

ISSN 0103-9741

Monografias em Ciência da Computação

n° 14/06

Ontology Driven Design Rationale Reuse

Adriana Pereira de Medeiros
Daniel Schwabe

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900

RIO DE JANEIRO - BRASIL

 i

Monografias em Ciência da Computação, No. 14/06 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena April, 2006

Ontology Driven Design Rationale Reuse*
Adriana Pereira de Medeiros

Daniel Schwabe

adri@inf.puc-rio.br, dschwabe@inf.puc-rio.br

Abstract. There are several proposals in the literature for representing design rationale. However, most
of the existing representation schemas do not describe design rationale using a formal representation
language having an expressive semantics that allows performing computable operations to support its
reuse. In this paper we present the conceptual architecture of an integrated design environment that
implements different operations to support recording design rationale, as well as reuse of design ra-
tionale during software design. This environment uses the formal language defined by the Kuaba on-
tology and the formal models of the artifacts as defined by design methods. They are used to represent
the design alternatives considered by designers and the decisions made by them during the design
process. This design rationale representation enables a new type of design reuse, where rationales are
integrated and re-employed in designing a new artifact.

Keywords: Design Rationale, Design Reuse, Ontology, Knowledge Representation.

Resumo. Existem várias propostas na literatura para representar design rationale. No entanto, a maioria
dos esquemas de representação existentes não descrevem design rationale usando uma linguagem de
representação formal com uma semântica expressiva que permita realizar operações computáveis para
apoiar o seu reuso. Neste artigo apresentamos a arquitetura conceitual de um ambiente de design inte-
grado que implementa diferentes operações para apoiar a representação e o reuso de design rationale
durante o design de software. Este ambiente usa a linguagem formal definida pela ontologia Kuaba e
os modelos formais dos artefatos definidos pelos métodos de design. Eles são usados para representar
as alternativas de design consideradas pelos projetistas e as decisões tomadas por eles durante o pro-
cesso de design. Esta representação de design rationale possibilita um novo tipo de reuso de design, no
qual rationales são integrados e re-empregados no design de um novo artefato.

Palavras-chave: Design Rationale, Reuso de Design, Ontologia, Representação de Conhecimento.

* Trabalho patrocinado pelo Ministério de Ciência e Tecnologia da Presidência da República Federativa do Brasil (e agên-

cia de fomento e o número do processo, se aplicável). (Em Inglês: This work has been sponsored by the Ministério de
Ciência e Tecnologia da Presidência da República Federativa do Brasil)

 ii

In charge for publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br

 iii

1 Introduction

Design rationale (DR) is an explanation of why an artifact, or some part of an artifact, is designed the
way it is [Lee and Lai, 1991]. It includes also information about the other alternatives considered, the
tradeoffs evaluated, and the argumentation that led to the decision. This information can be valuable,
even critical, to various people who deal with the artifact. For instance, this is fundamental when main-
taining a software artifact designed by another person, or when trying to reuse it in the context of a
new design. This is true even in the case of a single person, since in many cases, over a longer period of
time, the designer himself may not recall all the rationale he himself used in the design of a particular
artifact.

In most cases the DR is not adequately documented, which leads to requiring a high degree of ver-
bal communication among persons that must work with an artifact, in order to understand the reason-
ing followed by the designer. Therefore, recording the DR during the design process is critical to allow
its reuse.

The research on DR normally involves three main aspects: its capture, its representation and its use.
Generally, the representation schema determines the methods used to capture and retrieve the DR,
enabling its use in designing new artifacts.

There are several proposals in the literature for representing DR, such as Issue Based Information
System (IBIS) [Kunz and Rittel, 1970], Procedural Hierarchy of Issues (PHI) [McCall, 1991], Questions,
Options and Criteria (QOC) [MacLean et al., 1991] and Active Design Documents (ADD) [Garcia and
Howard, 1992]. Some of them were created specifically for software design. These include the Potts and
Bruns model [Potts and Bruns, 1988], the Decision Representation Language (DRL) [Lee and Lai, 1991]
and the Design Recommendation and Intent Model (DRIM) [Pena-Mora and Vadhavkar, 1996]. How-
ever, the representations generated by these proposals are not described by a formal representation
language with an expressive semantics. Consequently, is not possible to perform computable opera-
tions on the recorded rationale and, therefore, to reuse DR. Moreover, when applying them to formally
defined artifacts (such as software) their informality prevents automatically taking into consideration
alternatives prescribed by the design methods, as well as incorporating their restrictions. The DR is
represented based only on the descriptions provided by the designers, which results in a generic repre-
sentation. In other words, it is not possible to leverage the semantics of the artifact provided by the
formal model that describes it.

