

PUC

ISSN 0103-9741

Monografias em Ciência da Computação

n° 16/06

Composing Object-Oriented Frameworks
with Aspect-Oriented Programming

Uirá Kulesza

Alessandro Fabricio Garcia

Carlos José Pereira de Lucena

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900

RIO DE JANEIRO - BRASIL

 I

Monografias em Ciência da Computação, No. 16/06 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena April,2006

Composing Object-Oriented Frameworks
with Aspect-Oriented Programming*

Uirá Kulesza, Alessandro Fabricio Garcia
1
, Carlos José Pereira de Lucena

1
Computing Department – Lancaster University (UK)

uira@les.inf.puc-rio.br, garciaa@comp.lancs.ac.uk, lucena@inf.puc-rio.br

Abstract. The composition of object-oriented (OO) frameworks are often required in
application development in order to meet the pressing needs of reuse-in-the-large and
time to market. However, framework composition has been often shown as a challenge
in real software development due to recurring integration activities involving hetero-
geneous framework features, such as domain entities, overlapping functionalities, and
diverging control flows. One of the underlying problems is that the composition strat-
egy cannot be implemented in a modular manner based on traditional OO mecha-
nisms. Invasive changes are often required in the frameworks being composed. In this
context, this paper presents a systematic investigation on the use of aspect-oriented
programming (AOP) for the modular composition of OO frameworks. We have revis-
ited several object-oriented solutions previously proposed to the composition of OO
frameworks. After that, we have evaluated whether the use of AOP can improve each
of these existing OO solutions. Our comparative analysis was based on a set of modu-
larity properties, and through a case study involving the composition of four OO
frameworks with different characteristics and from distinct domains. The outcomes of
this first systematic investigation have pointed out that the aspect-oriented solutions
present several benefits in relation to the original OO solutions in terms of modulariza-
tion of the composition code.

Keywords: Object-Oriented Frameworks, Aspect Oriented Programming, Software
Composition.

Resumo. Este artigo apresenta uma investigação sistemática da adoção de programa-
ção orientada a aspectos (POA) na composição modular de frameworks orientados a
objetos (OO). Nós revisitamos diversas soluções OO propostas anteriormente para a
composição de frameworks e avaliamos o potencial de POA na modularização de cada
destas soluções. Nossa análise comparativa foi baseada em um conjunto de proprieda-
des modulares e realizada através de um estudo de caso envolvendo a composição de
quatro frameworks OO com diferentes características e de domínios distintos. Como
resultado de nossa investigação sistemática, nós concluímos que o uso de técnicas ori-
entadas a aspectos oferece uma melhor modularização do código de composição para
muitos dos problemas de composição de frameworks OO comumente encontrados.

Palavras-chave: Frameworks Orientados a Objetos, Programação Orientada a Aspec-
tos, Composição de Software.

* This work has been sponsored by the Ministério de Ciência e Tecnologia da Presidência da Repúbli-
ca Federativa do Brasil.

 II

In charge for publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

 III

Table of Contents

1 Introduction 1

2 Composition of Object-Oriented Frameworks 2

2.1 A Suite of OO Frameworks: Our Case Study 2

2.2 Framework Composition: Problems and OO Solutions 4

2.2.1 Control Composition of Calling Frameworks 4

2.2.2 Framework Gap 5

2.2.3 Composition of Entity Functionality 6

2.3 Analysis of the OO Solutions 6

3 Composing OO Frameworks with Aspects 8

3.1 Composition of Framework Control 8

3.2 Framework Gap 11

3.3 Composition of Entity Functionality 14

4 Analysis of the AO Solutions 15

4.1 Modularity Analysis of the AO Solutions 15

4.2 Design and Implementation Issues 17

4.2.1 Common and Variable Composition Code 17

4.2.2 Modularization of the Composition Aspects 17

4.2.3 Exposing Framework Pointcuts 18

4.2.4 Framework Composition Causes 19

5 Related Work 20

6 Conclusions and Ongoing Work 21

References 22

 1

1 Introduction

Object-oriented (OO) frameworks [7] represent nowadays a common and important
technology to implement program families. They enable modular, large-scale reuse by
encapsulating one or more recurring concerns of a given domain, and by offering dif-
ferent variability and configuration options to the target applications. Over the last
years, an increasing number of open-source OO frameworks have become available to
software developers [8, 13, 28]. However, with the complexity of modern software, it is
unlikely that a single framework is enough to cover all the concerns of relevance for a
given application. As a result, whereas framework-based application development
originally included a single framework [7], increasingly often multiple OO frameworks
are used in realistic development scenarios [21]. The key problem is that their modular
composition is not a trivial task since frameworks are designed to be extended, but not
to be combined [27, 21]. It is a very common policy given that frameworks’ developers
simply cannot foresee all the ways in which they will be composed.

In order to take the advantage of reuse-in-the-large, software engineers have typi-
cally to cope with various intricate composition issues, such as diverging control flows
and integration of entity functionalities [20, 21]. However, the reuse process is hin-
dered if the adopted composition strategy is not modular itself. The intrusiveness of
the composition code in the implementation of the framework modules potentially
leads to several undesirable consequences, including invasive changes, ripple effects in
the variable and frozen parts of the frameworks, difficulty to understand and maintain
separately the frameworks and their composition, and unplugabillity of the integration
code [20, 21].

There are several OO solutions to mastering framework integration issues, ranging
from wrappers and adapters to more holistic change strategies. Mattsson et al [20, 21]
have systematically presented and analyzed these existing OO solutions for each chal-
lenge related to composition of OO frameworks. The solutions proposed by the au-
thors represent the state-of-art of available solutions [22]. The problem is that most of
the existing OO techniques for framework composition involve some form of crosscut-
ting between the framework classes and the integration code. The implementation of
composition strategies often crosscut the functionality of the framework classes, pre-
venting the requirement of modular composition and reuse.

In this context, it is important to systematically verify the suitability of aspect-
oriented programming (AOP) to enable modular composition of OO frameworks.
Some authors have examined the influence of AOP on different software composabil-
ity scenarios, such as COTS [16] and design patterns [12, 4]. However, there is no sys-
tematic study that investigates the impact of AOP on framework composability. This
paper revisits and analyzes existing OO techniques against a set of modularity proper-
ties. Our investigation is focused on three recurring challenges for framework compo-
sition: (i) composition of framework control, (ii) framework gap, and (iii) composition
of entity functionality. We also present aspect-oriented (AO) solutions based on As-
pectJ language [17] for these three challenges, and compare them with the OO ap-
proaches. A number of lessons learned on the design and implementation of the AO
solutions are also discussed. Our investigation is based on a case study with composi-
tions involving four OO frameworks of different complexities, including the use of
mainstream technologies such as Swing [8] and Hibernate [13], and addressing con-
cerns from distinct horizontal and vertical domains [5].

 2

The remainder of this paper is organized as follows. Section 2 presents the frame-
works used in our case study, and an overview of the Mattsson et al’s study. Also, an
analysis of the modularity and crosscutting properties of the authors’ OO solutions is
described in Section 2. Section 3 presents the AO solutions proposed to enhance the
modularity of the composition code relative to each of the integration challenges ex-
plored in our case study. Section 4 analyzes the AO solutions developed to redesign
and reimplement the original OO solutions, and also presents some lessons learned
related to design and implementation issues. Section 5 discusses related work. Finally,
Section 6 offers the conclusions and directions for future work.

2 Composition of Object-Oriented Frameworks

This section provides a review of the Mattsson et al’s study [20, 21] using a set of four
frameworks as case studies. Section 2.1 presents the examples of OO frameworks,
which are used throughout the paper to illustrate the composition scenarios, emerging
problems, and solutions encountered when composing OO frameworks. Section 2.2
describes the problems and solutions presented by Mattsson and colleagues. Finally,
Section 2.3 analyzes those existing OO solutions against some modularity and cross-
cutting properties.

2.1 A Suite of OO Frameworks: Our Case Study

This section presents four examples of OO frameworks which were used in our case
study. They encompass distinct vertical and horizontal domains: (i) measurement sup-
port for product quality control (Figure 1), (ii) GUI infrastructure (Figure 2), (iii) statis-
tical analysis (Figure 3), and (iv) persistence (Figure 4). We have chosen these frame-
works because the three first ones were also previously used in the Mattsson et al’s
study [20, 21]. They also involve different features and combinations that cover the
main composition problems to be examined in this paper. All the frameworks were
implemented using the Java programming language. The implementation of the
measurement framework was completely based on available design and code docu-
mentation [3]. The GUI and persistence frameworks were offered a simplified imple-
mentation based on mainstream technologies, such as, the Swing API [8] and the Hi-
bernate framework [13]. We have then decided to implement the aspect-oriented solu-
tions (Section 3) using AspectJ [17], which is a Java extension and the most popular
aspect-oriented programming language.

