ISSN 0103-9741

Monografias em Ciéncia da Computacao
n° 19/06

Automated Selection of Materialized Views

José Maria Monteiro
Sérgio Lifschitz
Angelo Brayner

Departamento de Informatica

PONTIFiCIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE SAO VICENTE, 225 - CEP 22453-900
RIO DE JANEIRO - BRASIL

Monografias em Ciéncia da Computagao, No. 19/06 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena July, 2006

Automated Selection of Materialized Views *

José Maria Monteiro, Sérgio Lifschitz, Angelo Brayner’
'Mestrado em Informatica Aplicada — Universidade de Fortaleza (UNIFOR)

monteiro@inf.puc-rio.br, sergio@inf.puc-rio.br, brayner@unifor.br

Abstract. Materialized views can provide massive improvements in query processing
time, especially for aggregation queries over large tables. Due to the space constraint
and maintenance cost constraint, the materialization of all views is not possible. There-
fore, a subset of views needs to be selected to be materialized. The problem is NP-hard,
therefore, exhaustive search is unfeasible. Further, a judicious choice must be cost-
driven and influenced by the workload experienced by the system. For this reason,
some past papers have looked at the problem of automated selection of materialized
views for SQL workloads. Though, no prior work considers the problem of dynamic
and automated creation (self-maintenance) of materialized views. This paper presents
an architecture for completely automatic selection and creation (maintenance) of mate-
rialized views.

Keywords: Self-Tuning, Materialized Views, Automated Tuning, Heuristics, SQL
Workload.

Resumo. A utilizacao de visdes materializadas pode proporcionar expressivos ganhos
de performance no processamento de consultas, especialmente em consultas agregadas
sobre tabelas com grande volume de dados. Devido as restricdes de espago e custo de
manutencdo, a materializacdo de todas as visdes torna-se invidvel. Desta forma, um
sub-conjunto das visdes deve ser selecionado, a fim de que somente estas visdes sejam
materializadas. Entretanto, este é um problema NP-Dificil. Logo, a busca exaustiva
torna-se uma solugao inviavel. Assim, uma escolha criteriosa deve basear-se no custo
de execugdo das consultas e na carga de trabalho submetida ao sistema. Por esta razdo,
alguns trabalhos anteriores tém enderecado o problema da selecdo automatica de vi-
sdes materializadas para uma determinada carga de trabalho. Porém, nenhum trabalho
anterior considera o problema da selecdo, criagdo e remogdo de visdes materializadas,
de forma dindmica e automatica. Este trabalho apresenta uma arquitetura para auto-
matizar completamente a selecdo, criacdo e remogdo de visdes materializadas.

Palavras-chave: Ajustes Autométicos, Visdes Materializadas, Heuristicas, Carga de
Trabalho, SQL.

In charge of publications:

Rosane Teles Lins Castilho

Assessoria de Biblioteca, Documentagéo e Informacgéo
PUC-Rio Departamento de Informatica

Rua Marqués de Sao Vicente, 225 - Gavea

22453-900 Rio de Janeiro RJ Brasil

Tel. +55 21 3114-1516 Fax: +55 21 3114-1530

E-mail: bib-di@inf.puc-rio.br

Web site: http://bib-di.inf.puc-rio.br/techreports/

1 Introduction

Materialized views are derived relations, which are stored as relations in the database.
Materialized views can be used for reducing the query response time. Using material-
ized views to speed up query processing is an old idea [9] but only in the last few
years has the idea been adopted in commercial database systems. Recent TCP-R
benchmark results and actual customer experiences show that query processing time
can be improved by orders of magnitude through judicious use of materialized views.
To realize the potential of materialized views, efficient solutions to three issues are re-
quired [5]:

¢ View design: determining what views to materialize, including how to store

and index them.

* View maintenance: efficient updating of materialized views when base tables

are updated.

¢ View exploration: making efficient use of materialized views to speed up query

processing.

This paper deals with view design. As already mentioned, choosing an appropriate
set of views to materialize in the database is crucial in order to obtain performance
benefits. In this paper, we present an architecture and novel algorithms for dynamic
and automated selection and creation (maintenance) of materialized views that can
significantly improve query processing performance.

The rest of the paper is organized as follows. In section 2 an architecture for auto-
mated materialized view creation will be presented. Section 3 describes the strategy
used for the candidate materialized view selection. In section 4 we discuss the algo-
rithms and heuristics used for the final materialized view selection and creation. Sec-
tion 5 concludes this work and outlines future works.

