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1 Departamento de Engenharia de Produção - Universidade Federal Fluminenselorenza�inf.pu-rio.br, poggi�inf.pu-rio.br, uhoa�produao.u�.brAbstrat. This work presents a olumn generation based heuristi algorithm for theproblem of planning the �ights of heliopters to attend transport requests among airportsin the ontinent and o�shore platforms on the Campos basin for the Brazilian State OilCompany (Petrobras). We start from a previous MIP based heuristi for this HeliopterRouting Problem and add olumn generation proedures that improve the solution quality.This is done by extending the earlier formulation and providing an algorithm to �nd optimalpassenger alloation to �xed heliopter routes. A post optimization proedure ompletesthe resulting algorithm, whih is more stable and allows onsistently �nding solutions thatimproves the safety and the ost of the one done by the oil ompany experts.Keywords: Heliopter Routing Problem, Mixed integer programming, Column genera-tion.Resumo. Este trabalho apresenta um algoritmo heurístio baseado em geração de olunaspara o problema de planejamento de v�os de heliópteros entre o ontinente e as platafor-mas da Baia de Campos para transportar trabalhadores da Petrobrás. O algoritmo omeçaom uma heurístia para o Problema de Roteamento de Heliópteros baseada em progra-mação inteira mista e utiliza geração de olunas para melhorar a qualidade da solução.Isto é feito estendendo a formulação anterior e aresentando um algoritmo para enontrara melhor aloação de passageiros para rotas de v�o �xas. Um pós-proessamento om-pleta o algoritmo heurístio, que é mais estável e permite enontrar soluções que garantemsegurança e reduzem os ustos obtidos pelos planejadores de v�o da ompanhia.Palavras-have: Problema de Roteamento de Heliópteros, Programação inteira mista,Geração de olunas.1This work was partly supported by the "National Counil for Sienti� and Tehnologial Develop-ment" (CNPq) whih is maintained by the Brazilian Government.
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1 IntrodutionHeliopter routing problems often omprise pikups and deliveries of passengers. This har-ateristi brings a paking aspet di�ult to apture to a routing problem. The partiularHeliopter Routing problem here addressed generalizes most similar routing problems inthe sense that it onsiders the ativities of a �eet of airrafts during a day omprisingseveral subsequent routing problems. Moreno et al.[7℄ proposed to �nd quality solutionsto this problem with a heuristi algorithm that uses a mixed integer program formulationwith exponentially many olumns. This heuristi onsists of onstruting, a priori, twolarge sets of olumns obtaining a good integer solution to the resulting MIP and applyinga loal searh to �nd its best solution. No olumn generation was used. The purpose ofthe present work is to this gap and provide a more stable algorithm.The resulting algorithm was developed for the Brazilian State Oil Company (Petrobras)and is now operating at the �ight ontrol enter in the ity of Maaé. This ompanyonentrates most of its oil exploration and prodution ativities in an o�shore area - theCampos Basin. The personnel transportation to and from drilling platforms in this area(42,000 passengers per month) is done by a mixed �eet of 35 heliopters with an averageof 70 �ights per day. Planning these �ights is a di�ult task sine transport requests mustbe attended on time, there are usually few heliopters available per day and many safetypoliies must be observed.The Heliopter Routing Problem (HRP) takled in this work is the planning the �ightsfor eah day, whih gives as output the ativities of eah heliopter (the sequene of stops,the time they ourred, and the passengers that boarded and unboarded). We now give a�rst desription of it.Given a set of loations omposed by bases (or airports) and o�shore platforms, a setof heliopters and a set of transport requests whih are distributed over departure timesassoiated to a list of platforms that an be served, the Heliopter Routing Problem onsistsin building a �ight shedule satisfying the following onstraints: (i) eah �ight starts and�nishes in a base; (ii) the heliopters apaity an not be exeeded during eah �ight; (iii)a heliopter must have a preparation time between �ights; the goal is to minimize the totalost.In the ase studied, the basin has 2 airports and 65 o�shore loations. Platform rewsan demand for transportation for one of a few (nine) �ight departure times and theirrequests are either (partially) attended on time or ignored, sine delays are not allowed.These passengers an go from base to platform, from platform to base or from one platformto another. There are few passengers that hange from one platform to another. They areusually grouped into a longer �ight with speial rules suh as more landings and o�shorerefueling and are treated apart. There is a high ost for leaving passengers unattended,beause oil exploration ativities an be ompromised.The heliopters are paid per hour in �ight and have distint sizes and osts, i.e. the�eet is not homogeneous. The heliopter apaity (number of passengers that an betransported) depends on the length of the �y beause the allowed take-o� weight mustinlude not only passengers� weight but also the fuel weight. A heliopter an �y at most�ve times per day but it must be heked before eah �ight and it must stop for an hourin the middle of the day to give the pilot a lunh break.The heliopters do not belong to the oil ompany. They are operated by other ompa-nies whih maintain di�erent ontrats regarding �ight hour osts for eah heliopter. The1



