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t. This work presents a 
olumn generation based heuristi
 algorithm for theproblem of planning the �ights of heli
opters to attend transport requests among airportsin the 
ontinent and o�shore platforms on the Campos basin for the Brazilian State OilCompany (Petrobras). We start from a previous MIP based heuristi
 for this Heli
opterRouting Problem and add 
olumn generation pro
edures that improve the solution quality.This is done by extending the earlier formulation and providing an algorithm to �nd optimalpassenger allo
ation to �xed heli
opter routes. A post optimization pro
edure 
ompletesthe resulting algorithm, whi
h is more stable and allows 
onsistently �nding solutions thatimproves the safety and the 
ost of the one done by the oil 
ompany experts.Keywords: Heli
opter Routing Problem, Mixed integer programming, Column genera-tion.Resumo. Este trabalho apresenta um algoritmo heurísti
o baseado em geração de 
olunaspara o problema de planejamento de v�os de heli
ópteros entre o 
ontinente e as platafor-mas da Ba
ia de Campos para transportar trabalhadores da Petrobrás. O algoritmo 
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1 Introdu
tionHeli
opter routing problems often 
omprise pi
kups and deliveries of passengers. This 
har-a
teristi
 brings a pa
king aspe
t di�
ult to 
apture to a routing problem. The parti
ularHeli
opter Routing problem here addressed generalizes most similar routing problems inthe sense that it 
onsiders the a
tivities of a �eet of air
rafts during a day 
omprisingseveral subsequent routing problems. Moreno et al.[7℄ proposed to �nd quality solutionsto this problem with a heuristi
 algorithm that uses a mixed integer program formulationwith exponentially many 
olumns. This heuristi
 
onsists of 
onstru
ting, a priori, twolarge sets of 
olumns obtaining a good integer solution to the resulting MIP and applyinga lo
al sear
h to �nd its best solution. No 
olumn generation was used. The purpose ofthe present work is to this gap and provide a more stable algorithm.The resulting algorithm was developed for the Brazilian State Oil Company (Petrobras)and is now operating at the �ight 
ontrol 
enter in the 
ity of Ma
aé. This 
ompany
on
entrates most of its oil exploration and produ
tion a
tivities in an o�shore area - theCampos Basin. The personnel transportation to and from drilling platforms in this area(42,000 passengers per month) is done by a mixed �eet of 35 heli
opters with an averageof 70 �ights per day. Planning these �ights is a di�
ult task sin
e transport requests mustbe attended on time, there are usually few heli
opters available per day and many safetypoli
ies must be observed.The Heli
opter Routing Problem (HRP) ta
kled in this work is the planning the �ightsfor ea
h day, whi
h gives as output the a
tivities of ea
h heli
opter (the sequen
e of stops,the time they o

urred, and the passengers that boarded and unboarded). We now give a�rst des
ription of it.Given a set of lo
ations 
omposed by bases (or airports) and o�shore platforms, a setof heli
opters and a set of transport requests whi
h are distributed over departure timesasso
iated to a list of platforms that 
an be served, the Heli
opter Routing Problem 
onsistsin building a �ight s
hedule satisfying the following 
onstraints: (i) ea
h �ight starts and�nishes in a base; (ii) the heli
opters 
apa
ity 
an not be ex
eeded during ea
h �ight; (iii)a heli
opter must have a preparation time between �ights; the goal is to minimize the total
ost.In the 
ase studied, the basin has 2 airports and 65 o�shore lo
ations. Platform 
rews
an demand for transportation for one of a few (nine) �ight departure times and theirrequests are either (partially) attended on time or ignored, sin
e delays are not allowed.These passengers 
an go from base to platform, from platform to base or from one platformto another. There are few passengers that 
hange from one platform to another. They areusually grouped into a longer �ight with spe
ial rules su
h as more landings and o�shorerefueling and are treated apart. There is a high 
ost for leaving passengers unattended,be
ause oil exploration a
tivities 
an be 
ompromised.The heli
opters are paid per hour in �ight and have distin
t sizes and 
osts, i.e. the�eet is not homogeneous. The heli
opter 
apa
ity (number of passengers that 
an betransported) depends on the length of the �y be
ause the allowed take-o� weight mustin
lude not only passengers� weight but also the fuel weight. A heli
opter 
an �y at most�ve times per day but it must be 
he
ked before ea
h �ight and it must stop for an hourin the middle of the day to give the pilot a lun
h break.The heli
opters do not belong to the oil 
ompany. They are operated by other 
ompa-nies whi
h maintain di�erent 
ontra
ts regarding �ight hour 
osts for ea
h heli
opter. The1



