

ISSN 0103-9741

Monografias em Ciência da Computação

n° 36/06

Nested Context Language 3.0

Part 9 – NCL Live Editing Commands

Luiz Fernando Gomes Soares
Rogério Ferreira Rodrigues
Romualdo Rezende Costa

Marcio Ferreira Moreno

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

 2

Monografias em Ciência da Computação, No. 36/06 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena Dezembro/2006

Nested Context Language 3.0

Part 9 – NCL Live Editing Commands

Luiz Fernando Gomes Soares
Rogério Ferreira Rodrigues
Romualdo Rezende Costa
Marcio Ferreira Moreno

Laboratório TeleMídia DI – PUC-Rio
Rua Marquês de São Vicente, 225, Rio de Janeiro, RJ - 22451-900.

lfgs@inf.puc-rio.br, {rogério, Romualdo, Marcio}@telemidia.puc-rio.br

Abstract. This technical report describes commands for live editing NCL 3.0
documents. NCL (Nested Context Language) is an XML application language
based on the NCM (Nested Context Model) conceptual model for hypermedia
document specification, with temporal and spatial synchronization among its
media objects.

Keywords: live editing, digital TV; middleware; declarative environment; NCL.

Resumo. Este relatório técnico descreve os comandos para edição ao vivo de
documentos NCL. NCL é uma aplicação XML baseada no modelo conceitual
NCM (Nested Context Model) para a especificação de documentos hipermídia
com sincronismo espacial e temporal entre seus objetos.

Palavras chave: edição ao vivo; TV digital; middleware; linguagem declarativa;
NCL.

 3

Nested Context Language 3.0
Part 9 – NCL Live Editing Commands

© Laboratório TeleMídia da PUC-Rio – Todos os direitos reservados
Impresso no Brasil

As informações contidas neste documento são de propriedade do Laboratório TeleMídia (PUC-
Rio), sendo proibida a sua divulgação, reprodução ou armazenamento em base de dados ou
sistema de recuperação sem permissão prévia e por escrito do Laboratório TeleMídia (PUC-Rio).
As informações estão sujeitas a alterações sem notificação prévia.
Os nomes de produtos, serviços ou tecnologias eventualmente mencionadas neste documento são
marcas registradas dos respectivos detentores.
Figuras apresentadas, quando obtidas de outros documentos, são sempre referenciadas e são de
propriedade dos respectivos autores ou editoras referenciados.
Fazer cópias de qualquer parte deste documento para qualquer finalidade, além do uso pessoal,
constitui violação das leis internacionais de direitos autorais.

Laboratório TeleMídia
Departamento de Informática
Pontifícia Universidade Católica do Rio de Janeiro
Rua Marquês de São Vicente, 225, Prédio ITS - Gávea
22451-900 – Rio de Janeiro – RJ – Brasil
http://www.telemidia.puc-rio.br

 4

Table of Contents

1. Introduction...5

2. NCL Historical Evolution...6

3. Overview of NCL Elements ...9

4. NCL Editing Commands ..12

5. Command Parameters XML Schemas..21

6. Final Remarks...34

References...35

Appendix A – DSM-CC Transport of Editing Commands using Stream-event Descriptors
and Object Carousels ..36

Appendix B –Transport of Editing Commands Using Specific Structures defined by
Ginga-NCL ...39

B.1 Transporting all data structures in a specific MPEG-2 section type......................41

B.2 Transporting metadata structures as Editing Command parameter43

B.3 Transporting metadata structures in MPEG-2 metadata sections43

 5

Nested Context Language 3.0
Part 9 – NCL Live Editing Commands

Luiz Fernando Gomes Soares
Rogério Ferreira Rodrigues
Romualdo Rezende Costa
Marcio Ferreira Moreno

Laboratório TeleMídia DI – PUC-Rio
Rua Marquês de São Vicente, 225, Rio de Janeiro, RJ - 22451-900.

lfgs@inf.puc-rio.br, {rogério, Romualdo, Marcio}@telemidia.puc-rio.br

Abstract. This technical report describes commands for live editing NCL 3.0
documents. NCL (Nested Context Language) is an XML application language
based on the NCM (Nested Context Model) conceptual model for hypermedia
document specification, with temporal and spatial synchronization among its
media objects.

1. Introduction

The core of an NCL presentation engine is composed of the NCL Formatter and the Private
Base Manager [SoRo05].

The NCL Formatter is in charge of receiving an NCL document and controlling its
presentation, trying to guarantee that the specified relationships among media objects are
respected. The formatter deals with NCL documents that are collected inside a data
structure known as private base [SoRo05]. NCL documents in a private base may be
started, paused, resumed, stopped and may refer to each other.

The Private Base Manager is in charge of receiving NCL document editing commands and
maintaining the active NCL documents (documents being presented).

Editing commands may come from various means. Through editing commands, NCL
documents may be authored on-the-fly, that is, they may be authored at the same time they
are in exhibition.

This report describes the NCL editing commands aiming at live authoring NCL documents.
It is organized as follows. Section 2 gives an historical evolution of the NCL versions.
Section 3 presents a brief overview of the NCL 3.0 elements. Section 4 introduces the NCL
editing commands whose XML Schema is presented in Section 5. Section 6 presents the
final remarks. Appendix A and B discuss the syntax and use of NCL editing commands in
MPEG-2 TS elementary streams.

 6

2. NCL Historical Evolution

The first version of NCL [Anto00, AMRS00] was specified through an XML DTD –
Document Type Definition [XML98].

The second version of NCL, named NCL 2.0, was specified using XML Schema
[SCHE01]. Following recent trends, from version 2.0 on, NCL has been specified in a
modular way, allowing the combination of its modules in language profiles.

Besides the modular structure, NCL 2.0 introduced new facilities to the previous version
1.0, among others:
• definition of hypermedia connectors and connector bases;
• use of hypermedia connectors for link authoring;
• definition of ports and maps for composite nodes, satisfying the document

compositionality property;
• definition of hypermedia composite-node templates, allowing the specification of

constraints on documents;
• definition of composite-node template bases;
• use of composite-node templates for authoring composite nodes;
• refinement of document specifications with content alternatives, through the <switch>

element, grouping a set of alternative nodes;
• refinement of document specifications with presentation alternatives, through the

<descriptorSwitch> element, grouping a set of alternative descriptors;
• use of a new spatial layout model.

NCL 2.1 brought some refinements to the previous version: a module for defining cost
functions associated with media object duration was introduced; a module aiming at
describing the selection rules of <switch> and <descriptorSwitch> elements was defined;
and refinements in some NCL modules were made, mainly in the XTemplate module.

NCL 2.2 made minor refinements in some NCL 2.1 modules, concerning their element
definitions, and introduced a different approach in defining NCL modules and profiles.

NCL 2.3 introduced two new modules for supporting base and entity reuse, and refined the
definition of some elements in order to support the new features.

NCL 2.4 reviewed and refined the reuse support introduced in version 2.3, and the
specification of the switch and descriptor switch elements. This version also split the
Timing module introduced by NCL 2.1, creating a new module to encapsulate issues
related with time-scaling operations (elastic time computation using temporal cost
functions) in hypermedia documents.

The NCL 3.0 edition revised some functionalities contained in NCL 2.4. NCL 3.0 is more
specific regarding some attribute values. This new version introduced two new
functionalities, as well: Key Navigation and Animation functionalities. In addition, NCL
3.0 made depth modifications on the Composite-Node Template functionality and
introduces some SMIL based modules to NCL profiles for transition effects in media
presentation and for metadata definition. NCL 3.0 also reviewed the hypermedia connector
specification in order to have a more concise notation. Relationships among imperative and

 7

declarative objects and other objects are also refined in NCL 3.0, as well as the behavior of
imperative e declarative object players. Finally, NCL 3.0 also refined the support to
multiple exhibition devices and introduced the support to NCL live editing commands.

NCM is the model underlying NCL. However, in its present version 3.0, NCL does not
reflect all NCM 3.0 facilities yet. In order to understand NCL facilities in depth, it is
necessary to understand the NCM concepts. With the aim of offering a scalable hypermedia
model, with characteristics that may be progressively incorporated in hypermedia system
implementations, the NCM and NCL family was divided in several parts.

The Nested Context Model is composed of Parts 1, 2, 3, and 4 of the collection:

• Part 1 – NCM Core
concerned with the main model entities, which should be present in all NCM
implementations1.

• Part 2 – NCM Virtual Entities
concerned mainly with the definition of virtual anchors, nodes and links.

• Part 3 – NCM Version Control
concerned with model entities and attributes to support versioning.

• Part 4 – NCM Cooperative Work
concerned with model entities and attributes to support cooperative document handling.

The NCL (Nested Context Language) specification is composed of Parts 5 to 12 of the
collection:

• Part 5 – NCL (Nested Context Language) Full Profile
concerned with the definition of an XML application language for authoring and
exchanging NCM-based documents, using all NCL modules, including those for the
definition and use of templates, and also the definition of constraint connectors,
composite-connectors, temporal cost functions, transition effects and metainformation
characterization.

• Part 6 – NCL (Nested Context Language) XConnector Profile Family
concerned with the definition of an XML application language for authoring connector
bases. One profile is defined for authoring causal connectors, another one for authoring
causal and constraint connectors, and a third one for authoring both simple and
composite connectors.

• Part 7 – Composite Node Templates
concerned with the definition of the NCL Composite-Node Template functionality, and
with the definition of an XML application language (XTemplate) for authoring template
bases.

• Part 8 – NCL (Nested Context Language) Digital TV Profiles
concerned with the definition of an XML application language for authoring documents

1 It is also possible to have NCM implementations that ignore some of the basic entities, but this is not
relevant so as to deserve a minimum-core definition.

 8

aiming at the digital TV domain. Two profiles are defined: the Enhanced Digital TV
(EDTV) profile and the Basic Digital TV (BDTV) profile.

• Part 9 – NCL Live Editing Commands (this document)
concerned with editing commands used for live authoring applications based on NCL.

• Part 10 – Imperative Objects in NCL: The NCLua Scripting Language
concerned with the definition of objects that contain imperative code and how these
objects may be related with other objects in NCL applications.