In this work we propose an integrated design environment to support the reuse of DR in a special
kind of design domain, which we call “model-based design”. Model-based design is a category of de-
sign problems that can be seen as an instantiation process of a meta-model. This meta-model represents
the formal models used to describe artifacts. For many knowledge domains, particularly in software
design, there are formal models that describe the artifacts and present semantic descriptions, which al-
low reasoning over the artifacts being produced. An example of such a formal model is the UML speci-
fication language [OMG, 2003] used to describe a class diagram.

There are several approaches that regard the design of human-computer interfaces as an instance of
model-based design. As such, the approach described here is also applicable, although the examples
shown will exemplify hypermedia navigation aspects.

A formally defined DR representation, integrating the formal semantics of the artifacts being de-
signed, can enable the reuse of designs of artifacts by the integration of their rationales. This integration

 iv

of different rationales is possible only if they are represented using the same representation scheme(s),
and the artifacts are built based on the same type of formal model and represent the same application
domain. For instance, it is possible to integrate the rationales of two context schemas created with the
Object Oriented Hypermedia Design Method (OOHDM) [Schwabe and Rossi, 1998] (formal model) to
design the navigation of a Web application for a CD store (same domain), where these rationales are
represented as instances of the same ontology.

This formal representation of DR enables a type of design reuse at the highest abstraction level,
where rationales can be integrated and re-employed in designing a new artifact. Starting with existing
artifacts, the designer can analyze their rationales and decide to integrate them to get a more complete
design solution. She or he can review and extend it, adding new alternatives or making different
choices with respect to already defined alternatives, generating a new DR. From this point of view,
both software maintenance and evolution can be considered as simply a continuation of a previous de-
sign process, captured in a given DR.

When such representations are available in a distributed environment, it is possible to envisage the
collaboration between designers with semi-automated support, where DR representations can be
searched for, recovered and integrated during the process of designing a new artifact. Such availability
can therefore be the basis for collaborative (and even participatory) design, among designers working
with a given artifact.

In this paper, we first describe briefly the Kuaba1 ontology, a formal representation language for de-
sign rationale that we proposed in [Medeiros, Schwabe and Feijó, 2005], and how this language can be
used considering the artifacts formal model to represent DR. Next, we present the conceptual architec-
ture of the integrated design environment that is being built to support designers through processing
of formal DR representations. We present also the operations implemented in this environment to sup-
port the software design reuse using these representations. Finally, we conclude by discussing related
work, pointing out further work, and drawing some conclusions.

2 The Kuaba Ontology

Kuaba is a knowledge representation model for DR described in F-logic [Kifer and Lausen, 1989].
Kuaba is composed by a vocabulary and a set of rules that allows describing DRs with an expressive
semantics and performing queries, inferences and computable operations over the recorded content, to
support the use of DR.

The vocabulary described by Kuaba extends the argumentation structure of IBIS by explicating the
representation of the decisions made during design and their justifications, and the relations between
the argumentation elements and generated artifacts. Figure 1 shows the elements of the vocabulary de-
fined by the Kuaba ontology, using the UML graphical notation to help visualization. Notice that such
object oriented representation is used only as a suggestion of illustration of ontology vocabulary; some
relations and constraints were hidden to simplify the presentation.

