

ISSN 0103-9741

Monografias em Ciência da Computação

n° 12/06

Supporting Context-Aware Applications:
Scenarios, Models and Architecture

Ricardo Couto Antunes da Rocha

Markus Endler

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 12/06 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena April, 2006

Supporting Context-Aware Applications:

Scenarios, Models and Architecture1

Ricardo Couto Antunes da Rocha and Markus Endler

{rcarocha, endler}@inf.puc-rio.br

Abstract. Context-aware computing is widely accepted as a promising paradigm to en-
able seamless computing. Several efforts have been developed in order to support context-
aware applications through software infrastructures, middlewares and models for describ-
ing context information. However, developing such applications is still a complex task
because of the lack of adequate software abstractions, programming models, methodolo-
gies and efficient middleware. This paper presents a approach for context-aware software
development based on a flexible context model and an infrastructure for evolutionary
management of context information. We present a context model that provides high-level
abstractions to manage and handle context information. In order to demonstrate the
capability of the proposed models, we present a case study of a location-aware instant
messaging application.

Keywords: Context-Awareness, middleware, context modeling, mobile computing

Resumo. Computação senśıvel ao contexto é amplamente aceita como um paradigma
promissor para implementação do conceito de “calm technology”. Várias infra-estruturas
de software, sistemas de middleware e modelos para descrição de contexto têm sido desen-
volvidos com o objetivo de facilitar a implementação de aplicações senśıveis ao contexto.
Entretanto, desenvolver este tipo de aplicação é ainda uma tarefa complexa devido à i-
nadequação das atuais abstrações de software, modelos de programação e metodologias,
além dos sistemas de middlewares serem ainda protótipos ineficientes. Este artigo apre-
senta uma abordagem para desenvolvimento de aplicações senśıveis ao contexto baseado
em um modelo de contexto flex́ıvel e em uma infra-estrutura para gerenciamento evolu-
tivo de informações de contexto. Nós apresentamos um modelo de contexto que provê
abstrações de alto ńıvel para acessar e manipular contexto. Para demonstrar os recur-
sos dos modelos propostos, nós apresentamos um estudo de caso de uma aplicação de
mensagens instantâneas senśıvel a localização.

Palavras-chave: Percepção de contexto, middleware, modelagem de contexto, com-
putação móvel

1 This work has been sponsored by the Ministério de Ciência e Tecnologia da Presidência da República
Federativa do Brasil, CNPq research grants 55.2068/02-2 (ESSMA) and 479824/04-5 (Ed. Universal).

In charge for publications:
Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

ii

1 Introduction

Context-aware computing is widely accepted as a promising paradigm to implement seam-
less computing. Several research efforts have been made in order to enable such paradigm,
producing a number of prototypes, middleware and frameworks. Context Toolkit [1] and
RCSM [2] are examples of middlewares for context-aware computing. However, developing
context-aware software is still a complex activity because of the absence of general and
well-accepted software abstractions, programming models and methodologies, as well as
efficient middleware. Currently, research in the field of context-aware systems addresses
such needs by developing middlewares and suitable context models.

Middleware for context-aware systems still suffer from some limitations, such as lack
of scalability and problems to support heterogeneous environments [3]. Recent proposals
agree about the need to hide from the application developer some of the complexity of
context processing, such as details concerning sensor management or context storage.
However, yet there is not a consensus about what layers of abstractions are required for a
context-aware middleware. Moreover, middlewares still lack suitable programming models
for selecting context-based adaptation.

Research in context modeling has focused on the development of models capable of
describing the complexity of context information, such as dependency among contexts,
complex inference rules, inconsistency and ambiguity resolution, and description of pri-
vacy requirements. In this respect, a promising approach is the use of ontologies for
describing context. However, research has neglected some issues such as the trade-off be-
tween flexibility of context models and its usage by resource limited devices. Another issue
that demands attention is the integration between modeling concepts and programming
abstractions, especially for describing context-specific abstractions such as spatial queries
for location context.

These new requirements motivated us to extend the MoCA middleware [4] in order
to implement a more flexible approach for managing context information, and to develop
context-related programming abstractions which are better suited to common application
needs.