airports do not share heli
opters, i.e. ea
h one has its own �eet. This allows solving oneseparated problem for ea
h base, as long as there are not platforms that are to be servedin a same departure time from both bases, what is indeed the 
ase.Furthermore, the following rules must be respe
ted: the number of landings for ea
hpassenger and for ea
h �ight is limited; at ea
h platform, the aggregate number of landingsfor �ights with the same departure time is also limited. The built �ight s
hedule mustindi
ate heli
opter, route, passengers and duration of ea
h �ight.This Heli
opter Routing Problem is NP-hard. It is so sin
e it 
an be easily seen as aspe
ial 
ase of the Split Delivery Vehi
le Routing Problem (SDVRP) (Dror and Trudeau[4℄, Dror, Laporte and Trudeau [3℄) whi
h was proved to be NP-Hard when the vehi
le
apa
ities are 3 or more by Ar
hetti, Mansini and Speranza [1℄. In the SDVRP the �eet ishomogeneous, there is just one departure time and, most of all, there are only deliveries.In the 1980's, Galvão and Guimarães [5℄ worked on this problem in Petrobras. Theyproposed an algorithm for building routes of the same departure time whi
h used di�erentstrategies to 
reate the routes and at the end sele
ted the set of routes with lower 
osts. Intheir algorithm, the �eet used in ea
h departure time had to be 
hosen by the user, whi
his not the 
ase in the present work. Their paper addresses also the issue of the relationshipamong users, proje
t te
hni
al sta� and the management group inside the oil 
ompany.They depi
t a situation where users feared loosing their jobs and management feared thequality of the automated solutions would not mat
h the ones obtained by hand. Fifteenyears later, there has been a 
lear evolution in the understanding of optimization tools andits potentiality. Despite that, management 
onsiders 
riti
al the testing to make sure thesolutions obtaining by an automated tool 
an be implemented and are at least as good asthe ones assembled by hand.Another similar experien
e 
an be found in a Dut
h gas exploration 
ompany, Tjissen [8℄used SDVRP to work on another heli
opter routing real 
ase where heli
opter 
apa
ity was
onstant and for ea
h passenger left on an o�shore platform there was another to go ba
k tothe 
ontinent. Good solutions were found using rounding pro
edures to linear programmingsolutions and heuristi
s.Hernadvolgyi [6℄ used as an example another parti
ular 
ase of heli
opter routing prob-lem when all demands 
an be 
arried out by just one heli
opter. The problem studiedwas the Sequential Ordering Problem, whi
h 
an be seen as a version of the Asymmetri
Traveling Salesman Problem with pre
eden
e 
onstraints.This text is organized as follows. Next se
tion presents a MIP model with exponentiallymany variables and dis
usses 
olumn generation along with a pro
edure to �nd new prof-itable 
olumns. Se
tion 3 des
ribes the new 
olumn generation based heuristi
 algorithmand the last se
tion presents 
omputational experiments and draw some insights on thisdi�
ult problem.2 Model and Column GenerationThe HRP 
an be formulated as a mixed integer program (MIP). Sets of 
onstraints 
on-trolling demand satisfa
tion and o�shore platforms (and airports) utilization (number oflandings) 
an be labeled as global 
onstraints. On the other hand, sets of 
onstraints en-for
ing the heli
opters' sequen
e of �ights to have �ights with a limited duration, respe
tingits weight 
apa
ity throughout the �ights, with a maximum number of total landings and2



