

ISSN 0103-9741

Monografias em Ciência da Computação

n° 06/06

Using Testimonies to Enforce the Behavior of
Agents

Viviane Torres da Silva

Fernanda Duran de Moura Augusto

Ricardo Choren

Carlos José Pereira de Lucena

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 06/06 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena 02, 2006

Using Testimonies to Enforce the Behavior of Agents

Viviane Torres da Silva, Fernanda Duran de Moura Augusto, Ricardo Choren1,
Carlos José Pereira de Lucena

1 SE/8 – IME/RJ, Pça General Tibúrcio 80 22290-270, Rio de Janeiro/RJ, Brazil

viviane@inf.puc-rio.br, fduran@inf.puc-rio.br, choren@de9.ime.eb.br, lucena@inf.puc-rio.br

Abstract. Governance copes with the heterogeneity, autonomy and diversity of inter-
ests among different agents in a multi-agent system (MAS) by establishing a set of
norms. However, a governance enforcement mechanism usually checks norm viola-
tions from only one point of view, such as interaction. Besides putting aside other as-
pects, these mechanisms have an intrusive implementation, for instance they check
every message. This paper presents a mechanism to support the implementation of
governance in MAS, based on testimonies, i.e. agents can witness to facts that they
know may be related to norm violations. This mechanism is composed of three sub-
systems: reputation, judgment and punishment. We focus on the judgment sub-system,
which is responsible for receiving the testimonies and for providing a decision pointing
out if an agent really violated a norm. We show the sub-system architecture and a gen-
eral judgment process. Finally, we illustrate the use of our mechanism through a case
study.

Keywords: open systems, multi-agent system, governance, norms and testimonies.

Resumo. Governança trata heterogeneidade, autonomia e diversidade de interesses
entre diferentes agentes em um sistema multi-agente (SMA), estabelecendo um conjun-
to de normas. Entretanto, um mecanismo de aplicação de leis normalmente verifica a
violação de normas apenas sob um aspecto, como interação, por exemplo. Além de ou-
tras implicações, estes mecanismos são intrusivos, pois eles inspecionam cada mensa-
gem trocada entre os agentes. Este artigo apresenta uma abordagem que implementa
um mecanismo de governança em SMA baseado em testemunhos. Agentes podem tes-
temunhar fatos que estão relacionados à violação de normas as quais eles têm conhe-
cimento. Este mecanismo é composto por três sub-sistemas: Reputação, julgamento e
punição. Neste artigo, nós focamos o sub-sistema de julgamento, responsável por rece-
ber os testemunhos prover decisões apontando se o agente realmente violou uma nor-
ma. Mostraremos a arquitetura deste sub-sistema e um processo de julgamento genéri-
co. Finalmente, ilustraremos a utilização do nosso mecanismo através de um caso de
estudo.

Palavras-chave: sistemas abertos, sistemas multi-agentes, governança, normas e teste-
munhos.

 ii

In charge for publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br

 iii

Table of Contents

1 Introduction 1

2 The Testimony-based Governance Mechanism 2
2.1 Governance Mechanism Assumptions 2
2.2 The Governance Mechanism Architecture 3

3 The Judgment Sub-system 4
3.1 The Judgment System Architecture 4
3.2 The Judgment Process 5

4 A Case Study: Expert Committee 7
4.1 Norm I 8
4.2 Norm II 9

5 Conclusion and Future Work 10

References 11

 1

1 Introduction

Open multi-agent systems are societies in which autonomous, heterogeneous and in-
dependently designed entities can work towards similar or different ends (Lopez,
2003). In order to cope with the heterogeneity, autonomy and diversity of interests
among the different members, governance (or law enforcement) systems have been de-
fined. Governance systems enforce the behavior of agents by establishing a set of
norms that describe actions that agents are prohibited, permitted or obligated to do
(Boella, 2004), (Singh, 1999).

Several governance systems, such as (Minsky, 2000), (Paes, 2005), have been pro-
posed to regulate the interaction between agents. They use a law-governed interaction
(LGI) mechanism (Minsky, 2000) that mediates the interaction between agents in order
to make them comply with the set of norms. Every message that an agent wants to
send is analyzed by the mechanism. If the message violates an application norm, the
message is not sent to the receiver.

