

PUC

ISSN 0103-9741

Monografias em Ciência da Computação
n° 04/06

Testing & Debugging Multi-Agent Systems:

A State of the Art Report

Maíra Athanázio de Cerqueira Gatti

Arndt von Staa

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 04/06 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena February, 2006

Testing & Debugging Multi-Agent Systems:
A State of the Art Report *

Maíra Athanázio de Cerqueira Gatti, Arndt von Staa

{mgatti,arndt}@inf.puc-rio.br

Abstract. Current research and development of agent-based systems has focused pri-
marily on architectures, protocols, frameworks, messaging infrastructure and com-
munity interactions. As intelligent agent-based systems take over operations in the
financial community, transportation, manufacturing, utilities, aerospace, and the
military, assurances will need to be given to the owners and operators of these sys-
tems assuring that these non-deterministic learning systems operate correctly. In this
State of the Art report (SotA), we will give an introduction to work presented in the
area of testing and debugging distributed systems composed of complex autonomous
entities (agents). We will provide pointers to work by large players in the field. We
will also discuss the debugging of multi-agents systems. We will explain why this
kind of system must be handled differently than less complex systems.

Keywords: Multi-agent systems, testing, debugging, verification, validation.

Resumo. A pesquisa e o desenvolvimento de sistemas orientados a agentes focam,
geralmente, metamodelos, arquiteturas, protocolos, frameworks, infra-estrutura de
troca de mensagens e organizações de agentes. Considerando que sistemas multia-
gentes estão presentes no mercado financeiro, na indústria de transporte, utilidades,
espaço aéreo e militar, entre outros, faz-se necessário garantir para os seus proprietá-
rios e/ou usuários que esses sistemas não-determinísticos operam corretamente. Nes-
te relatório do estado da arte, será apresentada uma introdução dos trabalhos pro-
postos na área de testes e depuração de sistemas multiagentes, que são sistemas
complexos, distribuídos, compostos por entidades autônomas (agentes). Será apre-
sentado o trabalho da área de agentes tanto de testes como de depuração, além do
porquê esse tipo de sistema precisa ser testado diferentemente dos outros tipos de sis-
temas.

Palavras-chave: Sistemas multi-agentes, testes, debug, verificação, validação.

* This work has been sponsored by the Ministério de Ciência e Tecnologia da Presidência da Repú-

blica Federativa do Brasil

 ii

In charge for publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br

 iii

Table of Contents

1 Introduction 1

2 Software Debugging, Testing and Verification 2

3 A Multi-level Approach for Testing and Debugging MAS 3
3.1 Agent Level Testing 4
3.2 Society Level Testing 5

4 A Survey of Testing and Debugging Multi-Agent Systems 6
4.1 Testing 7
4.2 Debugging 14
4.3 Analysis 19

5 Conclusions and Future Work 22

6 Bibliography 22

 1

1 Introduction

A software agent is a computer program that works toward goals in a dynamic envi-
ronment on behalf of another entity (human or computational), possibly over an ex-
tended period of time, without continuous direct supervision or control, and exhibits
a significant degree of flexibility and even creativity in how it seeks to transform
goals into action tasks.

A multi-agent system (MAS) is a computational environment in which individual
software agents interact with each other, in a cooperative or competitive manner,
and sometimes autonomously pursuing their individual goals, accessing resources
and services of the environment, and occasionally producing results for the entities
that initiated those software agents [22]. The agents interact in a concurrent, asyn-
chronous and decentralized manner [6], hence MAS turn out to be complex systems
[9]. They are also non-deterministic, since it is not possible to determine a priori all
interactions of an agent during its execution. Consequently, they are difficult to de-
bug and test.

Current research and development of agent-based systems has focused primarily
on architectures, protocols, frameworks, messaging infrastructure and community
interactions. As intelligent agent-based systems take over operations in the financial
community, transportation, manufacturing, utilities, aerospace, and the military, as-
surances will need to be given to the owners and operators of these systems that
these non-deterministic, learning systems operate correctly [21]. There are some
works which address the problem of building confidence in the owners and users of
agent-based systems with particulars techniques which we are going to describe in
this work. Some of them are based on testing and monitoring, others are based on
debugging, and others on simulation. Moreover these works are still at very early
stage. Actually formal methodologies provide validation tests that are applicable in
very few and quite irrelevant cases though. The main reason of this lack applicability
is that activities, which should assure that the program performs satisfactorily, are
very challenging and expensive since it is quite complicated to automate them [2].

Agents are software and developing agents is developing software. And an im-
portant phase of developing software is debugging it. It is suggested that debugging
and testing may occupy between 25 and 50 percent of the total cost and time of sys-
tem development with much of this time spent locating the cause of a problem [1].
Unfortunately, debugging multi-agent systems without good debugging tools is
highly impractical [16].

The State of the Art Report presented in this work aims to survey techniques and
tools for testing and debugging multi-agent systems in the Software Engineering ap-
proach. Nevertheless, there are some works that propose strategies and techniques
for testing or evaluating multi-agent systems through theorem proving and model
checking. However, in section 2 we will see why we are not focusing on those strate-
gies. Thus, this paper surveys all tools found in literature (IEEE Xplore, ACM Digital
Library) for the Software Engineering approach.

 2

The paper is organized as follows: section 2 describes the multi-level approach to
MAS testing; section 3 describes related works presented in literature which address
the techniques for testing and debugging MAS. This section also presents some tools,
a comparative table between the approaches and tools found, and also the relative
strengths and weakness of each one and the open issues of each one; and, finally,
section 5 provides the issues discussed that have arisen during the work on this re-
port, and the essential features of a tool/framework for testing MAS.

2 Software Debugging, Testing and Verification

Testing is an activity in which a system or component is executed under specified
conditions, the results are observed or recorded and compared against specifications
or expected results, and an evaluation is made of some aspect of the system or com-
ponent. A test is a set of one or more test cases. The main aim of a test is to find
faults.

An error is a mistake made by the developer misunderstanding something. A fault
is an error in a program. An error may lead to one or more faults. When a fault is
executed an execution error may occur. An execution error, error for short, is any
result or behavior that is different from what has been specified or is expected by the
user. The observation of an execution error is a failure. Notice that errors may go on
unnoticed and hence may play serious havoc with the remaining computation and
use of the results of this computation. The longer the period of unobserved operation,
the larger is the probability of serious damage due to errors, that is due to unob-
served failures.