2 Architecture for Automated Materialized View Creation

Most prior work considers that an input, which is a workload for which a recom-
mended set of materialized views is needed. Logically, a judicious selection is crucial
to significantly improve performance. For this, to happen the choice must be influ-
enced by the workload. We need to observe that, in the previous approaches, the mate-
rialized view selection heuristics typically execute in an off-line manner, they can also
be executed in a distinct host of the DBMS Server machine. Our approach allows us to
obtain the workload in an automatic and dynamic manner, allowing decisions about
the view creation or exclusion to be made without human intervention.

An architecture overview of our approach to materialized view selection is shown
in Figure 1.

SOL Query (Q))

Configuration Simulation

Candidate Materialized Sk
ke iy oy < and Cost Estimation

¥
¥

Guery Processor

L View Selection i
F) 02 g0 1 Mo:lkllle
&
o)
Access Plan ¥
Execution Final Materialized |,
View Selection [

&
h 4

Fied b

» Log and Statistics

¥

Figure 1. Architecture of Materialized View Selection.

Whenever a new operation (SQL command) is sent to DBMS, the optimizer gener-
ates the best access plan based on the real configuration. For this, the SQL optimizer
uses the cost estimation module, logs and statistics. Then, the SQL optimizer informs
the candidate materialized view selection module about the executed query and the
selected access plan cost. Next, the candidate materialized view selection module, us-
ing a heuristics based on [1] will select a set of materialized views called candidate ma-
terialized views (syntactically relevant materialized views that can potentially be used
to answer the query). As mentioned previously, searching the space of all syntactically
relevant materialized views for a SQL query is unfeasible in practice, particularly
when the selection heuristics run together with the other DBMS services. Therefore, is
crucial to eliminate spurious materialized views from consideration early, thereby fo-
cusing the search on a smaller, and more interesting subset. The candidate selection
module is responsible for identifying a set of materialized views for the given SQL
query that are worthy of further exploration.

Once we have chosen a set of candidate materialized views, we need to search
among these structures to determine which of them can effectively be used for the
optimizer to improve performance on the query processing. The final materialized
view selection module is responsible for this work. The algorithm used in this step is
based on the benefit heuristics. This module tries to decide in an on-line manner, while
the system receives new SQL commands, the materialized views that must be created
or removed to improve the processing of the complete workload.

The final materialized view selection heuristic uses the configuration simulation
and cost estimation module to determine the benefit (impact) of a candidate material-
ized view on the executions cost of the submitted query (and on the complete work-
load). For this, we need to extend the (PostgreSQL) query optimizer to simulate the
presence of materialized views that do not exist (referred to as “what-if” materialized
views), so that given a query Q and a configuration C, the cost of Q when the physical
design is the configuration C, may be computed. We note that materialized view main-
tenance costs are accounted for in our approach by the inclusion of up-
dates/inserts/ deletes statements in the workload. Finally, the statistics are updated.

3 Candidate Materialized View Selection

Considering all syntactically relevant materialized views for a query (or workload) in
the final materialized view selection phase is not scalable since it would greatly in-
crease the search space. The space of syntactically relevant materialized views for a
query is very large, since in principle, a materialized view can be proposed on any

subset of the table in the query. Furthermore, even for a given table-subset (a table-
subset is a subset of tables referenced in a query, there is a great increase in the space
of materialized views arising from selection conditions and grouped by columns in the
query. If there are m selection conditions in the query on a table-subset T, then materi-
alized views containing any subset of these selection conditions are syntactically rele-
vant. Therefore, the goal of the candidate materialized view selection phase is to elimi-
nate materialized views that are syntactically relevant for one or more queries in the
workload but are never used in answering any query.

Our approach for candidate materialized view selection is based on a similar strat-
egy used by [1]. In this work the authors make some interesting observations. First,
they observe that the obvious approach of selection of one candidate materialized view
per query that exactly matches each query in the workload does not work since in
many database systems the language of materialized views may not match the lan-
guage of queries. For example, nested sub-queries can appear in the query but may not
be part of the materialized view language. Moreover, they also observered that in stor-
age-constrained environments, ignoring commonality across queries in the workload
can result in sub-optimal quality. This problem is even more severe in large work-
loads. The following simplified example of Q; from the TCP-H benchmark illustrates
this point:

Example 1. Consider a workload consisting of 1000 queries of the form:

SELECT |_returnflag, 1_linestatus, SUM(l_quantity)

