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Abstract. Event-based systems are becoming more and more popular. However, eventorientation
imposes a state-machine view of the program which is not always natural oreasy for the program-
mer. In this work we discuss how programming language features can facilitate the construction
and integration of different high-level programming abstractions, allowing theprogrammer to view
the code in the way that is most appropriate to each situation, even inside one singleapplication.
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Resumo. Sistemas orientados a eventos vêm se tornando cada vez mais populares. Entretanto,
orientação a eventos impõe um estilo de programação baseado em máquina deestados, o que
nem sempre é uma forma natural e fácil para o programador. Neste trabalhonós discutimos
como características da linguagem de programação podem facilitar a construção e integração de
diferentes níveis de abstrações de programação, permitindo ao programador escolher qual é o mais
apropriado para cada situação, mesmo dentro de uma única aplicação.
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1 Introduction

In the last few years the focus of distributed computing has shifted from localarea to wide-area net-
works. Much work has been devoted to studying programming paradigms that are more adequate
to this new target environment. It is now widely accepted that asynchronous and event-based sys-
tems are more convenient for wide-area distributed applications than synchronous programming
models.

Event-oriented programming systems originally became popular in the setting of graphical
interfaces. In this context, the developer codes the program as a seriesof responses to user ac-
tions, such as mouse clicks or menu selections. When we extend event-oriented programming to
distributed programming, the arrival of a message is viewed as an event, and the developer again
codes the program in terms of responses to events. In both cases, the program takes the form of
a state machine, in which the current state, coupled with the incoming event, determines what the
next state will be. In some situations, creating code in this way is extremely natural. However, in
other scenarios, such as requesting a service from a remote node and actingupon its reply, it can
be quite unnatural to create code with this model.

In this work we discuss how, with the appropriate language support, one can have the best
of both worlds, seamlessly combining programming paradigms in one single application. Our
discussion is based on the Lua programming language, which offers some reflective facilities
and also some features typical of functional languages, such as functions as first order values.
However, our focus is on the effect these features have, which couldbe obtained in other systems
with similar properties.

This work is organized as follows. In Section 2 we give a brief introduction to theALua
system, an event-based distributed programming system based on Lua. Section3 describes two
libraries which support programming abstractions: one for writing event-oriented distributed al-
gorithms and the other one for remote procedure calls. In Section 4, we discuss how both libraries
can be integrated seamlessly in one application. Finally, Section 5 contains some final remarks.

2 The ALua System

Lua [Ierusalimschy, Figueiredo e Celes 1996] is an interpreted programminglanguage designed to
be used in conjunction with C. It has a simple Pascal-like syntax and a set of functional features,
such as first-order function values and closures. Lua implements dynamic typing. Types are
associated to values, not to variables or formal arguments. Lua’s main data-structuring facility is
thetabletype. Tables implement associative arrays, i.e., arrays that can be indexed with any value
in the language. When programming in Lua, tables are used to implement different data structures,
from ordinary arrays to sets or linked lists, and also to support objects andmodules.

Metatablesadd reflective facilities to Lua. They allow us to change the normal behavior of
tables. Of specific interest to us is the possibility of changing language behavior when querying
fields that are absent in a table. When a program accesses an absent field in a tableT, the interpreter
looks for the__index method inT ’s metatable. If there is such a method, it is invoked to provide
a result.

The ALua system [Ururahy, Rodriguez e Ierusalimschy 2002] uses Lua to support event-oriented
distributed programming. An important feature of interpreted languages in general is the support
for executing dynamically created chunks of code. In ALua, messages are chunks of code that
will be executed by the recipient. There is only one asynchronous communication primitive in
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ALua, alua.send, that sends a chunk of Lua code to another process. There is no equivalent to a
receive primitive. ALua uses an event-driven programming model, where the arrival of a message
is treated as an event. Whenever an ALua process becomes idle, the event loop activates a han-
dler for pending events, which may be generated by the user, through theconsole, or by a remote
process, by sending a message. If an ALua process receives a message from another process, it
executes this message in the environment of the receiver. The result is anevent-driven program-
ming model, compatible with the character of interpreted languages — not very secure, but highly
flexible: A programmer can use it to perform simple tasks, such as calling a remote function,
but she can also use it for much more complex tasks, such as remotely changing thealgorithm a
process is executing.