There are two kinds of tests: static verification and dynamic validation. The for-
mer is based on code inspection or “walk through”, symbolic execution, and sym-
bolic verification. The later generates test data and execute the program. Figure 1
shows where static verification and dynamic validation tests occur during the soft-
ware life cycle [8].

Figure 1 - Kinds of Tests

There are several strategies for testing software and the goal of this survey is not
to explain all of them. However, we will describe the main strategies found in litera-

 3

ture ([8],[23]) for testing software which are related to some of the works presented
in the fourth section. Here they are:

• Black-box testing: also know as functional testing or specification-based testing.
Testing without reference to the internal structure of the component or system.

• White-box testing: testing based on an analysis of the internal structure of the
component or system. Test cases1 are derived from the code e.g. testing paths.

• Progressive testing: it is based on testing new code to determine whether it con-
tains faults.

• Regressive testing: process of testing a program to determine whether a change
has introduced faults (regressions) in the unchanged code. It is based on re-
execution of some/all of the tests developed for a specific testing activity.

• Performance testing: verify that all worst case performance targets have been
met, and that any best-case performance targets have been met.

There are several types of tests. The most frequently performed are the unit test and
integration test. A unit test performs the tests required to provide the desired cover-
age for a given unit, typically a method, function or class. A unit test is white-box
testing oriented and may be performed in parallel with regard to other units. An in-
tegration test provides testing across units or subsystems. The test cases are used to
provide the desired coverage for the system as a whole. It tests subsystem connec-
tivity.

There are several strategies for implementing integration test: (i) bottom-up, which
tests each unit and component at lowest level of system hierarchy, then components
that call these and so on; (ii) top-down, which tests top component and then all com-
ponents called by this and so on; (iii) big-bang, which integrates all components to-
gether; and (iv) sandwich, which combines bottom-up with top-down approach.

The techniques and strategies presented in this section will appear in the ap-
proaches in the following section. The main idea is to relate them with the works
presented and classify them according to each strategy or technique.

3 A Multi-level Approach for Testing and Debugging MAS

It is quite hard to verify that agents or multi-agent systems satisfy user requirements,
behave correctly and are not malicious. One possible way to help solving this prob-
lem is to develop and use design patterns, as well as algorithms and tools for evaluat-
ing multi-agent systems [6].

There are several reasons for the increase of the difficulty degree of testing and
debugging multi-agent systems: increased complexity, since there are several distrib-
uted processes that run autonomously and concurrently; amount of data, since sys-
tems can be made up by thousands of agents, each owning its own data; irrepro-

1 A test case is a set of test inputs, execution conditions, and expected results developed for a particu-

lar objective.

 4

ducibility effect, which means that it is not ensured that two executions of the sys-
tems will lead to the same state, even if the same input is used. As a consequence,
looking for a particular error can be difficult if it is not possible to reproduce it each
time [6].

There are at least three approaches for evaluating multi-agent systems: (i) theorem
proving, which corresponds to checking that a set of formulas satisfies a goal; (ii)
model checking, which builds a model of a system and verifies that a temporal logic
formula holds for the model; and finally, (iii) testing, which consists in applying test
cases to the system and checks if it behaves properly different from model checking
which checks if agents are proved correct [6].

The several challenges in developing and debugging multi-agent systems make
traditional component testing technologies not applicable [21]. Besides all the chal-
lenges due to its autonomy and parallelism, message specifications are often incorrect
or incomplete and visualization of the messages is needed. Another challenge is the
fact that agents can be programmed to learn, so successive tests with the same test
data may give different results [21].

Testing a single agent is different from testing a community of agents. When test-
ing a single agent a developer is more interested in the functionality of the one agent
and whether the agent operates for a set of messages, environmental inputs and er-
ror conditions. On the other hand, when testing a community of agents, the tester is
interested in whether the agents operate together, are coordinated, and if message
passing between the agents is correct.

The agent society test is a kind of integration test and the integration strategy de-
pends on the agent system architecture where agents dependencies are usually in
terms of communications (but sometimes environment mediated interactions could
be present). In the case of a multi-layer (open or closed) architecture, it is possible to
adopt common strategies like the top-down or bottom-up composition. With other
MAS configurations the integration problem becomes much more difficult to solve
because of the proactive nature of agents, in some cases it is not possible to identify
the subset of agents that could be tested in a stand-alone basis. Such situations
should be faced with a study of the agent responsibilities (in terms of functionalities
provided) and ontology (an agent is not expected to interact with something that is
out of its knowledge). Society test for mobile agents is also influenced by many con-
figuration management and hosting platform capabilities problems that can affect
the agent/system functionality or performance. In the case of functionality, it is not
easy for an agent implemented with most diffused platforms to verify before moving
to a specific host if all the (not standard) libraries that it needs are available; as re-
gards performance it is easy to imagine the problem that an agent dealing with a
great amount of multimedia data could face when moving to a host that cannot pro-
vide enough resources (elaboration power, network bandwidth and so on) [2].

3.1 Agent Level Testing

Testing is usually done incrementally during software development. Developers also
usually want to incrementally test their agents as they progress, testing functionality

 5

as it is added. Much of this testing would require another agent to trigger an event
inside the agent to be tested, such as message from another agent, or an event from
the environment. Additional testing would also be required to test learning [21]. An
important issue related to the bounds of testing MAS is that it is not possible (or very
expensive) to predict the agent behavior. Hence, it often is impossible to have an ora-
cle able to give information in order to verify its correctness due to its non determin-
ism.

Therefore, when developing a single agent (for inclusion into a community) devel-
opers want to make sure that it responds correctly to given inputs from other agents.
Moreover, a sizeable set of agents, none of which have been tested, may be needed to
test a single agent.

In [21] some of the errors types are presented, which developers run into while
developing an agent, which include:

• Incorrectly addressing a message to another agent;

• Putting an incorrect request in a message so the receiving agent does not rec-
ognize the message;

• Incorrectly parsing incoming messages;

• Checking for the wrong performative, which is the type of the communicative
act, in an incoming message;

• Not developing code to accept all the messages it is suppose to accept, etc.

An agent can be tested as a black-box which focuses on the behavior of the
agents. Testing its behavior corresponds to begin an interaction and evaluating its
result. And an agent can be tested as a white-box, which corresponds to test the
agent internal behaviors, which is the same of how behaviors are related and their
flow of control, where each single behavior is seen as a black-box. The result is there-
fore a kind of black-box testing of a subsystem (the agent composed of the agent base
class and several behavior classes) [2].