airports do not share heliopters, i.e. eah one has its own �eet. This allows solving oneseparated problem for eah base, as long as there are not platforms that are to be servedin a same departure time from both bases, what is indeed the ase.Furthermore, the following rules must be respeted: the number of landings for eahpassenger and for eah �ight is limited; at eah platform, the aggregate number of landingsfor �ights with the same departure time is also limited. The built �ight shedule mustindiate heliopter, route, passengers and duration of eah �ight.This Heliopter Routing Problem is NP-hard. It is so sine it an be easily seen as aspeial ase of the Split Delivery Vehile Routing Problem (SDVRP) (Dror and Trudeau[4℄, Dror, Laporte and Trudeau [3℄) whih was proved to be NP-Hard when the vehileapaities are 3 or more by Arhetti, Mansini and Speranza [1℄. In the SDVRP the �eet ishomogeneous, there is just one departure time and, most of all, there are only deliveries.In the 1980's, Galvão and Guimarães [5℄ worked on this problem in Petrobras. Theyproposed an algorithm for building routes of the same departure time whih used di�erentstrategies to reate the routes and at the end seleted the set of routes with lower osts. Intheir algorithm, the �eet used in eah departure time had to be hosen by the user, whihis not the ase in the present work. Their paper addresses also the issue of the relationshipamong users, projet tehnial sta� and the management group inside the oil ompany.They depit a situation where users feared loosing their jobs and management feared thequality of the automated solutions would not math the ones obtained by hand. Fifteenyears later, there has been a lear evolution in the understanding of optimization tools andits potentiality. Despite that, management onsiders ritial the testing to make sure thesolutions obtaining by an automated tool an be implemented and are at least as good asthe ones assembled by hand.Another similar experiene an be found in a Duth gas exploration ompany, Tjissen [8℄used SDVRP to work on another heliopter routing real ase where heliopter apaity wasonstant and for eah passenger left on an o�shore platform there was another to go bak tothe ontinent. Good solutions were found using rounding proedures to linear programmingsolutions and heuristis.Hernadvolgyi [6℄ used as an example another partiular ase of heliopter routing prob-lem when all demands an be arried out by just one heliopter. The problem studiedwas the Sequential Ordering Problem, whih an be seen as a version of the AsymmetriTraveling Salesman Problem with preedene onstraints.This text is organized as follows. Next setion presents a MIP model with exponentiallymany variables and disusses olumn generation along with a proedure to �nd new prof-itable olumns. Setion 3 desribes the new olumn generation based heuristi algorithmand the last setion presents omputational experiments and draw some insights on thisdi�ult problem.2 Model and Column GenerationThe HRP an be formulated as a mixed integer program (MIP). Sets of onstraints on-trolling demand satisfation and o�shore platforms (and airports) utilization (number oflandings) an be labeled as global onstraints. On the other hand, sets of onstraints en-foring the heliopters' sequene of �ights to have �ights with a limited duration, respetingits weight apaity throughout the �ights, with a maximum number of total landings and2