This paper presents an approach for context-aware software development based on
a flexible context model and an infrastructure for context management, targeting con-
tinuous evolution of context, heterogeneity of the devices, and exploring context-based
programming abstractions. We discuss how context models and a middleware can be
used in conjunction to specify context-specific abstractions that support a disciplined
software development for context-aware systems. We present a context model that ex-
plores such opportunities and provides higher level abstractions to manage and handle
context information. This context model offers constructors for describing quality of con-
text, contextual events and context queries. We argue that the use of such constructors
can significantly reduce the software’s complexity and improve code reuse. In order to
demonstrate the proposed approach, we present a case study of a location-aware instant
messaging application.

The remainder of this paper is structured as follows. Section 2 discusses some require-
ments for developing context-aware systems, in terms of middleware support and context
models. Section 3 briefly describes our infrastructure for deploying and managing context.
Section 4 presents our proposal for a flexible context model. Section 5 presents a case study
of the implementation of a location-aware application using the proposed approach. Fi-

1

nally, section 6 compares the proposed approach with related work, and section 7 presents
the current state of our research and points to future research directions.

2 Towards a Support for Context-Aware Software Develop-
ment

The development of context-aware system demands support for both context-aware, adap-
tive applications, and sensors that generate the actual context data. At sensor level, it is
important to model the idiosyncrasies of sensor management, such as precision modeling
and methods to resolve ambiguity of sensors readings.

These requirements impact the design of both middlewares and context models. In-
deed, they are strongly interdependent since the complexity of a context model determines
the complexity of context management by a middleware. Coutaz et al [5] presents this
relationship as a conceptual framework that interconnects an ontological foundation for
context modeling with a runtime infrastructure (middleware). We believe that such inter-
dependence has been neglected in most middleware projects.

This paper does not intent to discuss all requirements of context-aware systems. For
a more systematic discussion, please refer to [6], [7], and [3]. Conversely, our work focuses
three main requirements: support in heterogeneous environments, management of context
evolution, and support for context-specific abstractions. The heterogeneity and evolution
requirements have been already discussed in an earlier paper [8].

A context model should provide an unambiguous definition of the context’s seman-
tics and usage. This information is both necessary for developing middleware that cor-
rectly processes and manages context information, and for communicating to developer
of context-aware applications how context data can be used to trigger context-dependent
adaptations. Therefore, we believe that context modeling is part of the software engi-
neering process and that it impacts on several, if not all, phases of the software life cycle.
However, few work (e.g. [9]) have explored this practical aspect of context modeling for
context-aware software engineering. The support for context-specific programming ab-
stractions is an example of aspects that have not been enough explored in most current
context models.

In context-aware computing, the software developer must specify how applications
and the infrastructure (e.g. middleware, services) should change their behavior when
context changes. Currently adopted paradigms for programming adaptations often focus
on general-purpose approaches such as synchronous or asynchronous communication, use
of profiles for describing context-based adaptations [10] and computational reflection [11,
10]. Since these paradigms are totally decoupled from the underlying context models, they
do not give direct support for new abstractions that may be required for handling some
context information. Indeed, the deployment of a new context type may introduce new
opportunities and requirements for development of adaptation code supposed to handle
the new environmental situations that the context describes. A new context type may also
introduce new context-specific abstractions, such as queries and high-level conditions.

For example, consider modeling a device’s location context in two ways: either as a
pair of coordinates representing latitude and longitude, or as a symbolic region, such as
room A or building B. The deployment of this new context type in a context-aware system
may require new programming abstractions for location-aware applications, for example:

2

• Spatial-based queries for retrieving the set of devices that can be found in a certain
physical area, or the Euclidean distance between the device and a reference point.

• New forms of specifying precision of a location. For example, an application may
request location information at different granularities, e.g. single rooms, floors of a
building, buildings, blocks or campi.

• Location-aware applications may need to react according to very specific location
events, such as the change of a device’s location, or its entry in (or exit of) a symbolic
region.

MiddleWhere [12] provides several examples of other interesting abstractions and al-
gorithms for handling location context. However, all of them are restricted to the domain
of the location context. Similarly to the case of location, also other context information
may require the adoption of specific queries, events or conditions for firing adaptations.

We believe that such context-specific abstractions are imperative for the development
of complex context-aware applications, but they are very difficult to support by generic
means. In fact, only the designer of the context model can specify all abstractions intro-
duced by new context information. Moreover, leaving the task of interpreting context-
specific abstractions to the application developers has two main disadvantages. Firstly,
developers might make wrong inferences about context information as they usually do not
have full understanding of context internal semantic. The second disadvantage is that
useful abstractions might not be shared between applications, thus hampering code reuse
and increasing application complexity.