• Part 11 – Declarative Hypermedia Objects in NCL: Nesting Objects with NCL Code in
NCL Documents
concerned with the definition of hypermedia objects that contain declarative code
(including nested objects with NCL code) and how these objects may be related with
other objects in an NCL application.

• Part 12 – Support to Multiple Exhibition Devices
concerned with the use of multiple devices for simultaneously presenting an NCL
document.

 In order to understand NCL, the reading of Part 1: NCM Core is recommended.

 9

3. Overview of NCL Elements

NCL is an XML application that follows the modularization approach. The modularization
approach has been used in several W3C language recommendations. A module is a
collection of semantically-related XML elements, attributes, and attribute’s values that
represents a unit of functionality. Modules are defined in coherent sets. A language profile
is a combination of modules. Several NCL profiles have been defined, among them those
defined by Parts 5, 6, 7, and 8 of the NCL collection presented in Section 2. Of special
interest are the profiles defined for Digital TV, the EDTVProfile (Enhanced Digital TV
Profile) and the BDTVProfile (Basic Digital TV Profile). This section briefly describes the
elements that compose these profiles. The complete definition of the NCL 3.0 modules for
these profiles, using XML Schemas, is presented in [SoRo06]. Any ambiguity found in this
text can be clarified by consulting the XML Schemas.

The basic NCL structure module defines the root element, called <ncl>, and its children
elements, the <head> element and the <body> element, following the terminology adopted
by other W3C standards.

The <head> element may have <importedDocumentBase>, <ruleBase>, <transitionBase>
<regionBase>, <descriptorBase>, <connectorBase>, <meta>, and <metadata> elements as
its children.

The <body> element may have <port>, <property>, <media>, <context>, <switch>, and
<link> elements as its children. The <body> element is treated as an NCM context node. In
NCM [SoRo05], the conceptual data model of NCL, a node may be a context, a switch or a
media object. Context nodes may contain other NCM nodes and links. Switch nodes
contain other NCM nodes. NCM nodes are represented by corresponding NCL elements.

The <media> element defines a media object specifying its type and its content location.
NCL only defines how media objects are structured and related, in time and space. As a
glue language, it does not restrict or prescribe the media-object content types. However,
some types are defined by the language. For example: the “application/x-ncl-settings” type,
specifying an object whose properties are global variables defined by the document author
or are reserved environment variables that may be manipulated by the NCL document
processing; and the “application/x-ncl-time” type, specifying a special <media> element
whose content is the Greenwich Mean Time (GMT).

The <context> element is responsible for the definition of context nodes. An NCM context
node is a particular type of NCM composite node and is defined as containing a set of
nodes and a set of links [SoRo05]. Like the <body> element, a <context> element may
have <port>, <property>, <media>, <context>, <switch>, and <link> elements as its
children.

The <switch> element allows the definition of alternative document nodes (represented by
<media>, <context>, and <switch> elements) to be chosen during presentation time. Test
rules used in choosing the switch component to be presented are defined by <rule> or
<compositeRule> elements that are grouped by the <ruleBase> element, defined as a child
element of the <head> element.

 10

The NCL Interfaces functionality allows the definition of node interfaces that are used in
relationships with other node interfaces. The <area> element allows the definition of
content anchors representing spatial portions, temporal portions, or temporal and spatial
portions of a media object (<media> element) content. The <port> element specifies a
composite node (<context>, <body> or <switch> element) port with its respective mapping
to an interface of one of its child components. The <property> element is used for defining
a node property or a group of node properties as one of the node’s interfaces. The
<switchPort> element allows the creation of <switch> element interfaces that are mapped
to a set of alternative interfaces of the switch’s internal nodes.

The <descriptor> element specifies temporal and spatial information needed to present each
document component. The element may refer a <region> element to define the initial
position of the <media> element (that is associated with the <descriptor> element)
presentation in some output device. The definition of <descriptor> elements shall be
included in the document head, inside the <descriptorBase> element, which specifies the
set of descriptors of a document. Also inside the document <head> element, the
<regionBase> element defines a set of <region> elements, each of which may contain
another set of nested <region> elements, and so on, recursively; regions define device areas
(e.g. screen windows) and are referred by <descriptor> elements, as previously mentioned.

A <causalConnector> element represents a relation that may be used for creating <link>
elements in documents. In a causal relation, a condition shall be satisfied in order to trigger
an action. A <link> element binds (through its <bind> elements) a node interface with
connector roles, defining a spatio-temporal relationship among objects (represented by
<media>, <context>, <body> or <switch> elements).

The <descriptorSwitch> element contains a set of alternative descriptors to be associated
with an object. Analogous to the <switch> element, the <descriptorSwitch> choice is done
during the document presentation, using test rules defined by <rule> or <compositeRule>
elements.

In order to allow an entity base to incorporate another already-defined base, the
<importBase> element may be used. Additionally, an NCL document may be imported
through the <importNCL> element. The <importedDocumentBase> element specifies a set
of imported NCL documents, and shall also be defined as a child element of the <head>
element.

Some important NCL element’s attributes are defined in other NCL modules. The
EntityReuse module allows an NCL element to be reused. This module defines the refer
attribute, which refers to an element URI that will be reused. Only <media>, <context>,
<body> and <switch> may be reused. The KeyNavigation module provides the extensions
necessary to describe focus movement operations using a control device like a remote
control. Basically, the module defines attributes that may be incorporated by <descriptor>
elements. The Animation module provides the extensions necessary to describe what
happens when a property value is changed. The change may be instantaneous, but it may
also be carried out during an explicitly declared duration, either linearly or step by step.
Basically, the Animation module defines attributes that may be incorporated by actions,
defined as child elements of <causalConnector> elements.

 11

Some SMIL functionalities are also incorporated by NCL. The <transition> element and
some transition attributes have the same semantics of homonym element and attributes
defined in the SMIL BasicTransitions module and the SMIL TransitionModifiers module.
The NCL <transitionBase> element specifies a set of transition effects, defined by
<transition> elements, and shall be defined as a child element of the <head> element.

Finally, the MetaInformation module is also incorporated, inheriting the same semantics of
the SMIL MetaInformation module. Meta-information does not contain content information
that is used or display during a presentation. Instead, it contains information about content
that is used or displayed. The Metainformation module contains two elements that allow
describing NCL documents. The <meta> element specifies a single property/value pair. The
<metadata> element contains information that is also related to meta-information of the
document. It acts as the root element of an RDF tree: RDF element and its sub-elements
(for more details, refer to W3C metadata recommendations [RDF99]).

 12

4. NCL Editing Commands

The Private Base Manager [SoRo05] is in charge of receiving NCL document editing
commands and maintaining the active NCL documents (documents being presented).

Editing commands may come from various means. For example, in a Digital TV
environment it is usual to adopt the DSM-CC (Digital Storage Media Command and
Control) for carrying editing commands, in MPEG-2 TS elementary streams, coming from
datacast providers. It is also possible in a Digital TV environment to receive editing
commands via the interactive (return) channel, or even directly from the viewer at a TV
receiver. Appendix A and B discuss the syntax and use of NCL editing commands in
MPEG-2 TS elementary streams.

Editing commands are wrapped in a structure called event descriptors. Event descriptors
have an identifier (eventId), a time reference (eventNPT) and a private data field. The
identifier uniquely identifies each editing command event. The time reference indicates the
exact moment to trigger the command. A time reference equal to zero informs that the
command shall be triggered immediately after being received. The private data field
provides support for command parameters, as shown in Figure 4.1.

Syntax Number of bits

EventDescriptor () {
 eventId 16
 eventNPT 33
 privateDataLength 8
 commandTag 8
 sequenceNumber 7
 finalFlag 1
 privateDataPayload 8 to 2008
 FCS 8
}

Figure 4.1 - Editing command event descriptor

The commandTag uniquely identifies the type of the editing command, as specified in
Table 4.1. In order to allow sending a complete command in more than one event
descriptor, all event descriptors of the same command shall be numbered and sent in
sequence (that is, it cannot be multiplexed with other editing commands with the same
commandTag), with the finalFlag equal to 1, except for the last descriptor that shall have
the finalFlag field equal to 0. The privateDataPayload contains the editing-command
parameters. Finally, the FCS field contains a checksum of the entire privateData field,
including the privateDataLength.

NCL editing commands are divided in three subsets.

The first subset focuses on the private base activation and deactivation (openBase,
activateBase, deactivateBase, saveBase, and closeBase commands).

 13

NCL documents may be added to a private base and then may be started, paused, resumed,
stopped, saved and removed, through well-defined commands that compose the second
subset.

The third subset defines commands for live editing, allowing NCL elements to be added
and removed, and allowing values to be set to NCL <property> elements. Add commands
always have NCL elements as their arguments. Whether the specified element already
exists or not, document consistency shall be maintained by the NCL formatter, in the sense
that all element attributes stated as required shall be defined. The elements are defined
using an XML-based syntax notation defined in Section 5, with the exception of the
addInterface command: the begin or first attribute of an <area> element may receive the
“now” value, specifying the current NPT (Normal Play Time) of the node specified in the
nodeId argument.

If the XML-based command parameter is short enough it may be transported directly in the
event descriptors’ payload. Otherwise, the privateDataPayload carries a set of reference
pairs. In the case of pushed files (NCL documents or nodes), each pair is used to associate a
set of file paths with their respective location (identification) in the transport system (see
examples in Appendix A and B). In the case of pulled files or files sited in the receiver
itself, no reference pairs have to be sent, except the {uri, “null”} pair associated with the
NCL document or XML node specification that is commanded to be added.

Table 4.1 shows the command strings with their arguments surrounded by round brackets.
The table also gives the unique identifier of each editing command (commandTag) and the
command semantics.

