

PUC

ISSN 0103-9741

Monografias em Ciência da Computação
n° 07/07

Plot Mining as an Aid to
Characterization and Planning

Antonio L. Furtado Marco A. Casanova

Simone D.J. Barbosa Karin K. Breitman

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 07/07 ISSN 0103-9741
Editor: Prof. Carlos José Pereira de Lucena June 2007

Plot Mining as an Aid to Characterization and Planning

Antonio L. Furtado, Marco A. Casanova, Simone D.J. Barbosa, Karin K. Breitman

Departamento de Informática – Pontifícia Universidade Católica do Rio de Janeiro
Rua Marquês de S. Vicente, 225 – Rio de Janeiro, Brasil – CEP 22451-900

{furtado,casanova,simone,karin}@inf.puc-rio.br

Abstract: In parallel with data mining, plot mining is presented as a valuable way to gain
knowledge on management information systems. A compact plot organization and methods
for plot collection and handling are described. Plots are then shown to be a significant
element in the characterization of the behaviour of agents, as well as a helpful resource for
planning. Similarity and analogy are employed to extend the results, both to other cases
within the domain involved and to other domains.

Keywords: Plot, narrative, data mining, characterization, planning, similarity, analogy,
metaphor.

Resumo: Em paralelo com mineração de dados, a mineração de enredos é apresentada
como um meio valioso de ganhar conhecimento sobre sistemas de informação empresariais.
Uma organização compacta de enredos é descrita, juntamente com métodos para coletá-los
e manipulá-los. Mostra-se então que enredos constituem um elemento significativo para a
caracterização do comportamento de agentes, sendo ainda um recurso útil para
planejamento. Similaridade e analogia são empregadas para ajudar a estender os resultados
a outros casos, tanto no âmbito do domínio em questão como no de outros domínios.

Palavras chave: Enredo, narrativa, mineração de dados, caracterização, planejamento,
similaridade, analogia, metáfora.

In charge of publications

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br

 1

1. Introduction

Data mining [HK] is amply recognized today as a useful way to gain a better understanding
of an information system. Another vital source of knowledge are the stories [Sc, Tu] that
happen in the underlying mini-world, and, as a result, produce state-changes in the system's
database. The thrust of this paper is to propose a plot mining technique to exploit such real-
life stories.

 Literary research visualizes narratives at successive levels, the most basic one consisting
of the fabula, defined as "a series of logically and chronologically related events that are
caused or experienced by actors" [Ba]. We adopt a plot structure that provides a compact
representation of partially ordered sets of events, each event being the result of the
execution of some domain-oriented operation by an authorized agent. What logically
relates the events and determines precedence among them is the interplay of the pre-
conditions and post-conditions in terms of which the operations are defined. Such
definitions, in turn, reflect the integrity constraints and business rules prevailing in the
application domain of the information system.

 Plots can be extracted from a database Log, or, alternatively, from logs registering the
actions of individual agents. After extraction, they are generalized into an indexed pattern
format and memorized for future reference, as recommended in [Sc]. The indexing
information consists of the situation/ goal circumstance that can be associated with the
plot.

 Plots involving a given agent provide one significant indicator of the agent's behaviour,
and, as such, can be used for characterization and comparison purposes. In addition, the
memorized indexed plot patterns can be regarded as plans, to be selected and re-used with
the adaptations required by the current concrete circumstances.

 In connection with the use of plots for both characterization and planning, we resort to
the powerful notions of similarity and analogy, which have been applied to properties of
data at previous stages of our research project [BBFC, BBCF].

 The paper is organized as follows. Section 2 covers plot organization and extraction.
Sections 3 and 4 describe their use for characterization and for planning, respectively. A
small example serves as illustration throughout the discussion. Section 5 is a brief
excursion on plot-based agent profiles. Section 6 contains the conclusion.

2. Plots and plot indices

2.1 The notion of plot

Consider a database schema organized according to the conventions of the Entity-
Relationship model [BCN]. In addition, assume that a repertoire of domain-oriented
operations has been defined through their pre- and post-conditions, as proposed in the
STRIPS system [FN]. In order to preserve the integrity constraints regulating the mini-world

 2

represented in the database, an operation so defined is only allowed to be executed if its
pre-conditions currently hold, and the effect of its execution corresponds precisely to its
post-conditions. A complementary requirement is that no state-change can occur in the
database, except as a consequence of executing an operation from the predefined repertoire.
Once this double discipline is imposed, it becomes intuitively meaningful to denote any
mini-world event that may happen by a term expressing the execution of an operation.

