
PUC

ISSN 0103-9741

Monografias em Ciência da Computação
n° 10/06

A Multi-agent Framework to Retrieve and Publish
Information on Qualification and Elimination Data

in Sports Tournaments

Thiago Ferreira de Noronha Carlos José Pereira de Lucena

Celso Carneiro Ribeiro Sebastián Urrutia

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900

RIO DE JANEIRO - BRASIL
�

�

Monografias em Ciência da Computação, No. 10/06 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena March, 2006

A Multi-agent Framework to Retrieve and

Publish Information on Qualification and

Elimination Data in Sports Tournaments

Thiago Ferreira de Noronha, Carlos José Pereira de Lucena,
Celso Carneiro Ribeiro and Sebastián Urrutia

{tfn,lucena,celso,useba}@inf.puc-rio.br

Abstract. This work proposes an object-oriented framework for implementing a multi-
agent system to collect, process, and publish information in the web. The primary objec-
tive is to create a framework for developing autonomous applications related to qualifica-
tion and elimination problems in sports tournaments. These applications involve collecting
results from several sources, processing them, and publishing a report on the situation of
each team taking part in the competition, regarding qualification and elimination statis-
tics. An instance of this framework was created to follow the Brazilian national soccer
tournament and other soccer competitions.

Keywords: Agents, Framework, Futmax, Sports, Integer programming.

Resumo. Este trabalho propõe um framework orientado a objetos para implementar
um sistema multi-agentes responsável por realizar operações de coleta, processamento
e publicação de informações na WEB. O objetivo principal é criar uma infra-estrutura
para desenvolver aplicações autônomas relacionadas com problemas de classificação em
campeonatos esportivos. Estas aplicações caracterizam-se por coletar os resultados dos
jogos de uma fonte, processá-los e publicar um relatório sobre a situação de cada time
dentro da competição. Uma instância deste framework foi criada para acompanhar o
campeonato brasileiro e outros torneios de futebol.

Palavras-chave: Agentes, Framework, Futmax, Esportes, Programação inteira.

In charge of publications:
Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

ii

1 Introduction

Sports tournaments are followed by millions of people across the world, continually eager
for information on the situation of their teams in each competition. Fans check news-
papers, radio, television and, more recently, the Internet daily for information on the
performance and qualification chances of their favorite teams. Most of the information
supplied through these communication channels is statistical data, which are calculated
using each team’s history and some “magic” numbers defined through the observation of
previous tournaments.

A number of papers using combinatorial optimization techniques have been published
with the aim of providing more precise information on the situation of each team within
a tournament, see e.g. [14, 4, 26, 25, 19, 1, 28, 22, 23, 8]. They enable users to calculate
when a team is mathematically the champion of the competition, when it is mathematically
qualified for the next phase of the competition, whether it depends only on its own results
to qualify, whether the team depends on other results to qualify, whether the team no
longer has any chance of qualifying, and so on.

This article presents a framework [11] to help in the development of such applications,
which can usually be divided into three stages: (1) collection of game results from one or
more sources, (2) solution of one or more combinatorial optimization problems, and (3)
publication of information on each team via the Internet.

The framework was modeled using the multi-agent systems software engineering paradigm
[17, 29, 13, 27] and implemented in Java. An instance of the framework was generated
to automate the management and the maintenance of the website of the FutMax project
[24], that tracks the Brazilian soccer tournament and other soccer competitions.

The FutMax project and its website were created in 2002. Update and publication pro-
cedures in the first two years of operation were fairly different from the system proposed in
this work and currently used. Collecting, processing, and publishing stages were executed
separately by independent programs. To collect game results, a human operator checked
periodically the official web page of the Brazilian tournament and edited a text file with
the results. Next, the same operator was in charge of running the program responsible for
obtaining qualification and elimination statistics, feeding in the game results file as input
and receiving as the output another file containing qualification and elimination statistics
for each team. The output file was then emailed to a web designer, who was supposed to
update the FutMax site with the qualification and elimination statistics.

This process is almost identical for many applications related to qualification and
elimination prediction in sports tournaments, irrespective of the sport in question and
the tournament rules. This fact prompted the development of a framework to provide
assistance to such applications. An overview of the methodology employed in this work
is described in the next section. Section 3 presents in detail the instantiation of this
framework to the Brazilian soccer tournament. In Section 4, this work is compared with
similar works reported in the literature. Finally, a number of conclusions and potential
extensions are presented in Section 5.