Figure 1 shows the structure of the object-oriented framework for measurement sys-
tems. It was previously described in [3]. It captures the main entities and functional-
ities of a measurement process used for quality control on a certain kind of products.
The framework allows for the categorization of those products in acceptable or unac-
ceptable based on specific quality criteria. This framework implements a typical meas-
urement cycle that is formed by the following steps: (i) data collection phase – a trigger
(Trigger class) indicates that a product is entering the system and sensors measure
relevant properties of the incoming item (PhysicalSensor, Sensor, and Updat-
eStrategy classes); (ii) analysis phase – the collected data by the sensors are converted
to a common representation and after that they are compared to ideal expected values
(MeasurementValue, MeasurementItem, and CalculationStrategy classes). Based
on this comparison, the measured items are then classified in quality categories; and
(iii) actuation phase – an action is performed over it according to the item classification
(Actuator, PhysicalActuator and ActuationStrategy classes). Several kinds of ac-

 3

tion can be executed, such as removing the element from the production line, or only
label it to be processed later. Figure 1 illustrates the main classes responsible to imple-
ment the measurement cycle. The classes which specify variation points or hot-spots
[7] are indicated in grey color. Examples of such classes are: physical sensors and ac-
tuators, and strategies of actuation and sensoring.

ConcreteSensor

notifyChange()

(from framework)

MeasurementEntity

getCalcul ati onStrategy()

setCal culat ionSt rategy()

(from framework)
CalculationStrategy

performCalculation()

(from framework)#calculationStrategy
UpdateStrategy

execute()

(from framew ork)

PhysicalSensor

doProcess()

. .. ()

(from f ramew ork)

Sensor

measuredValue : Logical View::java::lang::Object = null

getValue()

setValue()

notifyChange()

(from framework)

dependentSensor

-updateStrategy

-hardwareSensor

ActuationStrategy

actuate()

(from framework)

Trigger

getItemFactory()

setItemFactory()

trigger()

(from framework)

Item Factory

inCalibration : boolean

trigger()
createCopyPrototypeItem()

calibrate()

getPrototypeItem()

setPrototypeItem()

(from framework)

-actuationStrategy

itemFactory

PhysicalActuator

actuate()

(from framework)

MeasurementValue

correctValue : Logical View::java::lang::Object

measuredValue : Logical View::java::lang::Object

compare()

getMeasuredValue()

setMeasuredValue()

getCorrectValue()

setCorrectValue()

(from framework)

#sensor

MeasurementItem

measurementValues : Vector

actuators : Vector

start()

addMeasurementValue()

addActuator()

getActuators()
createCopy()

(from framework)

actuationStrategy

-prototypeItem

itemFactory

1..*1..*

Actuator

actuate()

getPhysi calActuator()

setPhysicalActuator()

(from framework)

physicalActuator

1..*1. .*

Figure 1: The Measurement Framework.

Figure 2 presents the class diagram of a GUI framework based on the Java Swing
architecture [8]. It supports the presentation of application data in different UI Swing
tables. Two abstract classes (DataTableModel and ObjectTableModel) allow to spec-
ify different representations of data table based on an array or on a list of objects.
These classes inherit from the AbstractTableModel class of the Java Swing API. Ap-
plication data are presented visually using the JTable Swing class. Finally, the frame-
work user must extend the GUIFramework class by defining an implementation to its
createTables() abstract method. A concrete implementation of this method must
create and return a list of JTable configured with their respective TableModel objects
which together will show application data. All the information written in TableModel
objects are automatically presented in its respective JTable object based on a notifica-
tion protocol implemented in the Swing API [8].

DataTableModel

columnNames[] : String

data[][] : Object

init()

getTableName()

getColumnNames()

getNumberOfLines()

getColumnCount()

getRowCount()

getColumnName()
getValueAt()

isCellEditable()

setValueAt()

ObjectTab leModel

columnNames[] : String

objects : List

init()

getTableName()

getColumnNames()

getColumnCount()

getRowCount()

getColumnName()

getValueAt()

isCellEditable()

getAttributeValueAt()

setValueAt()

setAttributeValueAt()

insertNewObject()
deleteObject()

GUIFramework

GUIFramework()
initComponents()

exitMenuItemActionPerformed()

initTables()

createTables()

AbstractTableModel
(from tabl e)

JFrame
(from swing)

JTable
(from swing)

11 11

Figure 2: The GUI Framework.

Figure 3 presents the structure of a small statistical analysis framework. It supports
the statistical analysis of data gathered in an application. This framework differs from

 4

the frameworks described previously, because it represents a “called” framework in-
stead of a “calling” framework, according to the classification proposed by [27]. A call-
ing framework, such as the Measurement and GUI frameworks, is responsible to con-
trol and invoke all the other parts of the application. On the other hand, a called
framework, such as the statistical analysis framework, is a passive entity which can be
called by other parts of the application. The statistical analysis framework contains: (i)
a façade class (StatisticalFrameworkFacade) which provides statistical services to
be invoked by applications; and (ii) two abstract classes, StatisticAlgorithm and
Statistic, representing, respectively, variation points to implement a statistical algo-
rithm and the resulted statistic from an algorithm processing.

Figure 4 shows the main classes of our representative persistence framework based
on Hibernate [13] and Spring [28]. It is also a called framework. The Persistence-
FrameworkFacade class exposes the persistency services provided by the framework. It
aggregates a set of concrete Data Access Objects [1], which implements the persistence
methods considering specific kinds of objects. The EntityDAO abstract class specifies
the signature of the persistence methods to be implemented by concrete DAOs sub-
classes. This class inherits from the HibernateDaoSupport class in order to reuse the
database services provided by the Hibernate framework, such as, simple database ac-
cess, connection management and transaction demarcation.

Statistic

getName()

getStatisticLineNames()

getStatisticColumnNames()

getStatistics()

getStatisticValues()

setStatisticValues()

StatisticAlgorithm

execute()

<<Interface>>

StatisticFrameworkFacade

StatisticFrameworkFacade()

getInstance()

registerStatisticAlgorithm()
calculateStatistics()

calculate()

-$singleton

0..*0..*

PersistencyFrameworkFacade

PersistencyFrameworkFacade()

getInstance()
configureDAO()

saveOrUpdateObject()

listObjects()

getObjectById()

removeObject()

searchDAO()

searchDAO()

ObjectDAO

saveOrUpdateObject()

listObjects ()

getOb jectById ()

removeObject()

in it()

1..*

HibernateDaoSupport

1..*

Figure 3: The Statistical Framework Figure 4: The Persistence Framework

2.2 Framework Composition: Problems and OO Solutions

Mattsson et al [20, 21] discuss five problems relative to pair-wise compositions of ob-
ject-oriented frameworks. In this paper, we will focus on three of them: (i) composition
of framework control, (ii) framework gap, and (iii) composition of entity functionality.
Those authors also describe three different OO based solutions for each framework
composition problem; each solution can be individually applied or in conjunction to a
second one to overcome a specific problem. Next subsections will briefly present the 3
investigated problems and the respective OO solutions. Refer to [20, 21] for further de-
tails about them. Section 3 will propose aspect-oriented (AO) solutions to deal with the
composition problems, and compare them against the traditional OO solutions pre-
sented in this section.

2.2.1 Control Composition of Calling Frameworks

The composition of framework control occurs when two calling frameworks are being
instantiated and combined in an application context. Since each calling framework ex-
pects to assume the control of the application, their composition needs to consider the
conflicts resulting from their concurrent execution, such as race conditions and syn-

 5

chronization of common objects. It may alternatively be required to define a unique
control loop for the involved frameworks. Their composition is even more challenging
in the presence of event notifications between the two composed frameworks. An ex-
ample is the composition between the two calling frameworks for measurement and
GUI support (Section 2.1) in order to present information about the measurement
process visually in GUI components.

The OO solutions proposed to address the framework control problem are:

• Concurrency. This solution proposes to assign a separate thread of control for each
framework, instead of composing their control flow. It can only be used when there is
no need of event notification between the frameworks. In some applications, it may be
necessary to define synchronization code to the application-specific objects accessed by
the frameworks. Lea [18] describes several object-oriented Java solutions which can be
used to framework concurrency control;

• Wrapping. This solution complements the first one when event notifications are
required between the involved frameworks. It consists in encapsulating each frame-
work with a wrapper. Each wrapper is responsible for intercepting input and output
events of the framework. Thus, all the framework classes which communicate with
external ones need to be modified in order to notify the wrapper. In this way, the
wrappers allow for the framework integration based on the manipulation of their ex-
ternal events;

• Removal and Rewriting. This solution can be used when it is necessary some kind
of internal events notification between the frameworks. It implies a modification of
each framework code in order to define a unique control loop that addresses the re-
quirements of both the framework composition and the application. Thus, access to the
framework source code is required.