 As a first approximation, a plot can be viewed as any sequence of events. However, it is
clear that, if the above requirements are adopted, not all sequences of events are valid. If an
event E1 contributes, as a result of its post-conditions, to the pre-conditions of another event
E2, then E1 should precede E2 in the sequence. On the contrary, the occurrence of E1 before
E2 should be regarded as fortuitous if none of these events depends on the other.

 Consider the sequences:

S1 = [op1, op2, op3, op4]
S2 = [op2, op1, op3, op4]

where each opi denotes the execution of an operation with appropriate parameters. Suppose
that the execution of op3 depends on the execution of both op1 and op2, and that the
execution of op4 depends on the execution of op1 and op3, but no precedence dependency
exists between op1 and op2. To express these dependencies, we prefix each event in the
sequences with a distinct tag, and provide a list of ordered pairs of tags. Note that there is
no need to explicitly indicate the declared dependency of op4 on op1, since this follows by
transitivity, which also implies the dependency of op4 on op2:

P1 = [[f1:op1, f2:op2, f3:op3, f4:op4], [f1-f3, f2-f3, f3-f4]]
P2 = [[f7:op2, f8:op1, f9:op3, f10:op4], [f7-f9, f8-f9, f9-f10]]

 If all pre-conditions and post-conditions are consistently defined, P1 and P2 should be
equivalent, in the sense that, if we choose to execute either S1 or S2 starting at the same
current database state s0, the overall effect observed at a state sf reached after executing one
or the other entire sequence would be the same.

 We are thus led to define a plot P = [S,D] as a set of events S conforming to a partial
order imposed by the precedence dependencies indicated in D. In other words, P denotes
the class of all totally ordered sequences composed of the tagged events in S that comply
with D. Since the S and D components are sets, we can now recognize that P1 and P2 above
in fact refer to the same plot, given that the tags in P2 can be renamed to become identical to
those of P1.

2.2 Plots over a simple database schema

For concreteness, let us now introduce an example schema. Since our purpose is merely to
illustrate the discussion, we shall keep it as simple and short as possible. In real
applications, what we choose to call here a schema would be just a small fragment of the

 3

entire schema resulting from the conceptual design of an information system over a given
application domain, such as industrial production for instance.

 Suppose the entity classes product and component have been introduced with suitable
properties (attributes and binary relationships) including:

attribute of product:
 pno

attributes of component:
 cno
 ctype
 defective

relationship associating component with product:
 iscompof

where pno serves as an identifier for instances of product, whereas instances of component,
which is a weak entity [BCN], are identified via the iscompof relationship coupled with the
discriminating attribute cno. The value of attribute ctype corresponds to a component's
description, and the Boolean attribute defective exclusively qualifies those components
that have been found to be unsatisfactory.

 Suppose further that the repertoire of operations includes, among others:

repair(<pno>,<cno>)
order(<ctype>,<cno>)
replace(<pno>,<cno1>,<cno2>)

 Operations are defined in terms of their pre- and post-conditions (effects), and can only
be executed by authorized agents. In the example, the initiative to determine that operations
repair, order and replace be executed befalls to the foreman responsible for the product
involved. In practice, other agents might perhaps be charged of their actual execution but,
for simplicity, such agents will be ignored. In the notation of [BBCF], the Product schema
can be displayed as follows:

Schema: Product
Clauses --
 entity(product, pno)
 attribute(product, pno)
 entity(component, [pno/cno-iscompof-pno, cno])
 attribute(component, cno)
 attribute(component, ctype)
 attribute(component, defective)
 relationship(iscompof, component/n/total, product/1/partial)
 operation(order, [ctype, cno])
 pre(order(A, B), [])
 post(order(A, B), [ctype(B, A), -defective(B)])
 operation(replace, [pno, cno, cno])
 pre(replace(A, B, C), [iscompof(B, A), ctype(B, D),
 ctype(C, D)])/diff(B, C)
 post(replace(A, B, C), [-iscompof(B, A), iscompof(C, A)])/diff(B, C)
 operation(repair, [pno, cno])

