P,O,C), which indicate that the fact having
subject s, predicate p, object o and context c is asserted.

A trust policy is a predicate that fulfills the following conditions:

• It evaluates facts, that is, it has the form policy(S,P,O,C), where policy is the name of
the trust policy and S, P, O, C are the components of a fact.

• It does not depend on facts that are asserted, but are not trusted.

• It asserts the truthfulness of a fact, given the current set of trusted facts of the trust-
ing agent.

 5

In other words, a trust policy is a predicate that asserts the truthfulness of a fact
based only on trusted facts or on the domain theory of the agent’s knowledge base.

An assertedFact(S,P,O,C) is trusted iff trustedFact(S,P,O,C) can be deduced from the
other trusted facts in the knowledge base and the trust policy adopted by the trusting
agent.

The following clause illustrates the use of a trust policy:

),,,(
),,,(),,,(

COPSpolicy
COPSctassertedFaCOPSttrustedFac

∧
←

The definition of a trust policy may use the predicate trustedFact to test if a fact is
trusted. The following example theory defines the trust policy policy using the predi-
cate trustedFact. Notice that this is a recursive policy: the definition of policy uses trust-
edFact, which in turn use policy, as in the following theory:

),,,(
),,,(

),,,(
)2,,,(

),,,(
),,,(

),,,(

21

1

12

21

myContextPersonknowsmyselfttrustedFac
ContextPersonenancesProvhaContextttrustedFac

ContextemailtypeDocumentpolicy
AnyContextonOrganizatiworksAtPersonttrustedFac
AnyContextonOrganizatiworksAtPersonttrustedFac

CPersonknowsPersonttrustedFac
CPersonworksWithPersonpolicy

∧
←

∧
∧

←

where variables are capitalized and constants are not.

The first clause states that the statement “Person1 works with Person2” can be trusted
if Person2 knows Person1 and they work at the same organization; the second clause
states that the statement “This document is an e-mail” can be trusted if the trusting
agent knows the provenance of the e-mail.

Trust policies can be used together, either in the same clause or in different clauses,
as in the following clauses:

),,,(),,,(
),,,(),,,(),,,(

41

321

COPSpCOPSp
COPSpCOPSpCOPSp

←
∧←

A trust policy P is elementary iff P is about the domain theory in the knowledge base
of the trusting agent. Hence, P must not use either the predicate trustedFact or other
trust policies

)(),,,(
)(),(

),,,(

1

1

PublinCorebelongsToDContextOPContextp
TodayateisCurrentDTodayDatenisOlderTha

CDatetecreationDaDocumentp

←
∧

←

The first clause states that the statement “this document’s creation date is Date” is
trustful if Date is a past date. The second clause states that a fact about its context is
trustful if the property belongs to Dublin Core ontology.

We can infer some important properties of this model for trust policies. The first is
the interdependence of facts: any non-elementary trust policy uses trusted facts; in this
case, trust in a fact is always dependent on trust in other facts.

When trust policies appear together in a clause and share the same variables, the re-
sulting trust policy will be the intersection of the sets of facts that would be trusted by
each of them. When policies appear in different clauses for the same trust policy, then
the result is the union of the sets of trusted facts.

 6

3.3 Using Negation

The use of definite (Horn) clauses to express trust policies restricts the use of negation.
Intuitively, only positive facts can be tested. This limitation can be overcome by the use
of negation as failure: the negation of a formula is true iff one cannot prove that for-
mula’s truth.

The use of negation as failure improves the expressiveness of the formalism, allow-
ing trust policies to reason with the absence of a trusted fact. A direct application of this
is capturing the notion of exception: trust something under some conditions, except
when a certain fact is trusted. For example, a person may trust financial reports coming
from any bank, except when there is a complaint coming from a friend about a particu-
lar bank. This is a common reasoning in daily life: trust based on the absence of con-
trary evidence.

However, negation as failure must be used with caution. Formally speaking, nega-
tion as failure is based on the closed world assumption: something that cannot be proven
is assumed to be false. In other words, there are no “unknown” facts. This is an opti-
mistic premise that may not be desirable when dealing with reliance.
Therefore, it is important for the user to understand whether this assumption is consis-
tent with his desired meaning for the policy, given its goals.