landings per passenger. Also, they have a given maximum number of �ights, maximumnumber of hours to �y and a pilot lunh break. These are all loal onstraints sine theyregard one single heliopter's day of work.A multiommodity �ow MIP is presented in Moreno et al.[7℄ providing a formulationwith polynomially many variables and onstraints. As should be expeted, this formula-tion usually has a large integrality gap and is even unlikely to provide reasonable integerfeasible solutions. Nevertheless, it gives a straight forward formulation with exponentiallymany variables by applying Dantzig-Wolfe deomposition and treating the loal onstraintsimpliitly in the onstrution of the heliopters' sequene of �ights. This deomposition isfurther explored in [7℄ by onsidering the pilot lunh break requirement and the number ofdaily �ights and hours per heliopter as global onstraints and having variables assoiatedto �ights in eah departure time. This last formulation was exploited in [7℄ to produea heuristi algorithm. It proeeded by onstruting, a priori, two large sets of variables.The �rst large set of variables fous on onstruting sequene of �ights for eah heliopter,i.e. sets of �ights that an be ombined to form a heliopter work day. The seond setontains sets of �ights that are solutions for the demands assoiated to eah departuretime. The resulting MIP is solved by an integer programming ommerial pakage to �nda good integer solution to whih is subsequently applied a loal searh proedure.We proeed by presenting the formulation with exponentially many variables in [7℄,showing its drawbaks and how to overome them to obtain an e�etive olumn generationproedure. Next, we present the olumn generation subproblem and present a proedureto �nd negative redued ost olumns.2.1 A MIP Model with Exponentially Many VariablesLet the problem parameters be as follows. Denote by D the set of demands and by Tthe set of �ight departure times. Let H be the set of heliopters, L be the set of allloations and P be the subset of L ontaining all platforms. Denote by Dt the subsetof the demands in D to be attended in departure time t. Time is disretized in order toontrol the lifetime of eah heliopter. Finally, let I denote the set of all time instantsonsidered. The ardinality of the sets L, D, T , P , H and I is represented by nl, nd, nt,
np, nh and ni, respetively. The following values are also part of the input data: qd is thenumber of passengers of a demand d to be transported; ch is the ost of eah minute of�ight for heliopter h; mch is the maximum apaity of heliopter h; lp is the maximumnumber of landings per passenger; lf is the maximum number of landings per �ight; mL isthe maximum number of landings in eah departure time on the same platform; mF is themaximum number of �ights of eah heliopter in a day; mH is the maximum number ofhours of �ight of eah heliopter in a day; M is the ost of leaving a passenger unattended;and lc is the ost of eah landing.This model has three sets of variables. The �rst one is assoiated with all possible �ightseah heliopter an perform in eah of the departure times. The seond ontains variablesrepresenting unsatis�ed demand, and the last set represents the instants in whih the pilotsbegin their lunh breaks. The �ights are spei�ed by their ost and row oe�ients. Thevariables are xhf , the �ight f of heliopter h (binary), sd, the number of passengers ofdemand d not transported (integer), and zhj , the lunh break of the pilot of heliopter hstarting at instant j (binary). The oe�ient adhf represents the number of passengers ofdemand d transported by the �ight f of heliopter h (integer), while dfhf is the duration3



(in minutes) of the �ight f of heliopter h (integer) and pfhf is the number of platformlandings of �ight f of heliopter h (integer).To ease the understanding of the model, denote by Fih (resp. Jih) the set omposedby the indies of all �ights f (resp. lunh breaks j) that uses the heliopter h at instant i.Also, let Kpt be the set ontaining all �ights of departure time t with landing on platform
p. The MIP model follows:

min
nh∑

h=1

nf∑
f=1

(ch.dfhf + lc.pfhf ).xhf +
nd∑

d=1
M.sd (0)s. t.

nh∑
h=1

nf∑
f=1

adhf .xhf + sd = qd ∀d ∈ {1..nd} (1)

nh∑
h=1

∑
f∈Kpt

xhf ≤ mL ∀p ∈ {1..np},∀t ∈ {1..nt} (2)

∑
f∈Fih

xhf +
∑

j∈Iih

zhj ≤ 1 ∀i ∈ {1..ni},∀h ∈ {1..nh} (3)