 4

 pre(repair(A, B), [defective(B)])
 post(repair(A, B), [-defective(B)])

 Now, let Pi and Pj be plots over this schema:

Pi = [[f1: order(ct,c4), f2: replace(pr,c3,c4)],[f1-f2]]
Pj = [[f7: order(ct,c2), f8: replace(pr,c1,c2)],[f7-f8]]

 We declare these two plots to be similar in that, even with different parameter values
and tags, they involve the same:

• number and type of events
• order dependencies
• co-designation/ non-co-designation schemes

 Co-designation (or, respectively, non-co-designation) allows (forbids) the occurrence of
the same value in different parameter positions. For instance, notice that, in Pi, c4 occurs in
the second position of order and in the third position of replace, and that plot Pj, with c2
in respectively corresponding places, meets the same co-designation requirement. An even
stronger coincidence occurs with the values pr and ct, which are equally placed in the two
plots. Non-co-designation is well exemplified in positions two and three of replace. To
verify whether the precedence dependencies agree, one looks for a renaming of the tags of
one of the plots that can render the D sets of the two plots equal, as mentioned before.

 The algorithm we use for comparing plots follows a most specific generalization
criterion [Kn,WMSW], yielding plot Pm below, which can be unified with both Pi and Pj:

Pm = [[f1: order(ct,A), f2: replace(pr,B,A)],[f1-f2]]

where constants ct and pr were kept, but, by contrast, two different variables where
introduced: A which generalizes c4 and c2, and B which does the same for c3 and c1. The
number of variables introduced provides one indicator to measure how similar two plots
are; in particular, zero variables signifies identity. The search for a most specific
generalization makes it necessary to compare one of the lists of events against all the
permutations of the other, so as to determine the minimum number of variables that is
needed. Some heuristics can be devised to reduce the number of comparisons in certain
cases. There is a worst case, however, wherein execution time is exponential, which occurs
when there are no dependencies and all events consist of executions of the same operation –
we shall return to this point in section 3.2.

2.3 Extracting indexed plots from the Log

Plots can, as illustrated here, be composed manually, taking the pre- and post-conditions
requirements into due consideration. But an especially useful way to obtain plots,
extensively discussed in [FC], is to extract them from a Log registering the execution of
operations since the database has been installed. In the scenario described in [FC], the
conceptual design of the database includes the definition of goal-inference rules of the form

 5

S � G, where S is a situation and G a goal. S and G, in the simplest case, are sets of
positive or negative literals expressing facts at, respectively, the state before and the state
after the execution of the plot. The purpose of these rules is to capture the motivation of the
various agents: an agent A, observing that S currently holds, would be expected to act by
executing (directly or through the mediation of other authorized agents) the appropriate
operations to reach a state where G would hold.

 After running the database for some time, the Data Administrator in charge would apply
an algorithm to extract plots from the Log on the basis of the predefined goal-inference
rules. The first step of the algorithm uses a simulation process that essentially recapitulates
the evolution of the database while traversing the Log. A sub-sequence � is extracted from
the Log if, prior to the execution of the first event in �, the situation S of a rule S � G
holds and, after the execution of the last event in �, a state is reached where G finally holds.

 Plot P is obtained from � by a filtering process, which only keeps the events whose post-
conditions contribute to G, plus, proceeding backwards, recursively, those events that
achieve pre-conditions of events already included in P.

 Consider the goal-inference rule S � G, where:

S = [iscompof(X, Y), ctype(X, Z), defective(X)]
G = [iscompof(W, Y), ctype(W, Z), -defective(W)]

and suppose that S and G are found to hold, respectively, before the first event, and
immediately after the last event of the sub-sequence of the Log shown below (possibly
interspersed with other events):

... order(ct,c4) ... replace(pr,c3,c4) ...

 After the filtering step, the algorithm consistently substitutes variables for all constants,
and determines the precedence dependencies from the pre- and post-conditions present in
the schema. Once this has been done, a plot (or, more precisely, a plot pattern) P1
associated with S and G is obtained, which in this case is:

P1 = [[f1: order(Z,W), f2: replace(Y,X,W)],[f1-f2]]

 In practical applications, the injunction of replacing all constants by variables must
admit exceptions. One may find that certain values should always occupy certain positions,
or should be retained at least as defaults. In [FC] we described the gradual revision of
patterns by performing the most specific generalization of each newly extracted plot against
the currently stored pattern, thanks to which some constants were never dropped. However,
for simplicity, this extra flexibility will not be considered here.