3 An Infrastructure for Context Management

In order to address the before mentioned challenges, we have designed a Context Service
for the MoCA middleware. This Context Service targets flexibility, allowing runtime
incorporation of new context information types and new context inference agents. We
designed both the Context Service architecture and defined the context modeling approach,
as they are closely related.

The design of the Context Service was driven by the following requirements: (1) adop-
tion of a generic and flexible context model that could be dynamically deployed in the
middleware architecture; (2) improved performance, allowing fast access to and dissem-
ination of context information, avoiding the intensified use of network and memory in
limited-resource devices; and, (3) support for context-related interoperability, facilitating
the use of the service from different devices, operating systems and programming lan-
guages.

In our approach, essentially three components interact to create, disseminate and use
context information: context providers, context consumers and the Context Service. These
components are network entities, represented by applications, services or hosts. The con-
text provider is an entity responsible for publishing certain context information; it can
be the generator of a raw data or just an interface between a sensor and the middleware.
The context consumer is an entity interested in a given context information. The Context
Service is responsible for receiving, storing and disseminating context information.

3

The Context Service is composed of the basic elements shown in Figure 1. Event
Service is responsible for providing asynchronous communication, i.e. delivering context
information and contextual events to interested consumers. The Event Service adopts
a publish/subscribe paradigm and offers a specialized API to handle subscriptions for
contextual events. The Type System Manager maintains the dynamical context type
system, solving and recognizing context types at runtime. The Repository maintains the
database of context data.

Context Event Service

Generic Context Access API

E
xt

er
na

l S
e

rv
ic

es
 (e

.g
. p

riv
ac

y)

communication layer

Context Repository

Type System Manager

Cache

Query

QoC

Security

...

distributed service

local service

ApplicationsContext
Providers

Figure 1: Context Service Architecture

One of the cornerstones of our approach is a strongly typed context model. This
model is mapped to object-oriented language constructions which are incorporated to
applications accessing context information. Application-specific context is modeled and
handled using the same approach. We follow an OO model for context handling, instead
of an ontology-based model, because the latter requires resource-hungry ontology engines
which hinder context management on resource-limited devices.

The deployment of a new context type requires two main steps: context modeling
and the context model processing. The first step consists of modeling the new context
information using an XML-based approach. In an XML file, the context modeler speci-
fies attributes, characteristics, relationships with previously specified context, quality-of-
context attributes and the queries for synchronous context request. Section 4 describes
our approach for context modeling.

In the context model processing step, a Context Tool reads the XML file and executes
the following tasks: (1) Validates the XML syntax and the context model; (2) Updates the
context type system and initializes the repository for storing the new context information;
(3) Generates a library containing the language bindings for the access operations of the
deployed context. So far, we have just implemented the Java language binding for context
access.

When an application developer needs to use a context information, he/she reads the
XML file with the context’s model to understand the context semantics, and includes the
binding library in his application. The language bindings allows the application to access

4

context information in form of object references or attributes, and query contexts using
object methods. Dependencies among context types are also included in the binding file.
For additional information about the architecture of our Context Service, please refer to [8]
and [13].

4 Context Modeling Approach

In the MoCA architecture, we have modeled two base-level context information: a local
context information that describes the context of a device including data on energy level,
memory and CPU usage, and wireless connectivity information about reachable IEEE
802.11 access points and the corresponding signal strengths. The MoCA Monitor is a
daemon executing on each mobile device, and is responsible for publishing this base-level
context information. LIS (Location Inference Service) [14] is a MoCA service responsible
for publishing the location context in terms of symbolic locations (e.g. Room A, Building
B), which are inferred from the device’s wireless connectivity context. Finally, SRM
(Symbolic Region Manager) is a service responsible for maintaining information about
the (hierarchical) structure of symbolic regions and for mapping them to areas in maps,
previously registered on LIS.

Context

-deviceId : int

LISLocationContext

-location : string

SymbolicLocation

-x : int
-y : int

CoordinatedLocation

-userName : string
-deviceId : string

UserContext

Figure 2: Example of context modeled for MoCA

Figure 2 shows an example of context modeled for MoCA architecture, including the
location context provided by LIS. The following simplified XML shows the modeling for
UserContext.

<context name="UserContext" base="Context" ... >

<attribute name="userName" type="String" ...>

descriptive comment

</attribute>

....