3.4 Building Trust Policies

The formal model described in Section 3.3 gives only a structure to build rules that jus-
tify trust. However, it would be interesting to describe how these rules could be built
in order to reflect real-world semantics. Towards this end, we propose some guidelines
elicited from the trust concept, as discussed in Section 2.

3.4.1 Representing Trust Policies

From now on we will use Prolog to represent trust policies, allowing a fast prototyping
and testing of trust policies. To do so, we will make the following mappings:

• Variables will be capitalized;

• Atoms will be used to denote URI’s. Note that atoms can be quoted, e.g.
‘foaf:knows’. To avoid cluttering, we will use namespaces or even just single words
to denote URI;

• The predicates assertedFact and trustedFact will be mapped to predicate terms
with the same name.

The following Prolog code shows an example with some facts and a simple trust
policy:

/* Asserted facts */
assertedFact(john,‘foaf:knows’,mary,my_context).
assertedFact(news1, ‘rdf:type’, ‘news:News’,news1_context).
assertedFact(news1_context,dc:creator,erick,my_context).

/* trustedFact predicate */
trustedFact(S,P,O,C) :- assertedFact(S,P,O,C), myCurrentPolicy(S,P,O,C).
myCurrentPolicy(_,_,_,my_context).
myCurrentPolicy(_,‘rdf:type’, ‘news:News’,C) :-
 trustedFact(C,dc:creator,_,my_context).

 7

3.4.2 Trust Policy Structure

The formal definition of trust policies is too wide to provide useful hints about build-
ing policies. In order to simplify this task, we propose a stricter structure.

Trust policies may be divided into composite policies and atomic policies. A compos-
ite policy is a trust policy built using solely other trust policies through union or
intersection. Any policy that does not fulfill this is an atomic policy: it uses the
predicate trustedFact and user-defined predicates. The code below exemplifies this.

/* Atomic policies */

/* Friendship must be reciprocal */
friends1(S, ‘foaf:knows’,myself,_) :-
 trustedFact(myself, ‘foaf:knows’,S,_).

/* The provenance of a context must be
 a person URI’s. Notice the use of
 user-defined predicates */
validContext(C,Provenance,O,C) :-
 isProvenancePredicate(Provenance),
 trustedFact(O,‘rdf:type’,Type,_),
 isPersonType(Type).

/* A person can state his friends */
friends2(S,‘foaf:knows’,_,C) :-
 trustedFact(C,‘dc:creator’,S,C).

/* Composite policies */
myPolicy(S,P,O,C) :-
 validFriendship(S,P,O,C),
 validContext(S,P,O,C).

validFriendship(S,P,O,C) :- friends1(S,P,O,C).
validFriendship(S,P,O,C) :- friends2(S,P,O,C).

In this example, all facts that fulfill the policies friends1 or friends2 also fulfill valid-
Friendship; and all facts that fulfill validFriendship and validContext also fulfill myPolicy.
This structure can be depicted as an and/or tree.

This division of policies into atomic and composite is arbitrary. However, it pro-
vides a segmentation of trust policies that can be used in a top-down approach (subdivi-
sion of trust policies until it is easy to define them atomically), or in a bottom-up ap-
proach (build atomic policies and then combine then to form more and more complex
policies).

This decomposition does not imply independence: the justification of a fact by one
policy may demand facts that are found trustful due to any other policy in the hierar-
chy of the trust policy used by the trusting agent, even facts unrelated with the policy
we started with. For example, the justification of a statement about a bank account may
require the name of the bank, which can be treated by a completely unrelated trust pol-
icy. This is a corollary of the property of interdependence of facts.

3.4.3 Building Atomic Policies

To further simplify atomic policies, we may break them into two pieces: its scope and its
justification. The scope is the set of facts whose trustfulness is evaluated by the policy.
In the code above, we see that policy friends1 only deals with facts whose predicate is
“foaf:knows” and whose object is “myself”. All other facts are not trustful (from this
policies viewpoint). So, we could describe the scope of this policy as being “statements
saying that somebody is my friend”. The most direct way to provide scope is to express

 8

the values of the fact’s components, as was done in the example. Nevertheless, predi-
cates could also be used, as shown in the policy validContext: the predicate isProve-
nancePredicate tests whether the predicate part of the fact is a “provenance predicate”.
Note that the scope provides an interesting hint for policy subdivision: trust policies
dealing with unrelated sets of facts (e.g., a trust policy about airplanes and food)
should be divided into policies about each one of these sets of facts.