 Another real-life consideration is that, as suggested by the possible existence of
unrelated events in the unfiltered sequences, agents do not always execute an entire plot
without interruptions; more than that, they may even be unaware that what they are doing
will accomplish a state-change complying with a given [S,G]. Nonetheless, as will be

 6

argued in the next sections, it is in general a useful practice to record P, in connection with
the associated goal-inference rule, in an adequately structured indexed entry, to be simply
referenced heretofore as [S,G,P]. As one may readily anticipate, the association between the
[S,G] and P components is commonly not unique in either direction: alternative plots can
often be found in connection with the same goal inference rule, and, conversely, there may
exist other rules motivating the same plot. As a case of the former, consider the single-
event plot:

P2 = [[f1: repair(Y,X)], []]

which can also be found in connection with the given S � G rule.

 What was said regarding the extraction of plots from the database Log can be easily
adapted, especially in a Web environment, to logs registering the actions of individual
agents (more about this in section 5).

3. Using plots for characterization

3.1 Behavioural similarity of entity instances

Entity instances are primarily characterized in terms of attributes and relationships. In
[BBFC], we showed how all such properties of each instance can be collected in a frame
structure, which can be conveniently used for classification and for extended forms of
queries, based on similarity and on analogy. In addition to that, a behavioural
characterization can be provided in connection with plots, as will be explained in the
sequel.

 Three main kinds of behavioural similarity can be detected, if we are dealing with
indexed plots [S,G,P]. They distinguish the plot P itself from the [S,G] pair, the
circumstance associated with P:

• sgp-similarity, if a similar plot was used in response to the a similar [S,G]
circumstance;

• p-similarity, if the plot used was similar, but in a different [S,G];
• sg-similarity, if a different plot was used in a similar [S,G] .

 Continuing with the example introduced in the previous section, consider two foremen,
Joe and Moe, charged, during different periods of time, of product pr. Suppose each of
them had, in some occasion, faced the problem of a defective component of type ct, and
what they did to remedy the problem is represented, respectively, in plots Pi and Pj:

Pi = [[f1: order(ct,c4), f2: replace(pr,c3,c4)],[f1-f2]]
Pj = [[f7: order(ct,c5), f8: replace(pr,c4,c5)],[f7-f8]]

 By applying the plot-comparison algorithm described in section 2.2, these two plots will
be found to be similar (noting, in passing, that their most specific generalization can be

 7

accomplished with the introduction of two variables). Since the plots are similar and
assuming, as we did, that they were motivated by the same [S,G] circumstance, we
conclude that the case of Joe and Moe corresponds to full sgp-similarity.

 The existence of a distinct goal-inference rule S' � G', with:

S' = [iscompof(X, Y), ctype(X, Z)]
G' = [iscompof(W, Y), ctype(W, Z)]/ diff(W,X)

expressing, conceivably, an intention to keep renewing a short-lived component, even if it
is not currently defective, might lead to a plot P' similar to Pi and Pj above, which would
constitute a case of mere p-similarity. Finally, as an example of sg-similarity, consider the
alternative plot below for the same [S,G] circumstance faced by Joe and Moe:

Pk = [[f1: repair(pr,c3)], []]

 In [BBFC], we argued that the frame-based comparison described there could be used to
perform queries. One could search through the database for one or more entity instances
with properties similar to those indicated in a given arbitrary frame. Clearly, plots can be
used for the same purpose, possibly with variables in some parameter positions. A caveat is
however mandatory here: while frame comparison is performed in time proportional to
n×log(n), plot comparison is exponential in the worst case, which means that it is only
feasible with relatively short plots. One strategy to alleviate this difficulty is to organize
plots in hierarchies [Ka, FC], with is-a and part-of links, as illustrated in figure 1 below:

Fig. 1 – Cooking events hierarchy (from Kautz's thesis)

 gray arrows: is-a links
 black arrows: part-of links

 8

By recognizing that a large plot may be divided into relatively short plots, the comparison
algorithm could be applied separately to each small piece in a first step. At section 5 we
shall sketch a different strategy.