1 “Kuaba” means “knowledge” in Tupy-guarany, the language of one of the native peoples in Brazil.

 v

Figure 1. Kuaba Ontology Vocabulary

Briefly described, the Kuaba ontology vocabulary represents the reasoning elements used by the de-
signers during the design process; the decisions made by them; information about the artifacts that re-
sult from this reasoning; and information about the design activity. Similarly to IBIS, the reasoning
elements represent the design problems (questions) that the designer should deal with, the possible so-
lution ideas for these problems and the arguments against or in favor of the presented ideas. In Kuaba
some of these elements are described according to the formal model of the artifact prescribed by the
design method used. The Decision element records the acceptance or rejection of the solution ideas pre-
sented. Each decision must have a justification that explains the “why” it was made. Justification is al-
ways derived from one or more arguments presented during the design. The ideas accepted during the
design process originate artifacts that can be either atomic artifacts or composite artifacts. All reasoning
elements (Question, Idea and Argument) and artifacts have a “is-version-of” relation, representing the fact
that any one of them may be based on an existing element. This element may be either part of a previ-
ous version of this same artifact, and therefore the design is actually evolving it, or part of a different
design that is being reused in a new context.

Below we show a portion of the Kuaba ontology vocabulary shown in Figure 1 expressed using F-
Logic.

 vi

2.1 Representing Design Rationale with Kuaba

Normally, the first activity done by the designer in designing a software artifact is the choice of design
method or process that will be used to achieve the design. Consider the following scenario: a designer
needs to model the navigation that will be used by users in a Web application of a CD Store and de-
cides to use the OOHDM method to guide her or his design. When the designer chooses this design
method, s/he indirectly determines the formal model(s) that will be used to describe the artifacts. This
formal model specifies, to a great extent, the questions and ideas that the designer can propose, since
they are pre-defined by this model. Figure 2 shows part of the formal model prescribed by the
OOHDM method to specify the navigation of a Web application.

Figure 2. Partial OOHDM formal model for Navigation

According the OOHDM formal model, an element in a navigation model is either an index, a list, a
navigational class, a context or an InContext class. Contexts define the set of navigation objects that will
be explored by the user in each moment. The navigation objects are defined based on the navigational
classes related to the context. For example, the context “CDs of the artist Daniela Mercury” represents
the set of CDs that will be accessible to the user, after s/he has selected her or his favorite artist. This
context is composed by objects of the navigational class CD. This class defines the CD information that
the user will have access.

The access to the objects of a context can be done through an index or through an anchor. An index
is a set of ordered objects, where each object has at least an attribute of the type anchor (seletor). This
anchor creates a link to another object that can be a context object or an object of another index. The
previously quoted context “CDs of the artist Daniela Mercury” can be accessed, for example, by an index
of artists in which one of the objects is “Daniela Mercury”. Figure 3 shows the context schema that
represents this navigation. Note that the “CDs by Artist” context includes a group of possible contexts,
whose objects are defined by the name of the artist selected by the user in the “Artists” index.

 vii

Figure 3. Context Schema Example. The key to the notation is summarized on the right hand side.

An InContext class is defined as a “decorator” of a navigational class with information that can only
be accessed in a specific context. For instance, we can define an InContext class with an attribute of
type anchor to give access to the artist’s biography only when the user is browsing a CD in the “CDs by
Artist” context. In this way, this anchor will be presented, in this context, as part of the CD information,
allowing the user to navigate to the “Artist Alphabetic” context.

The DR representation usually begins with a general question that establishes the problem to be
solved. This general question can generate new questions that represent new design (sub) problems
related to the main problem. For each question presented the designers can suggest ideas, formulating
possible solutions to the problem expressed in the question. Figure 4 shows a graphical representation
we have created to help visualizing instances of the Kuaba ontology, showing the portion of the DR
regarding the alternatives and decisions that resulted in the context schema shown in Figure 3.

 Figure 4. A portion of a DR representing the navigation in the Figure 3

 viii

In this representation, the root node is an initial question (represented as rectangles), “What are the
sets of elements?”, which is addressed by the ideas “Artists”, “Artist’s CDs” and “Artist in alphabetic or-
der”, represented as ellipses. Notice that these values are determined by the designer’s knowledge of
the domain, or were extracted from the DR of a previous phase, requirements elicitation, which is not
addressed in this paper.