1

2 Methodology

The methodology employed in this work is divided into two parts. First, a model with
reactive software agents is proposed. It is followed by the design of an agent-oriented
framework for implementing data collection, processing, and publishing applications re-
lated to qualification and elimination problems in sports tournaments.

2.1 Agent modeling

Agents are a general purpose software abstraction. They are the next significant soft-
ware abstraction, especially for distributed systems. A software agent is a piece of au-
tonomous or semi-autonomous, proactive, and reactive computer software. The multi-
agent paradigm uses agents that cooperate independently by exchange of messages in
order to solve a general problem. A system of such agents is dynamic and flexible in
varying conditions and furthermore provides a powerful method to model a large range of
applications. The use of the multi-agent paradigm to model software systems has grown
rapidly over the last few years. As a result, a variety of frameworks have been proposed to
help in the development of multi-agent systems [3, 5, 6, 9, 21, 10, 2, 20, 7, 18]. All these
frameworks aim to model agents to function in a range of applications as wide as possible.
Consequently, they are more complex and difficult to implement for a specific application
than frameworks that model agents to act in applications within a specific domain. The
latter is the case of the framework developed in this work.

The reactive agents modeled in this framework react to stimuli that are generated when
the value of one of their beliefs is changed. Depending on the agent rule in the system,
each stimulus is mapped to different actions. Modeling an agent involves the definition
of five entities: sensors, beliefs, roles, and actions. The properties of each entity and the
relationships between them are described below:

• Sensors: they define how the agent retrieves sensorial information from its envi-
ronment. Each sensor is associated with a belief representing an element of the
environment.

• Beliefs: they model what the agents know about themselves and their environment.
A stimulus is generated whenever the value of a belief changes.

• Roles: they specify how the agents must behave on the basis of their beliefs. They
are responsible for mapping a given stimulus to an appropriate action.

• Actions: they implement the operations that must be performed for the agent to
reach its objectives.

The life cycle of an agent takes the following sequence. The agent is initialized with
initial values of the beliefs and perform a particular role in the system. The sensors
continually observe an element belonging to the environment. When an element in the
environment changes, the sensor updates the corresponding belief value. A stimulus is
thereby generated and mapped to a particular action. Actions may be of a personal
nature, altering one of the agent’s beliefs or an element of the environment, or collaborative,
resulting in messages to other agents. In this framework, agents communicated through
the exchange of beliefs, which are forwarded within messages. When a message reaches

2

the recipient, the latter extracts the new belief and updates its set of beliefs. This new
belief generates a new stimulus that results in a action from the recipient. Two types of
belief are modeled: data beliefs and action beliefs. Data beliefs model what an agent knows
about its current state and its environment. Action beliefs model the form of solving a
particular problem.

2.2 Framework modeling

The description of the proposed framework follows the recommendations in [12].

2.2.1 Intent

The goal of this framework is to provide a set of reusable object-oriented classes that
can be extended and customized for the implementation of information collection and
publishing applications via the Internet, where processing involves solving mathematical
programming models. Such models are very difficult to solve and polynomial time algo-
rithms to solve them are not known to date, consequently all known algorithms may take
a long time to finish.

2.2.2 Applicability

The domain of this framework comprises applications that need to solve several mathemat-
ical programming models to evaluate the situation of each team in the championship. The
solution of each model involves a high computational cost, but each model can be solved
independently in a different computer. Therefore, processing could be distributed and
executed by computers with large computational power. Applications in this domain have
a distributed nature, since the processing stage may be executed in several computers.

Since the sources of data are usually Internet web pages, the framework must take into
account various features that may be present in some applications, such as: (1) the data
source is not aware of the system, therefore the latter must be autonomous and search
for the required data, (2) data may be inputed at any time and the updates should be
done as quickly as possible; therefore the system must be capable of periodically checking
the sources of data and automatically updating itself when data has been changed ed in
any source, and (3) data collection can be very complex, involving tasks such as parsing
an Internet page, which means that most of the applications in this domain use data
validation to check for the existence of potential parsing errors.

2.2.3 Structure

Applications in the domain of this framework are dynamic, distributed, and autonomous.
Bearing these features in mind, the framework was structured and modeled using the
multi-agent systems software engineering paradigm. The framework can be divided into
three subsystems responsible for collecting, processing, and publishing the data. Two
types of agents implement the data collection subsystem: Collectors and Validators. The
Solver agents are responsible for the processing subsystem. Finally, the Publisher agents
implement the publishing system.