∑
j∈Jih

zhj = 1 ∀h ∈ {1..nh} (4)

nf∑
f=1

xhf ≤ mFh ∀h ∈ {1..nh} (5)

nf∑
f=1

dfhf .xhf ≤ mHh ∀h ∈ {1..nh} (6)

xhf ∈ {0, 1} ∀h ∈ {1..nh},∀f ∈ {1..nf} (7)

zhj ∈ {0, 1} ∀j ∈ {1..ni},∀h ∈ {1..nh} (8)

sd integer (9)The objetive funtion (0) minimizes the total ost, whih is the weighted sum of numbersof passengers not transported, total of landings and the of our of �ight for eah heliopter.Constraints (1) ontrol the passengers transported from eah demand. Constraints (2) areused to ensure that at most mf �ights with departure time t will land on platform p.Constraints (3) state that at most one �ight or one lunh break of eah heliopter h anour at eah instant i. The heliopters' stop for the pilot's lunh break are assured byonstraints (4). The number of �ights and hours of �ight of the heliopters are limitedby onstraints (5) and (6), respetively. Finally, (7), (8) and (9) speify the domain ofvariables x, z and s, respetively.The number of possible valid �ights is exponential and, in this problem, it is di�ultto foresee whih �ights are used in good solutions and to deide how some demands, whih4



may have 2 or 3 times more passengers than the heliopter apaity, shall be split. Thisgives an idea of the di�ulties in deriving algorithms to impliit take are of all the possible�ights. This is so sine not only the �ight routes must be determined but also the quantitiesof passengers that are attended from eah demand. In fat, it seems that this partitioningaspet of the problem is muh more ritial than the routing aspet.When tailoring a olumn generation proedure to impliitly generate olumns withsmallest redued osts we an observe the following di�ulty. The dual variables assoiatedwith onstraints (1) an be positive or not. If they are, they give the same weight to allpassengers in a same demand. This implies that in any optimal solution of the olumngeneration subproblem a route of a heliopter will obtain smallest redued ost by takingthe as muh as possible passengers of the demands ordered by largest assoiated dualvariable. In other word, a olumn with a oe�ient smaller than the full demand will ouronly when the apaity available when the demand is hosen is limited by the heliopterremaining apaity. This suggests that the required olumns have little hane of beinggenerated.We overome this problem by splitting onstraints (1). The new onstraints (1') areassoiated to eah passenger. They follow:
nh∑

h=1

nf∑
f=1

adhf .xhf + sd = 1 ∀d ∈ {1..nd}∀k ∈ {1..qd} (1′)In fat, eah passenger is now treated as an independent demand and, onsequently, theoe�ient adhf only indiates whether the orresponding passenger is in the �ight or not(0 or 1). Although this enlarge the problem size, it hard to notie any inrease in the linearprogramming resolution time when solving the real problems in the Campos basin, wherethe number of demands were around 150 while the number of passengers ranged from 700to 1100.2.2 Column Generation SubproblemLet πd, αpt, βhi, γh, σh be the dual variables assoiated to onstraints (1), (2), (3), (5) ad(6) respetively. Let also R(hf), IR(hf) and D(hf) denote the set of platforms visited,the set of instants during whih �ight f ours and set of demands �ight f of heliopter
h arried, respetively. The redued ost of a variable xhf is then given by the sum of
cR, whih depends only the route of the heliopter, with cD whih is determined by thepassengers (demands) it takes. They an be expressed as:

cR = ch.dfhf +
∑

p∈R(hf)

(lc − αpt) −
∑

i∈IR(hf)

βhi − γh − dfhf .σhand
cD =

∑

d∈D(hf)

−πd.The olumn generation subproblem is to �nd the route and the demands it attends thatminimize chf = cR+cD and satis�es the loal onstraints, whih are: (i) number of landingsper passenger shall not exeed lp; (ii) the landings per �ight annot be more than lf ; and5