The justification is the set of conditions imposed by the policy to accept a fact – that
is in the policy’s scope – as trustful. In the above example, the policy friends1 justifies
trust on facts (belonging to its scope) by testing whether or not the trusting agent is a
friend of the subject of the statement.

Justification is done based on beliefs (see Section 2.2). There are some beliefs ubiqui-
tous in trust policies: provenance and circumstances [Carroll, 2004; Bizer, 2004b]. These
beliefs can be translated into trusted facts about contexts. A discussion about represent-
ing provenance of RDF graphs using contexts can be found at [Castelfranchi, 2001]. In
the code above, we find an example of representing provenance: an asserted fact stat-
ing the creator of the context named news1_context. Circumstances can be represented
similarly: there can be statements asserting date, time, placement, reason etc., of a con-
text. It is even possible to have a hierarchy of contexts, where one contexts “inherits”
statements made about another. Nonetheless, this discussion is out of the scope of this
paper.

A particular case of provenance is when the source of a statement is the trusting
agent. Based on the self-trust belief, trust policies will accept these facts as trustful by
default. However, there is nothing in the model that obliges this: one may not trust
himself on some subjects, e.g. on fixing cars. A special context, like my_context, may be
used to represent self-provenance.

4 An Example & Case Study

4.1 Definition of the Trust Policies

We have tested the proposed model crafting an example trust policy and implementing
it as a logic program using XSB Prolog [Rao, 1997], as it gives a better support to recur-
sive predicates and to the use of negation in clauses.

The scenario is as follows. Andrew runs a small business: a web-based news clip-
ping service, daily updated. He relies heavily on Web and e-mail to obtain relevant
news. From the web he extracts news from news-related websites, blogs, discussion
lists, etc. From e-mail he receives information related to his job from friends, acquaint-
ances, sources and even from strangers. He is also interested in finding relationships
between people, as these relationships can be explored to gather more information for
his clippings.

Andrew cannot check thoroughly all the information he receives, as he does not
have time to do it in a timely fashion. On the other hand, his clients are concerned with
the quality of the news clippings. So, he has to rely on information provided by other
people, which he needs to trust.

Here trust policies can help: instead of making himself repetitive analysis to check
the veracity and truthfulness of the information, Andrew may delegate a substantial
part of this job to the computer.

 9

We will assume that Websites provide some degree of semantic information about
their content, that e-mails also carry semantic information related to the e-mail content
(FOAF profiles, for example), and that all this semantic content is stored in Andrew’s
knowledge base, which is available as RDF triples, plus a context. This context is
treated as a blank node that is the subject of metadata, like provenance (which can be a
person’s e-mail, the URL of a Web page or the Permalink of a blog’s post). Every time
some Semantic Web content is retrieved, a new context is built containing the above
information and it is assigned to all the retrieved triples.

Now we’ll follow the proposed guidelines to build trust policies that help Andrew
is his job. The first task is to identify the trusting agent. Although it seems obvious that
Andrew is, we could also think that Andrew’s clients are the trusting agents. Nonethe-
less, we will use with Andrew.

We can elicit two goals: prepare free clippings, which are placed is the news service
Website for free access, and prepare paid clipping, which will be sold to Andrew’s cli-
ents. These two policies may be decomposed using an and/or tree as depicted in
Figure 1.

The next step is to build the atomic policies. In Table 1 we show a possible specifica-
tion of the scope and the required justification for each atomic trust policy.

Figure 1. Policy decomposition

 10

Atomic Policy name Scope Justification required

provenancePolicy Provenance informa-
tion attached to con-
texts

None, as in this scenario
provenance information is at-
tached by Andrew

selfTrustPolicy Self-asserted informa-
tion

Facts must be in Andrew’s con-
text, which is a special context,
different from all others.

newsPolicy Statements about
news

Facts must come from a trusted
news source or from a friend.

emailPolicy Statements about e-
mails

Facts must come from friends
or from people Andrew usually
exchanges e-mails with and are
reachable through friendship
relation.

goodSourcePolicy All statements Facts must come from a person
who has at least two friends in
common with Andrew and is
not in Andrew’s black list.

Table 1. Andrew’s atomic trust policies

We can now proceed to map the policies to Prolog code. The description of the
composite trust policies (freeNewsPolicy and paidNewsPolicy) follows.