3.2 Society Level Testing

Testing communities of agents involves two issues. The first one is how we can en-
sure that the agents in the community work together as designed previously, which
again is related to the oracle problem described before. And second one is how we
can ensure that the resultant work is the one expected. During a society test, the
validation of the overall results of the different agents it is carried on and the success-
ful integration of the different agents is verified. This involves checking that each
agent in the community/society receives the correct messages from the correct agent,
provides the correct responses, and interacts with environment correctly as a whole
[21], which is related to the first issue. Moreover, it can also involve checking that the
goal of this community or organization where the agents are interacting is being
achieved, which is related to the second issue.

Some types of errors that can be observed during the developing of a community
are miscommunicating the performative (the type of the communicative act), content

 6

on agent messages, and designing deadlocks into the messages exchanges. Another
issue that has to be considered is the scalability. The larger the agent communities
become, the harder it is to test them for proper functionality [21].

Using traditional tools for debugging agent societies is insufficient, that is, it has
lack efficiency and it is inadequate, specially because multi-agent systems are distrib-
uted systems. Programmers are generally presented with too much inadequately cor-
related information making it difficult to understand what is really happening in the
system. Without a proper procedure for identifying what sorts of information to look
for it is unrealistic to know in advance what information will be useful when trying
to debug the system. Moreover, most systems have no means of identifying where
problems may be occurring, even if the developer notices an error it could take an
unnecessarily time to point the location of the error.

Since most of the debugging tools output raw messages, the developer needs to in-
spect the contents of the messages and the flow of messages and try to determine
what is going wrong. With a large numbers of messages between a large numbers of
agents this can be extremely difficult [16].

Generally, visualizing overall system behavior in systems with distributed control
is a notoriously difficult task. Each agent in the system has only a local view of the
organization, and the burden is on the user to integrate into a coherent whole the
large amounts of scope-limited information provided by individual agents. Further-
more, because of the complexity of multi-agent interaction and behavior, effective
visualization assumes more importance than in single-agent systems. It is necessary
in order to reduce the information overload on users, and thus allows then to con-
firm, understand, control and/or analyze the behavior of the system, and to debug
the system [12].

In the next section we describe the current state of the art for debugging and test-
ing techniques and tools. We will also evaluate them considering its approaches, its
relative strengths and weakness, and the open issues of each one.

4 A Survey of Testing and Debugging Multi-Agent Systems

In this section we provide an overview of several works that, in one way or another,
include some notion of testing and/or debugging multi-agent systems. First, we de-
scribe the approaches for testing techniques, which do not address the debugging
techniques. Then, we describe the debugging techniques and its tools. It is important
to notice that some debugging tools found in literature for multi-agent systems also
contain testing techniques (Zeus [12][13], Prometheus [15][16][17]). They are sepa-
rated in two subsections because the testing techniques may be related only to test
cases, and can not be considered a debugging tool. We also evaluate them consider-
ing its approaches, its relative strengths and weakness, and the open issues of each
one.

 7

4.1 Testing

Passi [2]. The proposal of this work is not to provide an exhaustive testing tool but to
propose a new approach based on a simple testing framework which lets developers
build a test suite effortlessly in a cheap and incremental way. As a framework, it pro-
vides a unifying application model and a partial implementation of it, trying to sup-
port the developer in creating and executing tests in a uniform and automatic way.
They aim to reduce time and cost when developing MAS, guarantee quality assur-
ance, and provide automatic activities which should assure that the program per-
forms satisfactorily.

Their framework is built on top of JADE and lets developers create tests at differ-
ent levels (hierarchical approach) simply acting as a support for running tests and
visualizing results. The framework is based on a two-level model. At the first level
they identify the agent as an atomic entity. In order to check the correctness of the
activities carried out by a single agent a number of different cases must be tested.
This leads us to the second level where they identify specific agent tasks.

There is an “test-agent” which performs the set of tests related to all the capabili-
ties of a given agent. Tests on specific tasks, on the other hand, will be referred to as
“task-test”. In order to reflect the two-level model, the following classes are provided:

• Test class, representing the test of a specific task of an agent.

• TestGroup class, representing the group of all the agent tests. It is basically a
collection of Test objects. The list of task-tests to be included in a TestGroup is
described in an XML file.

In general, all test methods in a TestGroup share the same fixture, which consists of
objects and anything else needed to perform the test. A Test or a TestGroup is exe-
cuted by a tester agent i.e. an agent that extends the TesterAgent class. Each tester
agent has a behavior, an extension of the TestGroupExecutor class, which is in
charge of getting the group of tests to be executed and for each test adds the corre-
sponding behavior to the tester agent scheduler. The list of all the agent-tests that can
be tested and the list of task-tests to be performed for each of them are described by
means of XML files. There is a single main XML file that contains the list of all the
agent-tests of the application and one XML file for each agent-test that contains the
list of task-tests to be executed. Developing an agent-test means therefore developing
a new tester agent in charge of the group of task-tests described in the associated xml
file.

Finally the utility class Logger provides methods to create logs. By extending this
class it is possible to create sophisticated loggers in order to provide reported infor-
mation in more suitable formats. To date, reported information can be displayed in a
graphical user interface (where very essential information is shown), written to a text
file, printed to the standard error or organized into web pages.

 8

In the Figure 2 a class diagram of the framework main classes is represented.

Figure 2 - PASSI - Test Framework main classes

A single test and group of tests can be executed by simply launching the correspond-
ing tester agent. A more convenient way of performing them is by means of the
TestSuiteAgent, an agent that provides a valuable graphical interface to run tests.
When a test or a group of tests are launched the TestSuiteAgent creates the proper
tester agent and delegates to it the execution of the tests. During the testing activity
the tester agent will send FIPA ACL messages to the TestSuiteAgent, informing it
about the test outcomes and giving eventually detailed information concerning the
causes of failure.

Figure 3 - TestSuiteAgent GUI – The Product agent under test

 9

The TestSuiteAgent, as stated before, provides a graphical interface to run tests, by
means of which it is possible to: (i) view information related to the agent-tests and all
the task-tests they include; (ii) select and load the tests to be executed; (iii) execute all
agent-tests of the list in sequence and produce a final report indicating, for each a-
gent-test, the number of task-tests which have passed and failed and the correspond-
ing causes of failure.