FROM lineitem

WHERE 1_shipdate BETWEEN <Datel> and <Date2>

GROUP BY 1_returnflag, 1_linestatus

Assume that each of the 1000 queries has different constants for <Datel> and
<Date2>. Then, rather than recommending 1000 materialized views, the following ma-
terialized view that can service all 1000 queries may be more attractive for the entire
workload:

SELECT |_shipdate, 1_returnflag, 1_linestatus, SUM(l_quantity)

FROM lineitem

WHERE 1_shipdate BETWEEN <Datel> and <Date2>

GROUP BY 1_shipdate, 1_returnflag, 1_linestatus

A second observation that influences their approach to candidate materialized
view selection is that there are certain table-subsets such that, even if we were to pro-
pose materialized views on those subsets it would only lead to a small reduction in
cost for the entire workload. This can happen either because the table-subsets occur
infrequently in the workload or they occur only in inexpensive queries.

Example 2. Consider a workload of 100 queries whose total cost is 10.000 units. Let
T be a table-subset that occurs in 25 queries whose combined cost is 50 units. Then
even if we considered all syntactically relevant materialized views on T, the maximum
possible benefit of those materialized views for the workload is 0.5%.

Furthermore, even among table-subsets that occur frequently or occur in expensive
queries, not all table-subsets are likely to be equally useful.

Example 3. Consider the TCP-H 1 GB database and the workload specified in the
benchmark. There are several queries in which the tables, lineitem, orders, nation, and
region co-occur. However, it is likely that materialized views proposed on the table-
subset {lineitem, orders} are more useful than materialized views proposed on {nation,
region}. This is because the tables lineitem and orders have 6 million and 1.5 million
rows respectively, but nation and region tables are very small (25 and 5 rows respec-
tively). Hence, the benefit of pre-computing the portion of the queries involving {na-
tion, region} is insignificant compared to the benefit of pre-computing the portion of
the query involving {lineitem, orders}.

Based on these observations and the approach proposed in [1], we approach the
task of candidate materialized view selection using three steps:

(1) From the large space of all possible table-subsets for a given query (input), we
arrive at a smaller set of interesting table-subsets.

(2) Based on these interesting table-subsets, we propose a set of materialized
views for the given query. This step uses a cost-based analysis for selecting the
best materialized view for the given query.

(3) Starting with the views selected in (2), we generate an additional set of
“merged” materialized views in a controlled manner such that the merged
materialized views can service multiple queries in the workload. The new set
of merged materialized views, along with the materialized views selected in (2)
is the set of candidate materialized views that enters to the final materialized
view selection phase. Now, we present the details of each of these steps.

0,0 g0)

..................................

Finding Interesting
Table-Subsets for O,

'
b o SETEEL e e '

i Cost-based Pruning of
i Syntactically Relevant
i Materialized Views

5 View Merging :

.................................

Candidate Materialized
“iewr Selection

!

M)

Figure 2. Candidate Materialized View Selection.

3.1. Finding Interesting Table-Subsets

Our goal is to find “interesting” table-subsets from among all possible table-subsets for
a given query, and restrict the space of materialized views considered for only those
table-subsets. Intuitively, a table-subset T is interesting if materializing one or more
views on T has the potential to reduce the cost of the query (or workload) significantly.
In [1] metrics are defined that capture the relative importance of a table-subset.
Consider the following metric: TS-Cost(T) = total cost of all queries in the workload
(workload dynamically generates until this time) where table-subset T occurs. The
above metric, while simple, is not a good measure of relative importance of a table-
subset. For example, in the context of Example 3, if all queries in the workload refer-
enced the tables lineitem, orders, nation and region together, then using TS-Cost(T)
metric, the table-subsets T1 = {lineitem, orders} would have the same importance as
the table-subset T2 = {nation, region} even though a materialized view on T1 is likely
to be much more useful than a materialized view on T2. Therefore, [1] proposes the
following metric that better captures the relative importance of a table-subset: TS-

Weight(T) = 21 Cost(Qi) * (sum of sizes of tables in T)/(sum of sizes of all tables refer-
enced in Qi)), where the summation is only over queries in the workload where T oc-
curs. Observe that TS-Weight is a simple function that can discriminate between table-
subsets even if they occur in exactly the same queries in the workload.

Let S; = {TIT is a table-subset (of Q;) of size 1 satisfying TS-Cost(T) >2C;i=1
While i < TAM(Q;) and IS; > 0
i=i+1;S;={}
Let G={TIT is atable-subset of size i, and 3 s € S;,; such that s — T}
ForeachT e G
If TS-Cost(T) 2 C Then S; = S; U {T}
End For
End While
S = S] U 82 U ... STAM(Qi)
R={TITe S and TS-Weight(T) > C}
Return R

CEe XN R W=

e

Figure 3. Algorithm for finding interesting table-subsets for Q.

