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Abstract. This paper presents an abstract model for resource management mecha-
nisms, called Virtual Resource Tree (VRT). The VRT model is developed aiming at 
meeting different end-to-end Quality of Service (QoS) requirements demanded by 
multimedia applications. Scalability plays an important role in this scenario, bringing 
new mandatory features for resource management, such as the distributed manage-
ment of heterogeneous resources and the support for adapting the different underlying 
management algorithms. In addition, this paper discusses the main issues towards the 
definition of the VRT file system (VRT-FS). VRT-FS is a framework that shows how, 
with a simple and familiar design, the functionalities of the VRT model can be ported 
to network operating systems. 

Keywords: Quality of Service, Operating System, Framework, Adaptability, Resource 
Management. 

Resumo. Este artigo apresenta um modelo abstrato para mecanismos de 
gerenciamento de recursos, chamado Árvore de Recursos Virtuais (VRT). O modelo 
VRT foi desenvolvido de forma a atender às diferentes necessidades de Qualidade de 
Serviço (QoS) fim-a-fim de aplicações multimídia distribuídas. Nesse cenário, a 
escalabilidade se torna fundamental, impondo que certas funcionalidades sejam 
obrigatórias, tais como o gerenciamento distribuído de recursos heterogêneos e o 
suporte a adaptabilidade dos diferentes algoritmos que compõem as políticas de 
gerenciamento. Adicionalmente, o presente artigo discute as principais questões rumo 
à definição do sistema de arquivos VRT-FS. VRT-FS é um framework que mostra como 
as funcionalidades do modelo VRT podem ser portadas para sistemas operacionais de 
rede utilizando-se uma estrutura de dados simples e familiar. 

Palavras-chave: Qualidade de Serviço, Sistemas Operacionais, Framework, 
Adaptabilidade, Gerenciamento de Recursos. 
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1  Introduction 

Distributed multimedia applications usually demand end-to-end Quality of Service 
(QoS) management. Briefly, end-to-end QoS provisioning begins by discovering which 
resources will participate in the process and which will be their individual QoS re-
sponsibilities. This “QoS orchestration”, should take into account possible cross-
relationships among the chosen resources and take profit of admission control mecha-
nisms to reserve part of the capacity of each involved resource. Resource scheduling 
techniques can then be applied in order to share the resource capacity and honor the 
admitted reservation [Moreno et al., 2003]. 

In general, resource management usually has to deal with resources that can differ 
in: (i) nature (e.g. CPU, disks, network links), (ii) technology (e.g. ATM links, Ethernet 
links, etc) or (iii) type (fiber, coaxial cable, etc.) 

The complexity involved in the management of such a heterogeneous scenario can 
be relieved if resource management mechanisms are handled uniformly. Uniform 
mechanisms means, for this paper purpose, that the whole set of management opera-
tions is wrapped around by a standardized interface in order to offer the same access 
and a predefined well-known semantic, no matter which specific interface a resource 
presents, or how complex it may be. 

QoS provisioning has become harder since new requirements, imposed by new ap-
plication classes and new data codification techniques, have emerged. In fact, the fast 
and inexpensive deployment of services with new QoS requirements has become an 
essential ability, especially to telecommunications providers. In this context, services 
should be flexible enough to accommodate new QoS demands through smooth adapta-
tions in their communication and processing infrastructure [Kosmas & Turner, 1997]. 
The support for new services may involve the choice of new scheduling, admission 
and classification algorithms, as well as the control of new configuration parameters. 
For this sake, many different high-level adaptability abstractions have been proposed 
[Campbell et al, 1999]. 

Despite of its benefits, the deployment of a uniform and adaptable resource man-
agement mechanism can produce an undesirable or unacceptable system overhead. 
Therefore, the mechanism should also be scalable itself and, again, adaptable on its own 
scalability.  

The first goal of this paper is to present a generic resource management model, fo-
cused on end-to-end QoS provisioning and maintenance. The definition of such an ab-
stract model should allow a uniform treatment of QoS aspects. The model is based on 
the Virtual Resource Tree (VRT) concept that allows the concurrent use of different re-
source management policies. 

The model supports and facilitates the development of consistent implementations 
in heterogeneous environments, as well as the conception of languages and tools for 
resource description and management that can assist system operators and application 
developers.  

