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Abstract. This work presents a column generation based heuristic algorithm for the
problem of planning the flights of helicopters to attend transport requests among airports
in the continent and offshore platforms on the Campos basin for the Brazilian State Oil
Company (Petrobras). We start from a previous MIP based heuristic for this Helicopter
Routing Problem and add column generation procedures that improve the solution quality.
This is done by extending the earlier formulation and providing an algorithm to find optimal
passenger allocation to fixed helicopter routes. A post optimization procedure completes
the resulting algorithm, which is more stable and allows consistently finding solutions that
improves the safety and the cost of the one done by the oil company experts.

Keywords: Helicopter Routing Problem, Mixed integer programming, Column genera-
tion.

Resumo. Este trabalho apresenta um algoritmo heuristico baseado em geragao de colunas
para o problema de planejamento de vdos de helicopteros entre o continente e as platafor-
mas da Bacia de Campos para transportar trabalhadores da Petrobras. O algoritmo comega
com uma heuristica para o Problema de Roteamento de Helicopteros baseada em progra-
magao inteira mista e utiliza geragao de colunas para melhorar a qualidade da solugao.
Isto é feito estendendo a formulagdo anterior e acrescentando um algoritmo para encontrar
a melhor alocagao de passageiros para rotas de voo fixas. Um pds-processamento com-
pleta o algoritmo heuristico, que é mais estavel e permite encontrar solugoes que garantem
seguranga e reduzem os custos obtidos pelos planejadores de voo da companhia.

Palavras-chave: Problema de Roteamento de Helicopteros, Programacao inteira mista,
Geracao de colunas.
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1 Introduction

Helicopter routing problems often comprise pickups and deliveries of passengers. This char-
acteristic brings a packing aspect difficult to capture to a routing problem. The particular
Helicopter Routing problem here addressed generalizes most similar routing problems in
the sense that it considers the activities of a fleet of aircrafts during a day comprising
several subsequent routing problems. Moreno et al.[7] proposed to find quality solutions
to this problem with a heuristic algorithm that uses a mixed integer program formulation
with exponentially many columns. This heuristic consists of constructing, a priori, two
large sets of columns obtaining a good integer solution to the resulting MIP and applying
a local search to find its best solution. No column generation was used. The purpose of
the present work is to this gap and provide a more stable algorithm.

The resulting algorithm was developed for the Brazilian State Oil Company (Petrobras)
and is now operating at the flight control center in the city of Macaé. This company
concentrates most of its oil exploration and production activities in an offshore area - the
Campos Basin. The personnel transportation to and from drilling platforms in this area
(42,000 passengers per month) is done by a mixed fleet of 35 helicopters with an average
of 70 flights per day. Planning these flights is a difficult task since transport requests must
be attended on time, there are usually few helicopters available per day and many safety
policies must be observed.

The Helicopter Routing Problem (HRP) tackled in this work is the planning the flights
for each day, which gives as output the activities of each helicopter (the sequence of stops,
the time they occurred, and the passengers that boarded and unboarded). We now give a
first description of it.

Given a set of locations composed by bases (or airports) and offshore platforms, a set
of helicopters and a set of transport requests which are distributed over departure times
associated to a list of platforms that can be served, the Helicopter Routing Problem consists
in building a flight schedule satisfying the following constraints: (i) each flight starts and
finishes in a base; (ii) the helicopters capacity can not be exceeded during each flight; (iii)
a helicopter must have a preparation time between flights; the goal is to minimize the total
cost.

In the case studied, the basin has 2 airports and 65 offshore locations. Platform crews
can demand for transportation for one of a few (nine) flight departure times and their
requests are either (partially) attended on time or ignored, since delays are not allowed.
These passengers can go from base to platform, from platform to base or from one platform
to another. There are few passengers that change from one platform to another. They are
usually grouped into a longer flight with special rules such as more landings and offshore
refueling and are treated apart. There is a high cost for leaving passengers unattended,
because oil exploration activities can be compromised.

The helicopters are paid per hour in flight and have distinct sizes and costs, i.e. the
fleet is not homogeneous. The helicopter capacity (number of passengers that can be
transported) depends on the length of the fly because the allowed take-off weight must
include not only passengers” weight but also the fuel weight. A helicopter can fly at most
five times per day but it must be checked before each flight and it must stop for an hour
in the middle of the day to give the pilot a lunch break.