In figure 3, the size of a table-subset T is defined to be the number of tables in T.
TAM(Q) is the number of tables referenced in a given query Qi. A lower threshold C
leads to a larger space being considered and vice versa. Based on experiments [1] on
various databases and workloads, we found that using C = 10% of the total workload
cost had a negligible negative impact on the solution compared to the case when there
is no cut off (C=0), but was significantly faster.

3.2 Cost-based Pruning of Syntactically Relevant Materialized Views

The algorithm for identifying interesting table-subsets presented in Section 3.1 signifi-
cantly reduces the number of syntactically relevant materialized views that must be
considered for a query Qi. Nonetheless, many of these views may still not be useful for
answering any query in the workload. This is because the decision of whether or not a
materialized view is useful in answering a query is made by the query optimizer using
cost estimation.

Therefore, our goal is to prevent syntactically relevant materialized views that are
not used in answering any query from being considered during the final materialized
view selection phase. We achieve this goal using the algorithm shown in Figure 4,
which is based on the intuition that if a materialized view is not part of the best solu-
tion for even a single query, then it is unlikely to be part of the best solution for the en-
tire workload. This approach is similar to the one used in [1]. For a given Query Q,
and a set S; of materialized views proposed for Qi, the algorithm assumes the existence
of the function Find-Best-Configuration(Q;, S;) that returns the best configuration for
from S;. Find-best-Configuration has the property that the choice of the best configura-
tion for a query is cost based, i.e,, it is the configuration that the optimizer estimates as
having the lowest cost for Qi. Any suitable search method can be used in this function,
e.g., the Greedy(m, k) algorithm described next. Also, a hypothetical query can be u-
sed.

l1.Let S; = Set of materialized views proposed for query Q;
2.M = Find-Best-Configuration(Q;, S;)
3.Return M

Figure 4. Cost-based pruning of syntactically relevant materialized views for Qi.

For each such interesting table-subset T, we propose (in step 1):
(1) A “pure-join” materialized view on T containing join and selection conditions
in Qi on tables in T.
(2) If Qi has grouping columns, then a materialized view similar to (1) but also
containing a GROUP BY columns and aggregate expression from Qi on tables
inT.

It is also possible to propose additional materialized views on a table-subset that
include only a subset of the selection conditions in the query on tables in T, since such
views may also apply to other queries in the workload. However, in our approach, this
aspect of exploiting commonality across queries in the workload is handled via view
merging (section 3.3).

3.3 View Merging

In [1], the authors observe that we need to consider the space of materialized views
which although they are not optimal for any individual query, are useful for multiple
queries, and therefore may be optimal for the workload. Also, the approach proposed
in [1] notes that the set M (the set of materialized views returned by the algorithm in
Figure 4) is therefore a good starting point for generating additional “merged” materi-
alized views that are derived by exploiting commonality among views in M. The
newly generated set of merged views, along with M. are the candidate materialized
views.

The goal for merging pair of views, referred to as the parent views, is to generate a
new view, called the merged view, which has the following two properties. First, all
queries that can be answered using either of the parent views should be answerable
using the merged view. Second, the cost of answering these queries using the merged
view should not be significantly higher than the cost of answering the queries using
views in M. We use the algorithm proposed in [1] for merging a pair of views, called
MergeViewPair (Figure 5). Intuitively, the algorithm achieves the first property by
structurally modifying the parent views as little as possible when generating the
merged view.

Note that a merged view v may be derived starting from views in M through a se-
quence of pair-wise merges.

Parent-Closure(v) is the set of views in M from which v is derived. The goal of step
4 in the MergeViewPair algorithm is to achieve the second property mentioned above
by preventing a merged view from being generated if it is much larger than the views
in Parent-Closure(v). The factor x that determine the value of the size increase thresh-
old(x) was typically a setting between 1 and 2 [1].

We note that in Step 4, MergeViewPair requires estimating the size of a material-
ized view. One way to achieve this is to obtain an estimate of the view size from the
query optimizer. The accuracy of such estimation depends on the availability of an ap-
propriate set of statistics for query optimization.

We use the algorithm proposed in [1] (Figure 6) for generating a set of merged
views from a given set of views M (obtained using the algorithm in Figure 4).