Table 4.1 – Editing commands for NCL Private Base Manager

Command String Command
Tag Description

openBase (baseId, location) 0x00 Opens an existing private base located with the
location parameter. If the private base does not
exist or the location parameter is not informed, a
new base is created with the baseId identifier. The
location parameter shall specify the device and the
path for opening the base

activateBase (baseId) 0x01 Turns on an opened private base.

deactivateBase (baseId) 0x02 Turns off an opened private base.

saveBase (baseId, location) 0x03 Saves all private base content into a persistent
storage device (if available). The location
parameter shall specify the device and the path for
saving the base.

closeBase (baseId) 0x04 Closes the private base and disposes all private
base content.

addDocument (baseId, {uri, 0x05 Adds an NCL document to a private base. The

 14

Command String Command
Tag Description

id}+) NCL document’s files can be:

i) sent in the datacast network as a set of pushed
files; for these pushed files, each {uri,id} pair is
used to relate a set of file paths in the NCL
document specification with their respective
locations in a transport system (see examples in
Appendix A and B);
NOTE: The set of reference pairs shall be sufficient for
the middleware to map any file reference present in the
NCL document specification to its concrete location in
the receiver memory.

ii) received from a network as a set of pulled files,
or may be files already present in the receiver; for
these pulled files, no {uri, id} pairs have to be
sent, except the {uri, “null”} pair associated with
the NCL document specification that the editing
command request to be added in baseId, if this
NCL document is not received as a pushed file.

removeDocument (baseId,
documentId)

0x06 Removes an NCL document from a private base.

startDocument (baseId,
documentId, interfaceId, offset,
refDocumentId, refNodeId)

NOTE The offset parameter is a
time value.

0x07 Starts playing an NCL document in a private base,
beginning the presentation from a specific
document interface. The time reference provided
in the eventNPT field defines the initial time
positioning of the document with regards to the
NPT time base value of the refNodeId content of
the refDocumentId document being received.
Three cases may happen:
i) If eventNPT is greater than or equal to the
current NPT time base value of the refNodeId
content being received, the document presentation
shall wait until NPT has the value specified in
eventNPT to be started from its beginning
time+offset.
ii) If eventNPT is less than the NPT time base
value of the refNodeId content being received, the
document shall be started immediately from its
beginning time+offset+(NPT – eventNPT)seconds
NOTE: Only in this case, the offset parameter value
may be a negative time value, but offset+(NPT –
eventNPT)seconds shall be a positive time value.
iii) If eventNPT is equal to 0, the document shall
start its presentation imediatelly from its
beginning time+offset.

stopDocument (baseId,
documentId)

0x08 Stops the presentation of an NCL document in a
private base. All document events that are

 15

Command String Command
Tag Description

occurring shall be stopped.

pauseDocument (baseId,
documentId)

0x09 Pauses the presentation of an NCL document in a
private base. All document events that are
occurring shall be paused.

resumeDocument (baseId,
documentId)

0x0A Resumes the presentation of an NCL document in
a private base. All document events that were
previously paused by the pauseDocument editing
command shall be resumed.

saveDocument (baseId,
documented, location)

0x2E Saves an NCL document into a persistent storage
device (if available). The location parameter shall
specify the device and the path for saving the
document. If the NCL document to be saved is
running in the private base, first stops its
presentation (all document events that are
occurring shall be stopped).

addRegion (baseId,
documentId, regionBaseId,
regionId, xmlRegion)

0x0B Adds a <region> element as a child of another
<region> in the <regionBase> or as a child of the
<regionBase> (regionId=”null”) of an NCL
document in a private base.

removeRegion (baseId,
documentId, regionId)

0x0C Removes a <region> element from a
<regionBase> of an NCL document in a private
base.

addRegionBase (baseId,
documentId, xmlRegionBase)

0x0D Adds a <regionBase> element to the <head>
element of an NCL document in a private base. If
the XML specification of the regionBase is sent in
the transport system as a file system, the
xmlRegionBase parameter is just a reference to
this content in its transport system

removeRegionBase (baseId,
documentId, regionBaseId)

0x0E Removes a <regionBase> element from the
<head> element of an NCL document in a private
base.

addRule (baseId, documentId,
xmlRule)

0x0F Adds a <rule> element to the <ruleBase> of an
NCL document in a private base.

removeRule (baseId,
documentId, ruleId)

0x10 Removes a <rule> element from the <ruleBase>
of an NCL document in a private base.

addRuleBase (baseId,
documentId, xmlRuleBase)

0x11 Adds a <ruleBase> element to the <head> element
of an NCL document in a private base. If the XML
specification of the ruleBase is sent in the
transport system as a file system, the xmlRuleBase
parameter is just a reference to this content in its

 16

Command String Command
Tag Description

transport system

removeRuleBase (baseId,
documentId, ruleBaseId)

0x12 Removes a <ruleBase> element from the <head>
element of an NCL document in a private base

addConnector (baseId,
documentId, xmlConnector)

0x13 Adds a <connector> element to the
<connectorBase> of an NCL document in a
private base.

removeConnector (baseId,
documentId, connectorId)

0x14 Removes a <connector> element from the
<connectorBase> of an NCL document in a
private base.

addConnectorBase (baseId,
documentId,
xmlConnectorBase)

0x15 Adds a <connectorBase> element to the <head>
element of an NCL document in a private base. . If
the XML specification of the connectorBase is
sent in the transport system as a file system, the
xmlConnectorBase parameter is just a reference to
this content in its transport system

removeConnectorBase (baseId,
documentId, connectorBaseId)

0x16 Removes a <connectorBase> element from the
<head> element of an NCL document in a private
base.

addDescriptor (baseId,
documentId, xmlDescriptor)

0x17 Adds a <descriptor> element to the
<descriptorBase> of an NCL document in a
private base.

removeDescriptor (baseId,
documentId, descriptorId)

0x18 Removes a <descriptor> element from the
<descriptorBase> of an NCL document in a
private base.

addDescriptorSwitch (baseId,
documentId,
xmlDescriptorSwitch)

0x19 Adds a <descriptorSwitch> element to the
<descriptorBase> of an NCL document in a
private base. . If the XML specification of the
descriptorSwitch is sent in a transport system as a
file system, the xmlDescriptorSwitch parameter is
just a reference to this content

removeDescriptorSwitch
(baseId, documentId,
descriptorSwitchId)

0x1A Removes a <descriptorSwitch> element from the
<descriptorBase> of an NCL document in a
private base.

addDescriptorBase (baseId,
documentId,
xmlDescriptorBase)

0x1B Adds a <descriptorBase> element to the <head>
element of an NCL document in a private base. If
the XML specification of the descriptorBase is
sent in a transport system as a file system, the
xmlDescriptorBase parameter is just a reference to
this content

 17

Command String Command
Tag Description

removeDescriptorBase (baseId,
documentId, descriptorBaseId)

0x1C Removes a <descriptorBase> element from the
<head> element of an NCL document in a private
base.

addTransition (baseId,
documentId, xmlTransition)

0x1D Adds a <transition> element to the
<transitionBase> of an NCL document in a private
base.

removeTransition (baseId,
documentId, transitionId)

0x1E Removes a <transition> element from the
<transitionBase> of an NCL document in a private
base.

addTransitionBase (baseId,
documentId,
xmlTransitionBase)

0x1F Adds a <transitionBase> element to the <head>
element of an NCL document in a private base. If
the XML specification of the transitionBase is sent
in a transport system as a file system, the
xmlTransitionBase parameter is just a reference to
this content

removeTransitionBase (baseId,
documentId, transitionBaseId)

0x20 Removes a <transitionBase> element from the
<head> element of an NCL document in a private
base.

addImportBase (baseId,
documentId, docBaseId,
xmlImportBase)

0x21 Adds an <importBase> element to the base
(<regionBase>, <descriptorBase>, <ruleBase>,
<transitionBase>, or <connectorBase> element
identified by docBaseId) of an NCL document in a
private base.

removeImportBase (baseId,
documentId, docBaseId,
documentURI)

0x22 Removes an <importBase> element, whose
documentURI attribute is identified by the
documentURI parameter, from the base
(<regionBase>, <descriptorBase>, <ruleBase>,
<transitionBase>, or <connectorBase> element
identified by docBaseId) of an NCL document in a
private base.

addImportedDocumentBase
(baseId, documentId,
xmlImportedDocumentBase)

0x23 Adds an <importedDocumentBase> element to the
<head> element of an NCL document in a private
base.

removeImportedDocumentBase
(baseId, documentId,
importedDocumentBaseId)

0x24 Removes an <importedDocumentBase> element
from the <head> element of an NCL document in
a private base.

addImportNCL (baseId,
documentId, xmlImportNCL)

0x25 Adds a <importNCL> element to the
<importedDocumentBase> element of an NCL
document in a private base.

removeImportNCL (baseId, 0x26 Removes an <importNCL> element, whose

 18

Command String Command
Tag Description

documentId, documentURI) documentURI attribute is identified by the
documentURI parameter, from the
<importedDocumentBase> element of an NCL
document in a private base

addNode (baseId, documentId,
compositeId, {uri, id}+)

0x27 Adds a node (<media>, <context>, or <switch>
element) to a composite node (<body>, <context>,
or <switch> element) of an NCL document in a
private base. The XML specification of the node
and its media content may be:

i) sent in the datacast network as a set of pushed
files; each {uri,id} pair is used to relate a set of
file paths in the XML document specification of
the node (see examples in Appendix A and B)
with their respective location in a transport system
NOTE: The set of reference pairs shall be sufficient for
the middleware to map any file reference present in the
node specification to its concrete location in the
receiver memory.

ii) received from a network as a set of pulled files,
or may be files already present in the receiver; for
these pulled files, no {uri, id} pairs have to be
sent, except the {uri, “null”} pair associated with
the XML node specification that the editing
command request to be added in compositeId, if
this XML document is not received as a pushed
file.

removeNode(baseId,
documentId, compositeId,
nodeId)

0x28 Removes a node (<media>, <context>, or
<switch> element) from a composite node
(<body>, <context>, or <switch> element) of an
NCL document in a private base.

addInterface (baseId,
documentId, nodeId,
xmlInterface)

0x29 Adds an interface (<port>, <area>, <property>, or
<switchPort>) to a node (<media>, <body>,
<context>, or <switch> element)of an NCL
document in a private base.

removeInterface (baseId,
documentId, nodeId,
interfaceId)

0x2A Removes an interface (<port>, <area>,
<property>, or <switchPort>) from a node
(<media>, <body>, <context>, or <switch>
element) of an NCL document in a private base.
The interfaceID shall identify a <property>
element’s name attribute or a <port>, <area>, or
<switchPort> element’s id attribute.

addLink (baseId, documentId,
compositeId, xmlLink)

0x2B Adds a <link> element to a composite node
(<body>, <context>, or <switch> element) of an
NCL document in a private base.