landings per passenger. Also, they have a given maximum number of �ights, maximumnumber of hours to �y and a pilot lun
h break. These are all lo
al 
onstraints sin
e theyregard one single heli
opter's day of work.A multi
ommodity �ow MIP is presented in Moreno et al.[7℄ providing a formulationwith polynomially many variables and 
onstraints. As should be expe
ted, this formula-tion usually has a large integrality gap and is even unlikely to provide reasonable integerfeasible solutions. Nevertheless, it gives a straight forward formulation with exponentiallymany variables by applying Dantzig-Wolfe de
omposition and treating the lo
al 
onstraintsimpli
itly in the 
onstru
tion of the heli
opters' sequen
e of �ights. This de
omposition isfurther explored in [7℄ by 
onsidering the pilot lun
h break requirement and the number ofdaily �ights and hours per heli
opter as global 
onstraints and having variables asso
iatedto �ights in ea
h departure time. This last formulation was exploited in [7℄ to produ
ea heuristi
 algorithm. It pro
eeded by 
onstru
ting, a priori, two large sets of variables.The �rst large set of variables fo
us on 
onstru
ting sequen
e of �ights for ea
h heli
opter,i.e. sets of �ights that 
an be 
ombined to form a heli
opter work day. The se
ond set
ontains sets of �ights that are solutions for the demands asso
iated to ea
h departuretime. The resulting MIP is solved by an integer programming 
ommer
ial pa
kage to �nda good integer solution to whi
h is subsequently applied a lo
al sear
h pro
edure.We pro
eed by presenting the formulation with exponentially many variables in [7℄,showing its drawba
ks and how to over
ome them to obtain an e�e
tive 
olumn generationpro
edure. Next, we present the 
olumn generation subproblem and present a pro
edureto �nd negative redu
ed 
ost 
olumns.2.1 A MIP Model with Exponentially Many VariablesLet the problem parameters be as follows. Denote by D the set of demands and by Tthe set of �ight departure times. Let H be the set of heli
opters, L be the set of alllo
ations and P be the subset of L 
ontaining all platforms. Denote by Dt the subsetof the demands in D to be attended in departure time t. Time is dis
retized in order to
ontrol the lifetime of ea
h heli
opter. Finally, let I denote the set of all time instants
onsidered. The 
ardinality of the sets L, D, T , P , H and I is represented by nl, nd, nt,
np, nh and ni, respe
tively. The following values are also part of the input data: qd is thenumber of passengers of a demand d to be transported; ch is the 
ost of ea
h minute of�ight for heli
opter h; mch is the maximum 
apa
ity of heli
opter h; lp is the maximumnumber of landings per passenger; lf is the maximum number of landings per �ight; mL isthe maximum number of landings in ea
h departure time on the same platform; mF is themaximum number of �ights of ea
h heli
opter in a day; mH is the maximum number ofhours of �ight of ea
h heli
opter in a day; M is the 
ost of leaving a passenger unattended;and lc is the 
ost of ea
h landing.This model has three sets of variables. The �rst one is asso
iated with all possible �ightsea
h heli
opter 
an perform in ea
h of the departure times. The se
ond 
ontains variablesrepresenting unsatis�ed demand, and the last set represents the instants in whi
h the pilotsbegin their lun
h breaks. The �ights are spe
i�ed by their 
ost and row 
oe�
ients. Thevariables are xhf , the �ight f of heli
opter h (binary), sd, the number of passengers ofdemand d not transported (integer), and zhj , the lun
h break of the pilot of heli
opter hstarting at instant j (binary). The 
oe�
ient adhf represents the number of passengers ofdemand d transported by the �ight f of heli
opter h (integer), while dfhf is the duration3



(in minutes) of the �ight f of heli
opter h (integer) and pfhf is the number of platformlandings of �ight f of heli
opter h (integer).To ease the understanding of the model, denote by Fih (resp. Jih) the set 
omposedby the indi
es of all �ights f (resp. lun
h breaks j) that uses the heli
opter h at instant i.Also, let Kpt be the set 
ontaining all �ights of departure time t with landing on platform
p. The MIP model follows:

min
nh∑

h=1

nf∑
f=1

(ch.dfhf + lc.pfhf ).xhf +
nd∑

d=1
M.sd (0)s. t.