The helicopters do not belong to the oil company. They are operated by other compa-
nies which maintain different contracts regarding flight hour costs for each helicopter. The



airports do not share helicopters, i.e. each one has its own fleet. This allows solving one
separated problem for each base, as long as there are not platforms that are to be served
in a same departure time from both bases, what is indeed the case.

Furthermore, the following rules must be respected: the number of landings for each
passenger and for each flight is limited; at each platform, the aggregate number of landings
for flights with the same departure time is also limited. The built flight schedule must
indicate helicopter, route, passengers and duration of each flight.

This Helicopter Routing Problem is NP-hard. It is so since it can be easily seen as a
special case of the Split Delivery Vehicle Routing Problem (SDVRP) (Dror and Trudeau
[4], Dror, Laporte and Trudeau [3]) which was proved to be NP-Hard when the vehicle
capacities are 3 or more by Archetti, Mansini and Speranza [1]. In the SDVRP the fleet is
homogeneous, there is just one departure time and, most of all, there are only deliveries.

In the 1980’s, Galvao and Guimaraes [5] worked on this problem in Petrobras. They
proposed an algorithm for building routes of the same departure time which used different
strategies to create the routes and at the end selected the set of routes with lower costs. In
their algorithm, the fleet used in each departure time had to be chosen by the user, which
is not the case in the present work. Their paper addresses also the issue of the relationship
among users, project technical staff and the management group inside the oil company.
They depict a situation where users feared loosing their jobs and management feared the
quality of the automated solutions would not match the ones obtained by hand. Fifteen
years later, there has been a clear evolution in the understanding of optimization tools and
its potentiality. Despite that, management considers critical the testing to make sure the
solutions obtaining by an automated tool can be implemented and are at least as good as
the ones assembled by hand.

Another similar experience can be found in a Dutch gas exploration company, Tjissen [§]
used SDVRP to work on another helicopter routing real case where helicopter capacity was
constant and for each passenger left on an offshore platform there was another to go back to
the continent. Good solutions were found using rounding procedures to linear programming
solutions and heuristics.

Hernadvolgyi [6] used as an example another particular case of helicopter routing prob-
lem when all demands can be carried out by just one helicopter. The problem studied
was the Sequential Ordering Problem, which can be seen as a version of the Asymmetric
Traveling Salesman Problem with precedence constraints.

This text is organized as follows. Next section presents a MIP model with exponentially
many variables and discusses column generation along with a procedure to find new prof-
itable columns. Section 3 describes the new column generation based heuristic algorithm
and the last section presents computational experiments and draw some insights on this
difficult problem.

2 Model and Column Generation

The HRP can be formulated as a mixed integer program (MIP). Sets of constraints con-
trolling demand satisfaction and offshore platforms (and airports) utilization (number of
landings) can be labeled as global constraints. On the other hand, sets of constraints en-
forcing the helicopters’ sequence of flights to have flights with a limited duration, respecting
its weight capacity throughout the flights, with a maximum number of total landings and



landings per passenger. Also, they have a given maximum number of flights, maximum
number of hours to fly and a pilot lunch break. These are all local constraints since they
regard one single helicopter’s day of work.

A multicommodity flow MIP is presented in Moreno et al.[7] providing a formulation
with polynomially many variables and constraints. As should be expected, this formula-
tion usually has a large integrality gap and is even unlikely to provide reasonable integer
feasible solutions. Nevertheless, it gives a straight forward formulation with exponentially
many variables by applying Dantzig-Wolfe decomposition and treating the local constraints
implicitly in the construction of the helicopters’ sequence of flights. This decomposition is
further explored in [7] by considering the pilot lunch break requirement and the number of
daily flights and hours per helicopter as global constraints and having variables associated
to flights in each departure time. This last formulation was exploited in [7] to produce
a heuristic algorithm. It proceeded by constructing, a priori, two large sets of variables.
The first large set of variables focus on constructing sequence of flights for each helicopter,
i.e. sets of flights that can be combined to form a helicopter work day. The second set
contains sets of flights that are solutions for the demands associated to each departure
time. The resulting MIP is solved by an integer programming commercial package to find
a good integer solution to which is subsequently applied a local search procedure.

We proceed by presenting the formulation with exponentially many variables in [7],
showing its drawbacks and how to overcome them to obtain an effective column generation
procedure. Next, we present the column generation subproblem and present a procedure
to find negative reduced cost columns.