<queries>

<query name="onlineUsers" resultType="UserContext">

<param name="location" type="SymbolicLocation"/>

</query>

....

</queries>

5

<events>

<event name="EnteringInAnArea" ... >

<condition type="ProviderDefined" />

</event>

</events>

</context>

Our context model is composed of four parts: context structure (sections 4.1 to 4.3),
which represents the data attributes and the interrelationship among context types, qual-
ity of context meta-information (section 4.4), contextual events (section 4.5) and queries
(section 4.6).

4.1 Attributes

Attributes are the basic units holding some information about a context, e.g. a numerical
or symbolic value. For example, in the figure 2, userName is an attribute of UserContext.

4.2 Associations

Associations implement a containment relationship between two context types. They are
used when an attribute is of certain context type. In terms of implementation, this rela-
tionship is simply a link from a context information to another, and allows the navigation
through the context graph along these links.

Although our model is mapped to an object-oriented model, the associations do not
embody the meaning of aggregation, hence each context information has its own life cycle.
Associations also define a dependency relationship because a change in the associated
context causes a change in the context that contains the association. Inference (i.e. when
a context information is translated into another context information) and other possible
dependency relationships are not implemented in our model as an explicit relationship.

4.3 Inheritance

Our context model also supports the implementation of the inheritance relationship be-
tween two contexts types. This relationship allows the construction of a context from an-
other preexisting context. The new context type inherits attributes, associations, events
and queries from the more generic type, and thus supports reuse of models.

Inheritance also implements the sub-typing relationship among contexts. The sub-
typing relationship is the core concept supporting heterogeneity of context providers and
the evolution of context [8]. As shown in the example, any context is a sub-type of
Context.

4.4 Quality of Context

Quality of context (QoC) is modeled as meta-information associated with context at-
tributes. Our model allows the specification of two dimensions of QoC: precision and
accuracy.

Context precision specifies a range of values associated with a context attribute value.
For example, for a location information retrieved from a GPS sensor, the precision is
usually a constant value, e.g. approximately five meters. In this case, the precision

6

informs the presumed maximal error of the context data. Precision can also be specified
in terms of a context-specific structure, instead of a numeric value. For example, when
the LIS service delivers a location context information in terms of symbolic regions, the
precision is also described in terms of symbolic values, such as room, building or campus,
and thus the precision assumes the meaning of information granularity.

Accuracy specifies a numerical value to estimate how correct a context data is. For
example, the accuracy of a symbolic location generated by the LIS service is very much
dependent on the number of 802.11 access points that are used to infer the device’s posi-
tion. Our model also supports the definition of time-based accuracy, i.e. represented by
the moment in which the context information has been acquired from the sensors. The
following part of a XML model shows an example of QoC attribute declaration.

<context ... >

<attribute name="GPSLocation" ... >

<qoc>

<precision type="int" static="yes" name="error"

value="5" unit="meters">

</precision>

<accuracy ... />

</qoc>

</attribute>

...

</context>

There are other meta-information, such as freshness, but they are not handled as QoC
parameters. The main difference between these and the aforementioned meta-information
is that only QoC parameters can be used for QoC negotiation. Negotiations take place
when the context user (e.g. an application) must specify minimal values for precision and
accuracy which are acceptable for its purpose. Hence, the middleware infrastructure shall
deliver only context information that satisfies such requirements.

4.5 Contextual Events

Contextual events represent abstractions of environmental situations and conditions that
a context-aware system is interested in. A context event is specified in terms of context
attribute values and predicates.

Contextual events are the basic elements for building asynchronous notifications and
adaptations in context-aware systems. An application typically changes its behavior as
a reaction to context changes specified by a contextual event. An example of a context
change is the drop of a device’s energy level. An application could be designed to react
to such a change by subscribing to the corresponding contextual event, and thus avoiding
the polling overhead that it would have been required to notice the context change.

In some cases, the condition that fires a contextual event is too complex to be described
by the model, so it should be implemented by the context provider which is responsible
for publishing the context information. For example, LIS uses a probabilistic algorithm
to determine if a device has entered a symbolic area. For this reason the corresponding
contextual event EnteringInAnArea cannot be easily specified as a conjunction of attribute
values, so the firing of this event type is left to the LIS. Yet another example could be
proximity relations such as ”user A is near user B”.