nh∑
h=1

nf∑
f=1

adhf .xhf + sd = qd ∀d ∈ {1..nd} (1)

nh∑
h=1

∑
f∈Kpt

xhf ≤ mL ∀p ∈ {1..np},∀t ∈ {1..nt} (2)

∑
f∈Fih

xhf +
∑

j∈Iih

zhj ≤ 1 ∀i ∈ {1..ni},∀h ∈ {1..nh} (3)

∑
j∈Jih

zhj = 1 ∀h ∈ {1..nh} (4)

nf∑
f=1

xhf ≤ mFh ∀h ∈ {1..nh} (5)

nf∑
f=1

dfhf .xhf ≤ mHh ∀h ∈ {1..nh} (6)

xhf ∈ {0, 1} ∀h ∈ {1..nh},∀f ∈ {1..nf} (7)

zhj ∈ {0, 1} ∀j ∈ {1..ni},∀h ∈ {1..nh} (8)

sd integer (9)The obje
tive fun
tion (0) minimizes the total 
ost, whi
h is the weighted sum of numbersof passengers not transported, total of landings and the of our of �ight for ea
h heli
opter.Constraints (1) 
ontrol the passengers transported from ea
h demand. Constraints (2) areused to ensure that at most mf �ights with departure time t will land on platform p.Constraints (3) state that at most one �ight or one lun
h break of ea
h heli
opter h 
ano

ur at ea
h instant i. The heli
opters' stop for the pilot's lun
h break are assured by
onstraints (4). The number of �ights and hours of �ight of the heli
opters are limitedby 
onstraints (5) and (6), respe
tively. Finally, (7), (8) and (9) spe
ify the domain ofvariables x, z and s, respe
tively.The number of possible valid �ights is exponential and, in this problem, it is di�
ultto foresee whi
h �ights are used in good solutions and to de
ide how some demands, whi
h4



may have 2 or 3 times more passengers than the heli
opter 
apa
ity, shall be split. Thisgives an idea of the di�
ulties in deriving algorithms to impli
it take 
are of all the possible�ights. This is so sin
e not only the �ight routes must be determined but also the quantitiesof passengers that are attended from ea
h demand. In fa
t, it seems that this partitioningaspe
t of the problem is mu
h more 
riti
al than the routing aspe
t.When tailoring a 
olumn generation pro
edure to impli
itly generate 
olumns withsmallest redu
ed 
osts we 
an observe the following di�
ulty. The dual variables asso
iatedwith 
onstraints (1) 
an be positive or not. If they are, they give the same weight to allpassengers in a same demand. This implies that in any optimal solution of the 
olumngeneration subproblem a route of a heli
opter will obtain smallest redu
ed 
ost by takingthe as mu
h as possible passengers of the demands ordered by largest asso
iated dualvariable. In other word, a 
olumn with a 
oe�
ient smaller than the full demand will o

uronly when the 
apa
ity available when the demand is 
hosen is limited by the heli
opterremaining 
apa
ity. This suggests that the required 
olumns have little 
han
e of beinggenerated.We over
ome this problem by splitting 
onstraints (1). The new 
onstraints (1') areasso
iated to ea
h passenger. They follow:
nh∑

h=1

nf∑
f=1

adhf .xhf + sd = 1 ∀d ∈ {1..nd}∀k ∈ {1..qd} (1′)In fa
t, ea
h passenger is now treated as an independent demand and, 
onsequently, the
oe�
ient adhf only indi
ates whether the 
orresponding passenger is in the �ight or not(0 or 1). Although this enlarge the problem size, it hard to noti
e any in
rease in the linearprogramming resolution time when solving the real problems in the Campos basin, wherethe number of demands were around 150 while the number of passengers ranged from 700to 1100.2.2 Column Generation SubproblemLet πd, αpt, βhi, γh, σh be the dual variables asso
iated to 
onstraints (1), (2), (3), (5) ad(6) respe
tively. Let also R(hf), IR(hf) and D(hf) denote the set of platforms visited,the set of instants during whi
h �ight f o

urs and set of demands �ight f of heli
opter
h 
arried, respe
tively. The redu
ed 
ost of a variable xhf is then given by the sum of
cR, whi
h depends only the route of the heli
opter, with cD whi
h is determined by thepassengers (demands) it takes. They 
an be expressed as:

cR = ch.dfhf +
∑

p∈R(hf)