Once these initial ideas for the sets of elements have been established, the designer must decide how
each one of them will be modeled using the primitives of the OOHDM method to make up the final
artifact, the navigation model. This next step is represented in Figure 4 by the “suggests” relation,
which determines questions entailed by ideas – “How to model Artists?”, “How to model Artist’s CDs?”
and “How to model Artist in alphabetic order?”.

The possible ideas that address these questions are determined by the OOHDM formal model for
defining navigation models – sets of elements can essentially be modeled as an index, a context, or a
list. Accordingly, the OOHDM formal model is instantiated into the “Index” and “Context” ideas linked
to the “How to model Artist’s CDs?” node. Strictly speaking, the designer should consider all the other
alternatives proposed by the OOHDM, but for the sake of simplicity here we have shown only these
two.

Observe that when the designer considers the ideas of modeling the sets “Artists” and “Artist’s CDs”
as indices, the questions “Index Attributes?” are immediately suggested. This occurs because an index
must be associated to one or more attributes, according the OOHDM formal model shown in Figure 2.
These questions are addressed by the ideas that correspond to the respective attributes of these indices.
Notice that these attributes can be of type “index anchor” or “context anchor” with different destina-
tions, depending on the navigation that the designer desires. The proposed ideas for the type of the
attributes “Name” and “Title” of the indices “Artists” and “Artist’s Cds”, respectively, and the ones that
address the question “Destination?” in Figure 4, define two different solutions to the navigation in the
Web application designed by the designer.

The first navigation solution leads from the “Artists” index, through the “Name” anchor, to the “Art-
ist’s CDs” context. This alternative was accepted by the designer (represented by the labels “A” on the
arrows between questions and ideas), corresponding to the solution represented in the context schema
in Figure 3. Observing the rationale of this solution, shown in Figure 4, we can perceive that the de-
signer decided to include the attribute “Artist_Bio” of type “Context Anchor” in the navigational class
CD. This anchor allows the user to navigate from the information of a CD to the artist’s biography in
the “Artists in alphabetic order” context.

In the second navigation solution, rejected by designer (labeled “R” in Figure 4), the user selects the
desired artist in the “Artists” index to access a list of CDs of this artist, in the “Artist’s Cds” index. Then,
s/he could select the desired CD in this index to access its detailed information, in the “Artist’s Cds”
context. Observe that the idea “Artist’s CDs” had two design alternatives (index and context) and both
could have been accepted by the designer as solutions to model this set. Figure 5 shows the navigation
solution rejected by the designer, according the DR representation shown in Figure 4.

 ix

Figure 5. Context schema of the navigation solution rejected by the designer

In this way, it is possible to envisage how the formal model “drives” the instantiation of the Kuaba
ontology recording the DR. This formal model can be used by a support environment to suggest to the
designer the possible Kuaba ontology instances that must be defined at each step of the design process.
After defining the design options for each domain idea, the designer has to record the arguments for
and against each option (represented as dashed rectangles in Figure 4), and decide which design alter-
native will be used in the final artifact. The “Argument” element allows designers to record the experi-
ences and the knowledge that they are employing in the artifact design.

The sub-graph of the DR made up of “Question” and “Ideas” is actually an AND/OR graph [Nils-
son, 1986] that can be seen as a goal decomposition of the root node, which is always a “Question”. The
“Question” class in the Kuaba ontology has a “type” attribute, with possible values “AND”, “OR” and
“XOR”. The value “XOR” indicates that all ideas that address this question are mutually exclusive,
meaning that only one idea can be accepted as a solution to the question. The value “AND” indicates
that the designer should accept all ideas that address the question or reject all of them. Finally, the
value “OR” indicates that various ideas can be independently accepted as a solution to the question.
This kind of information allows us to define rules that can suggest decisions about the acceptance or
rejection of the solution ideas proposed. For example, the software could suggest rejecting certain ideas
based in the following rule: if an idea associated with a question of type “XOR” is accepted by the de-
signer, then all other ideas associated with this question will be rejected. This rule is formulated in F-
Logic as follows:

Notice that, if the decision to accept the idea of modeling “Name” as an attribute of the type context

anchor in the Artists index was the first one made by the designer, a support system could apply the
rule above, and automatically propose that the idea of modeling “Name” as an index anchor be re-
jected, given that there are only two ideas associated with this question. At this point, the designer also
has the option of not accepting this suggestion, and revising the possible answers to the question “Index
Attributes?”, rejecting “Name” altogether. In any case, the support environment can apply consistency
rules defined by the Kuaba ontology, as well as those expressed by the particular formal artifact repre-
sentation being used. Therefore, the order of accepting or rejecting an idea does not affect the rationale
represented.

 x

3 Designs Reuse using Design Rationale

Formalizing DR representation using the language defined with Kuaba enriched with the semantics
of the formal model of the artifact as defined by the design method allows design reuse, which is reuse
of a new kind. This reuse is possible through the integration of existing DRs to start the design of a new
artifact. This type of reuse requires different kinds of operations on the recorded DR. These operations
involve matching instances of the Kuaba ontology (DR representations) to compose a more complete
solution of design.

In this section we show the conceptual architecture of an integrated environment that supports re-
cording DR, as well as reuse of DR during software design. This environment uses the artifact formal
model to suggest design alternatives at each step of the design process. It also records the choices made
by the designer using the representation language defined by the Kuaba ontology. In addition, the en-
vironment supports also searching for existing DRs, and reusing design alternatives considered in
them for the new artifact being designed.

Since most software design support tools already use some kind of formal description of the artifacts
being designed, we propose to extend them to allow their integration with the DR “processor” that is
capable of processing representations using Kuaba. The extension enriches the design tools by adding
two layers to support the editing and searching of DR. In the edition layer, the designer informs the
arguments for and against the design alternatives considered, and the justifications for the decisions
made. In the search layer, s/he searches existing designs with their rationales, formulates questions
about the designs found, and starts the integration of rationales. In this layer the designer can also
graphically visualize the rationale of the artifact being designed, or the rationale of the designs being
reused in her or his design. These layers are being developed initially to the HyperDE [Nunes and
Schwabe, 2006], a support environment to the hypermedia applications design using the OOHDM or
SHDM [Lima and Schwabe, 2003] methods. The Figure 6 shows the main components of the proposed
architecture.

Figure 6. Architecture of an Environment Supporting DR

In the proposed architecture, the design tool transfers the design options and the rationale informa-
tion provided by the designer to the rationale “processor”, responsible for creating the DR representa-
tions and processing the rationales integration, when requested by the designer. In a future version, the
design tool will also be capable of generating the artifact based on the modifications and decisions
made by the designer over the integrated rationale.

 xi

3.1 The Rationale Processor

The representation and the integration of DR involves different types of operations such as queries, op-
erations to create instances of the Kuaba ontology and operations to match or integrate elements of two
or more instances of this ontology.

Queries and the operations to create instances of an ontology have already been implemented in
several ontology editors such as Protege [Noy et al., 2001]. The operations to perform the integration of
instances of the same ontology have not been considered in majority of the proposed systems to sup-
port the use of DR. Basically, these operations involve the search, copy, substitution and union of ele-
ments of the instances being integrated.

Search operations allow the designer select which elements of the representations considered for the integra-
tion will be included in the new design. For example, the designer could provide a question, and request that the
search tool recover only the ideas that are answers to this question that have arguments in its favor.

Substitution operations allow the designer substitute an element in one representation by a corre-
sponding element in another representation. This operation can be used, for example, when the de-
signer wants to use the DR of one representation, but needs to substitute one of its elements by an ele-
ment specified in the other representation.

Copy operations allow the designer copy elements of one representation into another.

Finally, union operations allow joining the reasoning elements described in the representations in-
volved in the integration, to generate a new design. These operations can be implemented in different
ways, allowing the designer to determine how the union of elements will be performed. One way
would be to permit the designer to specify which parts of the representations considered should be in-
tegrated. For example, she could define the Question element that would be the root of the union of the
representations. Or still, to allow her to restrict the elements considered during the integration, such as,
for instance, requiring the union to consider only the ideas that were accepted in their respective repre-
sentations.