(iii) given the duration of the �ight, the maximum number of passengers at any momentin the �ight annot exeed mph(df)(≤ mch).This problem is learly NP-hard, sine the Prize Colleting TSP (Balas [2℄) orrespondsto the speial ase where the onstraints are disregarded and all dual variables, exept forthe πd ones, are zero. Sine the fous on this work is on �nding good primal feasiblesolution to the HRP, we next desribe an heuristi proedure.2.3 Column Generation ProedureOur proedure is designed to take full advantage of the partiular HRP we are addressing.Most of the departure times have a small number of platforms to serve, usually around 10,although there is one departure time whih often has 30 or more platforms to serve. In thissense, we observe that one the route is de�ned, the optimal passenger assignment an befound by solving a Minimum Cost Flow (MCF) problem whih has a small network. Weadd to that the fat that the maximum number of landings allowed in any �ight (mL) isset to 6 for safety reasons at the oil ompany.The resulting proedure takles the problem by separately searhing for �ights serving a�xed number of platforms whih, in the present ase, is at most 5. It proeeds by generatingall possible route with 1 and 2 o�shore landings. For 3, 4 and 5 o�shore landings it startsfrom an initial random route and performs a loal searh by exploring a neighborhoodonsisting of exhanging the platform at eah position in the route with all other platformsto be served in the same departure time. The proedure stops at the loal searh as longas it �nds a olumn with negative redued ost. When this is not the ase, a Tabu Searhproedure with this same neighborhood is started. Note that a MCF problem is solved foreah neighbor route that is explored, what is sometimes time onsuming. Figure 1 depitsthis proedure.The proedure above presented is invoked for eah heliopter at eah departure time.The MCF model ompletes its desription. The network has two distint sets of nodes:stop nodes and demand nodes. The stop nodes are reated for eah point of the �ight route(base, platforms and bak to the base). Eah �ight segment between onseutive landingpoints is represented by an ar from its origin to destination. These ars ontrol the �owof passengers in the route and, for this reason, ar apaities are exatly the apaity ofheliopter in this route (whih depends on the �ight duration).Demand nodes are reated for eah passenger that an travel in this �ight. Two arsleave eah demand node. One goes to the node orresponding to the origin of demandon the route with ost equal to the demand redued ost. The other ar goes to demanddestination with in�nite apaity and zero ost. Then, in this model, eah passenger anahieve its destination either going from its demand node to his origin node traversing routesegments of the �ight, when served by the heliopter, or going diretly from the demandnode to the destination point when not. Only passengers with assoiated dual variablesin (1) (negative ost) need to be onsidered. To obtain �ight with as muh passengers aspossible, we onsider the zero valued dual variables of (1) as slightly positive.Figure 2 illustrates the MCF model. Eah demand node (D1 to D5) has an inoming�ow of one passenger. The outgoing �ow of one unit is at his destination node. Heliopterapaities are ontrolled by route segment ars linking two stop nodes. The optimum �owgives the smallest cD for a given route. The �ight redued ost is then omputed by addingthe previously known value cR. 6