7

Although contextual events are very useful abstractions, application-specific contextual
events are still required for describing conditions which are restricted to an application
domain. For example, conditions as LowBatteryLevel and LowCommunicationBandwidth
might be interpreted differently, depending on the number of applications running in a
device and application’s resource requirements. Our programming model supports the
adoption of application-specific contextual events as well.

4.6 Queries

Context queries represent the main interface between applications and the context in-
frastructure for synchronous type of access. Applications use context queries to retrieve
the set of context information that adhere to some conditions. Our context model allows
the specification of context-specific queries. For example, LIS supports several location-
specific queries, such as ”retrieve all symbolic areas”, ”retrieve the current symbolic area
for a given device” and ”retrieve all devices located in a symbolic area”. In order to describe
a query, a user must specify the query’s abstract name, result type and its parameters.

Context queries allow the context modeler to devise specific semantics for queries,
and which can be shared among all applications that need to use this context. In the
same way as contextual events, some context queries are too complex to be defined using
only general-purpose querying mechanisms. As for the events, also here the application
developer may have not enough knowledge about context semantics, in order to describe
queries correctly. Moreover, the use of context-specific queries may improve the overall
performance of the system, since it might decrease the number of network interactions
between an application and the context provider.

In our approach, retrieving context information using general-purpose query mech-
anisms remains possible. However, this should be restricted to queries for application-
specific purpose.

5 Case Study: BuddySpaceLive

In order to demonstrate the concepts and modeling capabilities of our approach, this
section describes a case study of an application called BuddySpaceLive, an extension of
the BuddySpace [15] open source application.

BuddySpace is an instant messaging (IM) client that enables location-based interac-
tions by associating location information to each of the interacting users. Besides the
usual interface of an IM application, BuddySpace allows the user to inform his current
position within a map, that had been previously published in a map repository. The
user’s location is shared among all users that are in his buddy list (i.e. is shown in their
maps). BuddySpace interacts with other IM applications through a Jabber server using
the XML-based Jabber open protocol, which provides portability with most common IM
platforms, such as MSN Messenger, Yahoo Messenger and ICQ.

In BuddySpaceLive (BSL), on the other hand, the user’s location is obtained from
MoCA infrastructure, which publishes this location as context information through its
LIS service. Using SRM, BSL gets symbolic location of a user, instead of just the physical
location, as provided by BuddySpace.

We have chosen as a testing scenario the 5th floor of our Department’s main building

8

Figure 3: BuddySpaceLive map for the testing scenario

(RDC), shown in Figure 3. We adopted this test case because symbolic locations were
well defined2, we could reproduce consistent human movements, and the coverage of access
points provided adequate location accuracy for LIS.

The following sections describe the BSL implementation according to three aspects:
(1) the modeling of application and sensor-specific context information, described in sec-
tions 5.1 and 5.2, respectively; (2) the architectural design of services and the interaction
among BSL instances and the Context Service, described in section 5.3, and (3) imple-
mentation of the context-dependent application logic, described in section 5.4.

5.1 Application-level context modeling

In the first step of the application development, one should identify and model which
context information the application should be aware of. Although most information that
represents an application state can be modeled as a context, it is not always desirable
to do so because of the incurred overhead of storing and handling context. Hence, an
important task is to decide which application-specific information should be modeled and
managed as context. In the case of BSL, the user profile (login, password, preferences)
and user’s buddy list are natural candidates for context. Unfortunately, current context
modeling methodologies, such as the ones proposed in [9] do not cover this aspect.

In order to identify which of the application’s state is eligible for being modeled as
context, we have adopted a simplified criteria composed of the four aspects shown below,
followed by the correspondent modeling decisions.

1. Identify the context-based adaptations required by the application for the currently
provided context information → location change

2. Model transformations or interpretations of currently available context to
application-specific domains → interpret symbolic location as a location into a BSL
map

2This floor contains professor’s individual rooms and classrooms.

9

3. Identify which distributed state shall be shared among all application instances →
the location and the current device of each user

4. Identify general-purpose state information → mapping from device id to user id

We have modeled BSL’s context information in a context called UserContext, shown
in Figure 4. This context information is comprised of user id, user status (e.g. online,
offline), device id (MAC address of user’s current device) and location. A BSL instance
is responsible for publishing and updating the UserContext information. The instant
messaging server could have been provider of such context, but we have preferred this
modeling as it avoids having to change legacy software. Location modeling issues are
discussed in next section.