The paper also discusses how the VRT model can be easily instantiated using well-
known mechanisms and data structures currently available in operating systems. The 
so-called VRT file system (VRT-FS) instantiation provides a virtual data structure and a 
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programming interface that, differently from other file system-based resource man-
agement implementations, has its main focus on system adaptability. 

The rest of the paper is organized as follows. Section 2 summarizes the background 
work that has helped on the definition of the VRT model. Section 3 describes the vir-
tual resource tree model in detail. The VRT-FS is presented in Section 4. Section 5 pre-
sents related work, while Section 6 is reserved for conclusions and future work. 

2  Background work 

The VRT concept was firstly introduced as part of the SCM (Service Composition 
Model) [Moreno et al., 2003]. SCM provides adequate abstractions for representing and 
programming recursive aspects related to communication services, such as QoS and 
multicast. Based on SCM, a family of object-oriented frameworks was developed to 
model QoS provisioning mechanisms in generic processing and communication envi-
ronments. The family was organized in subsets, following the functionality that each 
framework represents in the architecture: Service Parameterization Framework, Resource 
Sharing Frameworks and Resource Orchestration Frameworks. 

In summary, the Service Parameterization Framework models data structures that de-
fine a generic scheme for service characterization based on parameters organized in 
service categories. Using the framework, a service request may specify high level QoS 
parameters, which can be mapped to lower level parameters recursively, until primi-
tive requirements for some particular resources are reached. 

The Resource Sharing Frameworks are based on the Virtual Resource concept that 
models the resource allocation and scheduling mechanisms. Virtual Resources are por-
tions of usage of one or more real resources, allocated to a specific flow2.  The Virtual 
Resource Tree model described in this paper is an enhancement to these frameworks, 
as detailed in Section 3. 

Usually, several resources are involved in supporting a service or application. 
Cross-dependencies among resources should be taken into account when configuring 
each individual resource reservation and scheduling mechanism. This is the goal of 
Resource Orchestration Frameworks, which is in charge of partitioning the QoS provi-
sioning responsibilities among the involved subsystems. In particular, the QoS Negotia-
tion Framework models the negotiation, mapping and admission mechanisms that op-
erate during service request and establishment phases. The QoS Tuning Framework 
models the tuning and monitoring mechanisms that are performed during service 
maintenance phase. 

The family of generic QoS frameworks was further specialized to communication 
networks and operating systems [Moreno et al., 2003]. The so-called QoSOS architec-
ture describes adaptable QoS mechanisms for operating systems, despite if they are 
located in end systems, switches or routers. QoSOS brought some improvements to the 
generic QoS frameworks. Among them, the Service Adaptation Framework was intro-
duced. 

The Service Adaptation Framework describes “meta-mechanisms” that automate 
system adaptations to provide new services or to replace existent QoS policies. This 
framework is currently being refined to include support for consistency maintenance 
                                                      
2 The term “flow” is used in this text to describe any kind of information sequence that may be a QoS 

target. Examples are network data flow and processor instruction flow. 
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and security policies. A more detailed discussion about the QoSOS Frameworks can be 
found in [Moreno et al., 2003]. 

QoSOS’ first implementation was embedded into a Linux kernel. The so-called 
QoSOSLinux v0.1 has used a very simple VRT structure, partially based on third party 
resource schedulers like LinuxTC [Almesberger, 1999] and DSRT2 [Nahrstedt et al, 
1997]. Several absent mechanisms in these schedulers were then developed in order to 
complete and validate the basic VRT concept and the QoSOS frameworks. At present, 
QoSOSLinux is being improved through adding a more complete and adaptable re-
source management system based on the VRT file system, as discussed in Section 4. 

3  The Virtual Resource Tree Model 

The advantages of the hierarchical resource scheduling are well known and its benefits 
have been widely discussed in the literature [Ford & Susarla, 1996][Goyal et al, 
1996][Regher, 2001]. On the other hand, applying hierarchical admission control 
mechanism on a resource that is being hierarchically scheduled is a less familiar mat-
ter. A structure that allows hierarchical scheduling in conjunction with admission con-
trol, providing adaptation on both mechanisms is still less common. 

The VRT Model goes beyond these features by supporting resource composition 
and thus end-to-end resource management, as will be discussed in Section 3.2. More-
over, all these facilities are obtained through a homogeneous behavior. The following 
sections describe the main components of the model. 