01 Proedure Fixed Size Route Proedure (initial �ight){02 best �ight ← initial �ight03 while best �ight ost is improved {04 for eah iteration {05 best neighbor ← null06 for eah neighbor {07 Update route08 Selet passengers solving a MCF problem09 Compute neighbor ost10 if ost is better than best neighbor and11 move is not tabu12 best neighbor ← urrent neighbor13 }14 if urrent �ight is better than best neighbor {15 if ost is negative16 return urrent �ight17 else18 set last move as tabu19 }20 urrent �ight ← best neighbor21 if urrent �ight is better than best �ight22 best �ight ← urrent �ight23 }24 }25 return best �ight26 } Figure 1: Fixed Size Route Proedure
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3 Column Generation Based Heuristi AlgorithmThe approah used to solve this HRP problem is to deompose the problem into thegeneration of single �ights for eah heliopter available and the assembly of these �ights.This assembly is done by an integer programming model that onstruts eah heliopter'ssequene of �ights assuring that it meets all the time related onstraints while overing thetransportation requests.The algorithm starts by generating two reasonable size set of olumns as in [7℄. One setis omposed by sets of �ights that ompose heliopters' days of work and the other ontainssets of �ights that ompletely serve departure times. The restrited integer program (RIP)is initialized with these two sets of olumns. At this point, the olumn generation phase isinitiated. The linear programming relaxation of the RIP is repeatedly solved to optimality.At eah iteration the dual values are obtained and used in the olumn generation proedureabove desribed. One olumn is generated for eah departure time - heliopter pair. Sinethese olumns tend to be similar to di�erent heliopters and also be extremal, a tailinge�et is likely to appear. Moreover, this algorithm aims at �nding good integer solutionsnot optimal ones.With this in mind, we add a random olumn generation proedure. It proeeds byrandomly reating �ights for randomly seleted heliopters following the guidelines of theseond set of olumns reated at the initialization, i.e. in sets that serve ompletely eahof the departure times. A �xed number of �ights is generated and the 20% with smallestredue ost is added to the RIP. Also, to allow omplementing �ights to be added to theRIP, we add olumns from both olumn generation proedures even when the redued ostis positive.The olumn generation phase is interrupted after 15 minutes and an attempt to �ndgood, or even optimal, solutions to the urrent RIP is made for 5 minutes. Even whenwe provide an initial solution to the problem, it onverges very slowly and integer solutionare hard to �nd. To ease the solution of the MIP, we relax onstraints (1) from equality(partitioning) to greater or equal inequalities (overing). In other words, we allow oversatisfying the demand. However, with this hange in the model, it is neessary to hek ifthere are extra passengers in the solution.The generation of a valid �ight shedule is done by heuristi algorithms. Some postproessing is neessary in order to remove exeeded demand. Finally, heuristi algorithmsare also used to hek if further loal improvements are possible.The post optimization removes extra passengers by e�iently by solving a mixed integerprogram. Sine heliopters and its routes are already de�ned, the model is used to removeeah exeeded demand of the �ights in the same departure time. Let Dt, and Ft be the setof passengers and the set of �ights of departure time t. For eah �ight in Ft, onsider Sfand Lf the sets of route segments and set of landing points, respetively. Let D
f
t be thesubset of demands that an be transported by the �ight f , D

fs
t be the subset of demandsthat traverses the segment s the �ight f and D

fl
t be the subset of demands whih origin ordestination ours in the landing point l of �ight f . This model has the following variables:

kdf indiates if demand d travels in �ight f (binary); wf indiates whether the �ight fours (binary); and yfl indiates if the �ight f lands on platform l of its route (binary).Additional parameters are capf and cf , the apaity and ost of �ight f , respetively. The8



model is as follows:
min

∑
d∈Dt

∑
f∈Ft

−M.kdf + cf .wf + lc.yfl (10)s. t.
kdf − capf .yfl ≤ 0 ∀d ∈ D

fl
t (11)

kdf − capf .wf ≤ 0 ∀d ∈ D
f
t (12)∑

f∈Ft

kdf ≤ qd ∀d ∈ Dt (13)

∑

d∈D
fs
t

kdf ≤ capf ∀s ∈ Sf ,∀f ∈ Ft (14)

wf ∈ {0, 1} ∀f ∈ Ft (15)
yfl ∈ {0, 1} ∀l ∈ Lf ,∀f ∈ Ft (16)
kdf integer (17)The objetive funtion maximizes the number of passengers attended and minimizes thenumber of �ights and landings. Constraints (11) guarantees that the landing point l of the�ight f will be visited if and only if there are passengers leaving or going to this point. Inthe same manner (12) keeps or eliminates �ight f . Constraints (13) assures the removal ofextra passengers sine it ontrols the number of passengers of eah demand in all �ights.Constraints (4) fore the number of passengers in eah route segment to be lesser thanheliopter apaity.Observe that �ights and landings of the solution are kept in shedule only if they areneessary. Besides there an be lots of hanges in the solution sine passengers an travelin any �ight that visits his origin and destination. The algorithm obtain the best possibledistribution of passengers given the solution �ights. This problem an be e�iently solvedto optimality in a few seonds. Figure 3 presents a pseudo-ode of the omplete heuristialgorithm.01 Proedure CG-HRP {02 Generates random �ights03 while the time limit is not reahed {04 while the 15 minutes bound is not ahieved {05 Solve LP relaxation06 Exeute Column Generation Proedure07 Exeute Random Column Generation08 }09 Exeute MIP solver algorithm10 }11 Exeute post optimization12 return13 } Figure 3: Column Generation Heuristi for the HRP4 ExperimentsThe algorithm was tested on 8 real instanes taken from the year of 2005. The testswere exeuted on a Pentium IV 3.0 GHz with 1 GB of RAM. Mixed integer programs9