 19

Command String Command
Tag Description

removeLink (baseId,
documentId, compositeId,
linkId)

0x2C Removes a <link> element from a composite node
(<body>, <context>, or <switch> element) of an
NCL document in a private base.

setPropertyValue(baseId,
documentId, nodeId,
propertyId, value)

0x2D Sets the value for a property. The propertyId
parameter shall identify a <property> element’s
name attribute or a <switchPort> element’s id
attribute. The <property> or <switchPort> shall
belong to a node (<body>, <context>, <switch> or
<media> element) of an NCL document in a
private base identified by the parameters.

The identifiers used in the commands are defined in 4.2

Table 4.2 – Identifiers used in editing commands

Identifiers Definition

baseId The id attribute of a private base. Usually, in DTV
environment a private base is associated with a TV
channel. Thus broadcast channel identifiers are used as
the baseId values.

documentId The id attribute of an <ncl> element of an NCL
document.

refDocumentId The id attribute of an <ncl> element of an NCL
document

refNodeId The id attribute of a <media> element of an NCL
document

regionId The id attribute of a <region> element of an NCL
document.

ruleId The id attribute of a <rule> element of an NCL
document.

connectorId The id attribute of a <connector> element of an NCL
document.

descriptorId The id attribute of a <descriptor> element of an NCL
document.

descriptorSwitchId The id attribute of a <descriptorSwitch> element of an
NCL document.

transitionId The id attribute of a <transition> element of an NCL

 20

Identifiers Definition
document.

regionBaseId The id attribute of a <regionBase> element of an NCL
document.

ruleBaseId The id attribute of a <ruleBase> element of an NCL
document.

connectorBaseId The id attribute of a <connectorBase> element of an
NCL document.

descriptorBaseId The id attribute of a <descriptorBase> element of an
NCL document.

transitionBaseId The id attribute of a <transitionBase> element of an
NCL document.

docBaseId The id attribute of a <regionBase>, <ruleBase>,
<connectorBase>, <descriptorBase>, or
<transitionBase> element of an NCL document.

documentURI The documentURI attribute of an <importBase> element
or an <importNCL> element of an NCL document.

importedDocumentBaseId The id attribute of a <importedDocumentBase> element
of an NCL document.

compositeID The id attribute of a <body>, <context> or <switch>
element of an NCL document.

nodeId The id attribute of a <body>, <context>, <switch> or
<media> element of an NCL document.

interfaceId The id attribute of a <port>, <area>, <property> or
<switchPort> element of an NCL document.

linkId The id attribute of a <link> element of an NCL
document.

propertyId The id attribute of a <property> or <switchPort>
element of an NCL document.

 21

5. Command Parameters XML Schemas

NCL entities used in editing commands shall be a document in conformance with the NCL
3.0 Command profile defined by the XML Schema that follows.
Note that different from NCL documents, several <ncl> elements may be the root element
in the XML command parameters.

NCL30EdCommand.xsd

<!--
XML Schema for the NCL Language

This is NCL
Copyright: 2000-2005 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.
See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/profiles/NCL30EdCommand.xsd
Author: TeleMidia Laboratory
Revision: 19/09/2006
-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:animation="http://www.ncl.org.br/NCL3.0/Animation"
xmlns:compositeInterface="http://www.ncl.org.br/NCL3.0/

CompositeNodeInterface"
xmlns:causalConnectorFunctionality="http://www.ncl.org.br/NCL3.0/

CausalConnectorFunctionality"
xmlns:connectorBase="http://www.ncl.org.br/NCL3.0/ConnectorBase"
xmlns:connectorCausalExpression="http://www.ncl.org.br/NCL3.0/

ConnectorCausalExpression"
xmlns:contentControl="http://www.ncl.org.br/NCL3.0/ContentControl"
xmlns:context="http://www.ncl.org.br/NCL3.0/Context"
xmlns:descriptor="http://www.ncl.org.br/NCL3.0/Descriptor"
xmlns:entityReuse="http://www.ncl.org.br/NCL3.0/EntityReuse"
xmlns:extendedEntityReuse="http://www.ncl.org.br/NCL3.0/

ExtendedEntityReuse"
xmlns:descriptorControl="http://www.ncl.org.br/NCL3.0/

DescriptorControl"
xmlns:import="http://www.ncl.org.br/NCL3.0/Import"
xmlns:keyNavigation="http://www.ncl.org.br/NCL3.0/KeyNavigation"
xmlns:layout="http://www.ncl.org.br/NCL3.0/Layout"
xmlns:linking="http://www.ncl.org.br/NCL3.0/Linking"
xmlns:media="http://www.ncl.org.br/NCL3.0/Media"
xmlns:mediaAnchor="http://www.ncl.org.br/NCL3.0/MediaContentAnchor"
xmlns:propertyAnchor="http://www.ncl.org.br/NCL3.0/PropertyAnchor"
xmlns:structure="http://www.ncl.org.br/NCL3.0/Structure"
xmlns:switchInterface="http://www.ncl.org.br/NCL3.0/SwitchInterface"
xmlns:testRule="http://www.ncl.org.br/NCL3.0/TestRule"
xmlns:testRuleUse="http://www.ncl.org.br/NCL3.0/TestRuleUse"
xmlns:timing="http://www.ncl.org.br/NCL3.0/Timing"
xmlns:transitionBase="http://www.ncl.org.br/NCL3.0/TransitionBase"
xmlns:metainformation="http://www.ncl.org.br/NCL3.0/Metainformation"
xmlns:transition="http://www.ncl.org.br/NCL3.0/Transition"
xmlns:profile="http://www.ncl.org.br/NCL3.0/EdCommandProfile"
targetNamespace="http://www.ncl.org.br/NCL3.0/EdCommandProfile"
elementFormDefault="qualified" attributeFormDefault="unqualified" >

 22

<!-- import the definitions in the modules namespaces -->
<import namespace="http://www.ncl.org.br/NCL3.0/Animation"

schemaLocation="http://www.ncl.org.br/NCL3.0/modules/
NCL30Animation.xsd"/>

<import namespace="http://www.ncl.org.br/NCL3.0/CompositeNodeInterface"
schemaLocation="http://www.ncl.org.br/NCL3.0/modules/

NCL30CompositeNodeInterface.xsd"/>
<import

namespace="http://www.ncl.org.br/NCL3.0/CausalConnectorFunctionality"
schemaLocation="http://www.ncl.org.br/NCL3.0/modules/

NCL30CausalConnectorFunctionality.xsd"/>
<import namespace="http://www.ncl.org.br/NCL3.0/ConnectorBase"

schemaLocation="http://www.ncl.org.br/NCL3.0/modules/
NCL30ConnectorBase.xsd"/>

<import
namespace="http://www.ncl.org.br/NCL3.0/ConnectorCausalExpression"

schemaLocation="http://www.ncl.org.br/NCL3.0/modules/
NCL30ConnectorCausalExpression.xsd"/>

<import namespace="http://www.ncl.org.br/NCL3.0/ContentControl"
schemaLocation="http://www.ncl.org.br/NCL3.0/modules/

NCL30ContentControl.xsd"/>
<import namespace="http://www.ncl.org.br/NCL3.0/Context"

schemaLocation="http://www.ncl.org.br/NCL3.0/modules/
NCL30Context.xsd"/>

<import namespace="http://www.ncl.org.br/NCL3.0/Descriptor"
schemaLocation="http://www.ncl.org.br/NCL3.0/modules/

NCL30Descriptor.xsd"/>
<import namespace="http://www.ncl.org.br/NCL3.0/DescriptorControl"

schemaLocation="http://www.ncl.org.br/NCL3.0/modules/
NCL30DescriptorControl.xsd"/>

<import namespace="http://www.ncl.org.br/NCL3.0/EntityReuse"
schemaLocation="http://www.ncl.org.br/NCL3.0/modules/

NCL30EntityReuse.xsd"/>
<import namespace="http://www.ncl.org.br/NCL3.0/ExtendedEntityReuse"

schemaLocation="http://www.ncl.org.br/NCL3.0/modules/
NCL30ExtendedEntityReuse.xsd"/>

<import namespace="http://www.ncl.org.br/NCL3.0/Import"
schemaLocation="http://www.ncl.org.br/NCL3.0/modules/

NCL30Import.xsd"/>
<import namespace="http://www.ncl.org.br/NCL3.0/KeyNavigation"

schemaLocation="http://www.ncl.org.br/NCL3.0/modules/
NCL30KeyNavigation.xsd"/>

<import namespace="http://www.ncl.org.br/NCL3.0/Layout"
schemaLocation="http://www.ncl.org.br/NCL3.0/modules/

NCL30Layout.xsd"/>
<import namespace="http://www.ncl.org.br/NCL3.0/Linking"

schemaLocation="http://www.ncl.org.br/NCL3.0/modules/
NCL30Linking.xsd"/>

<import namespace="http://www.ncl.org.br/NCL3.0/Media"

schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30Media.xsd"/>
<import namespace="http://www.ncl.org.br/NCL3.0/MediaContentAnchor"

schemaLocation="http://www.ncl.org.br/NCL3.0/modules/
NCL30MediaContentAnchor.xsd"/>

<import namespace="http://www.ncl.org.br/NCL3.0/PropertyAnchor"
schemaLocation="http://www.ncl.org.br/NCL3.0/modules/

NCL30PropertyAnchor.xsd"/>
<import namespace="http://www.ncl.org.br/NCL3.0/Structure"

schemaLocation="http://www.ncl.org.br/NCL3.0/modules/
NCL30Structure.xsd"/>

 23

<import namespace="http://www.ncl.org.br/NCL3.0/SwitchInterface"
schemaLocation="http://www.ncl.org.br/NCL3.0/modules/

NCL30SwitchInterface.xsd"/>
<import namespace="http://www.ncl.org.br/NCL3.0/TestRule"

schemaLocation="http://www.ncl.org.br/NCL3.0/modules/
NCL30TestRule.xsd"/>

<import namespace="http://www.ncl.org.br/NCL3.0/TestRuleUse"
schemaLocation="http://www.ncl.org.br/NCL3.0/modules/