(lc − αpt) −
∑

i∈IR(hf)

βhi − γh − dfhf .σhand
cD =

∑

d∈D(hf)

−πd.The 
olumn generation subproblem is to �nd the route and the demands it attends thatminimize chf = cR+cD and satis�es the lo
al 
onstraints, whi
h are: (i) number of landingsper passenger shall not ex
eed lp; (ii) the landings per �ight 
annot be more than lf ; and5



(iii) given the duration of the �ight, the maximum number of passengers at any momentin the �ight 
annot ex
eed mph(df)(≤ mch).This problem is 
learly NP-hard, sin
e the Prize Colle
ting TSP (Balas [2℄) 
orrespondsto the spe
ial 
ase where the 
onstraints are disregarded and all dual variables, ex
ept forthe πd ones, are zero. Sin
e the fo
us on this work is on �nding good primal feasiblesolution to the HRP, we next des
ribe an heuristi
 pro
edure.2.3 Column Generation Pro
edureOur pro
edure is designed to take full advantage of the parti
ular HRP we are addressing.Most of the departure times have a small number of platforms to serve, usually around 10,although there is one departure time whi
h often has 30 or more platforms to serve. In thissense, we observe that on
e the route is de�ned, the optimal passenger assignment 
an befound by solving a Minimum Cost Flow (MCF) problem whi
h has a small network. Weadd to that the fa
t that the maximum number of landings allowed in any �ight (mL) isset to 6 for safety reasons at the oil 
ompany.The resulting pro
edure ta
kles the problem by separately sear
hing for �ights serving a�xed number of platforms whi
h, in the present 
ase, is at most 5. It pro
eeds by generatingall possible route with 1 and 2 o�shore landings. For 3, 4 and 5 o�shore landings it startsfrom an initial random route and performs a lo
al sear
h by exploring a neighborhood
onsisting of ex
hanging the platform at ea
h position in the route with all other platformsto be served in the same departure time. The pro
edure stops at the lo
al sear
h as longas it �nds a 
olumn with negative redu
ed 
ost. When this is not the 
ase, a Tabu Sear
hpro
edure with this same neighborhood is started. Note that a MCF problem is solved forea
h neighbor route that is explored, what is sometimes time 
onsuming. Figure 1 depi
tsthis pro
edure.The pro
edure above presented is invoked for ea
h heli
opter at ea
h departure time.The MCF model 
ompletes its des
ription. The network has two distin
t sets of nodes:stop nodes and demand nodes. The stop nodes are 
reated for ea
h point of the �ight route(base, platforms and ba
k to the base). Ea
h �ight segment between 
onse
utive landingpoints is represented by an ar
 from its origin to destination. These ar
s 
ontrol the �owof passengers in the route and, for this reason, ar
 
apa
ities are exa
tly the 
apa
ity ofheli
opter in this route (whi
h depends on the �ight duration).Demand nodes are 
reated for ea
h passenger that 
an travel in this �ight. Two ar
sleave ea
h demand node. One goes to the node 
orresponding to the origin of demandon the route with 
ost equal to the demand redu
ed 
ost. The other ar
 goes to demanddestination with in�nite 
apa
ity and zero 
ost. Then, in this model, ea
h passenger 
ana
hieve its destination either going from its demand node to his origin node traversing routesegments of the �ight, when served by the heli
opter, or going dire
tly from the demandnode to the destination point when not. Only passengers with asso
iated dual variablesin (1) (negative 
ost) need to be 
onsidered. To obtain �ight with as mu
h passengers aspossible, we 
onsider the zero valued dual variables of (1) as slightly positive.Figure 2 illustrates the MCF model. Ea
h demand node (D1 to D5) has an in
oming�ow of one passenger. The outgoing �ow of one unit is at his destination node. Heli
opter
apa
ities are 
ontrolled by route segment ar
s linking two stop nodes. The optimum �owgives the smallest cD for a given route. The �ight redu
ed 
ost is then 
omputed by addingthe previously known value cR. 6