2.2.2 Framework Gap
The framework gap problem occurs when two (or more) frameworks need to be com-
posed to address the application requirements, but their simple, direct composition is
not enough to cover all the requirements completely. The framework composition
needs to be extended in some way to address a functionality in the application do-
main. For example, the composition between the Measurement and GUI frameworks
could be insufficient to address the additional functionality of showing statistic data
related to the measurement process. Thus, the statistical analysis framework could be
used to achieve that purpose.

The OO solutions proposed to address the framework gap problem are:

• Wrapping and Extending. This solution deals with the framework gap problem
when called frameworks are being used. It proposes to introduce a wrapper element
that aggregates the frameworks and the additional extension required for closing the
gap. This wrapper is also responsible to provide a new interface to the resulting ser-
vices of the composition;

• OO Mediator. This solution is proposed to address the framework gap when using
calling frameworks. The mediator is used to control the interactions between the
frameworks and additional extensions that are being composed. The interactions be-
tween the frameworks and additional extensions usually require the modification of
internal framework classes to notify other ones of events of interest;

 6

• Redesign and Extend. This solution consists in modifying the source code of
frameworks and extensions in order to integrate them in only one framework. It could
be adopted when the composition of frameworks and extensions intends to be reused
in development of future applications.
2.2.3

2.2.3 Composition of Entity Functionality
This framework composition problem is related to the composition of representation of
a domain entity provided by a domain-specific framework with a different functional-
ity provided by another framework. A typical example of this problem happens when
it is necessary to use a persistence framework to store the information of domain-
specific framework entities (such as the processed items) through the Measurement
framework (Section 2.1). In this case, since the Measurement framework does not pro-
vide extension points to add the persistence functionality, it can be difficult to com-
pose both framework functionalities.

The OO solutions proposed to address the composition of entity functionality are:

• Aggregation or Multiple Inheritance. The first solution proposed by Mattsson et al is
to use the mechanisms of aggregation or multiple inheritance to compose the frame-
work entities with the additional functionality provided by another framework. The
main drawback of these solutions is that state changes in the domain-specific part of
the composed classes will not automatically influence the modules implementing the
additional functionalities. Each composed class aggregates (or inherits from) the do-
main-specific entity class and the additional functionality class. The problem is that a
composed class cannot keep control of every change happening in the entity class by
means of other classes in the domain-specific framework;

• Observer. This solution is proposed to deal with the drawback of the previous so-
lution. The Observer design pattern [9] must be used to provide the notification behav-
ior between the framework and the composed class. The framework entity classes play
the subject role of the Observer pattern and their respective composed class must play
the observer role to receive notifications of changes in the entity classes.

2.3 Analysis of the OO Solutions

This section discusses the advantages and limitations of the OO solutions proposed
by Mattsson et al. Table 1 details the properties identified for the 9 OO solutions inves-
tigated for framework composition. We have used three modularity properties to ana-
lyze the OO solutions. These modularity properties are adapted from a comparison
criteria defined by Hannemann and Kiczales [12]. Such criteria were originally created
for comparing OO and AO solutions of GoF design patterns [9].

The modularity properties are the following: (i) locality – indicates if the composi-
tion code is completely separated in modules; (ii) composition transparency – indicates
if it is possible to reason about different framework compositions independently; (iii)
pluggability – determines how easy is to add or remove the composition code. Two
additional properties are also used to identify the crosscutting nature of each tech-
nique: (i) tangling – indicates if the composition code is tangled with the framework
code into a specific framework module, and (ii) scattering – defines if the composition
code of the OO solution is also spread over several classes of the framework(s). We
discuss below the main advantages and drawbacks of the OO techniques.

 7

Crosscutting Nature. Table 1 shows that 6 of the 9 OO solutions have both scatter-
ing and tangling properties. It means that the majority of the OO solutions require the
modification of many and different framework classes. In many cases, the composition
code spreads over several framework classes and also tangles with framework code.
This reflects the crosscutting nature of framework composition code. Thus, as a result,
we have that the design and implementation of many OO composition solutions are
not completely modularized, and often affected by replication of design and code ele-
ments.

Invasive Changes. Because of the crosscutting nature of the framework composi-
tion code, many of the OO solutions require invasive changes to the internal code of
frameworks. For example, the Mediator solution proposed to solve the framework gap
problem when using calling frameworks requires the intrusive introduction of compo-
sition code in the framework classes in order to provide the necessary interactions to
integrate the frameworks. The invasive changes occur in many cases because the com-
position requires the propagation of internal events between the frameworks. The
need for invasive changes is reflected in Table 1 by the “no” mark under the locality
property. It also shows that 6 of the 9 OO solutions do not succeed to separate the
composition code in modules.

 Modularity Properties

OO Solution (Composition
Problem Id)*

Locality Composition
Transparency

(Un) Pluggability Scattering Tangling

1. Concurrency (I) # no no no Yes yes
2. Wrapping (I) no no no Yes yes
3. Remove and rewrite (I) no no no Yes yes
4.Wrapping and Extend-
ing(II)

yes yes yes No no

5. OO Mediator (II) no no no Yes yes
6. Redesign and extend (II) no no no Yes yes
7. Aggregation (III) yes yes yes No no
8. Multiple Inheritance (III) yes yes yes No no
9. Observer Pattern (III) no no no Yes yes

Table 1. Properties of the Object-Oriented Solutions
* The “Composition Problem ID refers to the identifier of each framework composition problem, as follows: (I) Composition of
Framework Control; (II) Framework Gap; and (III) Composition of Entity Functionality.

The properties in the Concurrency OO solution refers to the definition of synchronization code when it is necessary in the
framework composition.

(Un)plugability. Also, many OO solutions cannot be plugged or unplugged. It
means developers cannot add or remove them easily with the purpose of redefining or
adapting the composition code. Table 1 shows that 6 of the 9 OO solutions cannot be
easily plugged or unplugged. Examples of such unpluggable solutions are the solu-
tions that require the internal modification of frameworks to provide the composition,
such as: (i) the Wrapping solution to the framework control problem; (ii) the OO Me-
diator solution to the framework gap problem; and (iii) the Observer solution to the
composition of entity functionality.

Increasing Complexity. The complexity of understanding and modifying the OO
solutions increases when developers need to deal simultaneously with different
framework compositions. The composition transparency property, presented in the
Table 1, represents the possibility to reason about different framework composition
solutions used simultaneously. Table 1 shows that 6 of the 9 OO solutions cannot be
composed transparently. It happens because many of the OO solutions are not able to
separately modularize the code relative to each framework composition. As a conse-

 8

quence, it is difficult to reason independently about each OO composition solution
adopted.

3 Composing OO Frameworks with Aspects
This section describes the AO solutions proposed as a more modularized alternatives
than the original OO solutions (Section 2.2). The solutions are organized based on the
OO composition problems addressed. In some cases, AOP is applied in order to com-
plement the original solution, while in other ones it is used to replace the OO imple-
mentation. Also, whenever appropriate, we refer to other research works that have al-
ready explored a specific solution although in different contexts. For some of the solu-
tions, we present examples of the composition design and code in the context of the
frameworks presented in Section 2.1. In our study, aspect-oriented programming was
mainly analyzed as an implementation technology that allows for the modularization
of the composition code related to each OO solution. AspectJ was the approach chosen
to implement the new AO solutions. Each of new AO solutions proposed was imple-
mented by composing two frameworks.

3.1 Composition of Framework Control

The composition problem of framework control happens because both frameworks
expect to provide the main thread control of the application. Three OO solutions are
proposed to deal with this problem (Section 2.2.1): (i) concurrency; (ii) wrapping; and
(iii) remove and rewrite. In the following, we analyze the impact of AOP in the modu-
larization of each one of the proposed solutions.

Concurrency + Synchronization Aspects1. AOP can be used as a complementary
technology to the concurrency solution. Synchronization aspects can be defined to con-
trol the concurrent execution of common application code of both frameworks. Exam-
ples of concurrency control which can be implemented in AspectJ are method execu-
tion synchronization and block of conflicting execution flows [26]. The use of AOP to
specify concurrency concerns has been addressed by some research works [19, 26].
Since only the synchronization code needs to be codified to this solution, we can say
that AOP is used here to implement all the framework composition code. The syn-
chronization aspects can also be used to complement the following solutions based on
Observer aspects.