More than one agent of each type can compose each subsystem. For instance, the
collection subsystem can be composed by two or more Collectors, each one collecting

3

game results from a different source to perform a consistent and safe parsing. Several
Solvers, distributed over different computers, can compose the processing subsystem to
handle data faster.

2.2.4 Participants

The four types of agents defined in this framework are:

• Collectors are responsible for retrieving game results from Internet.

• Validators are responsible for evaluating and validating the data sent by the Collec-
tors.

• Solvers are responsible for generating and solving the mathematical programming
models that provide qualification and elimination results.

• Publishers are responsible for combining the solutions of the mathematical models
and publishing in the user interface.

2.2.5 Collaborations

The Collectors collect game results from Internet sources and send them to the Validator.
If the data is consistent, the Validator sends it to the Solvers. Each Solver generates
their mathematical models, solves them, and sends the results to the Publisher. The
latter combines and publishes the results in a suitable medium in appropriate form for the
application user.

2.2.6 Frozen spots

The frozen spots define elements of the agent infrastructure, such as:

• creation and initialization of the agents;

• definition of the agent beliefs;

• specification of the agent roles;

• implementation of reactive behavior of the agents; and

• infrastructure for agent communication.

2.2.7 Hot spots

The hot spots implement the behavior of each agent in response to details specific to each
application, such as:

• implementation of the sensors according to the data source;

• implementation of the actions that will be performed by each agent; and

• implementation of the reasoning function of each agent, associating stimuli to actions
according to the role of the agent in the application.

4

Figure 1: Use case diagram.

The framework proposed in this work is of the Gray Box type [11]: to generate an
instance, it is not only necessary to implement the hot spots, but also to indicate the role
and the initial values of the beliefs for each agent.

2.3 Framework design

Details of the framework design are presented using the UML language. Four actors take
part in the framework use cases. Each of them represents one of the software agents
defined in Section 2.2. The Collector, Validator and Solver actors are heirs of a Sender
actor, since after their respective agents execute their tasks, they send the result to another
agent. The Validator and Solver actors, as well as the Publisher actor, are also heirs of
the Recipient actor, since the respective agents wait for data sent by other agents to carry
out their tasks. Figure 1 illustrates the diagram of the framework use cases.

The Collect use case involves obtaining game results from one or more sources in the
Internet (usually an HTML or XML page). The Validate use case involves assessing and
validating the data sent by the Collectors and confirming that this data is consistent. In
the Solve use case, data sent by the Validator is processed. The Publish use case involves
combining the data sent by the Solvers and publishing the result in appropriate form
to the application user. Finally, the Communicate use case involves sending a message
containing a belief to another agent in the system.

To make the agents implementable in an object-oriented language, sets of classes need

5

to be created to represent the new entities related to the agents. This framework is com-
posed by four modules that map the four entities making up an agent, and by a fifth
module that implements the actions involving the exchange of messages between agents.
Figure 2 presents the diagram of framework classes. The highlighted classes must be im-
plemented in the framework instance. Sensors are implemented by the AbstractSensor
and ConcreteSensor classes. Beliefs are modeled by the AbstractBelief, DataBelief,
ActionBelief, and ConcreateActionBelief classes. Roles are represented by the AbstractRule,
Collector, Validator, Solver, and Publisher classes. Actions are implemented by the
AbstractAction, CollectAction, ValidateAction, SolverAction, and PublishAction
classes. The message exchange module is composed of the RmiServer, ReceiveMsg,
AbstractProtocol, SendMsg, SendMultiCastMsg, and Message classes, as well as of the
ReceiveMsgI interface.

The design pattern Observer models the reactive behavior of the agents. When a belief
is updated, the reasoning function of the agent is activated to process this event correctly.
The classes involved are AbstractBelief (subject) and GenericAgent (observer). The
stimulus mapping can be made by the Command design pattern.

3 Framework instance

The framework proposed in this work was used to build a system to automate the process
of updating the web site of the FutMax project [24]. FutMax provides detailed information
on the exact conditions of qualification and elimination of each team taking part in the
Brazilian national soccer tournament and other soccer competitions. The reader is referred
to Ribeiro and Urrutia [22, 23] for a detailed account of the application description and
of the formulations of the associated integer programming optimization problems.