Currently, the rationale processor implements the complete union of two DR representations. This
operation consists of a set of rules implemented in the Flora-2 language2 that translate F-Logic in ta-
bled Prolog code and process this code in the deductive system XSB3. These rules are defined based on
the reasoning elements of the Kuaba ontology vocabulary. They consist basically in the recursive proc-
essing of the various sub-trees of questions and solution ideas that compose the DR representations.

3.1.1 Integrating Design Rationale

Consider again the scenario in which the designer needs to model the navigation of a Web application
for a CD store. Since the online stores domain is a common domain in software design, the designer
decides to perform a search for existing designs, trying to find similar artifacts, before she or he begins
a new design. As a result, s/he finds the artifacts shown in Figures 3 and 7. These artifacts represent
different design solutions to model the navigation of Web applications using the OOHDM method.

2 http://flora.sourceforge.net/

3 http://xsb.sourceforge.net/

 xii

Figure 7. Context schema of the navigation solution considering singers

Analyzing the artifacts found, the designer notices that the author of the second artifact, shown in
Figure 7, considered the set “Singers” instead of considering the set “Artists”, and decided to use an-
other solution. In this navigation solution, initially the user selects the favorite singer in the “Singers”
index to access to the information of this singer in the “Singer Alphabetic” context. From this informa-
tion s/he can navigate to the “CDs by Singer” context to have access to the detailed information of that
CD.

After analyzing the DR representations of these artifacts, shown partially in Figures 4 and 8, the de-
signer decides to integrate the navigation solutions used by other designers to start her or his design
with a bigger set of options.

Figure 8. A portion of a DR representing the navigation in the Figure 7

 1

The integration of two DR representations involves: the definition of the representa-
tion that will be used as the basis for the integrated DR; the equality specification be-
tween the domain ideas of the two representations; and the union of the sub-trees of
elements (equivalent or not) of these ideas.

The definition of the base representation and the equality specification between
domain ideas are performed by the designer. In this example, assume that the designer
defined the DR representation shown in Figure 4 as base and specifies that the sets
“Artists”, “Artists in alphabetic order” and “Artists’ CDs” of this representation are equal
to the sets “Singers”, “Singers in alphabetic order” and “Singers’ CDs” of the representa-
tion shown in Figure 8. This equality is specified in Flora2 using the predicate “:=:” as

Based on this information, the rationale processor first identifies the equivalent

questions and design ideas, applying the equivalence rules shown below. These rules
examine the sub-trees of the domain ideas comparing the questions and ideas of the
two representations. Questions are considered equal if they are suggested by equiva-
lent ideas, and ideas are considered equal if they have the same text and address
equivalent questions.

When the rationale processor finds an equivalent idea in the sub-trees, it simply co-

pies the arguments of this idea from the original representation to the base representa-
tion. For example, the “Context Anchor” ideas in the sub-trees of the ideas “Artists” (Fi-
gure 4) and “Singers” (Figure 8) are equivalent. Thus, the arguments presented by the
designer to the “Context Anchor” idea in the representation shown in Figure 8 are cop-
ied to the sub-tree of its equivalent idea in the base representation (Figure 4).

After identifying and treating the equivalent ideas, the rationale processor identifies
the domain ideas that are different (non-equivalent) in the two representations and
copies them with their respective sub-trees to the base representation. The operations
used by the processor to treat these ideas are shown below. Observe that the domain
ideas are obtained from the root question.

In the code above, the rationale processor creates two lists (L, L2) with the domain

ideas that address the root question “What are the sets of elements” of the two DR repre-
sentations being integrated. The get_non_equivalent operation processes these lists re-
turning a new list with the different ideas. The copy_idea operation, shown below, cop-
ies the domain ideas in this list to the base representation. For each idea copied, notice
that the processor copies also its arguments (copy_argument operation) and its respec-
tive sub-trees, retrieved from the questions suggested by this idea (copy_question opera-
tion).

 2

Finishing the integration, the rationale processor treats the design ideas based on

formal model of the artifact that are not equivalent. For this, it retrieves again the sub-
trees of the domain ideas and copies the design ideas not considered so far to the base
representation. The code shown below is an example of the operations used by the
processor to perform this treatment.