Wrapping >> Observer Aspects2. In the original OO solution, each framework is
encapsulated by a wrapper. After that, every input and output method call in the
frameworks can be intercepted in order to notify the other one. This solution offers the
restriction that internal framework events cannot be intercepted by the wrappers. Us-
ing AOP this solution can be replaced with Observer aspects to also intercept frame-
work internal events whenever necessary. However, better than defining a complete
wrapper for each framework, it can be specified a set of aspects which allow intercept-
ing different framework events, including internal events, and notify the interested
entities.

Remove and Rewrite >> Observer Aspects. The “Remove and Rewrite” OO solu-
tion is presented by Mattsson et al to deal with the Wrapping solution restriction of not

1 The “+” symbol indicates a complementary solution to the original solution proposed.
2 The “>>” symbol indicates a substitutive solution which replaces the original solution proposed.

 9

intercepting framework internal events. The AO solution based on a set of Observer
aspects can also be adopted to replace this solution. The AO solution is less effort-
consuming than the original OO solution, because it is not necessary to codify internal
changes in the framework classes.

Next we present an example of an AspectJ solution as a set of Observer composition
aspects. This AO solution addresses the problems of both the “wrapping” and the
“remove and rewrite” solutions. Synchronization aspects can be used to complement
this solution whenever it is necessary to have concurrency control during the access to
framework classes. Our example presents the composition between the Measurement
and the GUI frameworks (Section 2.1). The GUI framework will be used to show de-
tails about the items that are being processed in the Measurement framework. This sec-
tion uses an example of an instance of the Measurement framework which implements
a beer can system. This application aims at removing dirty beer cans from an input s-
tream. This framework instance is described in [3]. We also will use it to illustrate the
AO solutions for framework composition in Sections 3.2 and 3.3.

The implementation of the composition between the Measurement and GUI frame-
works defines aspects which are responsible for intercepting the execution of methods
occurring in the Measurement framework and capturing information to be visualized
in the GUI framework. The information captured by the composition aspect is by-
passed to the TableModel objects of the GUI framework. The notification protocol
between the TableModel and JTable objects already implemented3 in the GUI
framework guarantees the visualization of the data.

Figure 5 shows the composition aspects and the respective framework classes which
it affects. The MeasurementGUIComposition aspect defines the common code whi-
ch is reused always it is necessary a composition between the Measurement and GUI
frameworks. It is responsible to intercept events in the Trigger class and Physical-
Sensor and ActuationStrategy subclasses in order to update information about
the items already processed by the Measurement framework instance. The BeerCan-
Composition subaspect defines the variable code of the composition dependent on
the frameworks instances, such as, the method of initialization of both framework in-
stances and the update of TableModel objects related to a specific Measurement fra-
mework instance. An example of a table model of the Beer Can instance is the Beer-
CanTableModel class, which presents details about the attributes of beer can already
processed.

Figure 6 and 7 shows the partial AspectJ code of the composition aspects. The Mea-
surementGUIComposition aspect defines the following functionalities: (i) a set of
abstract methods and pointcuts which guarantees the initialization of the GUI frame-
work when the Measurement framework is created (lines 5-9); (ii) it saves a reference
to all the TableModel objects created in the GUI framework in order to notify them
about data update (lines 11-17); and, finally (iii) it intercepts execution of methods in
the Measurement framework to capture information to be written in the TableModel
objects, such as, the beginning of an item processing (lines 21-34), the sensor activation
(lines 18-19) and the finalization of an item processing in the ActuationStrategy objects
(lines 36-46). The MeasurementGUIComposition aspect also maintains internally

3 It is important to emphasize that the Measurement and GUI framework run in different threads. An

additional aspect was created to init a new thread, every time the processing of a new item is initi-
ated in the Measurement framework. It is done by intercepting the doProcess() method of the
HWBCTrigger class, which represents a PhysicalSensor subclass that inits the measurement proc-
ess. The GUI framework is instantiated by creating its own thread in the main() method of the
GUIMeasurementApplication class.

 10

data about the processed items with their respective initial and final processing time.
This data is passed to the ProcessedItemTableModel object of the GUI framework.

GUI
Measurement

MeasurementGUIComposition

tables : Map

processedItems : Map

initGUIFramework()

getTableModelSpecific()

<<aspect>>

BeerCanComposi tion

initGUIFramework()

getTableModelSpecific()

<<aspect>>

Trigger

trigger()

GUIFramework

createTables()

PhysicalSensor

doProcess()

getValue()

ActuationStrategy

actuate()

BeerCanActuationStrategy

actuate()BeerCanCamera

doProcess()

getValue()

BeerCanTrigger

doProcess()

getValue()
BeerCanMain

m ain()

GUIMeasurementApplication

createTables()

main()

ProcessedItemTableModel

insertNewObject()

ObjectTableModel

insertNewObject()

<<crosscut>>

<<crosscut>>

BeerCanTableModel

insertNewObject()

<<crosscut>>

<<crosscut>>

<<crosscut>>

<<call>>

<<call >>
<<crosscut>>

<<call >>

Figure 5. The Composition of the Measurement and GUI Frameworks

01 public abstract aspect MeasurementGUIComposition {
02 private Map tables = null;
03 private Map processedItems = new HashMap();
04
05 public abstract pointcut measurementInitialization();
06 before(): measurementInitialization() {
07 initGUIFramework();
08 }
09 public abstract void initGUIFramework();
10 ...
11 public pointcut tableModelInitialization():
12 execution(public Map GUIFramework+.createTables());
13 after () returning(Map tables): tableModelInitialization(){
14 this.tables = tables;
15 this.initStandardTableModels();
16 this.initSpecificTableModels();
17 }
18 public pointcut sensorActivation(PhysicalSensor physicalSensor):
19 execution(public void PhysicalSensor+.doProcess()) &&target(physicalSensor);
20
21 public pointcut itemProcessingInitialization(Trigger triggerSW):
22 execution(public void Trigger.trigger()) && target(triggerSW);
23
24 before(Trigger triggerSW): itemProcessingInitialization(triggerSW){
25 this.createProcessedItem();
26 long threadId = Thread.currentThread().hashCode();
27 ProcessedItem currentItem =
28 (ProcessedItem) this.processedItems.get(new Long(threadId));
29 AbstractTableModel tableModel =
30 (AbstractTableModel) this.getTableModel(triggerSW);
31 if (currentItem != null && tableModelGeneral != null){
32 tableModelGeneral.insertNewObject(currentItem);
33 }
34 }
35 ...
36 public pointcut itemProcessingFinalization(ActuationStrategy actuator):
37 execution(public void ActuationStrategy+.actuate(..)) && target (actuator);
38
39 after(ActuationStrategy actuator): itemProcessingFinalization(actuator){
40 ...
41 ProcessedItem currentItem =
42 (ProcessedItem) this.itemsProcessingTime.get(new Long(threadId));
43 currentItem.setEndTime(new Date());
44 // Updates the respective table model
45 ...
46 }
47 }

Figure 6. MeasurementGUIComposition Aspect

 11

The BeerCanComposition subaspect specifies the pointcut which represents the
initialization of the Measurement framework instance and implements the initGUI-
Framework() method by calling the specific method which initializes the GUI frame-
work. It also implements the getSpecificTableModel() method which returns the
TableModel associated with a specific kind of an object. This method is called by get-
TableModel() in the MeasurementGUIComposition aspect. The BeerCanComposition
subaspect can also define additional advices and pointcuts which are in charge of up-
dating TableModel objects of a framework instance. Figure 2 shows, for example, the
definition of an advice associated with the sensorExecution() pointcut that updates
the BeerCanTableModel object based on information captured by the BeerCanCamera
class, a specific PhysicalSensor subclass (lines 10-17).

01 public aspect BeerCanComposition extends MeasurementGUIComposition {
02 public pointcut measurementInitialization():
03 execution(public static void BeerCanMain.main(..));
04 public void initGUIFramework(){
05 GUIMeasurementApplication.main(null);
06 }
07 public AbstractTableModel getSpecificTableModel(Object object, Map tables){
08 ...
09 }
10 after (PhysicalSensor physicalSensor): sensorActivation(physicalSensor){
11 AbstractTableModel tableModel =
12 (AbstractTableModel)this.getTableModel(physicalSensor);
13 Object object = physicalSensor.getValue();
14 if (object != null && tableModel != null) {
15 tableModel.insertNewObject(object);
16 }
17 }
18 }

Figure 7. BeerCanComposition Subaspect

3.2 Framework Gap
Three OO solutions are proposed to solve the manifestation of framework gaps (Sec-
tion 2.2.2): (i) wrapping and extending; (ii) OO mediator; and (iii) redesign and extend.
Below we discuss the potential of AOP to improve each of these solutions. After that,
we present an example which extends the composition aspects of the Measurement
and GUI frameworks (presented in Section 3.1) to calculate statistic information about
the measurement process using the Statistical framework. The composition aspects are
adapted to work as a mediator between the three frameworks.