The Brazilian tournament is the most important soccer competition in the country and
possibly the largest in the world, in terms of the number and quality of the participating
teams. It is followed by millions of people who watch the games in stadiums, listen to
radio broadcasts and watch the matches on TV. The characteristics of the tournament
discussed below correspond to those of its 2004 edition. The tournament was organized in
two stages. In the first, each team played against all others exactly once. In the second,
the games are repeated in the same order, but with their home and away venues switched.
A total of 552 matches were played between April and December.

A team receives three points for a win and one point for a draw. Teams are ordered
in the classification table by the total number of points received. At the end of the
competition, the first team in the table is the champion, the first four teams qualify for
the Liberators of America Cup (an important South American tournament), and the four
last teams are moved out of the division and will not compete in the tournament in the
subsequent year.

Soccer is an important economic activity in Brazil. A team that drops down or fails
to qualify for the Liberators of America Cup loses a lot of money. As a result, the team
may be forced to sell its best players to cover its running costs, due to the loss of revenue
from the sale of tickets and television rights. Consequently, the first goal of any team is
to be champion, the second to qualify among the first four and, in the last case, to avoid
the last four positions in the classification table.

6

Figure 2: Class diagram.

7

3.1 Problem formulation

For a general tournament with the above characteristics, let n be the number of teams in
the competition and m be the number of teams who qualify for the playoffs.

We denote by pi the total number of points accumulated by each team i = 1, . . . , n at
any particular moment of the competition, with pi = 0 at the beginning. For any pair (i, j)
of teams, with i, j = 1, . . . , n and i 6= j, let gij = gji be the number of remaining games
still to be played between teams i and j. At any time, a valid assignment is a set of triples
A(i, j) = (p1(i, j), p2(i, j), p3(i, j)) of non-negative integers for each pair (i, j) of different
teams, such that p1(i, j) + p2(i, j) + p3(i, j) = gij , p1(i, j) = p3(j, i), and p2(i, j) = p2(j, i),
where p1(i, j), p2(i, j), and p3(i, j) represent, respectively, a possible number of victories
of team i over team j, a possible number of games between team i and j which end up
with a tie, and a possible number of victories of team j over team i, along the remaining
gij games.

Given a valid assignment, the total number of points accumulated by each team i =
1, . . . , n at the end of the championship is

ti = pi +
∑
j 6=i

3 · p1(i, j) +
∑
j 6=i

p2(i, j).

For every valid assignment and in the context of the Guaranteed Qualification Problem
(GQP), the final position of team i = 1, . . . , n in the standing table is defined as Pi = |{j :
1 ≤ j ≤ n, j 6= i, tj ≥ ti}| + 1. Therefore, GQP for any team k consists in finding the
minimum integer GQSk such that for every valid assignment if tk ≥ GQSk then Pk ≤ m
(i.e., if team k receives at least GQSk points, then it will be qualified in the first m
positions).

Similarly, in the context of the Possible Qualification Problem (PQP), the final position
of team i = 1, . . . , n in the standing table is defined as Pi = |{j : 1 ≤ j ≤ n, j 6= i, tj >
ti}| + 1. Therefore, PQP for any team k consists in finding the minimum integer PQSk

such that there exists at least one valid assignment leading to tk = PQSk and Pk ≤ m
(i.e., if team k receives at least PQSk points, then it might be qualified in the first m
positions).

The definitions of the position of a team in the standing table in the contexts of
problems GQP and PQP are different. In the context of problem GQP, to ensure that
team k is qualified despite any tie breaking rule, every other team with the same number
of points as k is considered as qualified before the latter. Contrarily, in the context of
problem PQP, we just consider the possibility (i.e., not the certainty) of qualification. In
this case, team k has a chance to be qualified even if there is a tie with other teams in the
first positions.

The scores GQP k and PQP k can be easily calculated for the cases in which a team k
wins the competition, qualifies for the Liberators of America Cup and/or avoids relega-
tion: being champion requires finishing in the top position in the table. Qualifying for the
Liberators of America Cup requires finishing among the first four teams. Avoiding rele-
gation, i.e., not finishing the competition among the last four places in the classification
table, means finishing among the first 20 teams.

8

3.2 Integer programming model

The notation defined in the previous section is used to formulate an integer programming
model for the Guaranteed Qualification Problem.