3.1  Virtual Resource Trees 

A virtual resource tree (VRT) is an abstraction that denotes the hierarchical division of 
the capacity of one resource or a group of resources managed together. The root node 
represents the main (virtual) resource (or group of resources) being divided with re-
spect to its scheduling and allocation (reservation) mechanisms, as shown in Figure 1. 
Different management policies can be applied on the same resource and thus offering 
a wide and flexible set of services. 

Virtual 
Resource 

Virtual 
Resource

Virtual 
Resource

Virtual 
Resource

Virtual 
Resource

 

Virtual 
Resource 

 
Virtual 

Resource  

 Scheduling Strategy A 
 Admission Strategy α 
 Admission Policy 1 

 Sched. Strategy. B 
 Adm. Strategy β 
 Adm. Policy 2 

 Sched. Strategy.C 
 Adm. Strategy χ 
 Adm. Policy 3 

 

Virtual 
Resource 

 Sched. 
 Strategy.E 

 
Figure 1. A generic Virtual Resource Tree 

Each node in the tree is called a virtual resource and represents a partition on the ca-
pacity of its parent node. A scheduler is associated to each virtual resource, thus dis-
tributing the resource capacity among its child nodes. What exactly is the “capacity” 
being distributed may vary according to the resource. For example, if the resource is a 
CPU (in a CPU VRT), processing capacity may be shared among its children.  
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From the VRT root to its leaves, the virtual resource capacity is divided and finally 
allocated to flows. Flows can be regarded as final users of a virtual resource tree. For 
example, in a CPU VRT an instruction flow may be the user of one of its leaves, while in 
a network-interface VRT, the final user may be a data flow.  

When flow units arrive at a resource, a classifier, associated with the corresponding 
virtual resource tree, analyzes them to determine the correct VRT leaf where they will 
be queued. Usually, flow identification is based on rules that must be set to the VRT 
leaves when they are created. 

A VRT-leaf scheduler chooses leaf users from the leaf queue3. Scheduling strategies 
are responsible for deciding which child virtual resource user will hold the parent-
node capacity each moment. Decoupling scheduling strategies from schedulers them-
selves allows offering adaptable points (also called hot spots) that can be completed at 
instantiation time, or even modified during system operation time (by means of an 
adapting meta-service).  

Except for the VRT leaves, each virtual resource in a VRT is associated with an ad-
mission controller. Admission controllers check if a request for a new child virtual re-
source creation is allowed and feasible. A creation is allowed if its demands4 comply 
with all admission policies associated with the parent virtual resource. Admission poli-
cies are a set of restrictions rules that must be observed whenever a new request is be-
ing analyzed. An admission strategy algorithm verifies the feasibility of a virtual re-
source creation taking into account the current already admitted requests. Similar to 
scheduling strategies, admission policies and admission strategies are also kept apart 
from the VRT mechanisms to achieve the required flexibility with regards to adapta-
tion.  

The creation of a child virtual resource is performed by a virtual resource creator, 
which is also associated with the parent virtual resource. Briefly, based on service pa-
rameters supplied to the admission controller, the virtual resource creator must update 
the parent resource scheduling and classification rules; create the new virtual resource; 
and configure the new child resource scheduler and classification rules with default 
management policies. 

3.2  Composite VRTs 

In the simplest case, a VRT root may represent a single real resource. For example, the 
VRT root may be associated with a CPU or a communication channel. A VRT root can 
represent as well a set of resources to be managed as a single one. For example, a 
system with more than one CPU may have a single CPU VRT for managing them as a 
single resource. In both previous cases, the VRT is said to be a primitive VRT. 

However, a VRT root may also represent the composition of different virtual re-
sources that are managed independently. In this case, the tree is called composite VRT. 
Usually, when end-to-end QoS is required many resources are involved, as for exam-
ple, network links, CPUs on end-user equipments, CPUs at intermediate systems, etc. 
It is desirable if, at some level of abstraction, this whole path of resources could be 

                                                      
3 Generally, these schedulers have very simple and default scheduling strategies: FIFO for data flows 

and the instruction execution path (given by the instruction interpreter) for instruction flows. 
4 The demand is usually specified by a service category that is characterized through its service pa-

rameters [Moreno et al, 2003]. 
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viewed and managed as a single resource. This abstraction is precisely the one pro-
vided by composite VRTs. 