1. Let v, and v, be a pair of materialized views that reference the same tables and the
same join conditions.

2. Let 8y1,... Sim be the selection conditions that occur in v; but not in v,. Let S,q,... Son
be the selection conditions that occur in v, but not in v;.

3. Let vy, be the view obtained by (a) taking the union of the projection columns of v,
and v, (b) taking the union of the GROUP BY columns of v, and v, (c) pushing the
columns syy,... Sy, and s;j,... S, into the GROUP BY clause of v, and (d) including
selection conditions common to v; and v,.

4. If ((Ivi,] > Min Size(Parent-Closure(v;) U Parent-Closure(v,))*x) Then Return Null.
5. Return vy,

Figure 5. MergeViewPair Algorithm.

1. R=M

2. While (RI> 1)

3. Let M’ = The set of merged views obtained by calling MergedViewPair on each
pair of views in R

4. If M’ = {} Return (R-M)

5. R=RuM’

6. For each view v € M’, remove both parents of v from R

7. End While

8. Return (R-M)

Figure 6. Algorithm for generating a set of merged views
from a given set of views M.

4 Final Materialized View Selection

Once we have chosen a set of candidate materialized views, we need to search among
these structures to determine which of them can effectively be used for the optimizer
to improve performance on the query processing. The final materialized view selection
module is responsible for this work. The algorithm used in this step is based on the
benefit heuristics. This module tries to decide in an on-line manner, the materialized
views that must be created or removed to improve the processing of the complete
workload, while the system receives new SQL commands.

Initially, the materialized view selection module receives with input the executed
SQL clause (Q), the best access plan costs based on the real configuration (C:(Q;)) and
the set of candidate materialized view (M(Q;)). Next, this module obtains, together
with the configuration simulation and cost estimation module (or optimizer), some
additional information, such with, the best access plan costs in face of total absence of
materialized views. After this, if the SQL clause (Qj) is a query then the query evalua-
tion heuristic is executed, in other case the update evaluation heuristic is executed. Fi-
nally, the statistics are updated.

These heuristics use the configuration simulation and cost estimation module (or
optimizer) to determine the benefit (impact) of a candidate materialized view on the
executions cost of the submitted query (and on the complete workload). For this, we
need extend the (PostgreSQL) query optimizer to simulate the presence of materialized
views that not exist (referred to as “what-if”, or hypothetical, materialized views), so
that given a query Q and a configuration C, the cost of Q when the physical design is
the configuration C, may be computed.

Before we present the query evaluation heuristic and the update evaluation heuris-
tic, we need define the following factors:

(1) Cg: the best access plan costs (generated by the optimizer) in face of the real
materialized view configuration.

(2) Cu: the best access plan costs (generated by the optimizer) in face of the real
and hypothetical materialized view configuration. Usually, the hypothetical
materialized views used in this plan corresponds to the candidate materialized
views (obtained in the previous phase).

(3) Cn: the best access plan costs (generated by the optimizer) in face of the ab-
sence of real and hypothetical materialized views.

(4) Ca: the estimated cost for update an materialized view during the processing
of a SQL clause update (update/insert/delete) on a base relation. Usually, this
cost doesn’t be supplied by the optimizer and must be estimated in agreement
of the SGBD cost model.

(5) Bk The benefit of the materialized view k for the current SQL clause.

(6) BAck: The accumulated benefit of the materialized view k for the set of all
processed (executed) SQL clause (dynamic workload).

(7) CCk: The creation materialized view estimated cost. Usually, this costs doesn’t
be calculated by the SGBD optimizer. Thereby, this cost will be estimate by by
our implementation.

The following, is a description of the query evaluation heuristic. First, for each
candidate materialized view (CMV), if it is used in the best access plan (generated by
the optimizer) based on the real and hypothetical materialized view configuration, we
will compute its benefit, Bcmv, (for the current SQL query) and its accumulated benefit,
BAcwmy. The benefit is the difference between Cr and Cu. The candidate materialized
view will be materialized only if its accumulated benefit is greater than the creation
materialized view estimated cost (CCcmv). The goal is to create materialized views
whose repetitive use is interesting enough to compensate its creation cost. Note that
there is an implicit supposition in this heuristic: materialized views used in previous
SQL queries will continue to be interesting for future SQL queries. Thus, this heuristic
tends to find goods solutions for reasonably stable workloads. Next, for each real ma-
terialized view (RMV), if it is used in the best access plan (generated by the optimizer)
based on the real materialized view configuration, we will compute its benefit, Brmv,
(for the current SQL query) and its accumulated benefit, BArmv. The benefit is the dif-
ference between Cn and Ck.