Observe that the sub-trees treated by the rationale processor are composed by the

ideas that address the questions suggested by the domain ideas “Singers” and “Artists”,
respectively. The operation get_non_equivalent is performed again returning the list of
different design ideas that is processed by the operation transfer_idea. The parameter
“artists” represents the domain idea of the base representation that will receive the sub-
tree of questions and design ideas considered to the idea “Singers”. The association of
the copied sub-tree with the domain idea of the base representation is performed by
the code in bold in the transfer_idea operation shown below.

Observing the rationale representations shown in Figures 4 and 8 we can notice, for

instance, that the navigation options from the ideas “Context Anchor” in the sub-trees of
the ideas “Artists” and “Singers” are different. In the first representation (Figure 4), the
destination of this anchor is the set “Artists’ CDs” modeled as a context. In the second
one the destination is the “Singers in alphabetic order” context. Since these navigation
options represent different solution ideas, the rationale processor copies this last option
to the integrated DR, as shown in Figure 9.

 3

Figure 9. Example of an integrated DR

In the integrated DR, all navigation options considered in the artifacts shown in Fi-
gures 3, 5 and 7 were joined in one unique DR representation. Notice that the decisions
made for the reused artifacts and their justifications are not incorporated to this repre-
sentation. This reflects the fact of this integrated DR represents a new design, in which
the designer can do modifications and make new decisions according her or his objec-
tives.

4 Related Work

The Kuaba ontology provides an argumentation-based representation model for DR.
Different from other argumentation-based models, as IBIS, PHI and DRL, Kuaba al-
lows represent explicitly the decisions made by the designers, including in its vocabu-
lary a specific element to describe decisions. Furthermore, Kuaba integrates these deci-
sions with the argumentation used by the designers during the design process and wi-
th the descriptions of the artifacts that results from them.

Compared with the approach used by the ADD system, Kuaba can be also consid-
ered a model-based approach, since it uses the formal model of the artifact to record
DR. However, ADD is used to capture DR in routine, parametric designs where the
designer defines the values that specify the artifact being designed. Differently from
ADD, Kuaba represents DR in software designs which focus is in the structural aspects
of the artifacts.

Considering the DR approaches proposed specifically for software design, we can
say that Kuaba is similar to the Potts and Bruns model, that was extended by [Lee,

 4

1991] in the creation of the Decision Representation Language (DRL). Both integrate
the DR representation with software engineering methods. The Potts and Bruns model
and the Kuaba ontology differ in the way they use software engineering methods. In
that model, the generic model entities are refined to accommodate a particular design
method’s vocabulary for deriving new artifacts. For example, a new entity specific to
the design method used is incorporated into the IBIS model. In the Kuaba ontology vo-
cabulary the design method is used in the creation of instances of the reasoning ele-
ments (Question and Idea), which allows to automate the generation of part of the val-
ues that are informed by designers during the design.

In [Pena-Mora and Vadhavkar, 1996], the author proposed a framework combining
DRIM with design patterns to offer active assistance to software designers in designing
reusable software systems. This combined approach leads to the “patterns-by-intent”
approach. This approach refers to the process of selecting patterns based on their initial
intents and then refining the choice of the patterns by specific constraints. Although
this approach focuses on software reuse, it does not address the integration of ration-
ales proposed in this work to create new software artifacts. Basically, the framework
supports the reuse of components by recording and allowing the retrieval of decisions
made during the software design process.

The SEURAT (Software Engineering Using RATionale) system [Burge and Brown,
2004] has an architecture similar to the architecture of the integrated support environ-
ment presented in this work. However, SEURAT supports the use of rationale only to
identify inconsistencies during the software maintenance process. It does not consider
computable operations over the DR as a support for the reuse of software artifacts.

5 Conclusion

In this paper we have proposed a new way of reusing designs in Software Design do-
main with the support of an integrated design environment. The proposed environ-
ment integrates the software design tools with a rationale processor capable of generat-
ing and integrating DR representations during the design process. The reuse of DR in
the design of new artifacts is supported by different operations implemented as rules
in the Flora-2 language.