What makes this GUI particularly helpful is the binary visualization of the results,
stating whether the test has passed or failed, which cuts down considerably the time
needed to analyze tests outcomes. This GUI is similar to the JUnit which is a frame-
work for automated unit tests (for e.g. Figure 4). In fact while the test is running the
GUI shows its progress with a progress bar. The bar is initially green but turns into
red as soon as there is an unsuccessful test. In this case, the failed tests are marked in
the list and detailed information of the causes of failure is reported at the bottom. As
a general rule software applications should be tested thoroughly. In particular as
changes are made to the system and the added functionality is tested, previously
tested functionalities have to be re-tested to assure that the modifications have not
corrupted the system. In order to cut down the time of regression testing and to
make the task of the developer easier, the button “RunAll” is provided in order to
allow the execution of all the tests listed in the main xml file. A snapshot of the
TestSuiteAgent GUI is shown in Figure 3. In this figure an example of framework use
is reported. The test concerning the ProductProdtPhaseContract_init behavior has
failed. The progress bar is red (dark grey in the figure), the unsuccessful test is
marked and in the lowest text area information about the causes of failure is re-
ported (the thrown exception, in this specific case).

Figure 4 - JUnit: A Successful Run

Test Agent [21]. This work provides a Test Agent which is able to be inserted or
plugged into a community of agents to exercise each of the agents in the community

 10

as well as the community as a whole, and to also monitor the agents after they are
deployed to insure proper functionality.

Figure 5 shows the architecture and data flow for the test agent in its completed
form. The test agent receives message specification and stores it in the message speci-
fication file (potentially as XML, which would allow it to be easily reused). From this
information test scripts can be generated to test each of the defined autonomous sys-

tems.

Figure 5 - Architecture of the Test Agent

The test agent tests other agents and communities by:

• Testing a single agent’s ability to send or receive a specific message;

• Testing a single agent’s ability to handle valid as well as invalid messages;

• Testing a community’s ability to handle all defined messages and representative
number of invalid messages;

• Maintaining the official message specifications for the agent community;

• Maintaining the message specifications in the design document;

• Collecting metrics on network usage, inter-agent communications and other
needed metrics for scalability issues;

• Monitoring an agent system for potential errors and performance problems.

The test agent supports both regression and progression testing of agent message
handling capabilities. The regression testing is used to insure that agents perform to
their stated specifications and that modifications to agents do not affect existing mes-
sage handling capabilities. The progression testing supports agent developers as they
add new messaging capabilities to their agents.

Since a complete specification of the agent communications is stored in the speci-
fication file, it is possible to output the contents of the file into an HTML, XML or o-

 11

ther format that could then be used in a design document. The design document is
automatically updated when the specification file changes. The messages can be
specified in a formal language which allows the message specification file to be gen-
erated directly from the content of the formal specification, which in turn will ensure
that the content of the message specification file is always correct and reflects the
current message specification. In addition, they also ague that deadlock conditions
can be prevented.

Testing individual agents is done by sending specific messages from the agent to
the target agents and examining the messages returned (if any). The set of valid mes-
sages for each agent will be generated from the message specification file. From this
definition, the test agent will be able to generate a set of test messages and interpret
the responses as valid or invalid. Rules to apply to the test messages will be stored in
a rule base and will be generated from user inputs and the agent specification.

Testing a community of agents is also based on the message specification file.
From this file the test agent can generate a test script for the entire community of a-
gents. This test script again, can also be run interactively on in a batch mode. The test
agent is the successively substituted for each agent in the community (again using
automatic testing) with the results being stored in a file or emailed to a developer.

For later tests, developers will also be able to fold progression tests into the regres-
sion test script to form a new regression test script. Batch testing will simply execute
a predefined set of regression tests and have the results saved to a file.

Madkit [6]. This approach focuses on a specific kind of testing called the Re-
cord/Replay mechanism [20] used in regression testing. The Record/Replay mecha-
nism is a test performed during the execution of the system either in simulation or in
production. It is realized through system inspection. The record phase records ac-
tions in the system (memory, environment, data update, messages, etc.). When an
error occurs in the system, designers have a system that they can play and replay un-
til they found the error and fixed it. They also compare model checking and testing,
and say that contrarily to the former, testing checks that agents behave properly
rather than agents are proved correct. In their approach, the Record/Replay mecha-
nism is coupled to testing via post-mortem analysis. It uses the events and data stored
during the record phase and checks properties without reexecuting the system.

The information stored depends on what designers want to replay. Actually, there
exist two kinds of execution replay: content-based and ordering-based execution re-
play. The content-based execution replay considers storing all the instructions from
systems (instructions from programs as well as memory). The ordering-based execu-
tion replay only stores the non-deterministic events in order to make sure they will be
replayed in the same order. As stated, the ordering-based execution replay has high
level of abstraction. In case of ordering-based execution replay, the record phase uses
vector clocks to store the event ordering. Hybrid approaches mixing content-based
and ordering-based execution replays offer the better of the two approaches. This is
the one chosen for this approach.

 12

There are three monitors agents responsible for the record phase. Two of them
were extended from the MadKit platform [3] and the other was created. The agents
are:

• The group message tracer agent: is responsible to trace messages sent within
the group. Each time this agent receives a message, it records it in a file. During
the replay phase, the group message tracer agent reorders the messages based
on the trace file.

• The organization tracer agent: is responsible to record group and role actions:
when agents enter or leave a group, or when they add or remove a role. It re-
cords group and role actions in a trace file. This agent is not used in the replay
phase.

• The environment tracer agent: is responsible to record the environment initial
configuration and modification. This agent checks the environment at the end
of each time interval and records what the modifications (new agent position,
resource production or resource consumption) are. The modifications are sto-
red in a trace file.

Agents executed on the platform do not need special attention except the use of the
trace and the getfromTrace primitives that are used respectively in the record phase
and in the replay phase. First, the initial environment is extracted from the trace of
the environment tracer agent. It means that resources and agents are located at the
position they were at the beginning of the record phase. Each time, agents need a
non-deterministic variable data, they get it from the trace file. For instance, here is an
excerpt of the code of an agent:

if (MODE_RECORD) { /*record*/

input = getUserInput();

trace("input", input);

} else { /*replay*/

input = getfromTrace("input");

}

In the context of ordering-based execution replay, it is necessary that messages ar-
rived in the same order to agents. Agents are constrained in the way they have to
send the message to the group message tracer and not to the recipient in order to en-
sure message ordering. The group message tracer is responsible to reorder messages
based on the trace file and deliver them to agents in this order. They also rose the
idea of using the environment trace as checkpoints: the user specifies which envi-
ronment situation to consider as initial situation, then the replay is performed from
this environment situation. The agents are necessarily moved to a situation compati-
ble with this environment situation, that is, agents have the state they have just at
the moment of this environment situation. Another possibility in the Record/Replay
mechanism is to execute a specific process and let it evolving and believing it really

 13

interacts with other processes. This is realized thanks to the record phase that can
simulate the messages. Agents, in the replay phase, send messages to the group mes-
sage tracer and not directly to recipients in order to repeat the exact order.