For any team k = 1, . . . , n, let GQSk be the maximum number of points such that
there exists a valid assignment leading to tk ≥ GQSk and Pk > m at the end of the
championship. Then, GQSk is the maximum number of points a team can make and still
not be qualified. Therefore, GQSk = GQSk + 1 is the minimum number of points team k
has to obtain to ensure its qualification in the first m positions. We define the following
variables:

xij =

2, if team i has two wins over team j,
1, if team i has one win over team j,
0, otherwise;

yj =

{
1, if tj ≥ ti (i.e. if team i is not ahead j),
0, otherwise.

The following integer linear programming model computes GQSk for each team k =
1, . . . , n, i.e., the maximum number of points team k can make and still not be qualified:

GQP(k) :

GQSk = maximum tk
subject to:

xij + xji ≤ gij ∀ 1 ≤ i < j ≤ n (1)
tj = pj + 3 ·

∑
i6=j xji +

∑
i6=j [1− (xij + xji)]

∀ 1 ≤ j ≤ n (2)
tk − tj ≤ M(1− yj) ∀ 1 ≤ j ≤ n, j 6= k (3)∑

j 6=k yj ≥ m (4)
xij ∈ {0, 1, 2} ∀ 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j
yj ∈ {0, 1} ∀ 1 ≤ j ≤ n , j 6= k
tj ≥ 0 ∀ 1 ≤ j ≤ n.

The objective function consists in determining the maximum number of points GQSk

team k can make and still not be qualified. Constraints (1) determine that only one team
can win a game. Constraints (2) establish the total number of points obtained by each
team at the end of the championship. For each team j = 1, . . . , n, the sum

∑
i6=j xji gives

the number of games won by team j among those still remaining to be played (three points
each), while

∑
i6=j [1 − (xij + xji)] corresponds to the number of games involving team j

that end up with a tie (one point each).
Let M be an upper bound to the maximum difference between the number of points

obtained by any pair of teams. Since there are 24 teams in the tournament and each of
them plays exactly twice against every other, M ≥ 3 · 46 = 138 is a valid upper bound to
|tj − tk| for any pair (j, k) of teams, with j, k = 1, . . . , n and j 6= k. Constraints (3) state
that if tj < tk, then yj = 0 (i.e., team k is ahead j in the standing table). Constraint (4)
enforces that team k is not qualified among the first m teams.

We now address the integer programming formulation of the Possible Qualification
Problem for team k = 1, . . . , n. Let PQSk be the minimum number of points such that

9

there exists at least one set of valid assignments leading to tk = PQSk and Pk ≤ m at the
end of the championship. We define the following additional variables:

zj =

{
1, if tj > tk (i.e. if team j is ahead k)
0, otherwise.

The previous model can be reformulated as follows to deal with the new situation:

PQP(k) :

PQSk = minimum tk
subject to:

xij + xji ≤ gij ∀ 1 ≤ i < j ≤ n (1)
tj = pj + 3 ·

∑
i6=j xji +

∑
i6=j [1− (xij + xji)]

∀ 1 ≤ j ≤ n (2)
tj − tk ≤ Mzj ∀ 1 ≤ j ≤ n, j 6= k (3′)∑

j 6=k zj ≤ m− 1 (4′)
xij ∈ {0, 1, 2} ∀ 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j
zj ∈ {0, 1} ∀ 1 ≤ j ≤ n , j 6= k
tj ≥ 0 ∀ 1 ≤ j ≤ n.

Constraints (3’) play the same role as (3) in the formulation of GQP(k). They enforce
that if tj > tk, then zj = 1 (i.e., team j is ahead team k in the standing table). Constraint
(4’) states that there are at most m − 1 teams ahead k in the standing table. The
infeasibility of PQP(k) means that team k is mathematically eliminated, i.e., it cannot
qualify to the playoffs.

3.3 Hot spot implementation

The implementation details for each agent are presented below.

3.3.1 Collector agent

The data collection subsystem comprises three Collectors. The function of each Collector
is to collect game results from an HTML web page, which presents the name of the teams
and the result of each game played in the tournament to date. The Collectors read the
same data from different web pages and send it to the same Validator agent. The latter
compares the results and checks whereas at least two of them are equal. In this case, the
Validator can assume that this result was read correctly.

Implementation of sensors: the only agent requiring a sensor is the Collector. Its sensor
senses when an Internet page is updated. The sensor is responsible for keeping updated
the belief value representing the date of the last alteration of the page that contains the
game table. This sensor was implemented in the ConcreateSensor class, inherited from
the AbstractSensor class, see Figure 2.