2.1 A MIP Model with Exponentially Many Variables

Let the problem parameters be as follows. Denote by D the set of demands and by T
the set of flight departure times. Let H be the set of helicopters, L be the set of all
locations and P be the subset of L containing all platforms. Denote by D; the subset
of the demands in D to be attended in departure time ¢. Time is discretized in order to
control the lifetime of each helicopter. Finally, let I denote the set of all time instants
considered. The cardinality of the sets L, D, T, P, H and [ is represented by nl, nd, nt,
np, nh and ni, respectively. The following values are also part of the input data: g4 is the
number of passengers of a demand d to be transported; ¢ is the cost of each minute of
flight for helicopter h; mcy is the maximum capacity of helicopter h; Ip is the maximum
number of landings per passenger; [ f is the maximum number of landings per flight; mL is
the maximum number of landings in each departure time on the same platform; mF is the
maximum number of flights of each helicopter in a day; mH is the maximum number of
hours of flight of each helicopter in a day; Mis the cost of leaving a passenger unattended;
and [c is the cost of each landing.

This model has three sets of variables. The first one is associated with all possible flights
each helicopter can perform in each of the departure times. The second contains variables
representing unsatisfied demand, and the last set represents the instants in which the pilots
begin their lunch breaks. The flights are specified by their cost and row coefficients. The
variables are xp¢, the flight f of helicopter h (binary), sq, the number of passengers of
demand d not transported (integer), and zp;, the lunch break of the pilot of helicopter h
starting at instant j (binary). The coefficient agp,¢ represents the number of passengers of
demand d transported by the flight f of helicopter h (integer), while dfy, is the duration



(in minutes) of the flight f of helicopter h (integer) and pfy¢ is the number of platform
landings of flight f of helicopter h (integer).

To ease the understanding of the model, denote by Fj;, (resp. J;;) the set composed
by the indices of all flights f (resp. lunch breaks j) that uses the helicopter h at instant 4.
Also, let K, be the set containing all flights of departure time ¢ with landing on platform
p. The MIP model follows:

nh nf nd
min > Y (ep.dfpp +lepfng).xny + 3 M.sq (0)
h=1 f=1 d=1
s. t.
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ony € {0,1} Vj € {1.ni},Vh € {L.ak}  (8)
Sq integer 9)

The objective function (0) minimizes the total cost, which is the weighted sum of numbers
of passengers not transported, total of landings and the of our of flight for each helicopter.
Constraints (1) control the passengers transported from each demand. Constraints (2) are
used to ensure that at most mf flights with departure time ¢ will land on platform p.
Constraints (3) state that at most one flight or one lunch break of each helicopter h can
occur at each instant i. The helicopters’ stop for the pilot’s lunch break are assured by
constraints (4). The number of flights and hours of flight of the helicopters are limited
by constraints (5) and (6), respectively. Finally, (7), (8) and (9) specify the domain of
variables x, z and s, respectively.

The number of possible valid flights is exponential and, in this problem, it is difficult
to foresee which flights are used in good solutions and to decide how some demands, which



may have 2 or 3 times more passengers than the helicopter capacity, shall be split. This
gives an idea of the difficulties in deriving algorithms to implicit take care of all the possible
flights. This is so since not only the flight routes must be determined but also the quantities
of passengers that are attended from each demand. In fact, it seems that this partitioning
aspect of the problem is much more critical than the routing aspect.

When tailoring a column generation procedure to implicitly generate columns with
smallest reduced costs we can observe the following difficulty. The dual variables associated
with constraints (1) can be positive or not. If they are, they give the same weight to all
passengers in a same demand. This implies that in any optimal solution of the column
generation subproblem a route of a helicopter will obtain smallest reduced cost by taking
the as much as possible passengers of the demands ordered by largest associated dual
variable. In other word, a column with a coefficient smaller than the full demand will occur
only when the capacity available when the demand is chosen is limited by the helicopter
remaining capacity. This suggests that the required columns have little chance of being
generated.

We overcome this problem by splitting constraints (1). The new constraints (1) are
associated to each passenger. They follow:

nh nf
> adnf-Thf+ g =1 Vd € {1..nd}Vk S {1..qd} (1/)
h=1 f=1

In fact, each passenger is now treated as an independent demand and, consequently, the
coefficient agp,¢ only indicates whether the corresponding passenger is in the flight or not
(0 or 1). Although this enlarge the problem size, it hard to notice any increase in the linear
programming resolution time when solving the real problems in the Campos basin, where
the number of demands were around 150 while the number of passengers ranged from 700
to 1100.