Since those mechanisms interfere in every interaction between agents, they influ-
ence the systems’ privacy and performance. The privacy of an agent is broken since
every message sent from an agent to another must be inspected. The performance is a
concern in large multi-agent systems, in which a great number of exchanged messages
shall be checked. Besides these issues, systems based on LGI mechanisms do not con-
sider every action executed by an agent since they are only concerned about message-
driven events. Therefore, norms applied to actions not related to messages, such as
reading or updating a resource, cannot be enforced.

Other governance systems, such as TuCSoN (Cremonini, 2000), provide support for
the enforce-ment of norms that regulate the access to resources. TuCSoN provides a
coordination mechanism to manage the interaction between agents and also an access
control mechanism to handle communication events, in other words, to control the ac-
cess to resources. In TuCSoN agents interact through a multiplicity of independent co-
ordination media, called tuple centres. The access control mechanism controls agent
access to resources by making the tuple centres visible or invisible to them. Although
in TuCSoN norms can be described to govern the access to resources, the governance is
restricted and only applied to resources that are inserted in tuple centre environments.

In this context we propose a governance multi-agent system mechanism (Silva,
2005) that does not invade the agent’s privacy and that does not influence the func-
tional performance of the system. The proposed mechanism does not interfere in the
messages exchanged between agents or in the agents’ access to resources. Besides, it
does not impose any specific agent platform or environment.

The proposed governance mechanism is based on testimonies. During the system
execution, agents themselves can witness to facts that they know may be related to
norm violations. Since every agent knows a set of the application’s norms, they can
provide testimonies about actions that may be in violation of a norm. The result of an
action execution can be perceived as a fact or event and, if this fact or event implies in a
norm violation, it can be reported and proper measures can be taken. Thus, the mecha-
nism presents a different approach to multi-agent system governance: it does not ac-
tively try to prevent a norm violation. Rather, it lets the system execute normally and,
if norm violations are reported, it checks and penalizes the agent that misbehaved. This
approach is based on the fact that it may be very difficult and re-straining to prevent

 2

norm violations that can happen after every action execution done by the several a-
gents in an open multi-agent system.

The governance mechanism is composed of three sub-systems: reputation, judg-
ment and punishment. The reputation sub-system is responsible for calculating and
tracking the agents’ reputation. Upon entering a system, an agent has a default reputa-
tion value and it changes according to the occurrence of violations it makes. This sub-
system also informs the reputation of an agent to the judgment sub-system and to
other agents. The judgment sub-system is responsible for receiving the testimonies and
for providing a decision pointing out if an agent really violated a norm. Finally, the
punishment sub-system is responsible for applying penalties, specified in the norms, to
the agents that are blamed for violating a norm.

In this paper we focus on the judgment sub-system, detailing its architecture and its
judgment process. The rest of this paper is organized as follows. Section 2 presents an
overall view of the testimony-based governance mechanism. Section 3 de-tails the
judgment sub-system. Section 4 describes a case study and Section 5 presents conclu-
sions and some future work.

2 The Testimony-based Governance Mechanism

The governance mechanism presented here is based on testimonies that agents pro-
vide attesting facts or events that may be norm violations. Since every agent knows a
set of norms, it can report to the governance mechanism their violation. An agent can,
for instance, witness to the breaking of an interaction protocol or to a disallowed re-
source access.

2.1 Governance Mechanism Assumptions

The testimony-based governance mechanism is funded in the following assumptions.

Assumption I: Every agent knows every norm applied to itself.

Such as in the real world where everyone should know a code of behavior, we as-
sume that every agent must know all norms that can be applied to their actions inde-
pendently of the system environment in which it is executing. When an agent enters in
a system environment to play a role, it must acquire knowledge about all the norms
applied to that specific role. This is important since an agent acting in violation of a
norm chooses to do so being aware of that.

Assumption II: Every agent can give testimonies about norm violations.

Since an agent knows the norms that can be applied to it and to other related agents,
it is able to state that one of these norms is violated. Agents may know about norms
that regulate the behavior of agents that influence their execution. Every time an agent
perceives the violation of a norm, it can give a testimony to the governance mecha-
nism.