/* "Free News" policy */
freeNewsPolicy(S,P,O,C) :- provenancePolicy(S,P,O,C).

freeNewsPolicy(S,P,O,C) :- selfTrustPolicy(S,P,O,C).

freeNewsPolicy(S,P,O,C) :- newsPolicy(S,P,O,C).

freeNewsPolicy(S,P,O,C) :- emailPolicy(S,P,O,C).

freeNewsPolicy(S,P,O,C) :- contactInfoPolicy(S,P,O,C).

freeNewsPolicy(S,P,O,C) :- newsSourcePolicy(S,P,O,C).

/* “Paid news” policy */
paidNewsPolicy(S,P,O,C) :- freeNewsPolicy(S,P,O,C),
goodSourcePolicy(S,P,O,C).

paidNewsPolicy(S,P,O,C) :- selfTrustPolicy(S,P,O,C).

paidNewsPolicy(S,P,O,C) :- provenancePolicy(S,P,O,C).

Finally, we can go to the atomic trust policies. For sake of brevity, we will show only
some of them. Note that trust policy goodSourcePolicy uses negation as failure to test for
the absence of a fact.

 11

/* Policy used for trustful provenance data */
provenancePolicy(C,dc:creator,_,C).

/* Trust that something is news when
 its provenance is a news source */

newsPolicy(_,P,O,C) :-
 P = rdf:type, O ='ex:News',
 trustedFact(C,dc:creator,Provenance,C),
 trustedFact(Provenance,rdf:type,'ex:NewsSource', _).

/* Trust any property about trusted news
 when both belong to the same context */
newsPolicy(S,_,_,C) :- trustedFact(S,rdf:type,'ex:News',C).

/* A good source is one that shares at least
 two friends with myself and is not in my
 black list */
goodSourcePolicy(_,_,_,C) :-
 trustedFact(C, dc:creator, Source, C),
 trustedFact(myself, foaf:knows, P1, _),
 trustedFact(myself, foaf:knows, P2, _),
 trustedFact(P1, foaf:knows, Source, _),
 trustedFact(P2, foaf:knows, Source, _),
 P1 \= P2,
 not trustedFact(Source, rdf:type,'ex:BadSource', my_context).

4.2 Running Trust Policies

We have executed these policies for an ordered list of facts, simulating the situation
where Andrew visits Web pages, read e-mail, etc. and Semantic Web information is
collected in each activity. We tested with two policies, freeNewsPolicy and paid-
NewsPolicy. The results are summarized in Table 2.

The first column shows the events and their associated Semantic Web data, that is, RDF
triples plus a context. These data is inserted in the trusting agent’s knowledge base as
asserted facts. To save space, the context of the triples is stated only once in each event,
as all triples share the same context. The second and the third columns show the facts
that were found trustful with each policy. Note that each line shows only new asserted
facts and new trusted facts, as the previously asserted or trusted ones continue to be so.
An exception is shown in the last line, where the use of negation is paidNewsPolicy in-
troduces nonmonotonicity: the addition of an asserted fact causes previously trusted
facts to lose this condition.

5 Conclusions and Future Work

Our goal was to build a model to capture, represent and apply trust policies of an
agent in the scenario of Semantic Web, while preserving real-world semantics of trust.

We first outlined a model capturing relevant aspects of the trust concept, such as re-
liance, subjectivity, dynamism, justification, and then proceeded to building a formal
model for trust policies. We also presented some guidelines to create real-world trust
policies using that model. Finally, we presented an example of an implementation in
Prolog of trust policies using the formalism and the guidelines previously described.

The proposal outlined offers the possibility of building large trust policies using a
divide-and-conquer approach, where more complex policies are composed from sim-
pler ones. Another feature is the possibility to build trust policies incrementally.

 12

Event/facts Added Trusted fact with
freeNewsPolicy

Added Trusted fact with
paidNewsPolicy

Andrew starts his knowledge base
stating friendship relations.