 Wrapping and Extending + AO Observer. This solution is proposed to solve the

framework gap problem when using called frameworks (Section 2.1). The AO solution
complements the original OO solution by allowing a better integration between the
frameworks being composed and the extension designed to address the framework
gap. An aspect can be used to define different kinds of interaction between frame-
works and the extension, including the handling and notification of internal events.

OO Mediator >> AO Mediator. An OO solution based on the use of a mediator
software is proposed to address the problem of framework gap when using calling
frameworks. AOP can improve this solution by defining the mediating module as an
aspect. The mediator aspect defines the integration code between the frameworks and
additional extensions to address the application requirements. The AO solution modu-
larizes the code relative to the composition of frameworks and extensions in the me-
diator aspect. During the independent evolution of each framework and extension,
changes can be introduced in a way that is modular to their composition. Localized
changes can be done to the mediator aspect.

 12

Redesign and Extend. We believe that for many cases the AO Observer and Media-
tor solutions presented previously are adequate solutions to solve the framework gap
problem because they do not require a high coupling between frameworks and exten-
sion components. Such AO solutions can often avoid the need for changing the in-
volved framework implementations. The alternative of redesigning and extending
should be used only in cases where: (i) there is a strong and stable connection between
the frameworks and extension domains which motivates the development of a unique
framework; (ii) the new framework will be used in the development of many future
applications; and (iii) it is difficult to compose the framework and extensions using the
AO observer and mediator solutions.

In order to illustrate the aspect-oriented mediator solution to address the problem
of framework gap, we assume the need to extend the composition between the Meas-
urement and GUI frameworks (Section 3.1) with statistical data related to the meas-
urement process. The following statistical functionalities are implemented to fill the
framework gap: (i) calculate the amount of items processed by the measurement
framework; (ii) calculate the best, the worst, and the average time to process each item;
and (iii) calculate the percentage of acceptable and unacceptable products. The statisti-
cal analysis framework (Section 2.1) can be used to address these functionalities.

Figure 8 shows the design of the composition of the Measurement, GUI and Statisti-
cal frameworks. The MeasurementGUIComposition aspect now specifies the common
composition code between all instances of the Measurement, GUI and Statistical
frameworks. It uses the Statistical framework to address the new statistical functional-
ities. The following new classes were also created in order to overcome the framework
gap: (i) two concrete algorithms (ProcessingTimeAlgorithm, BeerCanQualityAlgo-
rithm) and statistics (ProcessingTimeStatistic, BeerCanQualityStatistic) to cal-
culate the times for processing the items and the percentage of acceptable and unac-
ceptable products. These classes represent the instantiation of the Statistical framework
to address the framework gap; and (ii) the ProcessingTimeTableModel and BeerCan-
QualityTableModel classes which represent the statistical data to be shown in the
GUI framework.

Figure 8. The Measurement, GUI and Statistical Framework Composition

MeasurementGUIComposition
<<aspect>>Measurement GUI

<<crosscut>>

<<call>>

<<crosscut>>

Statistic

Statistic_

getStatistics()

getStatisticValues()

...()

StatisticFrameworkFacade

getInstance()

calculate()

StatisticAlgorithm

execute()

<<Interface>>

0..*0..*

ProcessingTimeAlgorithm

execute()

BeerCanQualityAlgorithm

execute()

BeerCanQualityStatistic

ProcessingTimeStatistic

BeerCanComposition
<<aspect>>

<<call>>

<<call>>

 13

01 public abstract aspect MeasurementGUIComposition {
02 private Thread statisticalService = null;
03 ...
04 public abstract pointcut measurementInitialization();
05 before(): measurementInitialization() {
06 this.configureStatisticFramework();
07 }
08 public void configureStatisticFramework(){
09 StatisticFrameworkFacade statisticFramework =
10 StatisticFrameworkFacade.getInstance();
11 StatisticAlgorithm algorithm = new ProcessingTimeAlgorithm();
12 statisticFramework.registerAlgorithm("Measurement", algorithm);
13 this.registerSpecificStatisticAlgorithm(statisticFramework);
14 this.initStatisticalService(10000);
15 }
16 public abstract void registerSpecificStatisticAlgorithm(
17 StatisticFrameworkFacade facade);
18 public void initStandardTableModels(){
19 ...
20 DataTableModel dataTableModel = new ProcessingTimeTableModel();
21 table = new JTable(dataTableModel);
22 this.tables.put("Processing Time Statistics", table);
23 }
24 public void abstract initSpecificTableModels();
24 private void initStatisticalService(long delay){
25 if (statisticalService == null){
26 statisticalService = new Thread() {
27 public void run() {
28 while (true){
29 try {Thread.sleep(delay);
30 }catch(InterruptedException e){}
31 calculateStatistics();
32 }
33 }
34 };
35 statisticalService.start();
36 }
37 }
38 private void calculateStatistics(){
39 Map statistics = this.calculateGeneralStatistics();
40 this.updateGeneralStatistics(statistics);
41 this.updateSpecificStatistics(statistics);
42 }
43 private Map calculateGeneralStatistics(){
44 StatisticFrameworkFacade statisticFramework =
45 StatisticFrameworkFacade.getInstance();
46 Map statistics = statisticFramework.calculateStatistics(
47 "Measurement", processedItems.values());
48 return statistics;
49 }
50 private void updateGeneralStatistics(Map statistics){
51 // Update some statistics in their respective table models
52 ...
53 }
54 public abstract void updateSpecificStatistics(Map statistics);
55 }

Figure 9. MeasurementGUIComposition Composition Aspect

Figure 8 also shows the BeerCanComposition subaspect that was specified to: (i) al-
low the register of specific algorithms and statistics of an instance of the Measurement
framework, such as BeerCanQualityAlgorithm and BeerCanQualityStatistic; and
(ii) to define the creation and manipulation of specific statistic table models (such as,
BeerCanQualityTableModel class).

Figure 9 shows the partial code of the MeasurementGUIComposition aspect to im-
plement the statistical functionalities. It has now the following additional responsibili-
ties: (i) it configures the Statistical framework by registering specific algorithms to be
executed (lines 5-15); (ii) it creates the statistical JTable objects and respective Ta-
bleModel objects to visually present the statistical data (lines 18-23); and finally, (iii) it
initializes a thread which from time to time calculates the new statistic data by invok-
ing the Statistical framework services and updates the TableModel objects with this

 14

new statistical information (lines 24-53). Many abstract methods of the Measurement-
GUIComposition aspect are called by template methods in order to make it possible to
its subaspects register new statistic algorithms to be executed (lines 16-17), create new
statistic table models (line 24) and update the table models with new statistic data cal-
culated (line 54). The BeerCanComposition subaspect (Figure 7) specifies implementa-
tions for all these methods.

3.3 Composition of Entity Functionality

Mattsson et al propose three solutions to cope with compositions of entity functional-
ities (Section 2.2.3): (i) aggregation; (ii) multiple inheritance; and (iii) Observer design
pattern. Both aggregation and multiple inheritance solutions present restrictions re-
lated to the difficulty to manage state updates in the composed classes resulting from
the use of those mechanisms [20, 21]. The Observer-based solution deals with this re-
striction of the other solutions, but it requires many invasive changes in the framework
classes. Below we present an alternative solution which avoids the drawbacks of OO
solutions.

Entity-Functionality “Glue” Aspect. Our proposed AO solution to overcome com-
positions of entity functionality is based on an aspect to advise specific joinpoints in
the domain-specific framework classes. This aspect also specifies the execution of the
additional functionality by invoking the second framework at the occurrence of those
joinpoints. Thus, the aspect works as a glue code between the frameworks.

As an example of composition of entity functionality, we present the composition of
the Persistence framework (Section 2.1) with the Measurement, GUI and Statistical
framework composition presented in previous Sections 3.1 and 3.2. Figure 10 shows
this composition. The PersistenceComposition and BeerCanPersistenceComposi-
tion aspects work as a “glue” between the GUI, the Statistical and the Persistence
frameworks. This latter stores the domain-specific data using different DAOs (Proc-
essedItemDAO and ProcessingTimeStatisticDAO classes).