Context

BSLLocationContext

-deviceId : int

LISLocationContext

-location : string

SymbolicLocation

-x : int
-y : int

CoordinatedLocation

-userName : string
-device : string
-status : string

UserContext location

-userName : string
-deviceId : string

LocalExecutionContext
infered from

-location : string

UserDefinedLocation

BSL-specific context

LIS-specific context

Figure 4: Context model for the BSL case

5.2 Sensor-level context modeling

At sensor-level context modeling, we have to investigate aspects of sensors limitations and
QoC. In our case study, these aspects are related to the location information.

Since BuddySpace positioning is based on coordinates, we had to transform LIS sym-
bolic locations into a coordinate-based location. For this, we used the central point of a
symbolic region as the representative point for the user’s location. This approximation is
reasonable for our case because most regions have a central point that corresponds to a
consistent location for user movement. For example, the floor’s corridor is completely cov-
ered by consecutive symbolic regions which centers correspond to locations in the corridor
(e.g. see Area 1 to Area 9 in Figure 3).

LIS publishes symbolic location with two QoC parameter: precision, which specifies the
type/granularity of the symbolic information being informed (e.g. room, floor, building),
and the accuracy, which is a numeric value representing the probability of correctness of

10

the location information. A BSL user can change the precision requirement in order to
specify the granularity of symbolic information he wants to receive. For a map of larger
scale, users may want to change location precision to higher granularity. If the selected
granularity is greater than the map (e.g. building precision for the testing scenario), then
BSL shows the buddies at the corner side, or requests the user to select a map with less
precision (e.g. a campus map).

The second type of location context is the user-defined location
(UserDefinedLocation), as originally supported by BuddySpace, which holds loca-
tion information that is given explicitly by the user. BSL must use this type of location
if the user is in a region without 802.11 coverage.

Additionally, we modeled coordinate-based location as a derived context of
LisLocationContext because, in fact, LIS infers physical location. However, since LIS
does not export this information, LisLocationContext assumes the coordinates of the
central point of a symbolic region, as before mentioned.

Figure 4 shows the these three context types. User-defined location is modeled as a
type of BSL location, since this location context is not general-purpose, as opposed to the
context provided by LIS. This modeling hides the actual location context types from the
BSL developer, which only has to specify the suitable context precision for the map.

5.3 Architecture

Figure 5 shows the architecture of the solution, in terms of the interactions between con-
text providers, context consumers and the context service. There are four main context
providers: (a) MoCA’s monitor, responsible for publishing device’s context information;
(b) LIS, responsible for publishing symbolic and physical location context; (c) SRM, re-
sponsible for publishing symbolic regions; and (c) the BSL instance, responsible for pub-
lishing BSL the user’s status and the user-provided location, as shown in Figure 4.

BSL

instance

Context Broker

SRMLIS

Jabber Server

Jabber
API

Context API

Monitor

MSN/Yahoo/ICQ
network

Jabber Protocol

Context publishing

Context consuming

Context querying

User’s device

lo
ca

tio
n

ph
ys

ic
a

l
re

gi
on

de
vi

ce
's

co
n

te
xt

B
SL

U
se

r
lo

ca
tio

n

Proprietary protocol

Figure 5: Architecture for BuddySpaceLive case study

In Figure 5, the Context Broker is an abstraction of the Context Service’s compo-
nents and its locations. The Context Service is transparent to the Jabber server, and
therefore does not need to be modified in order to be integrated in the architecture. BSL
instances receive contextual events as asynchronous notifications and interact with the
context broker by the Generic Context Access API, a subset of MoCA middleware layer.

11

5.4 Application functionality

The functionality of BSL is implemented by handles for contextual events fired by the
middleware and by synchronous context queries.

Since all BSL interactions use location context, they are part of the location context
model. Although the Jabber protocol is in charge of updating buddies’ status, the changes
of their location can be implemented only by contextual events. Table 1 shows the contex-
tual events for which a BSL user can register interest, and the corresponding application
response at each event occurrence. In order to track user movements, BSL just needs to
maintain triggers E2 for each buddy inside the map area and one trigger E1 for updating
users that enter and exit the map region.

Contextual event Application response

E1. User has entered/exited a region Notify the user about a new buddy in the map
Draw user location in the map and start updat-
ing his location

E2. User is moving Update user location on the map
E3. User is near Proximity indicator

Table 1: Some contextual events used in the BuddySpaceLive implementation

We have decided to register interest for buddy locations only if they are located in
the current map. For the other buddies, the location is synchronously retrieved from the
Context Service using context queries. Table 2 describes some location-based queries used
by BSL and the corresponding need in the application.