The post-mortem analysis uses the data recorded during the record phase. The
data from the trace files are extracted and its properties verified. For instance, if the
designer wants to check that after receiving a message, the recipient believes the con-
tent of the message, the designer extracts the message from the group message tracer
file and checks if there is a belief about the content of the message dated after the
message receipt. If yes, the recipient believes the content.

XMLaw [19]. In this work, an approach is proposed for integration tests in open
multi-agent systems. This approach supports the creation of test cases based on the
information provided by the definition of system rules. They propose to use XMLaw,
which is a language for the specification of agents’ interactions’ regulation in open
multi-agent systems.

In open multi-agent systems, agents must obey social conventions in order to
maintain predictable integration. Usually, these social conventions are hard coded,
leading to unsuitable systems. A solution to hard coded conventions is separate the
system’s social convention into a separate module insuring agents compliance. This
technique is called law enforcement.

A law enforcement approach separates the system’s rules from the raw source
code, making them explicit so that the development and maintainability may become
more efficient. Even though the current approaches deal at some extent with the
monitoring and enforcement of such laws, it is not clear how it is possible to perform
integration tests over such systems, i.e., how we can write test cases and receive re-
ports about the results of them. Then, they argue that, in a systemic way, integration
tests in open multi-agent systems become very important since the behavior of the
involved agents may be unpredictable.

XMLaw is a law enforcement language and environment supplying a structural
and dynamic model. The former describes how all the law elements are related while
the last shows how an event-driven architecture is implemented. XMLaw is based on
a mediator agent that has an enforcement mechanism for applying the laws. The sys-
tem laws are described in an XML file and their hypothesis is to reuse this language
to establish system’s behavior.

Regarding the source code, some system’s assertions can be established, assertions
are expressed as observation points. Observation points are an extensible feature that
permits us to configure the test infrastructure to specific needs. The first one is the
time to live observation point it indicates that a scene can not stay alive for more
than a stipulated time, if so, for instance, a treatment is activated someone is notified.

Even with an easier law manipulation and a control over agent’s behavior, the
law enforcement approach does not solve problems of agent integration in open sys-
tems. Leading us to figure out how we should identify failures and errors in open
system execution, how to execute tests cases and how to report non-compliant exe-
cutions. As stated before, the XMLaw environment provides a mediator agent, which

 14

enforces all messages exchanged by agents. All agents must use the same mediator,
where non-compliant messages are always blocked. Also the environment is built
with an event-driven architecture, meaning that messages can fire events and ob-
servers can subscribe to them.

Concerning testing and the XMLaw environment, they propose an integration test
architecture providing means of executing test cases, block-unblock operation mode,
allowing the execution of entire test cases, coverage evaluation of test cases and the
generation of testing reports. The system takes advantage of the event-driven model
used in XMLaw, all events generated in the system can be observed and be reported
to a log database, Figure 6 illustrates the architecture.

Figure 6 - XMLaw Integration Test Architecture

Since the environment uses a mediator agent which subscribes itself to all events in
order to observe all messages, they provided an agent, called Report Agent, which
also subscribes itself to all events (1), doing so, all generated events will be stored into
a log data base (2). They also proposed to implement a mechanism allowing non-
compliant messages cross the system (3), which allows the execution of test suits.
However, none of those mechanism have been implemented yet.

At the end of the execution of several test cases, the data-base contains a log of all
events fired during the whole execution and also a trace of all messages exchanged.
This integration testing approach provides an engine template that, from the log
data, generates reports (4) conforming defined in templates (T1 and T2).

4.2 Debugging

Zeus [12], [13]. Zeus is a development toolkit for constructing collaborative agent
applications. It provides an integrated environment for the rapid construction of col-

 15

laborative agent applications. Zeus defines a multi-agent system design methodology,
supports the methodology with an environment for capturing user specification of
agents, and automatically generates the executable source code of the user-defined
agents. It also provides a suite of visualization and debugging tools for the Zeus tool-
kit.

Zeus debugging tools shift the burden of inference from the user to the visualizer.
The visualizer is another agent which just requests local information from agents and
tries to build a global view. Some agents may not reply because they are suspended
or dead, and in such scenario, the global view presented by the visualizer will be in-
complete. The tool-set presented includes:

• A society tool that shows the message interchange between agents in society;

• A report tool that graphs the society-wide decomposition of tasks and the exe-
cution states of the various subtasks;

• A micro tool for monitoring the internal states of agents;

• A control tool for remotely modifying the internal states of individual agents.
This tools is used for the administrative management of the agents in the toolkit
e.g. killing of suspending agents, adding, modifying or deleting goals, re-
sources, tasks, coordination strategies, etc;

• A statistic tool for collating individual agent and society-wide statistics;

• A video tool (within the society, report and statistic tools) which can be used,
video-style, to record, replay, rewind, forward, fast-rewind and fast-forward
sessions from a database.

The report tool allows a user to select a set of agents and request that they report to it
the status of all their tasks/goals. Then this tool collates the local views to provide a
more complete picture.

Although these tools were developed in order to visualize agent applications built
using our ZEUS toolkit, it was designed to be relatively independent. Hence with
some modifications to the message content language it could be used to visualize
non-ZEUS agent systems. The overall architecture of the visualizer comprises a cen-
tral hub made up of a mailbox, a message handler, a message context database, and
a tool launcher.

The mailbox provides facilities for messaging between the visualizer and other
agents. Currently, communication is via KQML messages. The tool launcher
launches (on demand by the user) instances of the different tools in the tool set,
namely, instances of the Society, Statistics, Micro, Report, and Control tools. This is
the natural architecture that emerges for providing different viewpoints on the visu-
alization/debugging process.