StatisticGUI

PersistenceStatisticFrameworkFacade

calculateStatistics()
calculate()

...()

ObjectTableModel

ProcessedItemsTableModel

insertNewObject()
...()

GUIFramework

GUIMeasurementApplication

main()

PersistenceAspect

initCommonDAOs()

initSpecificDAOs()

<<as pect>>

BeerCanPers istenceAspect

initSpecificDAOs()

<<aspect>>

PersistenceFrameworkFacade

ObjectDAO

BeerCanQualityStatisticDAO

ProcessingTimeStatisticDAO

ProcessedItemDAO

0..*0..*

<<crosscut>>

<<crosscut>>
<<call>>

<<crosscut>>

Figure 10. Composition of the GUI, Statistical and Persistence Frameworks

Figure 11 shows the source code of the persistence composition aspects. The Per-
sistenceComposition aspect specifies an abstract pointcut that represents the crea-
tion of an instance of the GUI framework and an associated advice which initializes
the Persistence framework (lines 4-9). It also creates and configures in the Persistence
framework a set of default DAOs to be used in all applications instantiated from the
resulted framework composition (lines 21-27). Finally, it intercepts (i) the insertNe-
wObject() method of the ObjectTableModel subclasses to persist information pre-

 15

sented by the GUI framework (lines 10-15). and (ii) the calculateStatistics()
method of the StatisticFrameworkFacade class in order to persist statistic data cal-
culated by the Statistic framework (lines 16-20). The BeerCanPersistence Composi-
tion subaspect specifies the pointcut of the GUI framework instance initialization (lines
2-3) and defines, if they exist, new concrete DAOs (lines 5-9).

01 public abstract aspect PersistenceAspect {
02 PersistencyFrameworkFacade persistenceFramework = null;
03
04 public abstract pointcut initializePersistenceService();
05 after (): initializePersistenceService(){
06 this.persistenceFramework = PersistencyFrameworkFacade.getInstance();
07 this.initCommonDAOs();
08 this.initSpecificDAOs();
09 }
10 public pointcut processedItemsTableModel(Object object):
11 execution(public void ObjectTableModel.insertNewObject(Object))
12 && args(object);
13 after(Object object): processedItemsTableModel(object){
14 this.persistenceFramework.saveOrUpdateObject(object);
15 }
16 public pointcut statisticalDataPersistence():
17 execution(public Statistic StatisticAlgorithm+.execute(..));
18 after () returning(Statistic statistic): statisticalDataPersistence(){
19 this.persistenceFramework.saveOrUpdateObject(statistic);
20 }
21 public void initCommonDAOs(){
22 this.persistenceFramework.configureDAO(
23 ProcessingTimeStatistic.class.getName(),
24 new ProcessingTimeStatisticDAO());
25 ...
26 }
27 public abstract void initSpecificDAOs();
28 ...
29 }

01 public aspect BeerCanPersistenceAspect extends PersistenceAspect {
02 public pointcut initializePersistenceService():
03 execution(public static void GUIMeasurementApplication.main(..));
04
05 public void initSpecificDAOs(){
06 this.persistenceFramework.configureDAO(
07 BeerCanQualityStatistic.class.getName(),
08 new BeerCanQualityStatisticDAO());
09 }
10 }

Figure 11. Code of the GUI, Statistical and Persistence Framework Composition Aspects

4 Analysis of the AO Solutions
This section presents a detailed analysis of our case study (Section 2.1). Section 4.1
presents compares the AO and OO solutions with respect to the modularity properties
(Section 2.3). Section 4.2 discusses several issues related to the design and
implementation of framework composition with aspects.

4.1 Modularity Analysis of the AO Solutions

For every framework composition problem addressed, we observed many improve-
ments when using the AO solutions. These improvements can be observed mainly in
terms of modularization of the composition code. Table 2 summarizes the improve-
ments of each AO solution. Similar to the analysis of the OO solutions (Section 2.3), we
have also used the three modularity properties: locality, composition transparency,
and unpluggability. The complementary property, presented in the Table 2, indicates if
the AO solution is used in conjunction with the original OO solution proposed.

 16

The total of 5 new AO solutions were characterized as an alternative to the OO solu-
tions previously proposed. AOP was used as a complementary solution in the imple-
mentation of 2 AO solutions. All these 5 AO solutions brought benefits in relation to
the OO solutions (see Table 2). As we mentioned before, many of the AO solutions
have been explored by the AOSD community, although not in the context of frame-
work composition.

Our study shows mainly that AOP can be used as an effective technology to com-
pletely modularize the framework composition code. In our study, all the AO solutions
achieved this objective. In general, each framework composition problem presents the
need to integrate some of the frameworks features, such as: control flows, entities, or
functionalities. The majority of the OO solutions need to define invasive changes in the
framework code in order to implement the required composition code. Using aspects,
we can define the specific points in the execution of a framework that could be linked
to the functionality of another framework (or legacy component) in order to address
their composition. The presented AO solutions also avoid the code scattering and tan-
gling presented by many OO solutions (Section 2.3).

The complete modularization of the framework composition code in the AO solu-
tions also brings the benefit of plugging and unplugging whenever necessary specific
compositions. Since the integration code is completely codified in aspects, developers
can easily add or remove the composition code during the implementation or evolu-
tion of software architectures based on their specific design decisions. Thus, this
(un)pluggability characteristic gives to the developers more flexibility when deciding
for the use of specific framework compositions.

Also, the complete modularization of framework composition code helps in the do-
cumentation of the adopted solutions. In fact, the aspects used in each solution can be
viewed as a direct documentation of the design decisions considered by the system
developers to implement the framework composition. As a consequence, this im-
proved documentation brings benefits to the understanding and maintenance of the
code relative to the framework composition. In software applications, where develop-
ers need to specify different and large amount of framework compositions this im-
proved documentation is even more important.

 Modularity Properties

AO Solution - Composition Problem ID * Locality Composition

Transparency

Unpluggability Complementary

1. Concurrency + Synchronization Aspects

(I)

yes yes yes yes

2. AO Observer (I) yes yes yes no

3. OO Wrapper + AO Observer (II) yes yes yes yes

4. AO Mediator (II) yes yes yes no

5. “Glue” Aspect (III) yes yes yes no

Table 2. Properties of the Aspect-Oriented Solutions

* The Composition Problem ID refers to the identifier of each framework composition problem, as follows: (I) Composi-

tion of Framework Control;(II) Framework Gap; (III) Composition of Entity Functionality.

 17

4.2 Design and Implementation Issues

In this section we discuss several issues related to the design and implementation of
framework composition with aspects. The discussed issues are related to the reusabil-
ity and modularization of the composition aspects and also to guidelines for making it
easier the composition between frameworks.

4.2.1 Common and Variable Composition Code

The implementation of the composition aspects in our study brought the need to sepa-
rate common and variable code related to the framework composition. The common
composition code implements the functionalities that will be used in every application
instantiated from the resulted framework composition. For example, in the Measure-
ment and GUI framework composition (Section 3.1), the MeasurementGUIComposi-
tion aspect specifies the interception of several internal classes (Trigger, Concrete-
Sensor, ActuationStrategy) of the Measurement framework in order to present in-
formation about the measurement process in TableModel objects of the GUI frame-
work. The variable composition code implements the specific functionality which is
dependent on the instantiation of the framework composition. An example in the con-
text of the Measurement and GUI framework composition was the definition of the
initialization methods of each framework instance, which are implemented in the
BeerCanComposition subaspect.

The separation between the common and variable code allows to reuse many lines
of code when instantiating different applications from the resulted framework compo-
sition. It also gives flexibility to concretize specific part of the composition code when
it is necessary. In certain cases, developers do not need to specify a variable composi-
tion code or do not intend to reuse the framework composition in different applica-
tions; they could codify all the composition code in only one aspect without the need
to distinguish the common and variable code. Aspect-oriented refactoring of the com-
position aspects can be done whenever there is a demand for generalizing the compo-
sition code.

4.2.2 Modularization of the Composition Aspects

Another issue related to the design and implementation of the composition aspects is
how to modularize them in order to define flexible different combinations of the
frameworks composition. In the solution described in Section 3.2, for example, the sta-
tistical functionality was added to the implementation of the composition aspect re-
sponsible to integrate the Measurement and GUI frameworks. An alternative design
could separate the statistical functionality in a different composition aspect which in-
tercepts directly events of interest in the Measurement and GUI frameworks. It makes
possible to plug and unplug the statistical functionality. In this design, two different
hierarchies of aspects must be created: (i) one to manage only the Measurement and
GUI framework composition, and (ii) the other one to specify the Measurement, Statis-
tical and GUI framework composition that addresses only statistical functionalities.
Since the aspect hierarchies must intercept a common set of join points in the Meas-
urement framework, a different aspect could be implemented to expose the set of
shared pointcuts4.