 Behavioural comparison is especially relevant if, as in the case of the two foremen, the
entity instances associated with the plots are agents somehow involved in their execution.
We mention the possibility – but will not exploit it here – that several agents participate,
playing different roles, in the execution of a plot. Moreover, observe that entity instances
other than agents can also be usefully characterized by their involvement in plots (e.g.
product pr, components of type ct).

3.2 Behavioural analogy across different domains

The database schema that we have been considering provides, as mentioned in section 2.2,
an example of weak entity. It has several typical features which recur in many other
application domains. In [BBCF], we argued that database conceptual design, especially if
complex notions such as weak entities are involved, can be significantly facilitated by
deriving new schemas from previously specified analogous schemas. Repeating what was
said at the beginning of section 2.2, such relatively small schemas would be no more than
fragments of the overall schema of a real-life information system. And yet, according to the
principles of modular design, it is surely expedient to obtain various such fragments with
the help of the same method, and gradually compose them together until the whole design
is complete.

 We have extended the mapping algorithm described in [BBCF] to cover the domain-
oriented operations with their pre- and post-conditions. Given the Product schema of
section 2.2, the algorithm can create and record a Weak Entity schema-pattern:

Pattern: Weak Entity
Example scheme: Product
Clauses --
 entity(A, B)
 attribute(A, B)
 entity(C, [B/D-E-B, D])
 attribute(C, D)
 attribute(C, F)
 attribute(C, G)
 relationship(E, C/n/total, A/1/partial)
 operation(H, [F, D])
 pre(H, [I, J], [])
 post(H, [I, J], [[F, J, I], [-G, J]])
 operation(K, [B, D, D])
 pre(K, [L, M, N], [[E, M, L], [F, M, I], [F, N, I]])/diff(M, N)
 post(K, [L, M, N], [[-E, M, L], [E, N, L]])/diff(M, N)
 operation(O, [B, D])
 pre(O, [L, J], [[G, J]])
 post(O, [L, J], [[-G, J]])
Mappings --
 A:product

 9

 B:pno
 C:component
 D:cno
 F:ctype
 G:defective
 E:iscompof
 H:order
 K:replace
 O:repair

 The pattern can in turn, at any future time, be used to create new concrete schemas.
Suppose that a designer, who does not have to be so experienced as the one who created
from scratch the Product schema, wants to build a Team schema, involving teams and their
members, and recognizes (or is told) that the intuitive mental image of the prospective
schema "looks very much like" what occurs in the Product schema: members of teams are
like components of products, reflecting the compelling "an organization is a machine"
metaphor [Mo]. This motivates the introduction of another semantic link, in addition to is-a
and part-of, namely is-like. In this example, the declaration Team is-like Product
establishes that Product is to be regarded as a source schema on which the definition of the
target schema Team can be partly accomplished [HT].

 To experiment with these notions we developed a prototype supporting tool, to be used
in an interactive mode. It prompts the designer to answer questions of the form: "What
corresponds to <name>?", where each such <name> figures in the supposedly known
source schema. The names typed by the designer will be used by the tool to instantiate the
pattern variables appearing in the mapping component of the Weak Entity pattern. In the
present example, the mapping correspondences, which should be saved for future use,
would be:

product � team
pno � tno
component � member
cno � mno
ctype � spec
defective � unprepared
iscompof � ismembof
order � hire
replace � reassign
repair � train

based on which the tool will create the Team schema:

Schema: Team
Clauses --
 entity(team, tno)
 attribute(team, tno)
 entity(member, [tno/mno-ismembof-tno, mno])
 attribute(member, mno)
 attribute(member, spec)
 attribute(member, unprepared)
 relationship(ismembof, member/n/total, team/1/partial)
 operation(hire, [spec, mno])

 10

 pre(hire(A, B), [])
 post(hire(A, B), [spec(B, A), -unprepared(B)])
 operation(reassign, [tno, mno, mno])
 pre(reassign(A, B, C), [ismembof(B, A), spec(B, D),
 spec(C, D)])/diff(B, C)
 post(reassign(A, B, C), [-ismembof(B, A), ismembof(C, A)])/diff(B, C)
 operation(train, [tno, mno])
 pre(train(A, B), [unprepared(B)])
 post(train(A, B), [-unprepared(B)]

 Looking again at the Weak Entity pattern, one will observe that there are no constants in
the clauses. In this overly simple example, there was no need to retain any constant when
creating the pattern from the Product schema, but in other cases this might be convenient,
and there should be a way to distinguish the constants to be preserved. In section 2.3, we
remarked that most specific generalization may in such cases offer a working criterion:
constants appearing in all (or in many) schemas conforming to the same abstract concept
may deserve to be kept in the schema-pattern and hence replicated in the new target
schemas.