1 . For each candidate materialized view CMV used in the best access plan (with real and
candidate materialized views) do:
2. Bemy =Cr - Cy
BAcemy = BAcemy + Bemy
If BACCMV > CCCMV Then
Create materialized view CMV
BACCMV =0
End If
8. End For
9 . For each real materialized view RMV used in the best access plan (with real materialized
views) do:
10 BRMV = CN - CR
11. BACRMV = BACRMV + BRMV
12. End For

N AW

Figure 7. Algorithm for query evaluation.

The following is a description of the update evaluation heuristic. This proceeding
initially executes the query evaluation heuristic. After this, the materialized views
maintenance costs needed to process the (update) SQL clause are computed. These
costs will be used to update the accumulated benefit of real and candidate materialized
views. Next, we verify if the real materialized views continue being gainful. For each
updated materialized view, we verify if its benefit is negative and greater than, in
module, its creation materialized view estimated cost (CCrmv). In this case, the materi-
alized view is removed. Note that again there is an implicit supposition in this heuris-
tic: materialized views harmful in previous SQL queries will continue being harmful
for future SQL queries. Thereby, the view maintenance costs are accounted for in our
approach by the inclusion of updates/inserts/deletes statements in the workload.

1. Execute algorithm for query evaluation

2. For each materialized view MV affected by the update SQL clause do:
3. BACMV = BACMV - CA

4. If (MV isreal) and (BAcyy < 0) and (IBAcyyl > CCyy) Then

5. BACMV =0

6. Remove materialized view MV
7. End If

8. End For

Figure 8. Algorithm for update evaluation.

The benefit heuristic is very interesting because its on-line manner, that allow the
dynamic creation and removal of materialized views, without human interference.

5 Conclusions and Future Works

Materialized views can provide massive improvements in query processing time. Due
to the space constraint and maintenance cost constraint, the materialization of all
views is not possible. Therefore, a subset of views needs to be selected to be material-
ized. In this paper, we present an architecture and novel algorithms for dynamic and
completely automated selection and creation (maintenance) of materialized views that
can significantly improve query processing performance, without human interference.
Also, our approach makes a judicious choice, which is cost-driven and influenced by
the workload experienced by the system. As future work we will investigate the use
and performance of our approach for automated selection and creation of materialized
view together with the approach proposed in [6] for automated index selection and
creation.

References

1.

5.

6.

Agrawal, S., Chaudhuri, S.,, Narasayya, V.: Automated Selection of Materialized
Views and Indexes for SQL Databases. In Proceedings of VLDB, pages 496--505,
2000.

. Chaudhuri, S., Narasayya, V.: An Efficient, Cost-Driven Index Selection Tool for Mi-

crosoft SQL Server. In Proceedings of VLDB, pages 146-155, 1997.

. Chirkova, R, Li, C.: Materializing Views with Minimal Size To Answer Queries. In

Proceedings of PODS, pages 38--48, 2003.

. Valluri, S.R., Vadapalli, S., Karlapalem, K.: View Relevance Driven Materialized

View Selection in Data Warehousing Environment. In Proceedings of the Austral-
asian Database Conference, 2002.

Goldstein, J., Larson P.: Optimizing Queries Using Materialized Views: A Practical,
Scalable Solution. . In Proceedings of the ACM SIGMOD, 2001.

Salles, M. A. V.: Automated Creation of Indexes for Databases. Master’s Thesis, De-

partamento de Informatica, Pontificia Universidade Catodlica do Rio de Janeiro (PUC-
Rio), July, 2004 (in Portuguese).

7. Lifschitz, S., Milanés, A. Y., Salles, M. A. V.: Estado da arte em auto-sintonia de sis-
temas de bancos de dados relacionais. Technical report, Departamento de Informatica,
Pontificia Universidade Catélica do Rio de Janeiro (PUC-Rio), 2004 (in Portuguese).

8.

Costa, R. L. C,, Lifschitz, S.: Index self-tuning and agent-based databases. In Pro-

ceedings of the Latin-American Conference on Informatics (CLEI), 2002.

9.

Larson, P. A,, Yang, H. Z.: Computing Queries from Derived Relations. In Proceed-
ings of VLDB, pages 259-269, 1985.

10. Skelley, A. DB2 Advisor: An Optimizer Smart Enough to Recommend its own In-

dexes. Proceedings of the 16th International Conference on Data Engineering, 2000.