4 Next subsection 4.2.3 shows that this aspect can work as the syntactic part of a crosscutting programming inter-

face (XPI) [29] of the Measurement framework.

 18

Another example is related to the composition of the persistence functionality with
the Measurement and GUI framework composition. We have many options to com-
pose the persistence framework, such as: (i) to add the calls to the persistence frame-
work directly in the composition aspects presented in Section 3.2; (ii) to create a new
composition aspect which integrates the Measurement and Persistence frameworks;
and (iii) to create a new composition aspect which only integrates the GUI and Persis-
tence framework. The first option does not allow plugging and unplugging automati-
cally the persistence functionality from the other framework compositions, but it
avoids the implementation of new aspects. The second option could be suggested in
cases you have the combination of Measurement and Persistence framework without
the GUI functionality. Finally, the third option, it is recommended in cases you can
have the independent composition of the GUI and Persistence framework without the
presence of Measurement framework.

Thus, the separated implementation of different composition aspects can make it
possible to choose different combinations of frameworks to be integrated. A careful
design must be done by modeling a number of composition aspects which allow to in-
stantiate automatically different framework compositions of interest.

4.2.3 Exposing Framework Pointcuts

The composition of frameworks requires in many situations the interception of some
events in the internal framework classes. In the composition with the Measurement
framework, for example, the execution of triggers, sensors and actuators were inter-
cepted by the composition aspects in order to capture some information and call addi-
tional functionalities from the other frameworks. We believe it is fundamental to make
it visible relevant joinpoints that are part of the internal execution of the framework.
The goal is to make it easier the design and implementation of a composition aspect.

A traditional OO framework documents its extension points, such as abstract
classes and interfaces, in order to enable framework users to instantiate their applica-
tions. We advocate the additional documentation of relevant framework join points to
enable developers to compose it with additional frameworks or extensions. We believe
that crosscutting programming interface (XPI) [29, 11] is an appropriate approach to
document the framework joinpoints since it can establish a contract between the
“base” code provided by the framework and the composition aspects. Besides to allow
the specification of the extension join points of a framework, they also determine a set of
constraints, pre- and pos-conditions which must be satisfied when composing or ex-
tending the framework functionality. Thus, the use of XPIs to document and external-
ize the framework extension join points can help: (i) to expose only those details of the
framework code which are interesting to compose with other extensions; and (ii) to
analyze the impact of a framework internal change (such as, a refactoring) in their re-
spective composition aspects.

According to its authors [29, 11], an XPI has: (i) a syntactic part – which allows to
expose specific join points; and (ii) a semantic part – which details the meaning of the
exposed join points and it can also define constraints (such as, pre- and post-
conditions) that must be satisfied when extending those join points. The syntactic part
of an XPI can be expressed in a programming language, such as AspectJ; and (ii) the
semantic part can be specified as a combination of natural and formal languages. In
Section 4.2.2, an aspect was created to specify a set of common pointcuts of the Meas-
urement framework. These pointcuts are reused by different aspects that composes
separately the Measurement and GUI frameworks and the Measurement, Statistical

 19

and GUI frameworks. The aspect which exposes the shared pointcuts can be seen as
the syntactic part of an XPI. All the composition aspects with the Measurement
framework are defined in terms of the join points exposed by that aspect. This XPI
must also expose the design rules which specify constraints on behavior composed
across the extension join points of the Measurement framework. Examples of such
constraints are: (i) to prohibit changes to the trace of all the framework joinpoints ex-
posed to avoid causing disturbance in the measurement process; and (ii) to create
separate threads to execute the additional compositions in order to not affect the per-
formance of the Measurement framework.

4.2.4 Framework Composition Causes

In their original study, Mattson et al [20, 21] identify the main causes responsible for
the framework composition problems, which are: (i) the framework cohesive behavior;
(ii) the domain coverage; (iii) the design intention; and (iv) the access to the framework
source code. Below we discuss the contribution that aspect-oriented programming can
bring to deal with these causes. The framework cohesive behavior refers to the inher-
ent interaction between the framework classes to implement a software family archi-
tecture. Mattson et al argue that many of the composition problems with the frame-
work are caused by that cohesive behavior. It happens because external classes which
extend or are composed with the framework must not only implement an adequate
domain behavior but they also must have a correct cohesive behavior. We believe the
documentation of the framework extension join points, using the XPI approach, for
example, can make visible internal extension points of the framework. It can also pro-
vide rules that prevent the external classes to break the framework cohesive behavior.

The domain coverage cause is related to how a framework composition covers a
specific problem domain. During the framework composition, the developer can have
to deal with three situations: (i) no domain overlapping between the frameworks; (ii)
little overlapping; and (ii) considerable overlapping. In this work, we have proposed
the use of aspects to enable the composition of frameworks in order to address a
framework gap. In this case, there is no domain overlapping between the frameworks,
but it can be necessary to intercept internal events happening in some of them in order
to compose them to cover the problem domain. The problems related to the little and
considerable overlaps between frameworks are not considered in this work. Section 5
presents related work which aims to address these problems.

Object-oriented frameworks are in general designed to be reused through extension
and not through composition. In contrast, called frameworks are clearly easier to com-
pose than calling frameworks, because they provide an interface which exposes their
services and they can play a passive role in the application. Mattsson et al argue that it
is fundamental for a framework to explicit which ways of reuse it provides, if only by
extension or also by composition. They present the lack of explicit design intentions as
one of the causes of many framework composition problems. In our work, we also ad-
vocate the importance of making explicit the framework design intention to facilitate
not only its extension but also its composition. Besides, we believe the exposition and
documentation of extension join points can improve the framework reuse in the fol-
lowing scenarios: (i) to implement new and not anticipated crosscutting extensions in
the framework (such as, optional features); (ii) to compose easier the framework with
other ones. Finally, we encourage the implementation of called frameworks, since their
composition is supposed to be easier than calling frameworks.

 20

The last main cause presented by Mattson et al is the lack of access to the source
code of the framework. As we saw in Section 2.3, for many OO framework composi-
tion solutions proposed by the authors, it is necessary to codify invasive changes in-
side the framework classes. The authors also argue that developers can have access to
the framework code but it is very difficult to understand its internal structure to com-
pose it with another framework. Again here, we believe the documentation of the ex-
tension join points provide the developers with the relevant points of crosscutting
composition and do not expose a large amount of classes and behaviors which they do
not need to understand or are not interested.

5 Related Work

Sullivan and Notkin [31] explore the difficulties related to the development and evolu-
tion of integrated systems. They propose a mediator-based design approach to deal
with these integration difficulties. Their approach addresses the integration of objects
by modularizing the behavioral relationships that integrate them. The abstraction used
to specify these behavioral relationships is called mediators. Also, a new language me-
chanism, called abstract behavioral type (ABT), is proposed to support the specifica-
tion of mediators. In a more recent work, Sullivan et al [29] investigate the usefulness
of AspectJ to the modularization of their mediators. They argue that the main limita-
tion of AspectJ is related with its model of aspect instances. Although it is possible to
specify a mediator as an AspectJ aspect to provide the composition code between dif-
ferent objects, it also requires costly work-arounds to manage their respective associa-
tions. The main restriction of AspectJ presented by the authors to modularize the com-
position code was totally valid for our study; we needed to create several list objects in
the implementation of many aspects to manage the dependence between the frame-
work objects. Two recent research work [23, 24] address the restriction of the AspectJ
language by offering more flexible aspect instances model.

As we mentioned before, the AspectJ implementations of the Adapter, Mediator
and Observer design patterns [9] presented by Hannemann and Kiczales [12] can be
used to compose the object-oriented frameworks. These design patterns represent clas-
sical solutions to the integration of components/objects. Also, modularity properties
used by the authors to compare Java and AspectJ implementation of design patterns
were used to analyze the characteristics of OO and AO solutions to compose frame-
works.

DeLine [6] discusses the problems related to the integration of software components
into a system. He shows that the component integration requires an appropriate inter-
action with the systems’ other components. The author defines the term component
packaging as the predefined commitments about how a component interacts with o-
ther components in the system. DeLine indicates that when a component implements a
useful functionality but it presents an inappropriate packaging, a problem of packag-
ing mismatch is characterized. A catalog of techniques for resolving packaging mis-
match is offered by the author [6]. DeLine proposes an approach, called Flexible Pack-
aging, to deal with the packaging mismatch. It promotes the code separation of com-
ponent functionality from the component packaging (interaction). The approach al-
lows reusing separately the component functionality and component packaging in dif-
ferent contexts. There are many similarities between the catalog (problems and solu-
tions) presented by DeLine to integrate components and the composition aspects used
as base in this study to compose OO frameworks. The Flexible Packaging approach can
be viewed as an aspect-oriented approach that promotes the separation of component

 21

integration from its base functionality. Thus, DeLine’s work has also focused on the
separation of composition code, although using a different kind of aspect. As a future
work, we intend to explore the use of mature aspect-oriented approaches (e.g., As-
pectJ) to implement the solutions proposed by DeLine.