(context=my_context)

myself foaf:knows John
myself foaf:knows Bob
John foaf:knows Adam
Bob foaf:knows Adam

myself foaf:knows John
myself foaf:knows Bob
John foaf:knows Adam
Bob foaf:knows Adam

myself foaf:knows John
myself foaf:knows Bob
John foaf:knows Adam
Bob foaf:knows Adam

Andrew receives an e-mail from Mary

(context=email_mary)

email_mary rdf:type ex:Email
email_mary dc:creator mary

email_mary dc:creator mary

(notice that it was not trusted as an e-
mail)

email_mary dc:creator mary

Andrew receives an e-mail from Adam
with FOAF information and with
information about a Website that is a
news source.

(context=email_adam)

email_adam dc:creator Adam
email_adam rdf:type 'ex:Email'
Adam foaf:knows mike
Reuters rdf:type 'ex:Website'
Reuters rdf:type 'ex:NewsSource'

email_adam dc:creator Adam

email_adam dc:creator Adam

Andrew states that Adam is his friend.

(context=my_context)

myself foaf:knows Adam

myself foaf:knows Adam
email_adam dc:creator Adam
email_adam rdf:type 'ex:Email'
Adam foaf:knows mike
Reuters rdf:type 'ex:Website'
Reuters rdf:type 'ex:NewsSource'

(note the interdependence of facts: these
trusted facts depended on friendship
with Adam).

myself foaf:knows Adam
email_adam dc:creator Adam
email_adam rdf:type 'ex:Email'
Adam foaf:knows mike
Reuters rdf:type 'ex:Website'
Reuters rdf:type 'ex:NewsSource'

Andrew visits Soccer blog.

(context=blog_data)

blog_data dc:creator soccer_blog
news_blog rdf:type 'ex:News'
news_blog dc:description "World cup
news"

blog_data dc:creator soccer_blog

blog_data dc:creator soccer_blog

Andrew visits Reuters web news service.

(context=reuters_data)

reuters_data dc:creator reuters
soccer_blog rdf:type 'ex:NewsSource'

reuters_data dc:creator reuters

reuters_data dc:creator reuters

Andrew reads an e-mail from Mike,
giving a hint about a blog with soccer
news.

(context=email_mike)

email_mike dc:creator Mike
email_mike rdf:type 'ex:Email'
soccer_blog rdf:type 'ex:Blog'
soccer_blog rdf:type 'ex:NewsSource'

email_mike dc:creator mike
email_mike rdf:type 'ex:Email'
soccer_blog rdf:type 'ex:Blog'
soccer_blog rdf:type 'ex:NewsSource'
news_blog rdf:type 'ex:News'
news_blog dc:description "World
cup news"

email_mike dc:creator mike

(Here the policies diverge: with
paidNewsPolicy, Mike is not considered
a good source)

Andrew has trouble working with Adam
and decides he is not a good source
anymore.

(context= my_context)

Adam rdf:type 'ex:BadSource'

Nothing happens The following statements will not be
trustful anymore:
email_adam rdf:type 'ex:Email'
email_adam rdf:type 'ex:Email'
Adam foaf:knows mike
Reuters rdf:type 'ex:Website'
Reuters rdf:type 'ex:NewsSource'

Table 2. Results of Trust Policy Application

The next steps in this work include giving explanations of why a fact was deemed
trustful, similarly to [Bizer, 2005]; a refinement of the guidelines for making trust poli-

 13

cies, possibly yielding a method; a deeper evaluation of the proposed formalism's
properties (expressiveness and computational complexity, among others), specially
when using negation as failure. We also plan to develop a case study in a realistic sce-
nario, such as Social Semantic Desktops and Semantic Web Browsing, with large trust
policies using RDF data.

References

ALMENDRA, V. S.; SCHWABE, D. Real-world Trust Policies. In: SEMANTIC WEB
AND POLICY WORKSHOP, held in conjunction with INTERNATIONAL SEMANTIC
WEB CONFERENCE – ISWC’05, 4., 2005, Galway, Ireland. Proceedings … Available at
< http://www.csee.umbc.edu/swpw/papers/almendra.pdf>. Visited December 13,
2005.

BIZER, C.; CARROLL, J. Modeling Context using Named Graphs. In: SEMANTIC WEB
INTEREST GROUP MEETING, 2004, Cannes. Available at
<http://lists.w3.org/Archives/Public/www-archive/2004Feb/att-0072/swig-bizer-
carroll.pdf>. Visited May 18, 2005.