The message handler processes incoming messages received by the mailbox and
delivers them to tool instances that have registered an interest in messages of that
type. Tool instances register an interest in receiving messages of a particular type by
using the message context database that is consulted by the message handler during
its processing. Thus, each tool instance interested in receiving report messages of a

 16

particular type from a set of agents will (i) use the mailbox to send requests to those
agents that they report to the visualizer whenever events of that type occur, and (ii)
register in the message context database an interest in receiving all incoming report
messages of the desired type. They utilized the KQML reply-with (outgoing message)
and in-reply-to (incoming message) fields to associate an identifier to each message,
which is unique to tool instances and event-types. This way, the message handler
does not need to scan the contents of a message to determine which tool instance re-
quires it. This arrangement allows users of the visualizer to decide at runtime the set
of events they are interested in monitoring, and also to change this set at any time.

As mentioned earlier, the society tool also provides facilities for the storage in a
database for later playback of the messages being sent and received by the agents.
Again, message filters can be used during storage and/or replay to select particular
messages of interest. Replay facilities support the video metaphor, allowing a user to
review the messages in forward or reverse mode, in single step fashion or animated.
Further, users can make normal database type queries on the stored messages, e.g.
“how many messages did agent C send out regarding task 141”. The video replay
facilities with message filters, and database query support significantly enables users
to dynamically change perspectives whilst trying to make sense of the interactions
between the agents.

Figure 7: A micro tool view of an agent (C). From left to right, we have views of the incoming and outgoing
mail boxes, the message handler summary, the coordination graph, the execution monitor summary and a
list of the items in the agent’s resource database. (“Adapted from [13]”)

 17

The micro tool (Figure 7) provides users with a finer look at the internal processing of
an agent. It allows them to select an agent and request to see one or more of:

• (i) the messages being received by the agent;

• (ii) the messages being sent out by the agent;

• (iii) a summary of the actions taken in response to incoming messages, for ex-
ample, to what module of the agent the message was dispatched to for detailed
processing;

• (iv) a graphical depiction of the co-ordination process of different goals by the
agent. Each node of the co-ordination graph indicates a particular state of the
process, and the trace of a goal on the graph summarizes how it is being coor-
dinated and indicates the current state of the co-ordination process;

• (v) a diary detailing the tasks the agent has committed itself to performing, and
the current status of those tasks (i.e. waiting, running, completed or failed);

• (vi) a list of the resources available to the agent including those allocated to the
different tasks it has committed itself to;

• (vii) a summary of the results of monitoring executing tasks or tasks scheduled
to start execution; e.g. this might indicate a task which failed to start because of
inadequate resources or it might flag an executing task which has been stopped
because it over-ran its scheduled allocation of processor time.

The entire visualizer is implemented in the Java programming language and runs
on Solaris UNIX and Windows NT. To establish that the visualizer meets its required
non-functional requirements of being domain-independent, customizable and scale-
able, it has been evaluated on (i.e. used in visualizing and debugging) four distrib-
uted MAS applications from diverse domains:

• A travel management demonstration application involving 17 agents, in which
a travel manager generates an itinerary for a transatlantic trip for a user.

• A telecommunications network management demonstration application with
27 agents. For this application the report tool was customized to support a dif-
ferent display format for task decomposition graphs.

• An electronic commerce demonstration application where agents buy and sell
goods and services using different negotiation strategies.

• A business process management demonstrator in which agents collaborate in
the provision of complex end-to-end business processes within a call centre set-
ting.

Prometheus [15][16][17]. Prometheus is a methodology which has been developed to
support the building of intelligent agent systems. This methodology focuses on cover-
ing all phases of development, which includes testing and debugging that are linked
to analysis and design.

Their central thesis is that the design documents and systems models developed
when following an agent-based software engineering methodology can be incorpo-

 18

rated in an agent and used at run-time to provide for run-time error detection and
debugging [16].

The idea is that the protocols during design specify allowable message exchanges
between agents. Therefore, it is possible to check that a given execution of a system
does not violate existing protocols and a debugging tool which monitors execution
can hence detect violations of the protocols as specified and can notify the developer.

Monitoring can be done via eavesdropping on the communication medium (e.g.
[4]), or more directly by requiring that a carbon copies of any messages sent also be
sent to the debugging agent as done in the Zeus toolkit. The approach developed in
relation to Prometheus involves automatically adding code that sends copies of mes-
sages to a monitoring agent. For the debugger to reason about the correctness of a
message within a particular conversation it needs to compare it against the protocol
specification.

Figure 8 - Debugging System Design

The debugger has a library of the specified interaction protocols that it uses to de-
tect errors. The debugger keeps a list of active conversations so that it can monitor
multiple interleaved conversations simultaneously. When a message is received from
an agent it is added to the appropriate conversation (or a new conversation is instan-
tiated), and is then processed by firing any enabled transitions (Figure 8).

For any given conversation the debugger does not know what protocol the agents
are following. Therefore the debugger keeps a list of possible protocols, instantiated
from the interaction protocol library, which currently match the sequence of mes-
sages within the conversation. As the conversation progresses the possible protocols
list is reduced whenever a message is received that causes an error in the individual
protocol. The conversation is still considered valid as long as there is at least one en-
try in the possible protocols list.

Each time the debugger receives a message for a specific conversation an analysis
is done on each protocol within the possible protocols list of that conversation to
identify error situations. As long as there is more than one protocol in the possible
protocols list, errors simply lead to the conclusion that this protocol was not in fact

 19

the one that was being followed, and it is discarded from the list. However if an error
is detected in the only remaining protocol, then this is reported.

This technique of monitoring conversations between agents is capable of auto-
matically identifying incorrect interaction patterns. An incorrect execution pattern is
typically the result of a lower level coding error in one of the agents. The debugger
provides information about the protocol that the agents were engaging in, the agent
types and instances that were executing, and the point at which a conversation di-
verged from the allowed behavior. This provides valuable information to the devel-
oper to assist in locating the exact cause of the error.

The debugging mechanisms proposed by this work described have been imple-
mented and also been tested on a substantial implementation project of a meeting
scheduler. They implemented a debugging agent using the algorithms for converting
and have tested in some examples. They also converted and tested several FIPA in-
teraction protocols, including the call for proposal, request interaction and query in-
teraction protocols. They stated that their debugging agent was able to identify in-
correct message exchange whenever it occurred. They also performed testing to en-
sure that correct message exchanges are not erroneously flagged by the debugging
agent.