01 Pro
edure Fixed Size Route Pro
edure (initial �ight){02 best �ight ← initial �ight03 while best �ight 
ost is improved {04 for ea
h iteration {05 best neighbor ← null06 for ea
h neighbor {07 Update route08 Sele
t passengers solving a MCF problem09 Compute neighbor 
ost10 if 
ost is better than best neighbor and11 move is not tabu12 best neighbor ← 
urrent neighbor13 }14 if 
urrent �ight is better than best neighbor {15 if 
ost is negative16 return 
urrent �ight17 else18 set last move as tabu19 }20 
urrent �ight ← best neighbor21 if 
urrent �ight is better than best �ight22 best �ight ← 
urrent �ight23 }24 }25 return best �ight26 } Figure 1: Fixed Size Route Pro
edure
D1 

B P1 

D2 D3 

P2 

D4 

P3 

D5 

B 

(0,∞,-πD1) (0, ∞,0) (0, ∞,0) 

(0, ∞, -πD2) 

(0, ∞,0) (0, ∞,0) (0, ∞,0) 

(0, ∞, -πD3) (0, ∞, -πD4) (0, ∞, -πD5) 

(0,Caph,0) (0,Caph,0) (0,Caph,0) (0,Caph,0) 

1 1 1 1 1 

1 1 3 Figure 2: Minimum Cost Flow problem network example.
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3 Column Generation Based Heuristi
 AlgorithmThe approa
h used to solve this HRP problem is to de
ompose the problem into thegeneration of single �ights for ea
h heli
opter available and the assembly of these �ights.This assembly is done by an integer programming model that 
onstru
ts ea
h heli
opter'ssequen
e of �ights assuring that it meets all the time related 
onstraints while 
overing thetransportation requests.The algorithm starts by generating two reasonable size set of 
olumns as in [7℄. One setis 
omposed by sets of �ights that 
ompose heli
opters' days of work and the other 
ontainssets of �ights that 
ompletely serve departure times. The restri
ted integer program (RIP)is initialized with these two sets of 
olumns. At this point, the 
olumn generation phase isinitiated. The linear programming relaxation of the RIP is repeatedly solved to optimality.At ea
h iteration the dual values are obtained and used in the 
olumn generation pro
edureabove des
ribed. One 
olumn is generated for ea
h departure time - heli
opter pair. Sin
ethese 
olumns tend to be similar to di�erent heli
opters and also be extremal, a tailinge�e
t is likely to appear. Moreover, this algorithm aims at �nding good integer solutionsnot optimal ones.With this in mind, we add a random 
olumn generation pro
edure. It pro
eeds byrandomly 
reating �ights for randomly sele
ted heli
opters following the guidelines of these
ond set of 
olumns 
reated at the initialization, i.e. in sets that serve 
ompletely ea
hof the departure times. A �xed number of �ights is generated and the 20% with smallestredu
e 
ost is added to the RIP. Also, to allow 
omplementing �ights to be added to theRIP, we add 
olumns from both 
olumn generation pro
edures even when the redu
ed 
ostis positive.The 
olumn generation phase is interrupted after 15 minutes and an attempt to �ndgood, or even optimal, solutions to the 
urrent RIP is made for 5 minutes. Even whenwe provide an initial solution to the problem, it 
onverges very slowly and integer solutionare hard to �nd. To ease the solution of the MIP, we relax 
onstraints (1) from equality(partitioning) to greater or equal inequalities (
overing). In other words, we allow oversatisfying the demand. However, with this 
hange in the model, it is ne
essary to 
he
k ifthere are extra passengers in the solution.The generation of a valid �ight s
hedule is done by heuristi
 algorithms. Some postpro
essing is ne
essary in order to remove ex
eeded demand. Finally, heuristi
 algorithmsare also used to 
he
k if further lo
al improvements are possible.The post optimization removes extra passengers by e�
iently by solving a mixed integerprogram. Sin
e heli
opters and its routes are already de�ned, the model is used to removeea
h ex
eeded demand of the �ights in the same departure time. Let Dt, and Ft be the setof passengers and the set of �ights of departure time t. For ea
h �ight in Ft, 
onsider Sfand Lf the sets of route segments and set of landing points, respe
tively. Let D
f
t be thesubset of demands that 
an be transported by the �ight f , D