BIZER, C.; OLDAKOWSKI, R. Using Context- and Content-Based Trust Policies on the
Semantic Web. In: INTERNATIONAL WORLD WIDE WEB CONFERENCE, Alternate
track papers & posters – WWW Alt.’04, 13., 2004, Hiroshima, Japan. Proceedings …
New York: ACM Press, 2004. p. 228-229.

BIZER, C.; CYGANIAK, R.; MARESCH, O.; GAUSS, T. TriQL.P - Trust Policies Enabled
Semantic Web Browser (2005). Available at <http://www.wiwiss.fu-
berlin.de/suhl/bizer/TriQLP/browser/>. Visited December 10, 2005.

CARROLL, J. J.; BIZER, C.; HAYES, P.; STICKLER, P. Named Graphs, Provenance and
Trust. Bristol: HP Laboratories, Digital Media Systems Laboratory, 2004. 16 p.
(Technical report HPL-2004-57).

CASTELFRANCHI, C.; FALCONE, R. Social Trust: A Cognitive Approach. In:
Castelfranchi, C.; Yao-Hua Tan, eds. Trust and Deception in Virtual Societies. New
York: Springer, 2001.

DECKER, S.; FRANK, M. R. The Networked Semantic Desktop. In: WWW2004
WORKSHOP ON APPLICATION DESIGN, DEVELOPMENT AND
IMPLEMENTATION ISSUES IN THE SEMANTIC WEB, 2004, New York. Proceedings
… CEUR-WS.org, 2004. Available at < http://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS//Vol-105/DeckerFrank.pdf>. Visited May 18,
2005.

DECKER, S.; SINTEK, M.; BILLIG, A. et al. TRIPLE - an RDF Rule Language with
Context and Use Cases. In: W3C WORKSHOP ON RULE LANGUAGES FOR
INTEROPERABILITY, 2005, Washington, DC, USA. Proceedings … W3C, 2005.
Available at < http://www.w3.org/2004/12/rules-ws/paper/98>. Visited December
13, 2005.

GERCK, E. Toward Real-World Models of Trust: Reliance on Received Information.
Available at <http://www.safevote.com/papers/trustdef.htm>. Visited May 16, 2005

GUHA, R. Open Rating Systems. In: Workshop on Friend of a Friend, Social
Networking and the Semantic Web, 1., 2004, Galway, Ireland. Proceedings … Available
 at <http://www.w3.org/2001/sw/Europe/events/foaf-
galway/papers/fp/open_rating_systems/wot.pdf >. Visited May 31, 2005.

 14

GUHA, R.; MCCOOL, R.; FIKES, R. Contexts for the Semantic Web. In
INTERNATIONAL SEMANTIC WEB CONFERENCE – ISWC’04, 3., 2004, Hiroshima,
Japan. Proceedings … New York: Springer, 2004. p. 32-46 .

HUYNH, D.; MAZZOCCHI, S.; KARGER, D. Piggy Bank: Experience the Semantic
Web Inside Your Web Browser. In: INTERNATIONAL SEMANTIC WEB
CONFERENCE – ISWC’05, 4., 2005, Galway, Ireland. Proceedings … New York:
Springer, 2005.

MARCHIORI, M. W5: The Five W's of the World Wide Web. In: INTERNATIONAL
CONFERENCE ON TRUST MANAGEMENT – iTrust’04, 2., 2004, Oxford, UK.
Proceedings … New York: Springer. p. 27-32.

NEJDL, W.; OLMEDILLA, D.; WINSLETT, M. PeerTrust: Automated Trust Negotiation
for Peers on the Semantic Web. In: WORKSHOP ON SECURE DATA MANAGEMENT
IN A CONNECTED WORLD – SDM'04, 2004, Toronto, Canada. Proceedings … New
York: Springer. p. 118-132.

RAO, P.; SAGONAS, K. F.; SWIFT, T.; WARREN, D. S.; FREIRE, J. XSB: A System for
Efficiently Computing Well-Founded Semantics. In: INTERNATIONAL
CONFERENCE ON LOGIC PROGRAMMING AND NON-MONOTONIC
REASONING – LPNMR'97, 4., 1997, Dagstuhl, Germany. Proceedings … New York:
Springer. p. 431-441.

TUMMARELLO, G.; MORBIDONI, C.; PULITI, P.; PIAZZA, F. The DBin Semantic Web
platform: an overview.
Available at <http://www.instsec.org/2005ws/papers/tummarello.pdf>. Visited July
1st, 2005.