Assumption III: Some violations might be ignored / not observed.

The mechanism does not impose that an agent must give its testimony whenever it
notices a norm violation. This behavior is application dependent and thus should be
motivated by the application. In addition, the mechanism does not guarantee that all

 3

norm violations will be observed by at least one agent. It is also the application that
must provide support for the agents to observe the violation of every application norm.

Assumption IV: Agents can give false testimony.

In an open system, agents are independently implemented, i.e. the development is
done without a centralized control. Thus, the application cannot assume that an agent
was properly designed. In this scenario, there is no way to guarantee that all testimo-
nies are related to actual violations. So, the governance mechanism should be able to
check and assert the truthfulness of the testimonies.

Assumption V: The mechanism can have a law-enforcement agent force.

The mechanism can introduce agents which have the sole purpose of giving testi-
monies. The testimonies of these agents can always be considered to be truthful and
the judgment sub-system can directly state that a norm was violated and a penalty
should be assigned.

2.2 The Governance Mechanism Architecture

The governance mechanism architecture defines three sub-systems. The judgment sub-
system is responsible for receiving the testimonies and for providing a decision (or
verdict) pointing out to the punishment sub-system if an agent really violated a norm.
While judging a testimony, the system may use different strategies to judge the viola-
tion of the different norms specified by the application. Such strategies might use the
agents’ reputation afforded by the reputation system to help providing the decision.

The reputation sub-system calculates the reputation of agents and informs the repu-
tations to the judgment sub-system and to other application agents. The reputations
are updated based on the decisions provided by the judgment sub-system about a vio-
lated norm. Different norms influence the reputation of agents in different ways. Fi-
nally, the third sub-system, the punishment sub-system, applies the penalties specified
in norms to the agents that are blamed for violating a norm.

The governance mechanism was implemented by using the ASF (Agent Society
Framework) framework (Silva, 2004). Such framework provides support for the im-
plementation of agents, organizations and roles. Each one of the three governance sub-
systems was implemented as a separated organization that interacts with a fourth or-
ganization where the application agents are situated. The governance mechanism ar-
chitecture is illustrated in Figure 1. In this paper we will focus on the judgment sub-
system.

Governance mechanism
Fig. 1. The architecture of the governance mechanism

 4

3 The Judgment Sub-system

The judgment sub-system has three main responsibilities: to receive testimonies, to
judge them and to provide the decision about the violation. Three different agent types
were defined to deal with these responsibilities: inspector, judge and mediator agents.
The inspector agents are responsible for receiving the testimonies and sending them to
judge agents. The judge agents examine the testimonies and provide decisions that are
sent to mediator agents. Mediator agents are responsible for inter-acting with the repu-
tation and punishment sub-systems to make the decisions effective.

While judging the testimonies, judge agents may interact with mediators to get in-
formation about an agent reputation. Mediator agents get such information from the
reputation sub-system. Figure 2 depicts the interactions among the agents that com-
pose the judgment sub-system and among the three sub-systems that orchestrate the
governance mechanism.

Fig. 2. The interaction among the agents that compose the judgment sub-sys tem

3.1 The Judgment System Architecture

The ASF framework is based on the BDI model and therefore supports the implemen-
tation of agents’ goals, beliefs and plans. While presenting the judgment sub-system
architecture (figure 3), we detail the plans of the agents and the resources they use.

The inspector and mediator agents’ implementations are not complex. The inspector
agent keeps listening to the testimonies while it executes its only plan called Listening-
Testimony. Each testimony provided by application agents states the norm that has
been violated, the context that characterizes the violation of the norm, the agent that
violated the norm and the agent that is providing the testimony. Note that the context
depends on the violated norm. If the norm describes an interaction protocol, the con-
text might be, for instance, a message that was sent in violation of the protocol. If a
norm describes access policies to a resource, the context might be a resource update.

Mediator agents execute two plans to accomplish their tasks. Mediators provide the
reputation of application agents by executing the plan called ProvideReputation and
they also distribute the decisions to the other two sub-systems by executing the plan
called ProvideVerdict. Each decision informs the testimony that was judged and the
decision stipulated by judge agent.