Feature oriented approaches (FOAs) have been proposed [25] to deal with the en-
capsulation of program features that can be used to extend the functionality of existing
base program. Batory et al [2] argue the advantages that feature-oriented approaches
have in respect to object-oriented frameworks to design and implement product-lines.
Mezini and Ostermann [22] have identified that FOAs are only capable to modularize
hierarchical features. They do not support the specification of crosscutting features.
They propose CaesarJ [22], an AO language that combines ideas from both AspectJ
and FOAs, to provide a better support to manage variability in product-lines. The
work of those authors has a direct relation to our work, since we believe that the de-
sign of product-line architectures can require the composition of different frameworks
using aspects. As an ongoing work, we intend to investigate and compare the use of
these two different approaches to manage variability in a software product-line in or-
der to better understand their respective benefits and limitations. The feature-oriented
mechanisms of CaesarJ, for example, seem to be an appropriate approach to manage
different classes and aspects which modularize the same feature in the framework
composition.

Some other authors have also discussed the problems and solutions related to the
composition of frameworks or components. Hölzle [14] discusses the problems related
to the composition of independently-developed components. The author also pro-
claims in that work the advantages that an existing aspect-oriented approach (subject-
oriented programming) could bring to the component and framework integration.
Sparks et al [27] discuss object-oriented solutions to deal with the framework gap
problem.

6 Conclusions and Ongoing Work

Most of the existing solutions for framework compositions involve some form of cross-
cutting between the framework classes and the composition strategy. This study is a
first systematic assessment about the benefits and drawbacks on the use of the AOP
technology to implement modular composition of OO frameworks. A significant cata-
log of OO solutions that address framework composition was revisited and analyzed
against a set of modularity properties. The study also demonstrates how aspect- and
object-oriented techniques must be used as complementary technologies. Aspect-
oriented solutions were designed for a significant case study involving the integration
of four OO frameworks. The study encompassed three main composition challenges,
namely composition of framework control, framework gap, and composition of entity
functionality.

Our study concluded that AOP is a promising technique to support the modular
composition of different frameworks addressing both vertical and horizontal domains.
However, to facilitate the composition process, it is desirable that framework designs
be planned for potential compositions by exposing and documenting internal frame-
work events as possible integration points. As ongoing work, we plan to evaluate the
implementation of the AO framework composition solutions using other AOP ap-
proaches, such as, EoS [22] and CaesarJ [23]. Our aim is to verify how these approaches
can help to simplify the AspectJ implementations. Finally, we also intend to explore

 22

the use of XPI [11, 29] in the design and implementation of other object-oriented
frameworks in order to expose their extension join points.

References

[1] ALUR, D.; MALKS, D.; CRUPI, J. Core J2EE Patterns: Best Practices and Design
Strategies. Prentice Hall PTR, 2nd edition, 2003.

[2] BATORY, D.; CARDONE, R.; SMARAGDAKIS, Y. Object-Oriented Frameworks
and Product-Lines. 1st Software Product-Line Conference (SPLC), Denver, August
1999.

[3] BOSCH, J. Design of an Object-Oriented Framework for Measurement Systems. In
Domain-Specific Application Frameworks, M.Fayad et al (eds), John Wiley, pp.177-
205, 1999.

[4] CACHO, N.; SANT`ANNA, C.; FIGUEIREDO, E.; GARCIA, A.; BATISTA, T.;
LUCENA, C. Composing Design Patterns: A Scalability Study of Aspect-Oriented
Programming. Proc. 5th Conference on Aspect-Oriented Software Development
(AOSD'06), Bonn, Germany, March 2006.

[5] CZARNECK, K.; EISENECKER, U. Generative Programming: Methods, Tools, and
Applications, Addison-Wesley, 2000.

[6] DE LINE, R. Avoiding packaging mismatch with Flexible Packaging. IEEE Transac-
tions on Software Engineering 27(2):124-143, February 2001.

[7] FAYAD, M.; SCHMIDT, D.; JOHNSON, R. Building Application Frameworks: Ob-
ject-Oriented Foundations of Framework Design. John Wiley & Sons, September
1999.

[8] FOWLER, A. A Swing Architecture Overview, Sun Developer Network, December
2005. URL: [http://java.sun.com/products/jfc/tsc/articles/architecture/].

[9] GAMMA, E.; et al. Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, Reading, 1995.

[10] GARCIA, A.; SANT’ANNA, C.; FIGUEIREDO, E.; KULESZA, U.; LUCENA, C;
VON STAA, A. Modularizing Design Patterns with Aspects: A Quantitative Study.
Proc. of the 4th Conference on Aspect-Oriented Software Development (AOSD'05),
Chicago, USA, March 2005.

[11] GRISWOLD, W.; et al, "Modular Software Design with Crosscutting Interfaces",
IEEE Software, Special Issue on Aspect-Oriented Programming, Jan/Feb 2006.

[12] HANNEMAN, J.; KICZALES, G. Design Pattern Implementation in Java and As-
pectJ. Proceedings of OOPSLA’02, November 2002, pp. 161-173.

[13] Hibernate Relational Persistence For Idiomatic Java, http://www.hibernate.org/.
[14] HÖLZLE, U. Integrating Independently-Developed Components in Object-

Oriented Languages. Proceedings ECOOP ’93, LNCS, 1993.
[15] KICZALES, G.; et al. Aspect-Oriented Programming. Proc. of`ECOOP’97, LNCS

1241, Springer-Verlag, Finland, June 1997.
[16] KVALE, A.; LI, J. ; CONRADI, R. A Case Study on Building COTS-Based System

using Aspect-Oriented Programming. Proceedings of SAC’2005, pp. 1491-1498.
[17] KICZALES, G.; et al, "Getting Started with AspectJ," Comm. ACM, vol. 44, pp. 59--

65, 2001.
[18] LEA, D. Concurrent Programming in Java: Design Principles and Patterns, 2nd Edi-

tion, Addison Wesley Professional.
[19] LOPES, C. D: A Language Framework for Distributed Programming. PhD Thesis,

Northeastern University, 1997.
[20] MATTSON, M.; BOSCH, J.; FAYAD, M. Framework Integration: Problems,

Causes, Solutions. Communications of the ACM, 42(10):80–87, October 1999.

 23

[21] MATTSON, M.; BOSCH, J. Framework Composition: Problems, Causes, and Solu-
tions. In "Building Application Frameworks: Object Oriented Foundations of
Framework Design" Eds: M. E. Fayad et al, Wiley & Sons, ISBN 0-471-24875-4, 1999,
pp. 467-487.

[22] MEZINI, M.; Ostermann, K. “Variability management with feature-oriented pro-
gramming and aspects”. Proceedings of Foundation on Software Engineering
(FSE’2004), SIGSOFT, pp. 127-136, 2004.

[23] RAJAN, H.; SULLIVAN, K. Eos: Instance-level aspects for integrated system de-
sign. In Proe. of ESEC/FSE, pp.297-306, 2003.

[24] SAKURAI, K. ; et al. “Association Aspects”, Proceedings of the AOSD´2004, pp.
16-25, Lancaster, UK, 2004

[25] SMARAGDAKIS, Y.; BATORY, D. Mixin Layers: An Object-Oriented Implementa-
tion Technique for Refinements and Collaboration-Based Designs, ACM Transac-
tions on Software Engineering and Methodology, April 2002.

[26] SOARES, S. An Aspect-Oriented Implementation Method. Doctoral Thesis, Fed-
eral Univ. of Pernambuco, Oct 2004.

[27] SPARKS, S.; BENNER, K.; FARIS, C. “Managing Object-Oriented Framework Re-
use”, IEEE Computer, pp. 53-61, September 1996.

[28] Spring Framework, http://www.springframework.org/.
[29] SULLIVAN, K.; et al. "Information Hiding Interfaces for Aspect-Oriented Design",

In the Proceedings of ESEC/FSE´2005, 5-9 Sept 2005, Lisbon, Portugal
[30] SULLIVAN, K.; et al. Non-Modularity in Aspect-Oriented Languages: Integration

as a Crosscutting Concern for AspectJ. In Proceedings AOSD’2002, pp. 19-27, 2002.
[31] SULLIVAN, K.; NOTKIN, D. Reconciling Environment Integration and Software

Evolution. ACM TOSEM, 1(3):229-268, July 1992.