ALua is provided as a library of Lua functions [Rodriguez 2005]. An ALuadaemonmust run
on each machine in which ALua processes execute. Besides thesendprimitive, the ALua library
provides functions for starting and connecting to daemons, starting or joining an application, and
for spawning new processes. An application works as a group of processes: when a process joins
an existing application, it receives a list of current processes in this application, and can from
that point on send messages to them. Most ALua functions are asynchronous, and can take as an
optional argument a callback to be invoked with the result as an argument. So, forexample, the
programmer can associate a callback to the asynchronous invocation ofalua.send, and have this
callback handle the case of failure in communication.

As we discuss in [Ururahy, Rodriguez e Ierusalimschy 2002], the use of the event-driven par-
adigm, as of any other programming paradigm, leads programmers to create specific program
structures. An important characteristic of ALua is that it treats each message as an atomic chunk
of code. It handles each event to completion before starting the next one. Messages must typically
be small, non-blocking chunks of code.

3 Programming Abstractions

The ALua basic programming model, in which chunks of code are sent as messages and exe-
cuted upon receipt, is very flexible, and can be used to construct different interaction paradigms,
as discussed in [Ururahy, Rodriguez e Ierusalimschy 2002]. However, programming distributed
applications directly on this programming interface keeps the programmer at a very low level,
handling large strings containing chunks of code. On the other hand, usingfeatures of Lua, we are
able to create libraries that offer higher-level communication abstractions and integrate them into
the language.

In the next two subsections, we describe two such libraries. The first one implements an
event-driven model, very similar to the basic ALua model, plus a small set of services which are
convenient for programming distributed algorithms. The other library is LuaRPC,which combines
ALua’s asynchronous nature with the well-known remote procedure call abstraction. In Section 4,
we discuss how both of them can become useful in one same application.

3.1 Distributed Algorithms

The DAlua library was designed as a support tool for teaching distributed algorithms. Its main
goal is to bridge the gap between the notation used in classical Distributed Algorithms books and
their implementation. This notation is quite similar in spirit to the basic ALua event-drivenpro-
gramming model, but allows a more direct transcription of the distributed algorithms as described
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in technical books [Barbosa 1996, Raynal 1988]. So the DAlua library mainly creates new and
simplified versions of ALua’s functions. Thesendfunction is redefined as:

DAlua.send (dest, messagetype, ...)

which takes as argumentsdest, the destination process,messagetype, a string describing the type
of message being sent, and a sequence of optional arguments.

Figure 1 shows code using the DAlua library, and also works as an example of the ALua
programming model. This is part of the (simplified) code for implementing a classical algorithm
for distributed mutual exclusion [Ricart e Agrawala 1981] based on logicalclocks (Many improve-
ments were proposed to the algorithm since it was first described, but we usethe original algorithm
for the sake of simplicity.). In this algorithm, a process desiring to enter its criticalregion sends a
request to all processes in the group and then wait for all of their replies. When a process receives
a request for mutual exclusion, it either immediately replies (a reply in this case always means
agreement), if it is not interested in entering the critical section or if the other process issued a
request with a timestamp prior to the one of its pending request, or defers its reply until it leaves
the critical section. To keep the code small, we handle in this case only one request per process at
a time. In this simple implementation, we store in global variablecriticalSec a string containing
the code to be executed when it is ok for the current process to enter its critical region.

FunctionenterCS sendsrequeststo all other processes in the application and sets some global
variables: waiting indicates that the process is now in a new state, awaiting authorizations;
timeoflastrequest records the logical time of this request, andmissing keeps track of the num-
ber of processes which have not yet sent their authorization. FunctionDAlua.processes returns
a table with all processes currently in the application, and the call to Lua functiontable.getn

returns the size of this table. Functionloadstring compiles a Lua chunk from a string and returns
the compiled chunk as a function, in this case, to be stored in global variablecritictalSec.

Sending arequestamounts to having the receiver execute functionrequest. This function
checks whether the process is in its critical region or is awaiting authorizations toenter it: in this
last case, logical times of requests are compared, and if there is a draw, idsof both processes
(functionDAlua.self returns the current’s process id) are compared. In the situations in which the
receiver must grant authorization, it sends anoktogomessage back, which, on its turn, makes its
receiver executeoktogo. Functionoktogo decrements the count of missing authorizations, and, if
this count is zero, executes the critical region.