 In general, the mappings are not total in either direction. For some elements of the
source schema, the designer will reply that there is no corresponding element in the target
schema. On the other hand, after closing the dialogue, the designer must be allowed to
declare additional elements that are specific to the target schema. Indeed, in more
semantically rich cases, it is often convenient to proceed along successive dialogues,
employing a series of source schemas, which can be interpreted as an attempt to cover
different aspects by resorting to different metaphors [LJ].

 Once it has been so derived, the Team schema can be used, perhaps incorporated to the
design of a larger schema, directly employing the terminology appropriate to its distinct
application domain. One can imagine that project leaders will be among the agents, instead
of the foremen of the source domain.

 Clearly, all sorts of applications of plots enumerated thus far, including those based on
similarity presented in section 3.1, can be repeated in the new domain. But analogy brings
in another possibility: to perform comparisons, queries, etc., that go across the two
domains. For brevity, we shall consider just one example.

 Imagine that a certain John, with a specialty designated as spec_s3, and who is
currently a member of team Ta, is found to be unprepared. What can be done in this
situation? Well, this recalls the case of component c3 of product pr, when c3 was marked
as defective. Can we transpose to John what was done to c3?

 We saw two possibilities for c3:

P1 = [[f1:repair(pr, c3)], []]
P2 = [[f1: order(ct,c4), f2: replace(pr,c3,c4)],[f1-f2]]

from which the analogous plots below can be readily derived:

 11

P1'= [f1: train(Ta, John)], []]
P2'= [f1: hire(spec_s3, Peter), f2: reassign(Ta, John, Peter)], [f1-f2]]

 In words, one can either submit the faulty person to training, or look for someone else
with the same specialization and perform a substitution. This has undoubtedly a flavour of
case-based reasoning [Le]. Indeed, when discussing behavioural similarity within the same
domain in the previous section, this idea of adapting the same strategies for different
defective components of different products would already suggest itself. The next section is
dedicated to this topic.

4. Using plots for planning

4.1 Indexed plot patterns as plans

There are basically two planning paradigms. To effect the transition from a current state s0
wherein a situation S holds into a state sf where a desired goal G is achieved, one can
either:

a. apply a plan generator, which generates a plan from scratch through some form of
backward chaining process, taking advantage of the STRIPS pre- and post-
condititions method for defining operations, or

b. retrieve a suitable ready-made plan from a library of typical plans, LTP, and re-use
it, after appropriate adaptations if necessary.

 What we have discussed thus far suggests a convenient way to implement paradigm b.
We turn again to a scenario wherein, after the database has been running for a period of
time, a Data Administrator (DA) applies the extraction and filtering algorithm to mine the
Log in search of plots responding to the previously specified goal-inference rules. From
these, the [S,G,P] indexed entries are obtained by consistently substituting variables for
constants, so that the P component is now a plot pattern, indexed by the [S,G]
circumstance.

 We must now remark that the distinction between the notions of plot and plan is purely
pragmatic: plots extracted from the Log register the past execution of operations, plans
denote operations still to be executed – and can be represented in the same syntax used for
plots, i.e. as partially-ordered sets subjected to certain precedence dependencies.

 One can recognize, therefore, that the entire set of [S,G,P] indexed entries collected by
the DA constitutes an LTP, as the use of paradigm b requires. To retrieve a plan, an
interested agent supplies two lists Ls and Lg, containing positive or negative literals, to be
matched against S and G, respectively, any of the two lists being allowed to be empty. It is
required that the match should succeed for all literals in the two lists, i.e. every literal in Ls
must unify with a literal of S, and the same must happen with the literals of Lg with respect
to G. As a consequence of unification, variables (not all, in some cases) in S and G – and
consequently in P – will be replaced by constants present in Ls and/or Lg. In other words,

 12

[Ls,Lg] is a concrete circumstance which must fit in the more general [S,G] circumstance to
justify the use of the associated plan P. For instance, take:

Ls = [iscompof(c4,pr),ctype(c4,ct)]
Lg = [iscompof(X,pr),-defective(X)]

 Searching the LTP with these lists will yield two plans:

P1 = [[f1:repair(pr, c4)], []]
P2 = [[f1:order(ct, X), f2:replace(pr, c4, X)], [f1-f2]]

noting that the second one still contains a variable. A slightly different Lg might specify that
X must not turn out to be c4 itself, with the consequence that only P2 would be retrieved:

Lg = [iscompof(X,pr),-defective(X)]/ diff(X,c4)

Note that P1 and P2, even though they were designed to operate the required transition to

a state where Lg holds, are not equivalent as to their full effects. A wise precaution is to
ascertain beforehand all that may be caused by running each plan, in view of possible
undesired side-effects. This can be done by simulating the execution of each plan, after
supplying enough context information about the current state s0. Simulation can employ a
well-known recursive backward-chaining algorithm [FC], which, incidentally, is the basis
for simple plan-generators following STRIPS formalisms. A fact F holds after an operation
O is executed at a state sR reached by executing a previous sequence of operations R, if
either:

1) F is among the facts declared as added by O, and the pre-conditions of O hold at sR;
2) F already held at sR and is not among the facts declared as deleted by O;
3) All operations having been considered, R is empty, sR = s0, and F figures in the

context informed for s0.

 With the context Ctx below:

Ctx = [iscompof(c4, pr),ctype(c4, ct),defective(c4)]

the overall result of choosing to apply either P1 or P2 would be as indicated:

R1 = [-defective(c4), ctype(c4, ct), iscompof(c3, pr)]

R2 = [-defective(X), -iscompof(c4, pr), ctype(X, ct), ctype(c4, ct),
 iscompof(X, pr)]

 Simulation will help the agent involved not only in the choice of the more promising
alternative, but also to handle cases that may call for conditional and/or for iterative
execution of plans:

a. in different contexts, it may be the case that only P1 (or only P2) can be executed;
b. the context may indicate that more than one component is defective.

 13

 The fact that P2 contains a variable X even after simulated execution, and that the
variable figures in the result obtained, certainly deserves attention. We can understand that
when the agent orders a component, all that has to be informed is its type. The value of the
cno discriminating attribute will be known after the order is fulfilled, perhaps by finding a
component already in store, or by purchasing it from an external supplier. This means that
plan composition, a topic outside the scope of this paper (cf. [Tu] for the highly suggestive
notion of blend), must take place, bringing in a complementary plan P2c one of whose
effects will be to instantiate X. An attractive possibility is that P2c be also taken from LTP.

4.2 Finding plans by analogy

 We shall now see how analogy plays a very helpful role in a multi-domain environment.

 If one is dealing simultaneously with more than one application domain, it is necessary
to insert the name of the domain in cause in the LTP entries. Suppose the LTP already
contains entries related to the Product schema, from which the new Team schema was
derived. Recall that the mapping information indicating the correspondence between names
in the two schemas, gathered in the course of the derivation process, is stored for future use
(as noted in section 3.2).

 Suppose that a team leader, an agent in the mini-world of the Team schema, tries to
access LTP by submitting the lists:

Ls = [ismembof(John, Ta), spec(John, spec_s3), unprepared(John)]
Lg = [ismembof(John, Ta), -unprepared(John), spec(John, spec_s3)]

 A first direct attempt to perform a match inevitably fails, since there are still no entries
for Team in LTP. But since it has been declared that Team is-like Product, and because the
mappings between names have been kept, a search for analogous Product entries is
automatically articulated, whereby the two following plans are produced:

P1 = [[f1:train(Ta, John)], []] ;
P2 = [[f1:hire(spec_s3, X), f2:reassign(ta, John, X)], [f1-f2]]

 In agreement with the orientation suggested along the paper, one may also want to install
indexed entries composed from such plans obtained by analogy. After that is done, they
will become directly available in connection with the Team schema, and consequently P1
and P2 would not have to be generated again. We must ponder however that, in the scenario
envisaged in the next section, it may be convenient to reserve to the Data Administrator
(DA) the authority to expand the LTP.