Query Application need

Q1. Which users are in an area? For establishing initial location of buddies on a
map

Q2. Where is the user u? Allows the user to identify the location of bud-
dies outside a map

Q3. Which symbolic regions are
available?

Register interest for events in a symbolic area

Allows the user to switch location precision

Table 2: Context queries used in BuddySpaceLive implementation

The code below shows a simplified XML, covering the modeling of the E1 event and
the Q1 query.

<context name="UserContext"
base="Context" ... >

<!-- context attributes -->
<queries>

<query name="usersInAnArea"
resultType="UserContext">

<param name="areaName"

12

type="SymbolicLocation"/>
</query>
<!-- other queries -->

</queries>
<events>

<event name="EnteringInAnArea" ... >
<condition type="ProviderDefined" />

</event>
<!-- other contextual events -->

</events>
</context>

BuddySpaceLive and other MoCA-based context-aware applications are available for
download at MoCA’s home page: http://www.lac.inf.puc-rio.br/moca/.

6 Related Work

Support for context-aware software development has been usually offered by frameworks,
such as Context Toolkit [1], and middlewares, such as RCSM [2], Confab [16] and PACE [3].
They fulfill differently the three requirements that motivated our work: support for hetero-
geneous environments, management of context evolution and support for context-specific
abstractions. In this section we will focus our attention in comparing our approach with
related work with respect to the latter aspect, since it have been more explored in this
paper. For a complementary discussion, please refer to [13].

Most of current research in context modeling is based on general-purpose modeling
approaches which impose specific constraints on how applications access and use context
information. For example, they do not consider abstractions for context changes, which
are the basis for programming adaptations in context-aware applications. This restriction
applies both to object-oriented based models, such as [17], and to ontology-based models,
such as [18]. In our opinion, it is difficult to use a general-purpose approach for supporting
specific abstractions of a particular context-aware application domain.

Henricksen and Indulska [9] have proposed a framework for context-aware software en-
gineering that offers a context modeling technique, an abstraction for describing context-
based adaptations and a programming model for context-aware applications. This work
is one of the most advanced proposals for integrating context modeling and software en-
gineering. They propose a graphical approach for context modeling called CML (Context
Modeling Language) that supports advanced modeling concepts, such as quality of infor-
mation and ambiguity. This modeling approach also supports several kinds of associations
among context types, such as derived association, for representing inference between two
contexts. As discussed before, such association is not explicitly modeled in our approach.

In addition, Henricksen and Indulska proposed a very interesting abstraction, similar
to our contextual events, called situation. A situation is expressed using predicate logic,
combining expressions that define the necessary conditions for its occurrence. However,
the authors propose a software infrastructure that maintains the modeled situations in
an adaptation layer shared among all applications executing on a device. In contrast,
we maintain context information and contextual events within the same management

13

infrastructure, in order to reduce the number of required network communications between
an application and the context management infrastructure. Another difference is that in
their proposal the condition that fires a situation must always be explicitly modeled,
whereas we allow complex conditions to be implemented through context providers.

Finally, Henricksen and Indulska adopt a generic layer for querying context. Con-
sequently, they do not support abstractions for context-specific queries, unless they are
implemented on the application side. In this case, however, this abstractions cannot the
shared among applications in the context-aware system.

7 Conclusions

This paper has presented an approach for supporting context-aware applications based on
a flexible context model and an infrastructure for evolutionary management of context
information. The context modeling approach supports two context-specific abstractions:
contextual events and context queries. We have argued that such abstractions are im-
portant for supporting a disciplined process of engineering context-aware systems, where
common forms of context access and inference are programmed by the developer of the
context providers rather then by the application programmer. However, such abstractions
are still not sufficient. An architecture for context-aware programming should also provide
complementary programming models, such as the branching model proposed in [9]. We are
still investigating an extension of our architecture that adopts mobile agents for handling
context information. Some of our future research efforts will be directed towards the de-
velopment of a suitable programming model for context-aware development, as well as the
extension of our modeling approach in order to support temporal queries and time-based
conditions for event firing.

References

[1] DEY, A. K.; ABOWD, G. D. ; SALBER, D.. A conceptual framework and a
toolkit for supporting the rapid prototyping of context-aware applications.
Human-Computer Interaction, 16(2, 3 & 4):97–166, 2001.