2.2 Column Generation Subproblem

Let 74, aupt, Bhi, Vh, on be the dual variables associated to constraints (1), (2), (3), (5) ad
(6) respectively. Let also R(hf), IR(hf) and D(hf) denote the set of platforms visited,
the set of instants during which flight f occurs and set of demands flight f of helicopter
h carried, respectively. The reduced cost of a variable xj; is then given by the sum of
Cr, which depends only the route of the helicopter, with ¢p which is determined by the
passengers (demands) it takes. They can be expressed as:

cr = ondfnpt+ Y, (e—ap)— > Bui—h — dfnpon
pER(hf) iEIR(hf)

and

deD(hf)

The column generation subproblem is to find the route and the demands it attends that
minimize ¢,y = cr+¢p and satisfies the local constraints, which are: (i) number of landings
per passenger shall not exceed Ip; (ii) the landings per flight cannot be more than [f; and



(iii) given the duration of the flight, the maximum number of passengers at any moment
in the flight cannot exceed mpy, (df )(< mep).

This problem is clearly NP-hard, since the Prize Collecting TSP (Balas [2]) corresponds
to the special case where the constraints are disregarded and all dual variables, except for
the w4 ones, are zero. Since the focus on this work is on finding good primal feasible
solution to the HRP, we next describe an heuristic procedure.

2.3 Column Generation Procedure

Our procedure is designed to take full advantage of the particular HRP we are addressing.
Most of the departure times have a small number of platforms to serve, usually around 10,
although there is one departure time which often has 30 or more platforms to serve. In this
sense, we observe that once the route is defined, the optimal passenger assignment can be
found by solving a Minimum Cost Flow (MCF) problem which has a small network. We
add to that the fact that the maximum number of landings allowed in any flight (mL) is
set to 6 for safety reasons at the oil company.

The resulting procedure tackles the problem by separately searching for flights serving a
fixed number of platforms which, in the present case, is at most 5. It proceeds by generating
all possible route with 1 and 2 offshore landings. For 3, 4 and 5 offshore landings it starts
from an initial random route and performs a local search by exploring a neighborhood
consisting of exchanging the platform at each position in the route with all other platforms
to be served in the same departure time. The procedure stops at the local search as long
as it finds a column with negative reduced cost. When this is not the case, a Tabu Search
procedure with this same neighborhood is started. Note that a MCF problem is solved for
each neighbor route that is explored, what is sometimes time consuming. Figure 1 depicts
this procedure.

The procedure above presented is invoked for each helicopter at each departure time.
The MCF model completes its description. The network has two distinct sets of nodes:
stop nodes and demand nodes. The stop nodes are created for each point of the flight route
(base, platforms and back to the base). Each flight segment between consecutive landing
points is represented by an arc from its origin to destination. These arcs control the flow
of passengers in the route and, for this reason, arc capacities are exactly the capacity of
helicopter in this route (which depends on the flight duration).

Demand nodes are created for each passenger that can travel in this flight. Two arcs
leave each demand node. One goes to the node corresponding to the origin of demand
on the route with cost equal to the demand reduced cost. The other arc goes to demand
destination with infinite capacity and zero cost. Then, in this model, each passenger can
achieve its destination either going from its demand node to his origin node traversing route
segments of the flight, when served by the helicopter, or going directly from the demand
node to the destination point when not. Only passengers with associated dual variables
in (1) (negative cost) need to be considered. To obtain flight with as much passengers as
possible, we consider the zero valued dual variables of (1) as slightly positive.

Figure 2 illustrates the MCF model. Each demand node (D1 to D5) has an incoming
flow of one passenger. The outgoing flow of one unit is at his destination node. Helicopter
capacities are controlled by route segment arcs linking two stop nodes. The optimum flow
gives the smallest ¢p for a given route. The flight reduced cost is then computed by adding
the previously known value cg.