A composite VRT arises as a result of a resource orchestration applied on a set of 
VRTs (including primitive and composite VRTs) that compounds a resource forest (for 
example, representing an operating system, a network, etc.). Forests can be nested, that 
is a forest can contain VRTs or other forests. When a service is requested to a forest, a 
specific system component verifies the feasibility of its admittance taking into account 
the current utilization of resources represented by the forest and the new request pro-
posed load. This component is also called an admission controller, although it performs 
in a higher level of abstraction. 

The forest admission controller starts its job by calling one of its child negotiator 
components5. The called negotiator starts the orchestration process that first identifies 
a subset of child VRTs and forests that would be involved in the service provisioning.  

The orchestration continues assigning portions of the QoS provisioning responsibil-
ity to each chosen VRT or forest, and activating mapper components, which are 
launched to translate the requested service category (and its associated parameters) to 
service categories directly related to each assigned component. 

Three types of QoS parameter translations are common6 : 

•  additive: the sum of all individual QoS portions assigned to each chosen VRT or 
forest is equal to the requested QoS parameter;  

•  multiplicative: the product of all individual QoS portions assigned to each in-
volved VRT or forest is equal to the requested QoS parameter; 

•  concave: each QoS portion assigned to each chosen VRT or forest is equal to the 
requested QoS parameter. 

After mapping, admission controllers associated to each VRT and forest are called. 
In the case of forest its admission controller repeats all the above steps, recurrently, 
until primitive VRTs are reached, when their admission controllers are launched. 

If all started admission controllers of a forest return affirmative answers, an affirma-
tive answer is also passed to the higher-level admission controller that requested the 
forest services. This procedure repeats until the admission controller which has started 
the whole process is reached. Then, all resource reservations made during the admis-
sion control phase are committed, that is, virtual resources are finally created in all in-
volved primitive VRTs. Also, a composite VRT root is created from each forest, repre-
senting all the forest resources that were allocated. In any other case, the request is de-
nied. 

The composite-VRT root created by the highest-level admission controller can di-
vide its capacity by creating child virtual resources, which in turn may divide its own 
capacity and so on, like in a primitive VRT. However, all other composite-VRT roots 
created in the process cannot be shared, since they are virtual resources completely al-
located to other composite VRTs. In effect, the intermediary composite VRTs will only 
contain the root node. 

                                                      
5 The negotiation process can be centralized – in which case we have only one negotiator component – 

or distributed among several negotiator components. 
6 The delay parameter is an example of the first type, the reliability parameter is an example of the 

second type, and the bandwidth parameter is an example of the third type. 
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As a simple example of the orchestration process, consider the QoSOS scenario il-
lustrated in Figure 2. The composite VRT (1) represents the orchestration among two 
primitive resources: CPU and NIC (link) bandwidth. Each resource is managed by its 
respective primitive VRT (2 for CPU and 3 for NIC). The dotted lines in Figure 2 illus-
trate the resource orchestration that originated the root of the composite VRT. 

 

2 3
cpu nic 

Resource 
Abstraction Level

1

Operating System 
Abstraction Level

 
Figure 2. A composite VRT 

Before ending this section, several points should be stressed. First, orchestration 
strategies are also hot spots of the model, and thus target of adaptations. Second, the 
admission controller used to create composite VRTs is not associated with a specific 
node of a tree or even with a specific virtual resource tree. Actually, it is associated 
with the resource forest. Moreover, it must be noted that a VRT may belong to more 
than one forest. Finally, since the composite-VRT root represents a special virtual re-
source (indeed a composition of heterogeneous virtual resources), composite VRTs are 
said to represent higher abstraction levels than primitive trees. 

3.3  VRT Management Operations 

The VRT management tasks can be summarized in four operations: Splitting, Merging, 
Traversing, and Adapting. 

Splitting (a resource) comprises the creation of a new virtual resource in a VRT. 
Splitting triggers the admission control process that will verify the compliance and 
feasibility of the request. If the admission is successful, a virtual resource is created. 

Merging comprises the creation of a new composite VRT from a set of VRTs. The 
new composite-VRT root is created by the orchestration process associated with a for-
est. 