 5

Fig. 3. The judgment sub-system architecture

Judge agents are the most complex agents in the judgment sub-system. The strate-
gies they use to stipulate a decision must deal with truthful and untruthful testimonies.
In addition, such strategies must vary according to the norms that have been violated.
Depending on the norm, it may be necessary to verify the content of a resource or to
ask other agents about another fact that has happened while judging the fact stated in a
testimony. Therefore, the judgment sub-system must be flexible enough to be custom-
ized for different application norms. It is not possible to define a completely applica-
tion independently strategy. Application dependent strategies must be implemented
by application developers in the plans that extend the JudgingTestimony plan. These
plans are executed based on the norms that have been violated and are identified in the
testimonies being judged. Each application norm must inform the specific plan that
must be executed in case it is violated.

Figure 3 shows the judgment sub-system architecture. It pictures the agents, the
plans they execute and the content of the messages they send and receive. Note that
the judgment sub-system is a framework that must be extended according to the appli-
cation being governed. This framework defines two extension points: the judgment
strategy implemented by the JudgingTestimony plan and the Testimony itself. As stated
before, the JudgingTestimony plan must be extended to implement the strategies that are
used to judge each application norm and the Testimony class must be extended to de-
scribe the possible different contexts of norm violations.

3.2 The Judgment Process

The judgment process is composed of five steps where four are application independ-
ent ones. Although judgment strategies cannot be completely independent of the ap-
plication norms, it is possible to define some common steps to be followed by any
judgment strategy. The application independent steps, provided by the judgment sys-

 6

tem, are implemented by the JudgingTestimony plan and executed before any specific
application strategy. In this section we present the five steps that compose the judg-
ment process and a pseudo-algorithm that describes such process (figure 4).

Step I: To verify who the witness is.

According to assumption V, the testimony provided by some specific agents must
be considered always truth. Therefore, the first step of the judgment process verifies
who the witness is. If it is the case of an always truthful witness, the judgment process
is finished and the decision stating that the agent must be penalized is provided.

Step II: To check if the norm applies to the agent.

According to assumption IV, agents can lie and end up accusing other agents of do-
ing something they have not. For instance, agents can be accused of violating norms
that are not applied to them and agents can be accused of updating a resource that has
not been updated. In order to find out if a testimony is true, the first step is to check if
the norm applies to the accused agent, i.e., if the norm is one of the norms that must be
fulfilled by the agent. If the norm does not apply, the judgment process is finished and
the accused agent is absolved.

Step III: To ask the agent if it is guilty.

If the norm applies to the agent, the next step is to ask it if it has violated the norm it
is accused of. As it happens in the real world, if the agent confesses, the judgment
process is finished and the decision is provided. Otherwise, the judgment process con-
tinues.

Step IV: (application dependent step) To judge the testimony according to the norm.

If the agent did not confess, it is necessary to carefully exam if the agent really vio-
lated the norm. Therefore, it is necessary to execute the strategy related to the norm
being violated in order to providing a decision. As stated before, these strategies are
application dependent ones.

Step V: To provide a decision.

After producing the decision, it is necessary to send it to the reputation sub-system
so that it can modify the reputation of the accused agent, if it really violated the norm,
or the reputation of the testimony agent, if the judgment process did not assign blame.
It is also important to inform the decision to the punishment sub-system to punish the
agent for violating a norm or to punish the testimony agent for providing an untruth
testimony.

/* step 1 - To verify who the witness is */
if testimony is a trustful one then
 create a decision stating the accused agent is 10 0% guilty
 go to step 5

/* step 2 - To check if the norm applies to the age nt */
if violated norm is not one of the accused norms
 create a decision stating the defendant is 100% not guilty
 go to step 5

/* step 3 - To ask the agent if it is guilty */
send a message to the accused asking if it is guilt y of violating the norm
if it answers yes then
 create a decision stating the defendant is 100% g uilty
 go to step 5

/* step 4 - To judge the testimony according to the norm (APPLICATION-DEPENDANT)*/
execute the application dependent strategy

/* step 5 - To provide a decision */
send the decision along with the testimony to media tor agents

Fig. 4. The pseudo-algorithm that describes the judgment process

 7

In order to validate our approach we present in the next section a case study. Our
purpose is to demonstrate how the judgment system can be used to regulate applica-
tion norms. In this context, two application norms are described together with the stra-
tegies used to verify when agents have violated these two norms.