01  Procedure Fixed Size Route Procedure (initial flight){

02 best flight « initial flight

03 while best flight cost is improved {

04 for each iteration {

05 best neighbor « null

06 for each neighbor {

07 Update route

08 Select passengers solving a MCF problem
09 Compute neighbor cost

10 if cost is better than best neighbor and
11 move is not tabu

12 best neighbor <« current neighbor
13 }

14 if current flight is better than best neighbor {
15 if cost is negative

16 return current flight

17 else

18 set last move as tabu

19 }

20 current flight <« best neighbor

21 if current flight is better than best flight

22 best flight < current flight

23 }

24 }

25 return best flight

26}

Figure 1: Fixed Size Route Procedure
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Figure 2: Minimum Cost Flow problem network example.



3 Column Generation Based Heuristic Algorithm

The approach used to solve this HRP problem is to decompose the problem into the
generation of single flights for each helicopter available and the assembly of these flights.
This assembly is done by an integer programming model that constructs each helicopter’s
sequence of flights assuring that it meets all the time related constraints while covering the
transportation requests.

The algorithm starts by generating two reasonable size set of columns as in [7]. One set
is composed by sets of flights that compose helicopters’ days of work and the other contains
sets of flights that completely serve departure times. The restricted integer program (RIP)
is initialized with these two sets of columns. At this point, the column generation phase is
initiated. The linear programming relaxation of the RIP is repeatedly solved to optimality.
At each iteration the dual values are obtained and used in the column generation procedure
above described. One column is generated for each departure time - helicopter pair. Since
these columns tend to be similar to different helicopters and also be extremal, a tailing
effect is likely to appear. Moreover, this algorithm aims at finding good integer solutions
not optimal ones.

With this in mind, we add a random column generation procedure. It proceeds by
randomly creating flights for randomly selected helicopters following the guidelines of the
second set of columns created at the initialization, i.e. in sets that serve completely each
of the departure times. A fixed number of flights is generated and the 20% with smallest
reduce cost is added to the RIP. Also, to allow complementing flights to be added to the
RIP, we add columns from both column generation procedures even when the reduced cost
is positive.

The column generation phase is interrupted after 15 minutes and an attempt to find
good, or even optimal, solutions to the current RIP is made for 5 minutes. Even when
we provide an initial solution to the problem, it converges very slowly and integer solution
are hard to find. To ease the solution of the MIP, we relax constraints (1) from equality
(partitioning) to greater or equal inequalities (covering). In other words, we allow over
satisfying the demand. However, with this change in the model, it is necessary to check if
there are extra passengers in the solution.

The generation of a valid flight schedule is done by heuristic algorithms. Some post
processing is necessary in order to remove exceeded demand. Finally, heuristic algorithms
are also used to check if further local improvements are possible.

The post optimization removes extra passengers by efficiently by solving a mixed integer
program. Since helicopters and its routes are already defined, the model is used to remove
each exceeded demand of the flights in the same departure time. Let Dy, and F; be the set
of passengers and the set of flights of departure time ¢. For each flight in F}, consider Sy
and Ly the sets of route segments and set of landing points, respectively. Let D{ be the
subset of demands that can be transported by the flight f, D{ * be the subset of demands
that traverses the segment s the flight f and D{ 'be the subset of demands which origin or
destination occurs in the landing point [ of flight f. This model has the following variables:
kqr indicates if demand d travels in flight f (binary); wy indicates whether the flight f
occurs (binary); and yy; indicates if the flight f lands on platform [ of its route (binary).
Additional parameters are capy and cy, the capacity and cost of flight f, respectively. The



model is as follows:

min Y Y —Mkg +crwyp+leyyp (10)
deDy feF
s. t.
kdf —capy.yp < 0 Vd € Dgl (11)
kdf —capr.wyf < 0 Vd € Dg (12)
Z k‘df < qq Vd € Dy (13)
feEF:
> kdf < capy Vs € Sf,Vf € F, (14)
deD]*
wy € {0,1} Vf e F, (15)
yp € {0,1} Vie Ly, VfeF (16)
kqs integer (17)

The objective function maximizes the number of passengers attended and minimizes the

number of flights and landings. Constraints (11) guarantees that the landing point [ of the
flight f will be visited if and only if there are passengers leaving or going to this point. In
the same manner (12) keeps or eliminates flight f. Constraints (13) assures the removal of
extra passengers since it controls the number of passengers of each demand in all flights.
Constraints (4) force the number of passengers in each route segment to be lesser than
helicopter capacity.