NCL30TestRuleUse.xsd"/>
<import namespace="http://www.ncl.org.br/NCL3.0/Timing"

schemaLocation="http://www.ncl.org.br/NCL3.0/modules/
NCL30Timing.xsd"/>

<import namespace="http://www.ncl.org.br/NCL3.0/TransitionBase"
schemaLocation="http://www.ncl.org.br/NCL3.0/modules/

NCL30TransitionBase.xsd"/>
<import namespace="http://www.ncl.org.br/NCL3.0/Metainformation"

schemaLocation="http://www.ncl.org.br/NCL3.0/modules/
NCL30Metainformation.xsd"/>

<import namespace="http://www.ncl.org.br/NCL3.0/Transition"
schemaLocation="http://www.ncl.org.br/NCL3.0/modules/

NCL30Transition.xsd"/>

<!-- === -->
<!--EditingCommand -->
<!-- === -->
<!--defines the command element -->

<!--This is a pseudo-element, only defined to show the elements that
may be used in the root of the command parameters XML document-->

<!--
<complexType name="commandType">

<choice minOccurs="1" maxOccurs="1">
<element ref="profile:ncl"/>
<element ref="profile:region"/>
<element ref="profile:rule"/>
<element ref="profile:connector"/>
<element ref="profile:descriptor"/>
<element ref="profile:descriptorSwitch"/>
<element ref="profile:transition"/>
<element ref="profile:regionBase"/>
<element ref="profile:ruleBase"/>
<element ref="profile:connectorBase"/>
<element ref="profile:descriptorBase"/>
<element ref="profile:transitionBase"/>
<element ref="profile:importBase"/>
<element ref="profile:importedDocumentBase"/>
<element ref="profile:importNCL"/>
<element ref="profile:media"/>
<element ref="profile:context"/>
<element ref="profile:switch"/>
<element ref="profile:port"/>
<element ref="profile:area"/>
<element ref="profile:property"/>
<element ref="profile:switchPort"/>
<element ref="profile:link"/>

</choice>
</complexType>
<element name="command" type="profile:commandType"/>

-->

 24

<!-- === -->
<!-- Structure -->
<!-- === -->
<!-- extends ncl element -->

<element name="ncl" substitutionGroup="structure:ncl"/>

<!-- extends head element -->

<complexType name="headType">
<complexContent>

<extension base="structure:headPrototype">
<sequence>

<element ref="profile:importedDocumentBase" minOccurs="0"
maxOccurs="1"/>

<element ref="profile:ruleBase" minOccurs="0" maxOccurs="1"/>
<element ref="profile:transitionBase" minOccurs="0"

maxOccurs="1"/>
<element ref="profile:regionBase" minOccurs="0"

maxOccurs="unbounded"/>
<element ref="profile:descriptorBase" minOccurs="0"

maxOccurs="1"/>
<element ref="profile:connectorBase" minOccurs="0"

maxOccurs="1"/>
<element ref="profile:meta" minOccurs="0"

maxOccurs="unbounded"/>
<element ref="profile:metadata" minOccurs="0"

maxOccurs="unbounded"/>
</sequence>

</extension>
</complexContent>

</complexType>

<element name="head" type="profile:headType"
substitutionGroup="structure:head"/>

<!-- extends body element -->

<complexType name="bodyType">
<complexContent>

<extension base="structure:bodyPrototype">
<choice minOccurs="0" maxOccurs="unbounded">

<group ref="profile:contextInterfaceElementGroup"/>
<element ref="profile:media"/>
<element ref="profile:context"/>
<element ref="profile:switch"/>
<element ref="profile:link"/>
<element ref="profile:meta"/>
<element ref="profile:metadata"/>

</choice>
</extension>

</complexContent>
</complexType>

<element name="body" type="profile:bodyType"
substitutionGroup="structure:body"/>

<!-- === -->
<!-- Layout -->

 25

<!-- === -->
<!-- extends regionBase element -->

<complexType name="regionBaseType">
<complexContent>

<extension base="layout:regionBasePrototype">
<choice minOccurs="1" maxOccurs="unbounded">

<element ref="profile:region"/>
<element ref="profile:importBase"/>

</choice>
</extension>

</complexContent>
</complexType>

<complexType name="regionType">
<complexContent>

<extension base="layout:regionPrototype">
</extension>

</complexContent>
</complexType>

<element name="regionBase" type="profile:regionBaseType"
substitutionGroup="layout:regionBase"/>

<element name="region" type="profile:regionType"
substitutionGroup="layout:region"/>

<!-- === -->
<!-- Media -->
<!-- === -->
<!-- extends Media elements -->

<!-- media interface element groups -->
<group name="mediaInterfaceElementGroup">

<choice>
<element ref="profile:area"/>
<element ref="profile:property"/>

</choice>
</group>

<complexType name="mediaType">
<complexContent>

<extension base="media:mediaPrototype">
<choice minOccurs="0" maxOccurs="unbounded">

<group ref="profile:mediaInterfaceElementGroup"/>
</choice>
<attributeGroup ref="descriptor:descriptorAttrs"/>
<attributeGroup ref="entityReuse:entityReuseAttrs"/>
<attributeGroup

ref="extendedEntityReuse:extendedEntityReuseAttrs"/>
</extension>

</complexContent>
</complexType>

<element name="media" type="profile:mediaType"
substitutionGroup="media:media"/>

<!-- === -->
<!-- Context -->
<!-- === -->
<!-- extends context element -->

 26

<!-- composite node interface element groups -->
<group name="contextInterfaceElementGroup">

<choice>
<element ref="profile:port"/>
<element ref="profile:property"/>

</choice>
</group>

<complexType name="contextType">
<complexContent>

<extension base="context:contextPrototype">
<choice minOccurs="0" maxOccurs="unbounded">

<group ref="profile:contextInterfaceElementGroup"/>
<element ref="profile:media"/>
<element ref="profile:context"/>
<element ref="profile:link"/>
<element ref="profile:switch"/>
<element ref="profile:meta"/>
<element ref="profile:metadata"/>

</choice>
<attributeGroup ref="entityReuse:entityReuseAttrs"/>

</extension>
</complexContent>

</complexType>

<element name="context" type="profile:contextType"
substitutionGroup="context:context"/>

<!-- === -->
<!-- MediaContentAnchor -->
<!-- === -->
<!-- extends area element -->

<complexType name="componentAnchorType">
<complexContent>

<extension base="mediaAnchor:componentAnchorPrototype">
<attribute name="now" type="string" use="optional"/>

</extension>
</complexContent>

</complexType>

<element name="area" type="profile:componentAnchorType"
substitutionGroup="mediaAnchor:area"/>

<!-- === -->
<!-- CompositeNodeInterface -->
<!-- === -->
<!-- extends port element -->

<complexType name="compositeNodePortType">
<complexContent>

<extension base="compositeInterface:compositeNodePortPrototype">
</extension>

</complexContent>
</complexType>

<element name="port" type="profile:compositeNodePortType"
substitutionGroup="compositeInterface:port"/>

<!-- === -->

 27

<!-- PropertyAnchor -->
<!-- === -->
<!-- extends property element -->

<complexType name="propertyAnchorType">
<complexContent>

<extension base="propertyAnchor:propertyAnchorPrototype">
</extension>

</complexContent>
</complexType>

<element name="property" type="profile:propertyAnchorType"
substitutionGroup="propertyAnchor:property"/>

<!-- === -->
<!-- SwitchInterface -->
<!-- === -->
<!-- extends switchPort element -->

<complexType name="switchPortType">
<complexContent>

<extension base="switchInterface:switchPortPrototype">
</extension>

</complexContent>
</complexType>

<element name="mapping" substitutionGroup="switchInterface:mapping"/>
<element name="switchPort" type="profile:switchPortType"

substitutionGroup="switchInterface:switchPort"/>

<!-- === -->
<!-- Descriptor -->
<!-- === -->

<!-- substitutes descriptorParam element -->

<element name="descriptorParam"
substitutionGroup="descriptor:descriptorParam"/>

<!-- extends descriptor element -->

<complexType name="descriptorType">
<complexContent>

<extension base="descriptor:descriptorPrototype">
<attributeGroup ref="layout:regionAttrs"/>
<attributeGroup ref="timing:explicitDurAttrs"/>
<attributeGroup ref="timing:freezeAttrs"/>
<attributeGroup ref="keyNavigation:keyNavigationAttrs"/>
<attributeGroup ref="transition:transAttrs"/>

</extension>
</complexContent>

</complexType>

<element name="descriptor" type="profile:descriptorType"
substitutionGroup="descriptor:descriptor"/>

<!-- extends descriptorBase element -->
<complexType name="descriptorBaseType">

<complexContent>

 28

<extension base="descriptor:descriptorBasePrototype">
<choice minOccurs="1" maxOccurs="unbounded">

<element ref="profile:importBase"/>
<element ref="profile:descriptor"/>
<element ref="profile:descriptorSwitch"/>

</choice>
</extension>

</complexContent>
</complexType>

<element name="descriptorBase" type="profile:descriptorBaseType"
substitutionGroup="descriptor:descriptorBase"/>

<!-- === -->
<!-- Linking -->
<!-- === -->

<!-- substitutes linkParam and bindParam elements -->
<element name="linkParam" substitutionGroup="linking:linkParam"/>
<element name="bindParam" substitutionGroup="linking:bindParam"/>

<!-- extends bind element and link element, as a consequence-->

<complexType name="bindType">
<complexContent>

<extension base="linking:bindPrototype">
<attributeGroup ref="descriptor:descriptorAttrs"/>

</extension>
</complexContent>

</complexType>

<element name="bind" type="profile:bindType"
substitutionGroup="linking:bind"/>

<!-- extends link element -->
<complexType name="linkType">

<complexContent>
<extension base="linking:linkPrototype">
</extension>

</complexContent>
</complexType>

<element name="link" type="profile:linkType"
substitutionGroup="linking:link"/>

<!-- === -->
<!-- Connector -->
<!-- === -->
<!-- extends connectorBase element -->