The traversing operation consists on walking through the VRT structure, visiting 
parent or child nodes from an initial node. Traversing also allows walking from a 
composite-VRT root to one of the merged virtual resources the root represents (that is, 
the virtual resources created during the orchestration processes), and vice versa. 
Hence, traversing can be done inside a VRT or between VRTs of different abstraction 
levels, following the orchestration path. When visiting a node, local management in-
formation can be retrieved, in order to ease the job of management tools and to prop-
erly identify virtual resource locations. 

Finally, the adapting operation performs the insertion or replacement of resource 
management policies associated with an existent virtual resource in any VRT or asso-
ciated with a forest. 
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3.4  Other Resource Orchestration Issues 

Usually, orchestration mechanisms involve several heterogeneous resources. We call 
resource natures the universe of different computational-resource types found in 
heterogeneous distributed environments. For example, data communications demand 
in all network nodes (including end systems) processor bandwidth for protocol stack 
execution, memory space for packet buffering, and network interface bandwidth for 
transmission. In end systems, the requirements also include processor bandwidth for 
media encoding/decoding, memory space for media retrieval/buffering, disk space 
and disk bandwidth for media storing/buffering, etc.  

Usually, resources are scheduled in time or space. Temporal scheduling selects one of 
the derived virtual resources that will be active in a given time interval. Spatial schedul-
ing selects which virtual resource will be using a given region of the space (a memory 
space for example). The VRT model is generic enough to support both dimensions, due 
to the mechanisms described in Section 3.1. It should also be noted that the same re-
source may be scheduled in different dimensions. When a resource needs to be sched-
uled in both dimensions, two VRTs (one for each dimension) must be associated with 
it. An example of such resource is the disk, which must be scheduled in time (for ac-
cess) and in space (for storing). 

4  The VRT File System 

An instantiation of the VRT model demands the implementation of a complex data 
structure that must be flexible enough to support management policy adaptations as 
described in previous sections. Paradoxically, VRT implementations should be simple, 
since many resource orchestrations may involve computational systems with limited 
processing power. Thus, scalability is an important design issue in order to not con-
strain VRT features. 

Among the several solutions we have investigated, special file systems became an in-
teresting design solution. First, the file system abstraction enforces the hierarchical or-
ganization of data, is easy to be traversed, and has ready-to-use naming conventions. 
Second, file system operations form a well-known and standardized interface, with 
functions like open, close, read, write, chdir and mkdir, which can be easily mapped to the 
VRT operations, avoiding the creation of new system calls. Third, special file systems 
can represent more than just a mechanism for maintaining files and directories. They 
can become more attractive when they offer APIs for user and system interaction, al-
lowing to change internal system modules and providing powerful management in-
formation bases (MIBs). At last, the file system abstraction is found in any operating 
system, even in lightweight implementations, with the same regular semantic. Most of 
these systems allow special file system structures, where the behavior of each opera-
tion may be redefined and where files may represent kernel memory regions. 

The VRT model instantiation based on a special file system is called the VRT-FS. Its 
specification can be regarded as a framework for VRT implementations, since many 
mechanisms are intentionally left open to provide adaptability, scalability and port-
ability. Figure 3 presents most of the VRT-FS structure. 

The root of VRT-FS is the /vrt directory. There are four directories under /vrt:  

•  • /vrt/primitive: groups primitive VRTs representing resources of the local 
system; 
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•  • /vrt/export: groups virtual resources of the local system that are available for 
participating in composite VRTs. 

•  • /vrt/forest: groups virtual resources trees or other forests that are available 
for composite VRT creation. 

•  • /vrt/composite: groups composite VRTs created from requests coming from 
the local system; 

The following sections are dedicated to the discussion of these directories. 

/vrt

/composite/primitive 

/cpu /hd1/nic1/mem 

/vr1 /vr2 /admstrat/schedstrat/vrparams 

/vr1 /admstrat/schedstrat/vrparams 

/vrparams

/spatial /temporal

/hd1 

…/export…

/admpol 

/admpol 

/forest…

 
Figure 3. VRT-FS structure (/vrt/primitive) 

4.1  Primitive VRTs in VRT-FS 

Since VRTs may be scheduled in time or space, there are the 
/vrt/primitive/temporal and /vrt/primitive/spatial directories, respectively. 
Both directories have exactly the same structure, placing the primitive VRT roots as 
their subdirectories. Examples of such VRTs are: /vrt/primitive/temporal/cpu for 
CPU VRT; /vrt/primitive/temporal/nic1 for a network interface VRT; 
/vrt/primitive/spatial/mem for memory VRT; /vrt/primitive/temporal/hd1 
and /vrt/primitive/spatial/hd1 for a hard disk, and so on. 