3.2 Remote Procedure Calls

Organizing code as a series of responses to external events can become quite cumbersome for
the programmer, particularly when one conceptual “task” involves several events. As discussed
in [Adya et al. 2002], the problem is that the control flow for a single task and the task-specific
state is broken across several language procedures, discarding theeffectiveness of language scop-
ing features. The classical RPC mechanism [Birrell e Nelson 1984] allows communication with
a peer (request and reply) to be handled inside the scope of a single language procedure, but im-
poses unacceptable synchronism. In [Rossetto e Rodriguez 2005] we discuss the LuaRPC library,
in which we bring the benefits of RPC to asynchronous systems, using an asynchronous remote
invocation as a basis for communication.

LuaRPC provides a simple interface for issuing asynchronous and synchronous remote pro-
cedure calls between ALua processes. Functionrpc.async() receives as arguments the identifier
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-- global variables
logicalclock = 0
busy = false
waiting = false
deferred = {} -- constructs empty table

function enterCS(code)
waiting = true
timeoflastrequest = logicalclock
local peers = DAlua.processes("myapp")
missing = table.getn(peers)
criticalSec = loadstring(code)
-- requests to all peers:
DAlua.send(peers, "request",

DAlua.self, logicalclock)
end

function request (id, timestamp)
if not busy and not waiting then
DAlua.send(id, "oktogo", DAlua.self)

elseif waiting then
if timestamp < timeoflastrequest or
(timestamp == timeoflastrequest and
id <= DAlua.self) then
DAlua.send(id, "oktogo", DAlua.self)

else
table.insert(deferred, id)

end
elseif busy then
table.insert(deferred, id)

end
-- keep logical clock consistent
if timestamp < logicalclock then
logicalclock = logicalclock + 1

else
logicalclock = timestamp + 1

end
end

function oktogo (id)
missing = missing - 1
if missing == 0 then
busy = true
waiting = false
-- enters critical region:
criticalSec()

end
end

function leaveCS ()
busy = false
-- function pairs "traverses" a table:
for k, pid in pairs (deferred) do
DAlua.send(pid, "oktogo", DAlua.self)

end
deferred = {} -- resets empty list

end

Figure 1: Code outline for Ricart-Agrawal
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of a remote process, the name of the procedure to be called, and a callback function to be exe-
cuted when the reply arrives. The returned value is a function — a dynamically created function,
whose construction relies on Lua’s closures — which can be called one or more times, passed as
an argument or assigned to a variable, exactly like an ordinary local function. However, whenever
this function is invoked, execution will proceed immediately, and the associated callback will be
executed on function return.

The LuaRPC library uses therpc.async() construct to build an alternative, synchronous re-
mote procedure call. The main idea is that the callback function, in the synchronous case, is the
“continuation” [Friedman, Wand e Haynes 2001] of the current computation. Toimplement this
idea, we used thecoroutine[de Moura, Rodriguez e Ierusalimschy 2004].

Coroutines introduce multitasking in a cooperative fashion: each coroutine hasits own exe-
cution stack, as a thread does, but control is transferred only though theuse of explicit control
transfer primitives. Using coroutines, a process can maintain several execution lines but only one
can run at a time, and the switch between two of them is explicit in the program. This allows ap-
plications to improve their availability without the context-switching weight and complexity that
may come together with the multithreading solution.

With LuaRPC, each invoked procedure executes inside a new coroutine — when a synchronous
call occurs, this coroutine yields, returning control to ALua’s main event loop. When the reply
to the remote call arrives, its callback is a procedure that resumes the suspended coroutine. This
allows us to maintain the single-threaded structure of the ALua system while avoiding that a pro-
cess remains blocked when it issues a synchronous call. Because context switches occur only at
explicit points in the code, many issues related to race conditions are eliminated.

A chunk of code using LuaRPC could be something like:

local sum = 0
f = rpc.sync(serverid, "foo")
for i=1,limit do
-- remote invocation (will yield):
sum = sum + f(i)

end

4 Hybrid Programming

Because each of the abstractions we discuss in the previous section is implemented by an inde-
pendent library, we can mix and match them as we please. This is interesting because it means
a programmer need not be restricted to a single communication paradigm when hewrites an ap-
plication. To illustrate this, we discuss in this section an example which combines the use ofthe
LuaRPC and the DAlua libraries. In this example, we assume we are offering a set of services
under the form of remote procedures, and that the implementation of these services contains criti-
cal sections, which require mutual exclusion among processes running on different machines. As
we discussed in Section 3.1, a distributed mutual exclusion algorithm can be easily implemented
using the DAlua library. Figure 2 shows how we could combine directly both models in one ap-
plication, if we encapsulate the implementation of the critical section in functioncritical. In this
case, whenremoteServiceis invoked, it will first execute a non-critical section, and then use the
event-based interface to activate the mutual exclusion algorithm and guarantee that the critical
section is executed with mutual exclusion.