Collect action: an action belief is implemented for each Collector agent containing the
specific algorithm for parsing its respective web page. This action results in a data belief
that contains the game results.

10

Collector role: the reasoning function of a Collector maps two events. The first occurs
when its sensor updates the belief value that stores the moment at which the web page
containing game results was last updated. If the date of the last update is later than
the date of the last parsing, the collector agent executes the collect action. The second
event occurs when the collect data action generates a belief from game results. This event
is mapped onto a send message action, where the collected data is sent to the validator
agent.

3.3.2 Validator Agent

In addition to the collector agents, the data collection subsystem also includes one validator
agent. The function of this agent is to validate the data collected by the collector agents.
The collected data may present errors in the input of game results, as well as parsing
errors resulting from changes in the web page structure. The application must anticipate
these kinds of errors, given that the source of data is independent of the system.

Validate action: it compares the game results sent by Collectors. If two or more
collectors have collected exactly the same data, then this data is considered to be correct
(since each collector parses a different web page). This action results in a data belief that
contains the validated game results.

Validator role: the reasoning function of a Validator maps two events. The first occurs
when all Collectors finish sending their beliefs concerning game results. At this moment,
the Validator executes a validate action. The second event occurs when the validate data
action generates a belief from the validated game results. This event is mapped onto a
send message action, where the validated data is sent to all Solvers.

3.3.3 Solver Agent

The processing subsystem comprises three Solvers. Each of them is responsible for solv-
ing, for each team, problems PQP and GQP regarding finishing in first place (becoming
champion), finishing among the top four teams (Liberators of America Cup), and finishing
among the first 20 teams (avoiding relegation). These agents are distinguished simply by
the value of their beliefs, which specify which type of mathematical programming model
should be generated.

Solve action: it builds and solves mathematical programming models associated to
the PQP and GQP problems described in Section 3.2, for each participating team. This
action results in a data belief that contains the scores PQP k and GQP k for every team
k = 1, . . . , n.

Solver role: The reasoning function of a Solver maps two events. The first occurs when
the Validator sends the validated match results. This event is mapped onto a solve action.
The second event occurs when the solve action generates a belief from the solution of the
mathematical models. This event is mapped onto a send message action, where the belief
is sent to the Publisher.

11

3.3.4 Publisher Agent

The publishing subsystem is formed by a single publisher agent responsible for three
similar HTML pages, see Figure 3. The first page presents for each participating team
the qualification and elimination figures related to winning the tournament. The second
presents the figures related to qualification for the Liberators of America Cup. The third
presents the figures related to relegation. Each page contains the following data:

• the name of each team,

• the number of games already played,

• the number of points already obtained,

• the teams mathematically qualified,

• the teams mathematically disqualified,

• the minimum number of points each team has to receive to be sure of qualification,
regardless of any other results, and

• how many points each team has to receive to have a chance of qualification.

The situation of each team in terms of classification is displayed as a function of the
font color of the team in the table. Teams displayed in green are those already qualified.
Teams displayed in blue depend only on their own results to qualify. Those displayed in
red depend on results of other teams to qualify. Teams in black have already dropped
down (i.e., even if they win all their remaining games).

Publish action: it publishes a table in the form of an HTML page, containing the
precise classification conditions for each team.

Publisher role: the reasoning function of a Publisher maps a single event that occurs
when a solver agent sends the results of the mathematical models. This event is mapped
to a Publish action.

4 Related work

There has been a lot of research on classification and elimination problems in soccer,
hockey, and baseball tournaments [14, 4, 26, 25, 19, 1, 28, 8, 15]. Only two projects have
a software system to maintain their pages on the Internet: Futmax and RIOT.

The RIOT project (Berkeley Remote Interactive Optimization Testbed) tracks the
Major League Baseball (MLB), one of the biggest baseball competitions in the United
States. The MLB is divided into two large leagues: American and National. Each league
is divided into three subdivisions. In the first phase of the tournament, all teams within the
same subdivision play each other. The second phase of the tournament involves playoffs
between the top four teams from each league. The latter comprise the three first-placed
teams from each subdivision and the best from the three teams that ended the first phase
in second place. The winner of the playoff stage from the National League plays the winner

12

of the American League in the grand finale of the tournament. As in many other sports
competitions, MLB fans are always eager for information on the situation of their favorite
teams in terms of their qualification and elimination chances for the next stages of the
tournament.