Let us take the /vrt/primitive/temporal/cpu directory as our explanation ex-
ample. Each directory created for representing virtual resources, including the root, 
has the following files and subdirectories: 

•  ./vrparams: maintains information about the virtual resource. The read opera-
tion returns the resource type and its capacity (combined with chdir, this is part 
of the traversal operation). The write operation in a non-root virtual resource 
modifies its allocated capacity, demanding a (re)admission control, as discussed 
further on.  

•  ./schedstrat;./admstrat;./admpol: these are the files with the implementa-
tion of the scheduling strategy, admission strategy, and admission policies, re-
spectively. They contain the basic resource management policies assigned to the 
virtual resource. Their content format may vary depending on the operating sys-
tem, since they may contain programming code (that will be part of the operat-
ing system) or advanced parameters for dynamic algorithms [Barria et al, 2000]. 
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For example, in Linux systems, these files could be object files that are inserted 
into the system as kernel modules. They can also be software components, mi-
crokernel services, etc.7 The read operation returns the file content, and the 
write operation saves the file and demands the inclusion of the new manage-
ment policy into the system (the adapting operation). 

•  ./vr1;./vr2: these are subdirectories created to represent child virtual re-
sources. A child virtual resource is created by means of an mkdir call (the split-
ting operation). The name of the new subdirectory is automatically created, fol-
lowing the format vrX, where X is an integer number not in use for subdirectories 
in the current directory (see Figure 3). The QoS parameters for virtual resource 
creation are passed as mkdir parameters, and will be saved in a vrparams file in-
side the new subdirectory. They must be in accordance with the parameters ex-
pected by its parent resource management policies. The vrX subdirectory is cre-
ated only if the admission controller associated with the parent answers affirma-
tively. 

In fact, the admission control in VRT-FS is a two-step process (admit/commit). The 
admit request is triggered by the mkdir operation. If the admission controller answers 
affirmatively, the vrX subdirectory is created containing a single vrparams.tmp file, 
which contains the parameters supplied. The commit request is done renaming this file 
to vrparams, meaning that the virtual resource was created successfully. The commit-
ment is time limited: if the file rename does not occur in a certain time interval, the vrX 
subdirectory will be removed. The admission process based on two steps is useful to 
some types of distributed QoS negotiation schemes, and avoids deadlocks on concur-
rent resource reservations [Nahrstedt et al, 1999]. 

We have aforementioned the usage of the write operation over the vrparams file. 
This can be a useful mechanism usually requested by a tuning process (see Section 2). 
The operation renames the file to vrparams.tmp, and then changes it writing the new 
parameters. While the vrparams file does not exist, the virtual resource will not be 
scheduled. The commitment will be done as in the previous case of admission control, 
by renaming the file back to vrparams. As before, the commitment is time limited. This 
operation can only be done over a resource if the new requested capacity is greater 
than the sum of the capacities of its virtual resource children. If a timeout occurs, the 
virtual resource must be removed, as in the previous case, but only if it has no previ-
ous child. If it is not the case, the vrparams file will have its original parameters back. 

As stated in VRT model, leaves do not have resource management policies, except 
for the simple scheduling strategies. So, a leaf directory needs just the vrparams file. 
An mkdir operation in a leaf directory must return an error. A leaf can be turned into 
an intermediary virtual resource if the files schedstrat, admstrat and admpol are 
created in its directory. 

4.2  Distributed orchestration in VRT-FS 

The virtual resources that could participate in a composite VRT must be placed in 
/vrt/export. 

                                                      
7 Higher level code for specifying the behavior of such policies is also possible (and more secure), if the 

system could interpret these specifications during runtime [Ford & Susarla, 1996][Lawall et al, 
2004][West & Gloudon, 2002]. 
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Most file systems have the symbolic link abstraction, which allows the representa-
tion of a file or directory already placed in the directory tree. Thus, each virtual re-
source that could be exported may be represented by a symbolic link named lkX, 
where X is an integer number not in use for others links in the same directory. In the 
case of /vrt/export, links always point to another directory: to another virtual re-
source in a composite or primitive VRT; or to a forest. In the case of a forest, its com-
ponents have to be virtual resources of the local system. Figure 4 illustrates the 
/vrt/export directory. The dashed lines show the path to linked virtual resources or 
forests. In virtual file systems that do not provide the link abstraction, links can be re-
placed by files containing the full path to the respective component. 