4 A Case Study: Expert Committee

The Expert Committee is an open multi-agent system that provides support for man-
aging paper submission and revision (deLoach , 2002), (Zambonelli, 2001). The system
supports different activities: paper submission, reviewer assignment, review submis-
sion, notification of acceptance and rejection and so on.

Since the system being implemented is an open system, it was necessary to define a
set of norms to regulate the behavior of the diverse agents (chairs, authors and review-
ers) that participate in the system. In this paper we will give examples of two different
application norms that were defined and regulated by the proposed mechanism. The
chairs of conferences and workshops are responsible for defining the papers submis-
sion deadline, the reviewers, the revision deadline, among other things. Once the chair
has defined the submission deadline the date must not be anticipated. The anticipation
of such deadline would hold up the authors that wanted to submit papers.

Norm I: Chair cannot anticipate submission deadlines.

After receiving submitted papers, the chair distributes the papers among the re-
viewers asking them if they can review the papers. The reviewers respond to the chair
the selected papers they want to review.

Norm II: Reviewers must respond to the chair in two days.

In sections 4.1 and 4.2 we use the judgment sub-system to judge testimonies de-
scribing violations of these two norms. In order to do so, the framework that imple-
ments the judgment sub-system was extended. Examples of different testimonies are
defined and implementations of strategies used to verify if agents have violated these
norms are stated. Figure 5 illustrates the classes that extend the judgment sub-system
with the aim of judging these two norms.

 8

Classes that extend the judgment sub-system
Fig. 5. The judgment sub-system extended to judge two application norms

4.1 Norm I

To bear testimony to the violation of norm I, it is necessary to inform to the judgment
sub-system the submission deadline firstly defined by the chair and the actual submis-
sion deadline. In order to provide such testimony, the abstract class Testimony defined
by the judgment sub-system was extended to include attributes to store these two dif-
ferent deadlines.

The strategy used to judge the violation of norm I is composed of three phases. In
phase one, the application resource that stores the conference deadline is analyzed ac-
cording to the information provided in the testimony. The submission deadline pro-
vided by the resource is confronted with the submission deadline provided by the tes-
timony.

If the submission deadline provided by the resource is equal to the first submission
deadline available in the testimony, the submission deadline was not changed and the
testimony is discarded. If the submission deadline provided by the resource is different
to the actual submission deadline provided by the testimony, the testimony is also dis-
carded. The testimony describes a fact that cannot be confirmed. In both cases the wit-
ness is providing a false testimony. Nevertheless, if the submission deadline provided
by the resource is equal to the actual submission deadline provided by the testimony,
the testimony is judged.

In the second phase of the judgment strategy, the information provided by the wit-
ness is confronted with the information provided by other agents. Since the application
does not have logs to inform when resources are updated, it is necessary to ask other
application agents about the fact that may have happened. In this case, three reviewers
are asked about the submission deadline. In the third phase, the decision is established
based on the information provided in the testimony and the information provided by

 9

the reviewers. The reputation of all agents involved – witness, accused, and reviewers
– is also considered to help providing the decision.

Figure 6 presents a pseudo-algorithm of the strategy JudgingAnticipationSubmis-
sionDeadline that extends the plan JudgingTestimony class. Remember that such strat-
egy correspond to the application dependent step (step 4) defined in the judgment
process and presented in Section 3.2.

/* PHASE I */
/* to check if the testimony's submission deadline is consistent with the event submission deadline
*/
get the resource that stores the conference deadlin e
if submission deadline provided by the resource == fist submission deadline
provided by the testimony then
 decide that the accused is 100% innocent /* fals e testimony */
 go to step 4
if submission deadline provided by the resource != actual submission deadline provided by the testi-
mony then
 decide that the accused is 100% innocent /* fals e testimony */
 go to step 4
if submission deadline provided by the resource == actual submission deadline provided by the testi-
mony then
 go to phase II

/* PHASE II */
/* to ask three Reviewers if they know about the ev ent's submission deadline */
select three Reviewers
for each Reviewer
 get Reviewer's statement about the conference eve nt's submission deadline
 get Reviewer's reputation