The system maintaining the RIOT project site is fully automated and functions as
follows: every day, a free Internet news release service (www.infobeat.com) sends an e-
mail containing the results of the games played the night before. The process of updating
the site is initiated at precisely 2 a.m. when the game results contained in the e-mail sent
by Infobeat are parsed. The game results from the day in question are added to a text file
that contains the results of all games already played. Next, the latter is used to generate
optimization models, which are solved by CPLEX [16]. Finally, the CPLEX output file is
parsed to extract the solutions from the mathematical modules. These solutions are then
used to update the web page. Occasionally, the daily e-mail containing the game results
may be delayed: in this case, the program must be re-initiated manually by an operator
as soon as the e-mail arrives.

The FutMax system proposed in this work handles the main drawbacks encountered
in the RIOT system. Data collection is executed automatically. The collector agents
are autonomous and periodically check the pages announcing the game results. As soon
as these pages are updated, the Collectors parse the game results and send them to the
validator agent. This eliminates the need for an operator and the dependence on a service
that sends the game results by e-mail. Futmax is less prone to failures, since it includes
various agents collecting the same data from different sources and an agent to validate the
parsed data. Data processing in FutMax is more efficient, since it is divided into three
solver agents that process the information on different computers, thereby increasing the
processing power and the quantity of memory available. Due to its implementation in Java,
FutMax2004 is the most portable alternative. In addition, FutMax is fully autonomous
and does not require human inputs in the course of the tournament.

5 Conclusions and extensions

We presented in this work a framework for implementing applications related to qualifica-
tion and elimination problems in sports tournaments. Due to the fact that the framework
is implemented in Java, using the Java Concert Technology API [16], the framework en-
ables the quick development of portable applications. Agent-oriented modeling enables the
development of a highly uncoupled systems, because each agent represents each subsys-
tem and they are connected only by the exchange of messages. Moreover, communication
between agents through the exchange of messages renders the distributed nature of the
application transparent.

An instance of the framework, created to follow the Brazilian soccer tournament, was
shown to be far superior to similar applications found in the literature. The framework
enables the development of autonomous applications that need few human interactions.
The concept of cooperation between agents enables a relative simple and safe solution
to the problem of collecting data from sources on the Internet that are not connected to
the application. Since the solution of the integer programming models can be done in a
distributed manner in several computers, the response of the system is faster than the
other approaches presented in the literature.

13

Figure 3: Use case diagram.

14

References

[1] I. Adler, A.L. Erera, D.S. Hochbaum, and E.V. Olinick. Baseball, optimization, and
the world wide web. Interfaces, 32:12–22, 2000.

[2] F. Bellifemine, A. Poggi, and G. Rimassa. Jade - A FIPA-compliant agent frame-
work. In Practical Application of Intelligent Agents and Multi-Agents, pages 97–108,
London, 1999.

[3] F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent systems with a
FIPA-compliant agent framework. Software - Practice and Experience, 31:103–128,
2001.

[4] T. Bernholt, A. Güllich, T. Hofmeister, and N. Schmitt. Football elimination is hard
to decide under the 3-point rule. In M. Kutylowski, L. Pacholski, and T. Wierzbicki,
editors, Proceedings of the 24th International Symposium on Mathematical Founda-
tions of Computer Science, volume 1672 of Lecture Notes in Computer Science, pages
410–418. Springer, 1999.

[5] J.M. Bradshaw, S. Dutfield, P. Benoit, and J.D. Woolley. KAoS: Toward an industrial-
strength generic agent architecture. In J.M. Bradshaw, editor, Software Agents, pages
375–418. AAAI Press, 1997.

[6] F. Brazier, B. Dunin-Keplicz, N.R. Jennings, and J. Treur. Desire: Modeling multi-
agent systems in a compositional formal framework. International Journal of Coop-
erative Information Systems, 6:67–94, 1997.

[7] D. Chauhan and A.D. Baker. JAFMAS: A multiagent application development sys-
tem. In Proceedings of the Second International Conference on Autonomous Agents,
pages 100–107, New York, 1998. ACM Press.

[8] E. Cheng and D.E. Steffy. The Hockeyplex project. Online reference at
http://personalwebs.oakland.edu/˜desteffy/hockeyplex/Hockeyplex.pdf, last visited
on May 28, 2005.