Grouping virtual resources under a directory makes the work of the distributed file 
system server easier, since all shared folders is resident in a single place. 

/vrt

/composite/primitive 

/cpu /nic1

/vr2 

/temporal 

/export

/cmp2 /cmp1/lk1 /lk2

/forest

/frt1 /frt2

/lk1/lk2 /admstrat /admpol/lk3/lk4

?

 
Figure 4. VRT-FS structure (/vrt/export and /vrt/forest) 

All resource forest managed by the local system must be placed in /vrt/forest. Each 
directory created for representing a resource forest (let us take the /vrt/forest/frt1 
directory as our explanation example) has the following files and subdirectories: 

•  • ./admstrat;./admpol: these are the files with the implementation of admis-
sion strategy, and admission policies, respectively. They contain the basic re-
source management policies assigned to the forest, similar to those discussed in 
Section 4.1. The read operation returns the file content, and the write operation 
saves the file and demands the inclusion of the new management policy into the 
system (the adapting operation). 

•  • ./lk1..lk4: these are references, using the link abstraction, to another directory 
representing (i) a primitive or (ii) a composite VRT or (iii) another forest. 

Note that the linked components may be located outside the local system, so a dis-
tributed file system protocol must be used in this case.` 

4.3  Composite VRTs in VRT-FS 

Unlike the primitive VRTs, which have their roots predefined in the VRT-FS, compos-
ite VRTs must have their root directory explicitly created below /vrt/composite. 

The mkdir operation in this directory triggers the admission control, similar to the 
case of Section 4.1, but now representing an orchestration. The QoS parameters for vir-
tual resource creation as well as the reference to the resource forest from which the 
composite VRT will be created are passed as mkdir parameters, and will be saved in a 
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vrparams file inside the new subdirectory. The new created subdirectory is named 
cmpX, where X is an integer number not in use by other composite VRTs in the same 
directory. The admission control defined by the referenced resource forest is then 
called. The admission is also a two-step process, which in the end creates a list of vir-
tual resources that the new composite VRT represents.  

Using once more the link abstraction, each virtual resource listed by the orchestra-
tion will be represented by a symbolic link named lkX, where X is an integer number 
not in use for others links in the same cmpX subdirectory. Links always point to an-
other directory (another virtual resource in a composite or primitive VRT). Figure 5 
illustrates typical composite VRTs in VRT-FS. The dashed lines show the path to linked 
virtual resources.  

Note in Figure 5 that /vrt/composite/cmp1 represents the root of a composite VRT 
with no children. An mkdir operation below cmp1 will not succeed, since this root is 
also a leaf and does not have the required admission and scheduling mechanisms as-
sociated. On the other hand, the /vrt/composite/cmp2 directory is the root of a com-
posite VRT with a child virtual resource (vr1). Note that it has the associated resource 
management policies, inserted by the creation of admpol, admstrat and schedstrat 
files, similar to the case of primitive VRTs. The lk1 link points to a remote virtual re-
source, while lk2 points to the root virtual resource of the cmp1 composite VRT. 

/vrt

/composite/primitive 

/cpu /nic1

/vr1 

/vr1 

/temporal 

/export…

/vr2 

/cmp1/cmp2

/lk1/lk2
/admstrat /schedstrat

/admpol/vrparams /vr1
/vrparams

/lk1/lk2

?

/vrparams

/forest…

 
Figure 5. VRT-FS structure (/vrt/composite) 

There are some restrictions on link creation, imposed by the VRT model. A link in a 
composite VRT must always point to a leaf virtual resource. After a composite VRT is 
created, the linked leaf virtual resources cannot become an intermediary node (split). 
Thus, a mechanism for verifying the participation of virtual resources in existent com-
positions is required. 