[2] YAU, S. S.; KARIM, F.; WANG, Y.; WANG, B. ; GUPTA, S. K. S.. Reconfigurable
context-sensitive middleware for pervasive computing. IEEE Pervasive Com-
puting, 1(3):33–40, 2002.

[3] HENRICKSEN, K.; INDULSKA, J.; MCFADDEN, T. ; BALASUBRAMANIAM, S..
Middleware for distributed context-aware systems. Lecture Notes in Com-
puter Science, 3760:846–863, 2005.

[4] SACRAMENTO, V.; ENDLER, M.; RUBINSZTEJN, H. K.; LIMA, L. S.;
GONCALVES, K. ; DO NASCIMENTO, F. N.. MoCA: A middleware for devel-
oping collaborative applications for mobile users. IEEE Distributed Systems
Online, 5(10), Oct. 2004.

[5] COUTAZ, J.; CROWLEY, J. L.; DOBSON, S. ; GARLAN, D.. Context is key.
Commun. ACM, 48(3):49–53, 2005.

14

[6] RAATIKAINEN, K.; CHRISTENSEN, H. B. ; NAKAJIMA, T.. Application re-
quirements for middleware for mobile and pervasive systems. SIGMOBILE
Mob. Comput. Commun. Rev., 6(4):16–24, 2002.

[7] STRANG, T.; LINNHOFF-POPIEN, C.. A context modeling survey. In: FIRST
INTERNATIONAL WORKSHOP ON ADVANCED CONTEXT MODELLING,
REASONING AND MANAGEMENT, Nottingham, England, Sept. 2004.

[8] DA ROCHA, R. C. A.; ENDLER, M.. Evolutionary and efficient context man-
agement in heterogeneous environments. In: MPAC’05: PROCEEDINGS OF
THE 3RD INTERNATIONAL WORKSHOP ON MIDDLEWARE FOR PERVA-
SIVE AND AD-HOC COMPUTING, p. 1–7, New York, NY, USA, 2005. ACM Press.

[9] HENRICKSEN, K.; INDULSKA, J.. Developing context-aware pervasive com-
puting applications: Models and approach. Pervasive and Mobile Computing,
2(1):37–64, February 2006.

[10] CHAN, A. T. S.; CHUANG, S.-N.. MobiPADS: a reflective middleware for
context-aware mobile computing. IEEE Transactions on Software Engineering,
29(12):1072–1085, Dec 2003.

[11] CAPRA, L.; EMMERICH, W. ; MASCOLO, C.. CARISMA: context-aware
reflective middleware system for mobile applications. IEEE Transactions on
Software Engineering, 29(10):929–945, oct 2003.

[12] RANGANATHAN, A.; AL-MUHTADI, J.; CHETAN, S.; CAMPBELL, R. ; MICKU-
NAS, D.. MiddleWhere: a middleware for location awareness in ubiquitous
computing applications. In: PROCEEDINGS OF THE 5TH ACM/IFIP/USENIX
INTERNATIONAL CONFERENCE ON MIDDLEWARE, p. 397–416, New York,
NY, USA, 2004. Springer-Verlag New York, Inc.

[13] DA ROCHA, R. C. A.; ENDLER, M.. Context management in heterogeneous,
evolving ubiquitous environments. IEEE Distributed Systems Online, 7(4), April
2006. art. no. 0604-o4001.

[14] NASCIMENTO, F. N. D. C.. A service for location inference of mobile devices
based on IEEE 802.11. Master’s thesis, Departamento de Informática, PUC-Rio,
August 2005. (in portuguese).

[15] KNOWLEDGED MEDIA INSTITUTE, THE OPEN UNIVERSITY. BuddyS-
pace’s home page. Available at: www.buddyspace.org, 2005. (Last visited: De-
cember, 2005).

[16] HONG, J. I.; LANDAY, J. A.. An infrastructure approach to context-aware
computing. Human-Computer Interaction, 16(2, 3 & 4):287–303, 2001.

[17] CHEVERST, K.; MITCHELL, K. ; DAVIES, N.. Design of an object model for a
context sensitive tourist GUIDE. Computers & Graphics, 6(23):883–891, 1999.

[18] RANGANATHAN, A.; CAMPBELL, R. H.. A middleware for context-aware
agents in ubiquitous computing environments. Lecture Notes in Computer
Science, 2672:143–161, Jan. 2003.

15