[9] J. Collis and D. Ndumo. Zeus technical manual, 1999. Intelligent Systems Research
Group, British Telecommunications.

[10] R.S. Cost, T. Finin, Y. Labrou, X. Luan, Y. Peng, I. Soboroff, J. Mayfield, and
A. Boughanam. Jackal: a Java-based tool for agent development. In AAAI Workshop
on Tools for Agent Development, pages 73–83, Madison, 1998.

[11] M.E. Fayad, D.C. Schmidt, and R.E. Johnson. Building application frameworks -
Object oriented foundations of framework design. Wiley, New York, 1999.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: Elements of
reusable object-oriented software. Addison-Wesley, 1994.

[13] A. Garcia and C. Lucena. Software engineering for large-scale multi-agent systems.
ACM Software Engineering Notes, 27:82–88, 2002.

15

[14] D. Gusfield and C.E. Martel. The structure and complexity of sports elimination
numbers. Algorithmica, 32:73–86, 2002.

[15] A.J. Hoffman and T.J. Rivlin. When is a team ’mathematically’ eliminated? In
H.W. Kuhn, editor, Proceedings of the Princeton Symposium on Mathematical Pro-
gramming, pages 391–401. Princeton University Press, 1970.

[16] ILOG. ILOG CPLEX 8.0 user manual, 2002.

[17] N. R. Jennings. Agent-oriented software engineering. In F. J. Garijo and M. Boman,
editors, Proceedings of the 9th European Workshop on Modelling Autonomous Agents
in a Multi-Agent World: Multi-Agent System Engineering, volume 1647 of Lecture
Notes in Computer Science, pages 1–7. Springer-Verlag, 1999.

[18] K. Kendall, P. Krishna, C. Pathak, and C. Suresh. A Java application framework for
agent based systems. In T. Lacey, editor, ACM Computing Surveys Symposium on
Application Frameworks, Air Force Institute of Technology, Dayton, 2000.

[19] S.T. McCormick. Fast algorithms for parametric scheduling come from extensions to
parametric maximum flow. Operations Research, 47:744–756, 2000.

[20] H.S Nwana, D.T. Ndumu, L.C. Lee, and J.C. Collis. ZEUS: A toolkit and approach
for building distributed multi-agent systems. In O. Etzioni, J.P. Müller, and J.M.
Bradshaw, editors, Proceedings of the Third International Conference on Autonomous
Agents, pages 360–361, Seattle, 1999. ACM Press.

[21] S. Poslad, P. Buckle, and R. Hadingham. The FIPA-OS agent platform: open source
for open standards. In 5th International Conference and Exhibition on the Practical
Application of Intelligent Agents and Multi-Agents, pages 355–368, Manchester, 2000.

[22] C.C. Ribeiro and S. Urrutia. OR on the ball: Applications in sports scheduling and
management. OR/MS Today, 31:50–54, 2004.

[23] C.C. Ribeiro and S. Urrutia. An application of integer programming to playoff elimi-
nation in football championships. International Transactions in Operational Research,
12:375–386, 2005.

[24] C.C. Ribeiro and Sebastián Urrutia. Projeto futmax. Online reference at
http://www.futmax.org, last visited on March 23, 2005.

[25] L.W. Robinson. Baseball playoff eliminations: An application of linear programming.
Operations Research Letters, 10:67–74, 1991.

[26] B. Schwartz. Possible winners in partially completed tournaments. SIAM Review,
8:302–308, 1966.

[27] V. Silva, A. Garcia, A. Brandão, C. Chavez, C. Lucena, and P. Alencar. Taming agents
and objects in software engineering. In A. Garcia, C. Lucena, J. Castro, A. Omicini,
and F. Zamboneli, editors, Software Engineering for Large-Scale MultiAgent System,
volume 2603 of Lecture Notes in Computer Science, pages 1–26. Springer-Verlag, 2003.

16

[28] K.D. Wayne. A new property and a faster algorithm for baseball elimination. SIAM
Journal on Discrete Mathematics, 14:223–229, 2001.

[29] M. Wooldridge and P. Ciancarini. Agent-oriented software engineering: the state of
the art. In P. Ciancarini and M. Wooldridge, editors, First International Workshop
on Agent-Oriented Software Engineering, volume 1957 of Lecture Notes in Computer
Science, pages 1–28. Springer-Verlag, 2001.

17