fs
t be the subset of demandsthat traverses the segment s the �ight f and D

fl
t be the subset of demands whi
h origin ordestination o

urs in the landing point l of �ight f . This model has the following variables:

kdf indi
ates if demand d travels in �ight f (binary); wf indi
ates whether the �ight fo

urs (binary); and yfl indi
ates if the �ight f lands on platform l of its route (binary).Additional parameters are capf and cf , the 
apa
ity and 
ost of �ight f , respe
tively. The8



model is as follows:
min

∑
d∈Dt

∑
f∈Ft

−M.kdf + cf .wf + lc.yfl (10)s. t.
kdf − capf .yfl ≤ 0 ∀d ∈ D

fl
t (11)

kdf − capf .wf ≤ 0 ∀d ∈ D
f
t (12)∑

f∈Ft

kdf ≤ qd ∀d ∈ Dt (13)

∑

d∈D
fs
t

kdf ≤ capf ∀s ∈ Sf ,∀f ∈ Ft (14)

wf ∈ {0, 1} ∀f ∈ Ft (15)
yfl ∈ {0, 1} ∀l ∈ Lf ,∀f ∈ Ft (16)
kdf integer (17)The obje
tive fun
tion maximizes the number of passengers attended and minimizes thenumber of �ights and landings. Constraints (11) guarantees that the landing point l of the�ight f will be visited if and only if there are passengers leaving or going to this point. Inthe same manner (12) keeps or eliminates �ight f . Constraints (13) assures the removal ofextra passengers sin
e it 
ontrols the number of passengers of ea
h demand in all �ights.Constraints (4) for
e the number of passengers in ea
h route segment to be lesser thanheli
opter 
apa
ity.Observe that �ights and landings of the solution are kept in s
hedule only if they arene
essary. Besides there 
an be lots of 
hanges in the solution sin
e passengers 
an travelin any �ight that visits his origin and destination. The algorithm obtain the best possibledistribution of passengers given the solution �ights. This problem 
an be e�
iently solvedto optimality in a few se
onds. Figure 3 presents a pseudo-
ode of the 
omplete heuristi
algorithm.01 Pro
edure CG-HRP {02 Generates random �ights03 while the time limit is not rea
hed {04 while the 15 minutes bound is not a
hieved {05 Solve LP relaxation06 Exe
ute Column Generation Pro
edure07 Exe
ute Random Column Generation08 }09 Exe
ute MIP solver algorithm10 }11 Exe
ute post optimization12 return13 } Figure 3: Column Generation Heuristi
 for the HRP4 ExperimentsThe algorithm was tested on 8 real instan
es taken from the year of 2005. The testswere exe
uted on a Pentium IV 3.0 GHz with 1 GB of RAM. Mixed integer programs9



were solved using ILOG CPLEX 9.0. All data used on testing was obtained during thealgorithm tests phase at the oil 
ompany. Parti
ularly, during the period in whi
h theseinstan
es were extra
ted, there were not enough heli
opters available to satisfy 
ompanydemand. For this reason, some instan
es were very di�
ult to solve, and there were toomany unattended passengers. There are 4 instan
es for ea
h of the two bases. Ea
h basehas a distin
t demand and �eet pro�le and the respe
tive problems are quite di�erent.Base 2 (São Tomé) only has passengers' ex
hanges, i.e. for ea
h person going from baseto platform there is another person from platform to the base. These ex
hange demandsusually 
onsist in large groups of passengers of a few platforms, and just few heli
optersare ne
essary to transport them. The operation in base 1 (Ma
aé) has more demands withfewer passengers. Therefore, more platforms are visited in ea
h �ight departure time andheli
opters typi
ally have longer routes and lower o