<complexType name="connectorBaseType">
<complexContent>

<extension base="connectorBase:connectorBasePrototype">
<choice minOccurs="0" maxOccurs="unbounded">

<element ref="profile:importBase"/>
<element ref="profile:causalConnector" />

</choice>
</extension>

</complexContent>
</complexType>

 29

<complexType name="simpleActionType">
<complexContent>

<extension
base="connectorCausalExpression:simpleActionPrototype">

<attributeGroup ref="animation:animationAttrs"/>
</extension>

</complexContent>
</complexType>

<element name="connectorBase" type="profile:connectorBaseType"
substitutionGroup="connectorBase:connectorBase"/>

<element name="causalConnector"
substitutionGroup="causalConnectorFunctionality:causalConnector"/>

<element name="connectorParam"
substitutionGroup="causalConnectorFunctionality:connectorParam"/>

<element name="simpleCondition"
substitutionGroup="causalConnectorFunctionality:simpleCondition"/>

<element name="compoundCondition"
substitutionGroup="causalConnectorFunctionality:compoundCondition"/>

<element name="simpleAction" type="profile:simpleActionType"
substitutionGroup="causalConnectorFunctionality:simpleAction"/>

<element name="compoundAction"
substitutionGroup="causalConnectorFunctionality:compoundAction"/>

<element name="assessmentStatement"
substitutionGroup="causalConnectorFunctionality:assessmentStatement"/>

<element name="attributeAssessment"
substitutionGroup="causalConnectorFunctionality:attributeAssessment"/>

<element name="valueAssessment"
substitutionGroup="causalConnectorFunctionality:valueAssessment"/>

<element name="compoundStatement"
substitutionGroup="causalConnectorFunctionality:compoundStatement"/>

<!-- === -->
<!-- TestRule -->
<!-- === -->
<!-- extends rule element -->
<complexType name="ruleType">

<complexContent>
<extension base="testRule:rulePrototype">
</extension>

</complexContent>
</complexType>

<element name="rule" type="profile:ruleType"
substitutionGroup="testRule:rule"/>

<!-- extends compositeRule element -->
<complexType name="compositeRuleType">

<complexContent>

 30

<extension base="testRule:compositeRulePrototype">
</extension>

</complexContent>
</complexType>

<element name="compositeRule" type="profile:compositeRuleType"
substitutionGroup="testRule:compositeRule"/>

<!-- extends ruleBase element -->
<complexType name="ruleBaseType">

<complexContent>
<extension base="testRule:ruleBasePrototype">

<choice minOccurs="1" maxOccurs="unbounded">
<element ref="profile:importBase"/>
<element ref="profile:rule"/>
<element ref="profile:compositeRule"/>

</choice>
</extension>

</complexContent>
</complexType>

<element name="ruleBase" type="profile:ruleBaseType"
substitutionGroup="testRule:ruleBase"/>

<!-- === -->
<!-- TestRuleUse -->
<!-- === -->
<!-- extends bindRule element -->
<complexType name="bindRuleType">

<complexContent>
<extension base="testRuleUse:bindRulePrototype">
</extension>

</complexContent>
</complexType>

<element name="bindRule" type="profile:bindRuleType"
substitutionGroup="testRuleUse:bindRule"/>

<!-- === -->
<!-- ContentControl -->
<!-- === -->
<!-- extends switch element -->

<!-- switch interface element groups -->
<group name="switchInterfaceElementGroup">

<choice>
<element ref="profile:switchPort"/>

</choice>
</group>

<!-- extends defaultComponent element -->
<complexType name="defaultComponentType">

<complexContent>
<extension base="contentControl:defaultComponentPrototype">
</extension>

</complexContent>
</complexType>

<element name="defaultComponent" type="profile:defaultComponentType"
substitutionGroup="contentControl:defaultComponent"/>

 31

<complexType name="switchType">
<complexContent>

<extension base="contentControl:switchPrototype">
<choice minOccurs="0" maxOccurs="unbounded">

<group ref="profile:switchInterfaceElementGroup"/>
<element ref="profile:bindRule"/>
<element ref="profile:switch"/>
<element ref="profile:media"/>
<element ref="profile:context"/>

</choice>
<attributeGroup ref="entityReuse:entityReuseAttrs"/>

</extension>
</complexContent>

</complexType>

<element name="switch" type="profile:switchType"
substitutionGroup="contentControl:switch"/>

<!-- === -->
<!-- DescriptorControl -->
<!-- === -->
<!-- extends defaultDescriptor element -->
<complexType name="defaultDescriptorType">

<complexContent>
<extension base="descriptorControl:defaultDescriptorPrototype">
</extension>

</complexContent>
</complexType>

<element name="defaultDescriptor" type="profile:defaultDescriptorType"
substitutionGroup="descriptorControl:defaultDescriptor"/>

<!-- extends descriptorSwitch element -->

<complexType name="descriptorSwitchType">
<complexContent>

<extension base="descriptorControl:descriptorSwitchPrototype">
<choice minOccurs="0" maxOccurs="unbounded">

<element ref="profile:descriptor"/>
<element ref="profile:bindRule"/>

</choice>
</extension>

</complexContent>
</complexType>

<element name="descriptorSwitch" type="profile:descriptorSwitchType"
substitutionGroup="descriptorControl:descriptorSwitch"/>

<!-- === -->
<!-- Timing -->
<!-- === -->

<!-- === -->
<!-- Import -->
<!--== -->
<complexType name="importBaseType">

<complexContent>
<extension base="import:importBasePrototype">

 32

</extension>
</complexContent>

</complexType>

<complexType name="importNCLType">
<complexContent>

<extension base="import:importNCLPrototype">
</extension>

</complexContent>
</complexType>

<complexType name="importedDocumentBaseType">
<complexContent>

<extension base="import:importedDocumentBasePrototype">
</extension>

</complexContent>
</complexType>

<element name="importBase" type="profile:importBaseType"
substitutionGroup="import:importBase"/>

<element name="importNCL" type="profile:importNCLType"
substitutionGroup="import:importNCL"/>

<element name="importedDocumentBase"
type="profile:importedDocumentBaseType"
substitutionGroup="import:importedDocumentBase"/>

<!-- === -->
<!-- EntityReuse -->
<!-- === -->

<!-- === -->
<!-- ExtendedEntityReuse -->
<!-- === -->

<!-- === -->
<!-- KeyNavigation -->
<!-- === -->

<!-- === -->
<!-- TransitionBase -->
<!-- === -->
<!-- extends transitionBase element -->

<complexType name="transitionBaseType">
<complexContent>

<extension base="transitionBase:transitionBasePrototype">
<choice minOccurs="0" maxOccurs="unbounded">

<element ref="profile:transition"/>
<element ref="profile:importBase"/>

</choice>
</extension>

</complexContent>
</complexType>

<element name="transitionBase" type="profile:transitionBaseType"
substitutionGroup="transitionBase:transitionBase"/>

<!-- === -->
<!-- Transition -->

 33

<!-- === -->

<element name="transition" substitutionGroup="transition:transition"/>

<!-- === -->
<!-- Metainformation -->
<!-- === -->

<element name="meta" substitutionGroup="metainformation:meta"/>

<element name="metadata" substitutionGroup="metainformation:metadata"/>

</schema>

 34

6. Final Remarks

In order to offer a scalable hypermedia model, with characteristics that may be
progressively incorporated in hypermedia system implementations, NCM was divided in
several parts, and also its declarative XML application language: NCL. This technical
report deals with the editing commands used for live authoring NCL documents, which
comprises Part 9: NCL Live Editing Commands.

 35

References
[Anto00] Antonacci M.J. NCL: Uma Linguagem Declarativa para Especificação de

Documentos Hipermídia com Sincronização Temporal e Espacial. Master
Dissertation, Departamento de Informática, PUC-Rio, April 2000.

[AMRS00] Antonacci M.J., Muchaluat-Saade D.C., Rodrigues R.F., Soares L.F.G. NCL:
Uma Linguagem Declarativa para Especificação de Documentos Hipermídia na
Web, VI Simpósio Brasileiro de Sistemas Multimídia e Hipermídia -
SBMídia2000, Natal, Rio Grande do Norte, June 2000.

[ISO98] ISO/IEC 13818-6, Information technology - Generic coding of moving pictures
and associated audio information - Part 6: Extensions for DSM-CC. 1998/Cor
2:2002.

[RDF99] Resource Description Framework (RDF) Model and Syntax Specification, Ora
Lassila and Ralph R. Swick. W3C Recommendation, 22 February 1999.
Available at http://www.w3.org/TR/REC-rdf-syntax/

[SCHE01] XML Schema Part 0: Primer, W3C Recommendation, in
http://www.w3.org/TR/xmlschema-0/, May 2001.

[SoRo05] Soares L.F.G; Rodrigues R.F. Nested Context Model 3.0: Part 1 – NCM Core,
Technical Report, Departamento de Informática PUC-Rio, May 2005,
ISSN: 0103-9741.

[SoRo06] Soares L.F.G; Rodrigues R.F. Nested Context Language 3.0: Part 8 – NCL
Digital TV Profiles, Technical Report, Departamento de Informática PUC-
Rio, October 2006, ISSN: 0103-9741.

[XML98] Bray T., Paoli J., Sperberg-McQueen C.M., Maler E. Extensible Markup
Language (XML) 1.0 (Second Edition), W3C Recommendation, in
http://www.w3.org/TR/REC-xml, February 1998.

 36

Appendix A – DSM-CC Transport of Editing Commands using Stream-
event Descriptors and Object Carousels

In Digital TV environments, it is usual to adopt DSM-CC to transport editing commands in
MPEG-2 TS elementary streams.

Editing commands are transported in DSM-CC stream-event descriptors. As specified on
[ISO98], a DSM-CC stream-event descriptor has a very similar structure to that an of event
descriptor presented in Figure 4.1 (see Figure A.1).