To permit a more effective reuse of DR, we have also proposed the use of the formal
models of artifacts to represent DR using the vocabulary defined in Kuaba ontology.
We believe that the use of formal models of artifacts can facilitate the DR capture, since
it permits automating part of generation of DR representations. Therefore, the large
amount of data produced in DR representations of actual designs is significantly hid-
den from the designer through the use of automated support.

Our current research includes: the development of the layers of edition and search-
ing for the HyperDE environment and the integration of this environment with the ra-
tionale processor to validate the reuse of software designs through the integration of
existing DR representations, with semi-automated support.

ACKNOWLEDGMENTS

Daniel Schwabe was partially supported by a grant from CNPq - Brazil.

 5

References

BURGE, J.; BROWN, D.C. An Integrated Approach for Software Design Checking
Using Rationale. Design Computing and Cognition 2004, Kluwer Academic
Publishers, 557-576, 2004.

GARCIA, A. C. B.; HOWARD, C. H. Acquiring design knowledge through design
decision justification. Artif. Intell. for Eng. Design, Analysis and Manuf., 6(1), 59-71,
1992.

KIFER, M.; LAUSEN, G. F-Logic: A Higher-Order Language for Reasoning about
Objects, Inheritance and Scheme. ACM SIGMOD May , 134-146, 1989.

KUNZ, W.; RITTEL, H. W. J. Issues as Elements of Information Systems. Institute of
Urban and Regional Development Working Paper 131, Univ of California, Berkeley,
CA, 1970.

LEE, J. Extending the Potts and Bruns Model for Recording Design Rationale. In
Proceedings of the 13th International Conference on Software Engineering, Austin, TX,
114-125, 1991.

LEE, J.; LAI, K. What’s in Design Rationale. Human-Comput. Interaction, 6 (3-4), 251-
280, 1991.

LIMA, F.; SCHWABE, D. Application Modeling for The Semantic Web. Proc. LA Web
2003, IEEE-CS Press (2003)

MCCALL, R. J: PHI: A conceptual foundation for design hypermedia. Design Studies,
No.12 (1), 30-41, 1991.

MACLEAN, A.; YOUNG, R.; BELLOTTI, V. and MORAN, T. Questions, Options, and
Criteria: Elements of Design Space Analysis. Human-Computer Interaction, No. 6 (3-
4), 201-250, 1991.

MEDEIROS, A. P.; SCHWABE, D.; FEIJÓ, B. Kuaba Ontology: Design Rationale
Representation and Reuse in Model-Based Designs. In: Proceedings of the 24th
International Conference on Conceptual Modeling (ER2005), Klagenfurt, Austria,
Lecture Notes in Computer Science 3716, Springer-Verlag, ISBN 3-540-29389-2, p. 241-
255, 2005.

NILSSON, N. Principles of Artificial Intelligence. Morgan Kaufman Publishers, 476p,
1986.

NOY, N. F.; Sintek, M.; Decker, S.; Crubézy, M.; Fergerson, R. W. and Musen, M. A.
Creating Semantic Web Contents with Protégé-2000. IEEE Intelligent Systems Vol.
16, No 2, Special Issue on Semantic Web, 60-71, 2001.

NUNES, D. A.; Schwabe, D. Rapid Prototyping of Web Applications using Domain
Specific Languages and Model Driven Design. Submitted to WWW 2006. Available at
http://server2.tecweb.inf.puc-
rio.br:8000/projects/hyperde/trac.cgi/attachment/wiki/DownloadArchives/MDD%
20DSL%20RapidPrototyping%20.pdf

OMG: Unified Modeling Language Specification. Version 1.5, March (2003)

PENA-MORA, F.; VADHAVKAR, S.: Augmenting Design Patterns with Design
Rationale. Artificial Intelligence for Engineering Design, Analysis, and Manufacturing,
93-108, 1996.

 6

 POTTS, C.; BRUNS, G. Recording the Reasons for Design Decisions. In Proceedings
of 10th International Conference on Software Engineering, Singapore, 418-427, 1988.

 SCHWABE, D.; ROSSI, G. An object-oriented approach to Web-based application
design. Theory and Practice of Object Systems (TAPOS), 207-225, 1998.