upan
y. The instan
es of base 1 havean average of 780 passengers, 16 heli
opters and requires more than 70 landings, whilethese number for base 2 are 600, 6 and 25.The obje
tive fun
tion 
ost assigns 1 million per passenger unattended, 10 thousandper landing, and roughly 10 units per minute of �ight (it depends on the heli
opter usedand range from 4 to 20).In the tests reported, the �rst results were obtained by the algorithm in Moreno etal.[7℄. There is just one 
all to MIP solver with CPU time limit of 40 minutes and no
olumn generation. The other results refer to the proposed algorithm CG-HRP with CPUtime limits of 40 and 60 minutes and 
alls to the MIP solver limited to 5 minutes. Inall tests the number of 
olumns generated either in the initialization or in the random
olumn generation pro
edure is proportional to the sum of the produ
ts of the number ofheli
opters, number of departure times and the number of platforms to be attended in ea
hdeparture time. Table 1 presents the optimal LP value, the best integer solution foundafter the post pro
essing Best Int and the total number of 
olumns # Cols of the �nalRIP for ea
h instan
e and ea
h of three runs of the algorithms, respe
tively.It 
an be observed that the previous approa
h is quite unstable. The MIP problem
onverges very slowly andIt 
an be observed that the previous approa
h is quite unstable relying on the postpro
essing to �nd solutions that are even better than its LP relaxation. As expe
ted the
olumn generation approa
h always improved the LP relaxation value although in 2 outof the 8 instan
es it failed to obtain the best integer solutions. Nevertheless the CG-HRPbest integer values either beat badly the previous approa
h or loose by little. This suggeststhat investing in 
olumn generation and perhaps in bran
hing is the way to go.
Inst. LP value Best Int #Cols LP value Best Int #Cols LP value Best Int #Cols1 11,936,902 45,976,604 83148 9,684,181 59,016,398 22686 9,089,961 35,056,338 281012 885,537 35,863,655 49987 864,796 41,945,838 25089 856,076 12,904,707 334763 866,562 14,886,517 70848 862,918 1,908,200 26427 861,631 908,082 320634 763,848 27,681,760 61794 760,726 8,814,358 28183 759,217 8,814,358 399555 28,037,579 381,355 13012 322,319 17,401,650 8728 322,175 381,303 156416 16,837,377 19,431,951 12702 13,028,145 39,391,543 10781 12,704,151 22,401,593 193057 46,637,814 40,339,832 12894 39,290,050 50,340,030 12062 39,289,194 42,329,967 236128 100,261,168 102,277,756 12959 92,657,672 102,257,841 18703 92,657,655 100,247,778 24726Table 1: Results for the previous algorithm (40'), CG-HRP (40') andCG-HRP (60')10



Referen
es[1℄ Ar
hetti C., Mansini R., Speranza M. G.: The Split Delivery Vehi
le Routing Problemwith Small Capa
ity, Te
hni
al Report, Dipartimento Metodi Quantitativi - Universitadegli studi di Bres
ia, 2001.[2℄ Balas E.: The Prize Colle
ting Traveling Salesman Problem, Networks 19 (1989) 621-636[3℄ Dror M., Laporte G., Trudeau P.: Vehi
le routing with split deliveries, Dis
rete AppliedMathemati
s, 50: 239-254, 1994.[4℄ Dror M., Trudeau P.: Savings by Split Delivery Routing, Transportation S
ien
e, 23:141-145, 1989.[5℄ Galvão R., Guimarães J.: The 
ontrol of heli
opter operations in the Brazilian oilindustry: Issues in the design and implementation of a 
omputerized system, EuropeanJournal of Operational Resear
h, 49: 266-270, 1990.[6℄ Hernadvolgyi I.: Automati
ally Generated Lower Bounds for Sear
h. PhD thesis, Uni-versity of Ottawa, 2004.[7℄ Moreno, L., Poggi de Aragão, M., Porto, O., Reis, M.L.: Planning O�shore Heli
opterFlights on the Campos Basin. XXXVII Simpósio Brasileiro de Pesquisa Opera
ional(SBPO), Gramado, Brazil, 2005.[8℄ Tijssen G. A.: Theoreti
al and pra
ti
al aspe
ts of linear optimization. PhD thesis,Rijksuniversiteit Groningen, 2000.

11