4.3 Analysis

This section is concerned with the results of the evaluation approach. First we are
going to present the analysis for each framework or tool investigated on this survey.
Then we are going to present a table that categorized them by strategy (test-
ing/debugging) and level (agent/society) with the values of evaluation of each one.

PASSI. The testing framework proposed in the PASSI methodology lets develop-
ers build a test suite effortlessly in a cheaply and incrementally way. The uniformity
of the approach and the binary representation of the results helps the developers to
create test cases and interpret the information. The framework allows the developer
to run regression tests which is good, since it allows the developer do run the tests
while develops it. In particular as changes are made to the system and the added
functionality is tested, previously tested functionalities have to be re-tested to assure
that the modifications have not corrupted the system. However the framework is
bound to the agent level testing. No society level approach has been provided, hence
it is still difficult to find a behavior organization deviation easily. The visualization
tool provided also needs some enhancements to show the messages exchanged by the
current agent being tested.

Test Agent. The test agent proposed in this work can be used to test a single agent
or can be inserted into a community of agents to test the community as a whole. In
addition, a subset of the test agent can be deployed with an agent community that
will provide data on how well the community is performing and to give feedback on
their correct operation. The test agent supports both regression and progression test-
ing of agent message handling capabilities. However, despite all the efforts on test-
ing, there is no debugging tool for helping developers to visualize the execution of the
agent or the system. Moreover, the framework doesn’t provide any monitoring ap-

 20

proach. Monitoring agents can handle behaviors errors not related to message ex-
changing between agents. If the agent crash, for example, it is not possible to know if
the agent isn’t answer messages because it is in a deadlock or if it is crashed.

Madkit. This work proposed the Record/Replay mechanism used in parallel or
distributed systems for testing multi-agent systems in the Madkit platform. Its main
advantage is to deal with scaling and combinatorial explosion since only non-
deterministic events (and optionally data) are recorded. Besides the Record/Replay
mechanism, a post-mortem analysis is added, which allows some verification of
properties. It is then possible to record data and verifies the relation between them.
This could help for instance, when verifying that agents are compliant to the ACL
semantics or when verifying that an agent respects some norms if it belongs to a spe-
cific group. However, the supplementary code necessary for the record mechanism
can generate the probe effect. Moreover, it would be better if there was a tool that
inserts those primitives were required. This approach also doesn’t have any tool for
visualization. Then it is too hard to verify the data evolution into the trace files. An-
other issue is the overhead of the record phase. Depending on the number of proper-
ties to be traced, it may affect the system performance.

XMLaw. This approach is very useful for open systems that have to be regulated
by a law enforcement approach. As XMLaw allows designers specifying the interac-
tion between agents, the enforcement by itself allows the verification of the interac-
tion protocols. The test cases are proposed as observations points in the law specifica-
tion which can allow an integration test. However, the approach proposed does not
cover all points needed for a complete integration test, since it depends of report in-
terpretation and analysis. Moreover, the points addressed take advantages of already
know system information, which were wasted before. Applying these information to
testing aims to improve the system in the way that you do not have to redefine what
your system must do in law clauses, and what it expect to do in test cases, since the
information is already declared. Of course there will always be the test case defini-
tion, but in this case the test will be concerned exactly with the agent behavior, i.e., it
will test how compliant the agent’s messages will be with the system’s law without
worrying with unacceptable cases. The reporting analysis is also a good tool since it
concerns several views of the system’s execution. Sometimes, reading log files is an
unwise and wasteful task. The idea of focusing on the data to be observed avoids the
tedious tasks as the analysis of log and trace files. Also, the template definition can be
used in future analysis, so the user does not have to redefine a new report view
when re-inspecting a log data base.

ZEUS. Despite the fact that this approach is addressed to multi-agent systems
based on collaboration, this one was the best approach found in literature for testing
and debugging multi-agent systems. All the debugging verification and validation
were integrated to the software life cycle and were related to the previous phase of
analysis and design. There are a lot of views which allows a better comprehension of
how the agents’ behavior goes on during its execution, and a specific tool which ex-
poses different views of an agent execution. It is scaleable, customizable and generic.
Even with all those tools, there is a problem that Zeus doesn’t solve: as the collected
information are done through messages request, it is not possible to predict if an

 21

agent is behaving as expected since it may not respond with information of its state.
Hence, the society report cannot report informations about that specific agent into
the organization. Another issue related to that problem is the fact that in open sys-
tems, the agents may be malicious and send wrong messages about their states. A
solution for this problem is the implementation of a monitoring agent which checks
the agents’ state and generates reports for the tool.

Prometheus. This approach proposes a debug agent which monitors the mes-
sages’ exchanges between agents and checks them against interaction protocols. Vio-
lations of the interaction protocols such as a failure to receive an expected message or
receiving an unexpected message can then be automatically detected and precisely
explained. Their debug agent was able to identify incorrect message exchange when-
ever it occurred in a protocol execution. They also performed testing to ensure that
correct message exchanges are not erroneously flagged by the debugging agent.
However, there are some issues they didn’t address in this approach. One of them is
that fact that they assume that the system isn’t timing dependent. It would be neces-
sary to extend their approach for constructing time-dependent systems. Another is-
sue is that the debugging agent cannot translate preconditions, i.e., it cannot know
when an arbitrary condition becomes true since it doesn’t have access to the internal
beliefs of other agents. Finally, the last issue rose was about the debug of the society
level considering the environments. They didn’t propose anything for the integration
of multiple agents in a number of multi-environments.

To finish the evaluation, considering all the strengths and weakness of each ap-
proach, as stated before, we associated three values to each approach according to
its strategies, where: 0 means that the approach doesn’t apply at all the strategy, 1
means that the approach apply weakly the strategy, and 2 means that the approach
apply totally the strategy.

For the debugging approaches, a criterion for given the values was based on the
fact that the tool had or not a visualization tool for that strategy.

Table 1 - APPROACH COMPARISON

 TESTING DEBUGGING

Agent Level Society Level

Black-box White-box Black-box Integration

Agent
Level

Society
Level

PASSI 2 2 0 0 1 0

Test Agent 2 2 2 2 0 0

Madkit 2 2 2 2 0 0

XMLaw 0 0 0 1 0 1

ZEUS 2 2 2 2 2 2

Prometheus 0 0 0 1 0 1

 22

5 Conclusions and Future Work

The State of the Art presented in this work survey the recent efforts on debugging
and testing multi-agent systems. There are a few work on this research and some of
the work found in the literature is specific to a methodology or a subsystem which
does not address all the characteristics presented in any multi-agent system.