/* PHASE III */
/* step 1 - to get the chair's and author's reputat ion */
get chair's reputation
get author's reputation

/* step 2 - to evaluate the statements according to the agents reputation */
/* suppose that three reviewers gave their statemen ts */

 Statements Reputation ∑∑∑∑ Reputation # Testimony

Witness guilty 1 Innocent 5 1
Accused innocent 5 Guilty 7 4
Reviewer 1 guilty 2
Reviewer 2 guilty 1
Reviewer 3 guilty 3

- innocent result: 5 x 1 = 5
- guilty result: 7 x 4 = 28
- final result: (28/33) x 100 = 85% guilt

/* step 3 - to create the decision based on the pre vious evaluation */
to create the decision

/* step 4 - to return to the judgment process */
return to judgment framework step 5

Fig. 6. Strategy I pseudo-algorithm

4.2 Norm II

To bear testimony to the violation of norm II, it is necessary to inform the message sent
by the chair to the reviewer with the list of papers to be selected. The abstract class Tes-
timony was extended to provide such information.

The strategy used to judge the violation of norm II is also composed of three phases.
We are considering that for each message sent by an agent the receiver must send an
acknowledgment to the sender stating that it has received the message. In phase one,
the chair must inform if it has received the reviewer acknowledgment stating that it
has received the list of papers. If the chair has not such acknowledgment, the testimony
is discarded and the reviewer is considered not guilt since it has not received the list of
papers.

In phase two, the reviewer must inform if it has the chair acknowledgment stating
that it has received the selected papers. The reviewer is asked to present the acknowl-
edgment sent by the chair. If the reviewer has such acknowledge, the testimony is dis-

 10

carded since the chair has informed to the reviewer that it has received the selected pa-
pers.

If the chair has the acknowledgment stating that the reviewer has received the list of
papers and the reviewer has not the acknowledgement stating that the chair has re-
ceived the selected papers, the testimony is judge. Two different things may have hap-
pened. The reviewer may have sent the selected paper and the chair may have not re-
ceived or the reviewer may have sent the selected paper and the chair, although it has
received it, says that it has not. The decision is provided based on the reputation of the
agents. Figure 7 presents a pseudo-algorithm of the strategy above (illustrated in Fig-
ure 5 by JudgingReviewerResponse plan).

/* PHASE I */
/* to get the acknowledgement stating that the revi ewer has received the list of papers */
ask the chair about the acknowledgement
receive message from the chair
if chair has not acknowledgment
 decide the accused is 100% innocent /* false tes timony */
 go to step 4

/* PHASE II */
/* to get the acknowledgment stating that the chair has received the selected papers */
ask the reviewer about the acknowledgement
receive message from the reviewer
if reviewer has acknowledgment
 decide the accused is 100% innocent /* false tes timony */
 go to step 4

/* PHASE III */
/* step 1 - to get chair's and reviewer's reputatio ns */
get chair's reputation
get reviewer's reputation

/* step 2 - to evaluate the statements according to the agents reputation */

 Statements Reputation ∑∑∑∑ Reputation # Testimony

Witness guilty 5 Innocent 3 1
Accused innocent 3 Guilty 5 1

- innocent result: 3 x 1 = 3
- guilty result: 5 x 1 = 5
- final result: (5/8) x 100 = 62,5% guilty

/* step 3 - to create the verdict based on the prev ious evaluation */
to create the decision

/* step 4 - to return to the judgment process */
return to judgment framework step 5

Fig. 7. Strategy II pseudo-algorithm

Note that both strategies presented in section 4.1 and 4.2 are simple examples of
plans that can be used to judge the testimonies related to norms I and II. Other more
complex and completely different strategies could have been implemented to judge the
same testimonies. Our intention while presenting such strategies was to illustrate how
the judgment sub-system could be extended to judge two different norms.

5 Conclusion and Future Work

This paper proposes a governance mechanism for open multi-agent systems. The main
advantages of the proposed mechanism are: (i) it interferes neither in the agents’ pri-
vacy nor in the performance of the application; (ii) it can be used to assert that an agent
has violated any kind of norm since the violation of both interaction and resource ac-
cess norms can be witnessed to the governance mechanism; and (iii) it is based on the
idea that it may be difficult or impossible to prevent every agent’s action in the system.