were solved using ILOG CPLEX 9.0. All data used on testing was obtained during thealgorithm tests phase at the oil ompany. Partiularly, during the period in whih theseinstanes were extrated, there were not enough heliopters available to satisfy ompanydemand. For this reason, some instanes were very di�ult to solve, and there were toomany unattended passengers. There are 4 instanes for eah of the two bases. Eah basehas a distint demand and �eet pro�le and the respetive problems are quite di�erent.Base 2 (São Tomé) only has passengers' exhanges, i.e. for eah person going from baseto platform there is another person from platform to the base. These exhange demandsusually onsist in large groups of passengers of a few platforms, and just few helioptersare neessary to transport them. The operation in base 1 (Maaé) has more demands withfewer passengers. Therefore, more platforms are visited in eah �ight departure time andheliopters typially have longer routes and lower oupany. The instanes of base 1 havean average of 780 passengers, 16 heliopters and requires more than 70 landings, whilethese number for base 2 are 600, 6 and 25.The objetive funtion ost assigns 1 million per passenger unattended, 10 thousandper landing, and roughly 10 units per minute of �ight (it depends on the heliopter usedand range from 4 to 20).In the tests reported, the �rst results were obtained by the algorithm in Moreno etal.[7℄. There is just one all to MIP solver with CPU time limit of 40 minutes and noolumn generation. The other results refer to the proposed algorithm CG-HRP with CPUtime limits of 40 and 60 minutes and alls to the MIP solver limited to 5 minutes. Inall tests the number of olumns generated either in the initialization or in the randomolumn generation proedure is proportional to the sum of the produts of the number ofheliopters, number of departure times and the number of platforms to be attended in eahdeparture time. Table 1 presents the optimal LP value, the best integer solution foundafter the post proessing Best Int and the total number of olumns # Cols of the �nalRIP for eah instane and eah of three runs of the algorithms, respetively.It an be observed that the previous approah is quite unstable. The MIP problemonverges very slowly andIt an be observed that the previous approah is quite unstable relying on the postproessing to �nd solutions that are even better than its LP relaxation. As expeted theolumn generation approah always improved the LP relaxation value although in 2 outof the 8 instanes it failed to obtain the best integer solutions. Nevertheless the CG-HRPbest integer values either beat badly the previous approah or loose by little. This suggeststhat investing in olumn generation and perhaps in branhing is the way to go.
Inst. LP value Best Int #Cols LP value Best Int #Cols LP value Best Int #Cols1 11,936,902 45,976,604 83148 9,684,181 59,016,398 22686 9,089,961 35,056,338 281012 885,537 35,863,655 49987 864,796 41,945,838 25089 856,076 12,904,707 334763 866,562 14,886,517 70848 862,918 1,908,200 26427 861,631 908,082 320634 763,848 27,681,760 61794 760,726 8,814,358 28183 759,217 8,814,358 399555 28,037,579 381,355 13012 322,319 17,401,650 8728 322,175 381,303 156416 16,837,377 19,431,951 12702 13,028,145 39,391,543 10781 12,704,151 22,401,593 193057 46,637,814 40,339,832 12894 39,290,050 50,340,030 12062 39,289,194 42,329,967 236128 100,261,168 102,277,756 12959 92,657,672 102,257,841 18703 92,657,655 100,247,778 24726Table 1: Results for the previous algorithm (40'), CG-HRP (40') andCG-HRP (60')10
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