First, we have explained the main strategies and techniques for testing systems in
general. Then we showed why those strategies and techniques could not be applied
to multi-agent systems and how other techniques (for instance, the ones used in par-
allel systems) can improve those traditional strategies for the context of agent based
systems.

After that we started the survey itself presenting four strategies for testing multi-
agent systems ([2],[6],[19],[21]) and two for debugging it ([12], [15]). When studying
those strategies we realized that a deep evaluation would be more appropriate to
verify with they are so efficient as their authors say they are. But there was no time
for developing an example that would experiment each one of them and check all
the statements done by the authors. Then, we evaluated them considering the strate-
gies used. Actually, it was not an evaluation itself but a categorization of each work
found.

We let as a future work the experiments that should be done in order to verify
which strategy should be improved or not. We didn’t check the conformity, for in-
stance, of the strategies that assure that they check the analysis and design phase
([2], [12], [15]) with the implemented phase.

However, considering the evaluation done in section four, we realized that the
most suitable and complete strategy would be the integration of the one done imple-
mented in MadKit ([6]) which uses the record/replay mechanism, with the one im-
plemented in Zeus ([12]) which have all views necessary for the debugging phase,
and with the one implemented in Prometheus ([15]), which has a thoroughly verifi-
cation between the design phase with the multi-agent execution.

6 Bibliography

[1] Boehm, B.W., Software engineering economics. Prentice hall, Englewood Clifs, NJ,
1981.

[2] Caire, G., Cossentino, M., Negri, A., Poggi, A., and Turci, P., Multi-agent systems
implementation and testing. In Proc. of From Agent Theory to Agent Implementation
- Fourth International Symposium (AT2AI-4), Vienna, Austria, April 2004.

[3] Gutknecht, O., and Ferber, J., The MADKIT agent platform architecture. In
Agents Workshop on Infrastructure for Multi-Agent Systems, pages 48–55, 2000.

 23

[4] Heselius, J., 2002. Debugging parallel systems: A state of the art Report. MRTC
Report ISSN 1404-3041 ISRN MDH-MRTC-63/2002-1-SE, Mlardalen Real-Time Re-
search Centre, Mlardalen University.

[5] Hewitt, C., Jong, P., Open systems on conceptual modelling. Technical report,
Massachusetts Institute of Technology, 1982.

[6] Huget, M.-P.; Demazeau, Y.; Evaluating multiagent systems: a record/replay ap-
proach. Intelligent Agent Technology, 2004. (IAT 2004). Proceedings.
IEEE/WIC/ACM International Conference on 2004 Page(s):536 - 539 Digital Object
Identifier 10.1109/IAT.2004.1343013.

[7] Huget, M.-P., Odell, J., 2004. Representing agent interaction protocols with agent
uml. Proceedings of the AAMAS04 Agent-oriented Software Engineering (AOSE)
Workshop.

[8] Ian Sommerville, Software Engineering (Sixth edition), Addison Wesley, 2000.

[9] Jennings, Nicholas R., An Agent-Based Approach for Building
Complex Software Systems, Communications of the ACM, 44(4), 35-41, April 2001.

[10] Jürgen Lind. MASSIVE: Software Engineering for Multiagent Systems. PhD
thesis, University of the Saarland, 2000.

[11] Jürgen Lind. Iterative Software Engineering for Multiagent Systems - The
MASSIVE Method. Volume 1994 of Lecture Notes in Computer Science, Springer Ver-
lag, Heidelberg, May, 2001

[12] Ndumu, D. T., Nwana, H. S., Lee, L. C., and Collis, J. C. 1999. Visualising
and debugging distributed multi-agent systems. In Proceedings of the Third Annual
Conference on Autonomous Agents (Seattle, Washington, United States). O. Etzioni, J.
P. Müller, and J. M. Bradshaw, Eds. AGENTS '99. ACM Press, New York, NY, 326-
333. DOI= http://doi.acm.org/10.1145/301136.301220

[13] Nwana H, Ndumu D, Lee L and Collis J, ZEUS: an Advanced Tool-kit for En-
gineering Distributed Multi-Agent Systems, In Proceedings of PAAM98, London,
1998.

[14] Padgham, L., and Winikoff, M., Developing Intelligent Agent Systems A prac-
tical guide. Wiley Series in Agent Technology, Wiley, New York (2004).

[15] Poutakidis, D., Padgham, L., Winikoff, M., An exploration of bugs and de-
bugging in multi-agent systems to appear in the proceedings of the 14th Interna-
tional Symposium on Methodologies for Intelligent Systems (ISMIS 2003)

[16] Poutakidis, D., Padgham, L., Winikoff, M., Debugging Multi-Agent Systems
using Design Artifacts: The case of Interaction Protocols, in the proceedings of the
First International Joint Conference on Autonomous Agents and Multi-Agent Sys-
tems (AAMAS 2002). July 15-19, 2002, Bologna, Italy

 24

[17] Padgham, L., Winikoff, M., Poutakidis, D., Adding Debugging Support to the
Prometheus Methodology. Engineering Applications of Artificial Intelligence, special
issue on Agent-oriented Software Development, Volume 18, Issue 2, March 2005,
Pages 173-190, doi:10.1016/j.engappai.2004.11.018.

[18] Reisig, W., Petri Nets An Introduction. EATCS Monographs on Theoretical
Computer Science, Springer, Berlin (1985).

[19] Rodrigues, L.F; Carvalho G. R.; Paes, R. B.; Lucena, C.J.P.; Towards an Inte-
gration Test Architecture for Open MAS (SEAS), SBES, 2005.

[20] Ronsse, M., Bosschere, K. D., Christiaens, M., Kergommeaux, J. C., and Kran-
zlmüller, D., Record/replay for nondeterministic program executions. Communicati-
ons of the ACM, 46(9), September 2003.

[21] Rouff, C.; A Test Agent for Testing Agents and Their Communities. Aerospa-
ce Conference Proceedings, 2002. IEEE Volume 5, 2002 Page(s):5 - 2638 vol.5 Digital
Object Identifier 10.1109/AERO.2002.1035446

[22] http://agtivity.com/agdef.htm, accessed in Oct/2005.

[23] Pressman, R. S., Engenharia de Software, 5ªed., Rio de Janeiro, McGraw-Hill,
2002.