This solution is not elegant at all. If we are implementing a remote service using RPC, we
would probably like to maintain this programming style along the implementation of the service,
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function remoteService (args)
-- non-critical code here
-- ask for mutual exclusion:
DAlua.send (DAlua.self,

"enterCS", "critical()")
end
function critical ()
-- critical region here
leave_cs()
-- possibly more non-critical

end

Figure 2: Applying an event-oriented algorithm directly

function rpc.enterCS ()
pendingCS = rpc.getcoroutine()
DAlua.send(alua.id, "enterCS",

"pendingCS()")
rpc.yield()

end

Figure 3: Combining the RPC abstraction with event-oriented algorithms

that is, program the whole service in a procedural style and not have to break it across handlers.
So, we would probably like to write something like:

rpc.enterCS()

and from that point on write code that executes with the guarantee of mutual exclusion.
We can write this call and haverpc.enterCStrigger the execution of the mutual exclusion code

with the guarantee that the next lines will only execute under the correct condition by writing a
few extra lines of code that will provide the bridge beween styles. Figure 3 contains the necessary
code.

Functionrpc.getcoroutine returns a function that, when invoked, will resume the currently
running coroutine.rpc.enterCS stores this function in a global variable,pendingCS, and sends an
asynchronousDAlua message requesting the execution of this function when mutual exclusion is
guaranteed.

As in Section 3.1, this code works only if a process issues only one request for mutual ex-
clusion at a time. This of course is not realistic in a distributed setting. Figure 4 illustrates the
need for several ongoing requests for mutual exclusion. In this figure, we can see a process and its
event loop. When this process starts handling a remote procedure call, a second one arrives. The
handling of the first call involves a critical section, and so the process sendsitself an asynchronous
message invokingenterCS. However, the second remote call is already pending, and is now han-
dled by the event loop. Processing of this second call also involves a critical section, and so we
have a new asynchronous call toenterCS, and from that point on two mutual exclusion requests
running simultaneously.

The complete code for handling simultaneous requests for mutual exclusion is notmuch larger,
in number of lines, than that shown in this work, but demands a little more familiarity with Lua,
and for this reason we have chosen to discuss the simplified versions here.We also have not
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Figure 4: Several requests for mutual exclusion in progress

discussed the proper packaging of the discussed functions into different modules, supported in
Lua also by tables.

5 Final Remarks

We discussed in this work how programming distributed asynchronous-oriented systems can be-
come easier with appropriate programming abstractions. This is not a new idea:from the begin-
ning of work on distributed systems, researchers have proposed the use of abstractions such as
RPC [Birrell e Nelson 1984]. Many recent systems also provide abstractions for distributed pro-
grams [Caromel, Klauser e Vayssiere 1998, Nieuwpoort et al. 2005]. Our main point is that, given
appropriate language features, the programmer can combine the advantages of different program-
ming abstractions in one single application.

[Briot, Guerraoui e Lohr 1998] discusses three different approaches to supporting concurrency
and distribution in object oriented languages: thelibrary approach, theintegrativeapproach, and
thereflectiveapproach. The library approach would be more adapted to system builders, allowing
more general software architectures but with harder-to-use interfaces. The integrative approach
aims at defining a high-level programming language with few, unified concepts,and would be
targeted at application developers. Finally, we discuss how reflection can provide a bridge be-
tween both approaches, helping to integrate transparently different libraries within a programming
system. Although we are not in an object-oriented context, we believe the same notions apply
here. Reflective facilities of Lua, mainly metatables, combined with other programminglanguage
features, such as closures, allow us to integrate abstractions very easily into ALua. The advantage
of this approach is that we can offer the higher level of abstraction usuallyprovided by languages
with built-in communication models and still provide support for different paradigms, allowing
the developer to combine different communication abstractions in a single program.

Thanks
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