To properly work, the mechanism assumes that the application agents are aware of
the norms they should follow and that they can provide testimonies. This requires
some changes in the way these agents are developed or a special agent architecture

 11

that provides these features beforehand. Although the mechanism has these require-
ments, this action-witness-consequence approach is more adequate than a prevention
approach. Norm violation prevention may not be applicable in open systems where
several agents are executing.

Whereas we believe that the advantages of our proposed mechanism are really im-
portant, it has some potential drawbacks. It may be difficult to find out if a testimony is
true or false and, therefore, to provide a good decision. This problem could be over-
come using uncertainty, i.e. the judgment sub-system could decide to assign blame or
not within an appropriate error margin, as illustrated by the strategies presented in
sections 4.1 and 4.2. Also, violations that go without testimonies will not be punished.
This could lead to an undesired system state. One way to overcome this issue would be
to require a special development effort, which cannot be guaranteed in an open system.
Thus it is important to motivate the agents to give their testimonies, using an agent re-
wards program, for instance.

In other to improve our approach we are in the way of developing a decentralized
governance mechanism. The decentralized mechanism is being developed based on the
idea of hierarchy norms and organizations presented in (Ao, 2003). In addition, we are
also in the process of developing a sub-system to prevent norm violations. Such sub-
system will try to foresee actions that could be norm violations based on the norms that
agents have already violated.

References

Ao, X., Minsky, N.: Flexible regulation of distributed coalitions. In LNCS 2808: the
Proc. of the European Symposium on Research in Computer Security (ESORICS)
(2003).

Boella, G.; van der Torre, L: Regulative and constitutive norms in normative multi-
agent systems. In Proceeding of 9th International Conference on the Prin-ciples of
Knowledge Representation and Reasoning. Whistler, CA (2004).

Cremonini, M., Omicini, A., Zambonelli, F.: Coordination and Access Control in Open
Distributed Agent Systems: The TuCSoN Approach. In Proceedings of the 4th
International Conference on Coordination Languages and Models, LNCS 1906,
Springer-Verlag, London, UK (2000) pp 99-114.

López, F.: Social Powers and Norms: Impact on Agent Behaviour. PhD thesis.
University of Southampton. UK (2003)

Minsky, N, Ungureanu, V. Law-Governed Interaction: A Coordination & Con-trol
Mechanism for Heterogeneous Distributed Systems. In ACM Transactions on Software
Engineering and Methodology (TOSEM), July, vol 9, no 3 (2000) 273-305.

Paes, R. Regulating the interaction between agents in open systems – a law ap-proach.
Master's thesis, Pontifcia Univeridade Catolica do Rio de Janeiro, PUC-Rio, Rio de
Janeiro, BR (2005).

Silva, V, Lucena, C.: Governance in Multi-Agent Systems Based on Witnesses. In: First
Workshop on Software Engineering for Agent Oriented Systems, Bra-zilian
Symposium on Software Engineering (SBES2005), Uberlândia, BR (2005).

Silva, V., Cortês, M., Lucena, C.: An Object-Oriented Framework for Imple-menting
Agent Societies, MCC32/04. Relatório Técnico, Departamento de In-formática, PUC-
Rio. Rio de Janeiro, BR (2004).

 12

Singh, M. An Ontology for Commitments in Multiagent Systems: Toward a Unification
of Normative Concepts. Artificial Intelligence and Law v. 7 (1) (1999) 97-113.

deLoach, S. A.: Analysis and Design of Multiagent Systems Using Hybrid Coor-
dination Media. In: Proceedings of the 6th World Multi-Conference on Sys-temic,
Cybernetics And Informatics (SCI 2002), Florida. (2002)14-18.

Zambonelli, F., Jennings, N., Wooldridge, M.: Organizational abstractions for the
analysis and design of multi-agent systems. In: Ciancarini, P.; Wooldridge, M. (Eds.)
Agent-Oriented Software Engineering, LNCS 1957, Springer-Verlag, Berlin, GE (2001)
127-141.