4.4  Other remarks on VRT-FS 

The VRT-FS inherits all features of the VRT model. They provide different resource 
scheduling behaviors for each intermediary virtual resource, avoiding the drawbacks 
related to the use of a single scheduling algorithm [Goyal et al, 1996]. Furthermore, 
with the successive divisions in capacity portions of the resource, the VRT and VRT-FS 
guarantee protection between virtual resources. In other words, a virtual resource 
overload will not cause a QoS violation in non-children virtual resources. The fair re-
source sharing with protection among virtual resources are benefits that compensate 
the overhead introduced by the hierarchical scheduling, which have already been dis-
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cussed in the literature [Ford & Susarla, 1996][ Goyal et al, 1996]. Moreover, note that 
these benefits are not just for resource scheduling, but for a complete set of adaptable 
resource management policies built into the hierarchical end-to-end structure. 

We have introduced more complexity in VRT-FS using file naming conventions and 
distributed file systems. As an alternative, these mechanisms could be provided by di-
rectory services, for resource naming and localization, and network protocols, for re-
source orchestration. The use of VRT-FS is more attractive, because the structure and 
all of the well-known file system abstractions (and operations) perfectly match the re-
quirements of the VRT model. 

5  RELATED WORK 

Eclipse/BSD [Bruno et al, 1999] is an extension of a mainstream operating system aim-
ing at incorporating “proportional resource sharing”. It proposes the /reserv file 
system as a uniform API for a hierarchical scheduling. Eclipse/BSD provides only 
static QoS policies, for scheduling and admission control. These policies can not be 
changed during runtime. Moreover, each resource is managed by just one scheduling 
strategy; and applications must know low-level parameters to request reservations. 
VRT-FS is in some way inspired in Eclipse/BSD in using file systems for hierarchical 
resource management. However, VRT-FS changes the focus to distributed resource 
management and adaptability. The features of VRT model override the above 
drawbacks. 

CKRM-Linux [Nagar et al, 2004] is a work in progress that intends to provide class-
based resource management in Linux kernels. It proposes the /rcfs file system and 
the use of Workload Managers (WLMs) to define high-level goals to be satisfied. The 
model considers the extension of Class-aware patches, such as resource schedulers, but 
this feature is not implemented in the /rcfs file system. VRT comes out as a more 
complete resource management model, including the possibility of defining abstract 
resource levels (through using orchestration mechanisms), QoS mappers among re-
sources of different levels, and admission control for resource reservation. CKRM does 
not clearly declare if its target is QoS provisioning or just workload differentiation, 
since there is no mention about admission control to prevent violations. 

The “path” abstraction in Scout operating system [Mosberger & Peterson, 1996] is 
similar to VRT resource orchestration concept. “Paths” allow an application to control 
resource consumption for a given communication path at all levels of an operating sys-
tem. However, a path is limited to a routing graph defined at kernel compilation time. 
VRT resource orchestration presents more dynamism since it can be performed during 
the system runtime.  

Ford & Susarla (1996), Goyal et al (1996) and Regher (2001) propose hierarchical 
CPU scheduling in order to improve fairness when applications with different needs 
are concurrently sharing the resources. Hierarchical scheduling allows the coexistence 
of different schedulers for each identified application class. VRT is more generic since 
it extends hierarchical scheduling with the association of other resource management 
policies, allowing a uniform management of heterogeneous resources. 

VRT-FS main contributions come from its end-to-end uniform model and from its 
adaptable and scalable instantiation. 
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6  CONCLUSIONS AND FUTURE WORK 

In this paper, we have described an abstract model for generic and adaptable resource 
management, based on the Virtual Resource Tree (VRT) concept. The VRT model 
provides uniform, end-to-end and adaptable mechanisms for resource management. 
The model has been continuously refined through its instantiation for several different 
platforms. The paper also presented the VRT-FS, a framework for VRT-model 
instantiations in (network) operating systems. VRT-FS is a special file system that 
offers an API for resource management operations, such as the creation of virtual 
resources; the combination of independent virtual resources; the access to a powerful 
QoS management information base (MIB); and the modification of resource 
management policies in internal system modules. 

This work opens many questions and leaves space for further investigation. Adap-
tation tasks in VRT-FS are susceptible to security and consistency issues that must be 
investigated. Ideally, the solutions should be integrated to the file system security 
model and admission policies. Another point that deserves attention is the interface 
and event definition for scheduling and admission strategies. The design of domain-
specific languages (DSL) for creating such resource management policies is a very in-
teresting area that may also improves security. Finally, a complete implementation of 
VRT-FS into the QoSOSLinux kernel is under development, integrated with the QoSOS 
middleware. This effort is being used for model validation and performance meas-
urements. 
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