Syntax Number of bits
StreamEventDescriptor () {
 descriptorTag 8

 descriptorLenght 8
 eventId 16
 reserved 31

 eventNPT 33
 privateDataLength 8

 commandTag 8
 sequenceNumber 7

 finalFlag 1
 privateDataPayload 8 to 2008

 FCS 8
}

Figure A.1 - Editing command stream event descriptor

The DSM-CC object carousel protocol allows the cyclical transmission of event objects and
file systems. Event objects are used to map stream event names into stream event ids
defined in event descriptors. Event objects are used to inform about DSM-CC stream events
that may be received. Event names allow specifying types of events, offering a higher
abstraction level for applications. The Private Base Manager should register itself as a
listener of stream events it handles using event names; in the case of editing commands the
name “nclEditingCommand”.

As aforementioned, besides event objects the DSM-CC object carousel protocol can also be
used to transport files organized in directories. A DSM-CC demultiplexer is responsible for
mounting the file system at the receiver device. XML-based command parameters specified
as XML documents (NCL documents or an NCL entities to be added) can thus be
organized in file system structures to be transported in these carousels, as an alternative to
the direct transportation in the payload of stream event descriptors. A DSM-CC carousel
generator is used to join the file systems and stream event objects into data elementary
streams.

 37

Thus, when an NCL editing command needs to be sent, a DSM-CC event object shall be
created, mapping the string “nclEditingCommand” into a selected stream event id, and shall
be put in a DSM-CC object carousel sent in a elementary stream of type = “0x0B”. One or
more DSM-CC stream event descriptors with a previous selected event id are then created
and sent in another MPEG-2 TS elementary stream. These stream events usually have their
time reference set to zero, but may be postponed to be executed at a specific time. The
Private Base Manager shall register itself as an “nclEditingCommand” listener in order to
be notified when this kind of stream event arrives.

The commandTag of the received stream event descriptor is then used by the Private Base
Manager to interpret the complete command string semantics. If the XML-based command
parameter is short enough it is transported directly in the stream event descriptor payload.
Otherwise, the privateDataPayload field carries a set of reference pairs. In this case, the
XML specification shall be placed in the same object carousel that carries the event object.
The uri parameter of the first reference pair shall have the schema (optional) and the
absolute path of the XML specification (the path in the data server). The corresponding id
parameter in the pair shall refer to the XML specification IOR (carouselId, moduleId,
objectKey; see [ISO98]) in the object carousel. If other file systems needs to be transmitted
using other object carousels to complete the editing command with media contents (as it is
usual in the case of addDocument or addNode commands), other {uri, id} pairs shall be
present in the command. In this case, the uri parameter shall have the schema (optional)
and the absolute path of file system root (the path in the datacast server), and the
corresponding id parameter in the pair shall refer to the IOR (carouselId, moduleId,
objectKey) of any root child file or child directory in the object carousel (the carousel
service gateway).

Figure A.2 describes an example of interactive application transmission using this scheme
for the Brazilian Digital TV system. In the example, the content provider wishes to send an
interactive application (“trafficConditions.ncl”) stored in one of the broadcaster datacasting
servers (in a local file system), but referring to resources in different hard disks or
partitions, as illustrated in figure. Two object carousels are generated to carry the
interactive content (Service Domain = 0x1 and Service Domain = 0x2). Besides the
application and part of their content, the object carousel represented by Service Domain = 1
carries an event object. This object relates the event type “nclEditingCommand” with the
event identifier “0x3”.

The stream event descriptor (Figure A.2) is transmitted with the identifier “0x3”, as
specified by the event object of carousel “0x1”. In this event, the value “0x0” is assigned to
the temporal reference (eventNPT field in Figure A.2), requiring its immediate execution.
The private data field carries the “addDocument” command code and a set of <URL, ID>
pairs. In the first pair, the URL has the “x-sbtvd” scheme and the local absolute path
“E:\newNclRepository\traffic” related with the interactive application. The associated ID
locates the object that carries the application: Service Domain “0x1”, module “0x1” and
object “0x2”. In the second pair, the URL has the “x-sbtvd” scheme and the “L:\media”
path, while the associated ID locates the image “southRegion.jpg” in Service Domain
“0x2”, module “0x1” and object “0x2”. Using this information, a Private Base Manager can
store the received absolute path of each received URL, relating them with the local memory
area URL where the objects, passed on each transmitted IOR, are (or will be) mounted.

 38

moduleId = 0x1
...
objectKey = 0x1
objectKind = srg
2 bindings
binding #1

objectName = trafficConditions.ncl
objectType = fil
IOR = 0x1,0x1,0x2

binding #2
objectName = images
objectType = dir
IOR = 0x1,0x1,0x3

...
objectKey = 0x2
objectKind = fil
data
...
objectKey = 0x3
objectKind = dir
1 binding
binding #1

objectName = paulistaAvenue.jpg
objectType = fil
IOR = 0x1,0x2,0x1

moduleId = 0x2
objectKey = 0x1
objectKind = fil
data
...
objectKey = 0x2
objectKind = ste
eventList
eventName =

“gingaEditingCommand”
eventId = 0x3
...

Service Domain = 0x1Local File System Service Domain = 0x2

moduleId = 0x1
...
objectKey = 0x1
objectKind = srg
1 binding
binding #1

objectName = southRegion.jpg
objectType = fil
IOR = 0x2,0x1,0x2

...
objectKey = 0x2
objectKind = fil
data

Stream Event Descriptor

descriptorTag = streamEventTag()
descriptorLenght = descriptorLen()
eventId = 0x3
reserved
eventNPT = 0
privateDataLenght = dataLen()
privateData = “0x05”,
“x-sbtvd://E:\newNclRepository\traffic”,
“0x1,0x1,0x2”,
“x-sbtvd://L:\media”, “0x2,0x1,0x2”//

// //

Figure A.2 - Example of the proposed mechanism

Note that the resource identification is performed in the receiver exactly as it is performed
in the authoring environment, in spite of if the interactive application works with absolute
or relative URLs, or if the object carousel being used refers to resources in other carousels.
For example, the “trafficConditions.ncl” application could refer to the “brazilianMap.jpg”
relatively or absolutely. Furthermore, the application could refer to a content stored in a
different provider, which would be loaded through a different object carousel. The resource
location mapping is automatically performed by the Private Base Manager.

ncl

 39

Appendix B –Transport of Editing Commands Using Specific Structures
defined by Ginga-NCL

Event descriptors (defined in Section 4) can be sent in MPEG-2 TS elementary stream,
using DSM-CC stream event, as discussed in appendix A, or using any protocol for pushed
data transmission.

Three data structure types are defined to support the transmission of NCL editing command
parameters: maps, metadata and data files.

For map structures, the mappingType field identifies the map type. If the mappingType is
equal to “0x01” (“events”), an event-map is characterized. In this case, after the
mappingType field comes a list of event identifiers as defined in Table B.1. Other
mappingType values may also be defined, but they are not relevant for this discussion.

Table B.1 – List of event identifiers defined by the mapping structure

Syntax Number of bits

mappingStructure () {

 mappingType 8

 for (i=1; i<N; i++){

 eventId 8

 eventNameLength 8

 eventName 8 to 255

 }

}

Maps of type “events” (event maps) are used to map event names into eventIds of event
descriptors (see Figure 4.1). Event maps are used to inform which events shall be received.
Event names allow specifying types of events, offering a higher abstraction level for
middleware applications. The Private Base Manager, as well as execution-objects (e.g.
NCLua, NCLet), should register themselves as listeners of events they handle, using event
names.

When an NCL editing command needs to be sent, an event map shall be created, mapping
the string “nclEditingCommand” into a selected event descriptor id (see Figure 4.1). One or
more event descriptors with the previous selected eventId are then created and sent2. These
event descriptors may have their time reference set to zero, but may be postponed to be
executed at a specific time. The Private Base Manager shall register itself as an
“nclEditingCommand” listener in order to be notified when this type of event arrives.

2 For example, it can be sent in an MPEG-2 TS elementary stream, or using some protocol for pushed data
transmission.

 40

Each data file structure is indeed a file content that composes an NCL application or an
NCL entity specification: the XML specification file or its media content files (video,
audio, text, image, ncl, lua, etc.).

A metadata structure is an XML document, as defined by the following schema. Note that
the schema defines, for each pushed file, an association between its location in a transport
system (transport system identification (component_tag attribute) and the file identification
in the transport system (structureId attribute)) and its Universal Resource Identifier (uri
attribute).

<!--
XML Schema for NCL Section Metadata File

This is NCL
Copyright: 2000-2005 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.
See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCLSectionMetadataFile.xsd
Author: TeleMidia Laboratory
Revision: 19/09/2006

Schema for the NCL Section Metadata File namespace.
-->
<schema xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:NCLSectionMetadataFile="http://www.ncl.org.br/
NCLSectionMetadataFile"

targetNamespace="http:// www.ncl.org.br/NCL3.0/
NCLSectionMetadataFile"

elementFormDefault="qualified" attributeFormDefault="unqualified" >

<complexType name="NCLSectionMetadataType">
<sequence>

<sequence>
<element ref="NCLSectionMetadataFile:baseData" minOccurs="0"

maxOccurs="unbounded"/>
</sequence>
<element ref="NCLSectionMetadataFile:pushedRoot" minOccurs="0"

maxOccurs="1"/>
<sequence>

<element ref="NCLSectionMetadataFile:pushedData" minOccurs="0"
maxOccurs="unbounded"/>

</sequence>
</sequence>
<attribute name="name" type="string" use="optional"/>
<attribute name="size" type="positiveInteger" use="optional"/>

</complexType>

<complexType name="baseDataType">
<sequence>

<element ref="NCLSectionMetadataFile:pushedRoot" minOccurs="0"
maxOccurs="1"/>

<sequence>
<element ref="NCLSectionMetadataFile:pushedData"

minOccurs="0" maxOccurs="unbounded"/>
</sequence>

</sequence>
<attribute name="uri" type="anyURI" use="required"/>

 41

</complexType>

<complexType name="pushedRootType">
<attribute name="component_tag" type="positiveInteger"

use="optional"/>
<attribute name="structureId" type="string" use="required"/>
<attribute name="uri" type="anyURI" use="required"/>
<attribute name="size" type="positiveInteger" use="optional"/>

</complexType>

<complexType name="pushedDataType">
<attribute name="component_tag" type="positiveInteger"

use="optional"/>
<attribute name="structureId" type="string" use="required"/>
<attribute name="uri" type="anyURI" use="required"/>
<attribute name="size" type="positiveInteger" use="optional"/>

</complexType

<!-- declare global elements in this module -->
<element name="metadata"

type="NCLSectionMetadataFile:NCLSectionMetadataType"/>
<element name="baseData"

type="NCLSectionMetadataFile:baseDataType"/>
<element name="pushedRoot"

type="NCLSectionMetadataFile:pushedRootType"/>
<element name="pushedData"

type="NCLSectionMetadataFile:pushedDataType"/>

</schema>

For each NCL Document file or other XML Document files used in addDocument or
addNode editing command parameters, at least one metadata structure shall be defined.
Only one NCL application file or XML document file representing an NCL node to be
inserted may be defined in a metadata structure. More precisely, there can be only one
<pushedRoot> element in a metadata XML document. However, an NCL application (and
its content files) or an XML document (and its content files) may extend for more than one
metadata structure. Moreover, there may also be a metadata structure without any NCL
application or XML document described in its <pushedRoot> and <pushedData> elements.