Observe that flights and landings of the solution are kept in schedule only if they are
necessary. Besides there can be lots of changes in the solution since passengers can travel
in any flight that visits his origin and destination. The algorithm obtain the best possible
distribution of passengers given the solution flights. This problem can be efficiently solved
to optimality in a few seconds. Figure 3 presents a pseudo-code of the complete heuristic
algorithm.

01  Procedure CG-HRP {

02 Generates random flights

03 while the time limit is not reached {

04 while the 15 minutes bound is not achieved {
05 Solve LP relaxation

06 Execute Column Generation Procedure
07 Execute Random Column Generation
08 }

09 Execute MIP solver algorithm

10 }

11 Execute post optimization

12 return

13}

Figure 3: Column Generation Heuristic for the HRP

4 Experiments

The algorithm was tested on 8 real instances taken from the year of 2005. The tests
were executed on a Pentium IV 3.0 GHz with 1 GB of RAM. Mixed integer programs



were solved using ILOG CPLEX 9.0. All data used on testing was obtained during the
algorithm tests phase at the oil company. Particularly, during the period in which these
instances were extracted, there were not enough helicopters available to satisfy company
demand. For this reason, some instances were very difficult to solve, and there were too
many unattended passengers. There are 4 instances for each of the two bases. Each base
has a distinct demand and fleet profile and the respective problems are quite different.
Base 2 (Sao Tomé) only has passengers’ exchanges, i.e. for each person going from base
to platform there is another person from platform to the base. These exchange demands
usually consist in large groups of passengers of a few platforms, and just few helicopters
are necessary to transport them. The operation in base 1 (Macaé¢) has more demands with
fewer passengers. Therefore, more platforms are visited in each flight departure time and
helicopters typically have longer routes and lower occupancy. The instances of base 1 have
an average of 780 passengers, 16 helicopters and requires more than 70 landings, while
these number for base 2 are 600, 6 and 25.

The objective function cost assigns 1 million per passenger unattended, 10 thousand
per landing, and roughly 10 units per minute of flight (it depends on the helicopter used
and range from 4 to 20).

In the tests reported, the first results were obtained by the algorithm in Moreno et
al.[7]. There is just one call to MIP solver with CPU time limit of 40 minutes and no
column generation. The other results refer to the proposed algorithm CG-HRP with CPU
time limits of 40 and 60 minutes and calls to the MIP solver limited to 5 minutes. In
all tests the number of columns generated either in the initialization or in the random
column generation procedure is proportional to the sum of the products of the number of
helicopters, number of departure times and the number of platforms to be attended in each
departure time. Table 1 presents the optimal LP value, the best integer solution found
after the post processing Best Int and the total number of columns # Cols of the final
RIP for each instance and each of three runs of the algorithms, respectively.

It can be observed that the previous approach is quite unstable. The MIP problem
converges very slowly and

It can be observed that the previous approach is quite unstable relying on the post
processing to find solutions that are even better than its LP relaxation. As expected the
column generation approach always improved the LP relaxation value although in 2 out
of the 8 instances it failed to obtain the best integer solutions. Nevertheless the CG-HRP
best integer values either beat badly the previous approach or loose by little. This suggests
that investing in column generation and perhaps in branching is the way to go.

| Inst. H LP value | Best Int ‘ #Cols || LP value | Best Int ‘ #Cols || LP value | Best Int | #Cols
1 11,936,902 45,976,604 | 83148 9,684,181 59,016,398 | 22686 9,089,961 35,056,338 | 28101
2 885,537 35,863,655 | 49987 864,796 41,945,838 | 25089 856,076 12,904,707 | 33476
3 866,562 14,886,517 | 70848 862,918 1,908,200 | 26427 861,631 908,082 | 32063
4 763,848 27,681,760 | 61794 760,726 8,814,358 | 28183 759,217 8,814,358 | 39955
5 28,037,579 381,355 | 13012 322,319 17,401,650 | 8728 322,175 381,303 | 15641
6 16,837,377 19,431,951 | 12702 13,028,145 39,391,543 | 10781 12,704,151 22,401,593 | 19305
7 46,637,814 40,339,832 | 12894 || 39,290,050 50,340,030 | 12062 | 39,289,194 42,329,967 | 23612
8 100,261,168 | 102,277,756 | 12959 || 92,657,672 | 102,257,841 | 18703 || 92,657,655 | 100,247,778 | 24726

Table 1: Results for the previous algorithm (40’), CG-HRP (40’) and
CG-HRP (60°)
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