These three data structures can be transmitted using different transport systems, as
exemplified in what follows.

B.1 Transporting all data structures in a specific MPEG-2 section type

The use of a specific type of MPEG-2 section (identified by a specific table_id value,
present in the table_id field of an MPEG-2 private section), from now on called NCL
Section, may allow the transmission of the three data structure types: maps, metadata and
data files.

Every NCL Section contains data of a single structure. However, one structure can extend
through several Sections. Every data structure can be transmitted in any order and how
many times it is necessary. The beginning of a data structure is delimited by the
payload_unit_start_indicator field of a TS packet. After the four bytes of the TS header the
TS packet payload starts with a pointer_field byte indicating the beginning of an NCL

 42

Section (see ISO/IEC 13818-1). The NCL Section header is then defined as MPEG-2
sections (see ISO/IEC 13818-1). The first byte of an NCL Section payload identifies the
structure type (0x01 for metadata; 0x02 for data files, and 0x03 for event-map). The second
payload byte carries the unique identifier of the structure (structureId) in this elementary
stream3. After the second byte comes a serialized data structure that can be a
mappingStructure (as depicted by Table B.1), or a metadata structure (an XML document),
or a data file structure (a serialized file content). The NCL Section demultiplexer is
responsible for mounting the application’s structure at the receiver device.4

In the same elementary stream that carries the XML specification (the NCL Document file
or other XML Document file used in NCL editing commands), an event-map file should be
transmitted in order to map the name “nclEditingCommand” to the eventId of the event
descriptor, which shall carry an NCl editing command, as described in Section 4. The
privateDataPayload of the event descriptor shall carry a set of {uri, id} reference pairs. The
uri parameters are always “null”. In the case of addDocument and addNode commands, the
id parameter of the first pair shall identify the elementary stream (“component_tag”) and its
metadata structure (“structureId”) that carries the absolute path of the NCL document or the
NCL node specification (the path in the data server) and the corresponding related structure
(“structureId”) transported in NCL Sections of the same elementary stream. If other
additional metadata structures are used in order to complete the addDocument or addNode
command, other {uri, id} pairs shall be present in the command. In this case, the uri
parameter shall also be “null” and the corresponding id parameter in the pair shall refer to
the component_tag and the corresponding metadata structureId.

Figure B.1 depicts an example of an NCL document transmission through NCL Sections. In
this example, a content provider wants to transmit an interactive program named
“weatherConditions.ncl” stored in one of its data servers (Local File System, in Figure
B.1). An MPEG-2 elementary stream (component_tag= “0x09”) shall then be generated
carrying all the interactive program contents (ncl file and all media content files) and also
an event-map (structureType=“0x03”; structureId=“0x0C”), in Figure B.1), mapping the
“nclEditingCommand” name to the eventId value (value “3”, in Figure B.1). An event
descriptor shall also be transmitted with the appropriated eventId value, in the example “3”,
and the commandTag value “0x05”, which indicates an addDocument command (see
Section 4). The uri parameter shall have the “null” value and the id parameter shall have
the (component_tag= “0x09”, structureId= “0x0B”, in Figure B.1) value.

3 The elementary stream and the structure identifier are those that are associated by the metadata structure to a
file locator (URL), through the component_tag and structureId attributes of the <pushedRoot> and
<pushedData> elements.

4 It is important to note that NCL Sections can also transport data structures encapsulated in other data
structures. For example, MPE (Multi-protocol Encapsulation) can be used and thus, in this case, NCL
Sections are MPEG-2 Datagram Sections. Moreover all data structures mentioned in this appendix can be
wrapped in other protocol data format, like FLUTE packets.

 43

C:\nclRepository

Local File System

weather

images
brazilianMap.png

weatherConditions.ncl

Event Descriptor

descriptorTag = 0
descriptorLenght= descriptorLen ()
eventId= 3
Reserved
eventNPT = 0
privateDataLenght=dataLen()
commandTag= 0x05
Sequence number= 0
finalFlag= 1
privateDataPayload= “someBase”,

“null”, “0x09, 0x0B”
FCS = checksum()

<metadata name=“weatherConditions” size= “110kb”>

<baseData uri=file://c:/nclRepository/weather/

<pushedRoot structureId=“0x0A” uri=“weatherConditions.ncl
size=“10kb”/>

<pushedData structureId=“0x09” uri=“../images/brazilianMap.png”
size=“100kb”/>

</baseData>

</metadata>

Metadata Structure

Event-Map File

eventId = 3

eventNameLength = 0x0C

eventName = nclEditingCommand

Figure B.1 – Example of an NCL document transmission using MPEG-2 NCL Section

B.2 Transporting metadata structures as Editing Command parameter

Instead of transporting metadata structures directly inside NCL sections, an alternative
procedure is treating metadata structures as addDocument and addNode command
parameters, which are transported in the privateDataPayload field of an event descriptor.

In this case, the set of {uri, id} parameter pairs of addDocument and addNode command is
substituted by metadata structure parameters that define a set of {“uri”, “component_tag,
structureId”} pairs for each pushed file.

Taking back the example of Figure B.1, the new scenario would be exactly the same,
except by the event descriptor. Instead of having the {uri; id} pair = {“null”; “0x09,0x0B”}
value as an event descriptor parameter, it would have the serialized XML metadata
structure. In the metadata structure, the component-tag attribute of the <pushedRoot> and
<pushedData> elements shall in this case be defined, since the metadata structure is not
transported anymore in the same elementary stream of the NCL document’s files.

B.3 Transporting metadata structures in MPEG-2 metadata sections

Another alternative is transporting metadata structures in MPEG-2 metadata sections,
transported in MPEG-2 stream type = “0x16”. As usual, every MPEG-2 metadata section
contains data of a single metadata structure. However, one metadata structure can extend
through several metadata sections.

Table B.2 shows the metadata section syntax for transport of metadata structures, which
shall be in agreement with ISO/IEC 13818-1: 2007.

 44

Table B.2 – Section syntax for transport of metadata structures

Syntax Nº. of bits Value
Metadata section() {

 table_id 8 0x06

 section_syntax_indicator 1 1

 private_indicator 1 1

 random_access_indicator 1 1

 decoder_config_flag 1 0

 metadata_section_length 12 integer

 metadata_service_id 8 Integer to be
standardized

 reserved 8

 section_fragment_indication 2 according to
Table B.3

 version_number 5 integer

 current_next_indicator 1 1

 section_number 8 integer

 last_section_number 8 integer

 structureId 8 integer

 For (i=1; i< N; i++) {

 serialized_metadata_structure_byte 8

 }

 CRC_32 32

}

Table B.3 – Section fragment indication

Value Description

11 A single metadata section carrying a complete metadata structure.

10 The first metadata section from a series of metadata sections with data from one
metadata structure.

01 The last metadata section from a series of metadata sections with data from one
metadata structure.

00 A metadata section from a series of metadata sections with data from one metadata
structure, but neither the first nor the last one.

As previously, in the same elementary stream that carries the XML specification (the NCL
Document file or other XML Document file used in NCL editing commands), an event-map
file should be transmitted in order to map the name “nclEditingCommand” to the eventId of
the event descriptor, which shall carry an NCL editing command, as described in Section 4.
The privateDataPayload of the event descriptor shall carry a set of {uri, id} reference pairs.
The uri parameters are always “null”. In the case of addDocument and addNode

 45

commands, the id parameter of the first pair shall identify the elementary stream
(“component_tag”) of type= “0x16” and the metadata structure (“structureId”) that carries
the absolute path of the NCL document or the NCL node specification (the path in the data
server). If other metadata structures are used to relate files present in the NCL document or
the NCL node specification, in order to complete the addDocument or addNode command
with media content, other {uri, id} pairs shall be present in the command. In this case, the
uri parameter shall also be “null” and the corresponding id parameter in the pair shall refer
to the component_tag and the corresponding metadata structureId.

Taking back the example of Figure B.1, the new scenario would be very similar. Only
minor changes must be made such that the event descriptor refers to the elementary stream
and its section that carries the metadata structure (“component_tag= “0x08” and
structureId= “0x0B”), and that the metadata structure also refers to the elementary stream
where the document’s file will be transported. Figure B.2 illustrates the new situation.

C:\nclRepository

Local File System

weather

images
brazilianMap.png

weatherConditions.ncl

Event Descriptor

descriptorTag = 0
descriptorLenght= descriptorLen ()
eventId= 3
Reserved
eventNPT = 0
privateDataLenght=dataLen()
commandTag= 0x05
Sequence number= 0
finalFlag= 1
privateDataPayload= “someBase”,

“null”, “0x08, 0x0B”
FCS = checksum()

<metadata name=“weatherConditions” size= “110kb”>

<baseData uri=file://c:/nclRepository/weather/

<pushedRoot component_tag=“0x09” structureId=“0x0A”
uri=“weatherConditions.ncl size=“10kb”/>

<pushedData component_tag=“0x09” structureId=“0x09”
uri=“../images/brazilianMap.png” size=“100kb”/>

</baseData>

</metadata>

Metadata Structure

Event-Map File

eventId = 3

eventNameLength = 0x0C

eventName = nclEditingCommand

Figure B.2 – Example of an NCL document transmission using MPEG-2 Metadata Section