5 Towards profile similarity

When comparing the behaviour of different agents, it would be far more meaningful to
consider their actions along an extended period of time, during which they might have

 14

utilized a large number of plans, in diverse circumstances. It is fair to conjecture that the
totality of information about the extent to which an agent has resorted to the recorded plans
gives some indication of the agent's profile. And it would make good sense to compare two
or more agents on this ampler basis – but would it not look an overwhelming task, in view
of the high cost of plot comparison? In this section we suggest that carefully organized data
structures may significantly reduce the computational cost involved in dealing with profile
similarity.

 Let us examine in some detail a possible organization for the LTP, and for other
auxiliary structures as well. To store the [S,G,P] entries, consider a file FSGP with rows of
the form [K,S,G,P], where K is a natural number that functions like an array subscript. Let
n be the number of entries in FSGP. The DA would also create a second file FA, as a
rectangular m×n array, with each row corresponding to one of the m agents involved – the
various foremen, in our example. Under some sort of trigger control, a cell [i,j] of FA, of
type integer, initially containing a zero value, would be incremented by one whenever agent
i selected for use the P component at entry K = j of file FSGP.

 As usual, inverted files can facilitate agent access to some extent. Consider two inverted
files providing lists of subscripts pointing to the FSGP entries: F-1

SG and F-1
P, the former

giving the list of integers pointing to entries of FSGP containing plans corresponding to the
given circumstance, and the latter for the opposite access, from a plan to the associated
circumstances. Still faster performance could be attained if each agent had separate inverted
files of both kinds restricted to the entries of individual interest. On the other hand, the
maintenance of the files shared by all agents should be the sole responsibility of the DA.
Recall that maintenance includes the addition of new entries, as also the decision to cover a
plurality of schemas over different application domains. In the latter case, either the
[K,S,G,P] rows would gain an additional D component, or separate partitions of the FSGP
file would be installed.

 The most important gain in using these structures refers to the comparison of agent
behaviour, which, at this point, can be done without consuming exponential time. A first
simple-minded way to compare two agents Joe and Moe, assuming that rows i1 and i2 of
FA were set up to correspond to them, is to evaluate a summation of absolute differences:

Vi1-i2 = Σ|FA[i1,J] – FA[i2,J]|, for J = 1,2,...,n

where small values of Vi1-i2 would suggest closer similarity.

 The policy of keeping a continued record of an agent's behaviour surely provides far
more information than can be deduced from a single executed plot. With enough time for
observation, each agent row in FA can be interpreted as representing a behavioural profile
helping to describe that agent. One may search for all agents with a profile similar, within a
given threshold, to some arbitrary profile. Typical profiles might be detected in a
knowledge discovery investigation. A person's habit to prefer correcting a failure (repair,
train), instead of throwing away any faulty pieces may be a persistent personality trait, a
characteristic behaviour reappearing in more than one environment.

 15

 As an interesting collateral aspect, notice that column-wise summation may also be
helpful:

Rj = Σ FA[I,j] , for I = 1,2,...,m

since a high value of Rj, for some column j, may work as a recommendation [SKKR] in
favour of applying a given plan to a given circumstance, suggesting that further
computations over the array could serve in yet another knowledge discovery effort.
Recommendation, as in the above reference, is a topic of special relevance in the context of
e-commerce, which brings to mind our remark at the end of section 2.3 about extracting
plots from individual agents' logs – a potential way to gain familiarity with the needs and
tastes of specific customers and other participants in the business transactions.

 The issues raised in this section open a number of possibilities. More flexible hierarchic
structures for LTP, such as those devised in [Ka], have been implemented and then
extensively explored in [FC], equally in connection with a plan-recognition algorithm. The
algorithm permits the early detection of the ultimate goal of an agent, by matching the
agent's observed execution of a few operations, in order to determine whether they are part
of one (or more) typical plan(s).

6. Concluding remarks

We have argued that plots, indexed by the situation-goal circumstance that motivates their
enactment, provide a compact and easy-to-handle representation for the real-life stories
happening in the mini-world of management information systems. Their use for the
characterization of agents' behaviour and for providing ready-made plans was discussed
and illustrated with the help of a recurring example, observable in several application
domains, and it was shown how similarity and analogy can extend their applicability.

 Thus far we concentrated on single agent environments. More research is needed to
cope with multi-agents environments, with a special attention to the inclusion of operations
enabling communicative acts [LF], and to the treatment of goals and plans involving
collaboration, competition and negotiation [Wi].

References

[Ba] Bal, M. Narratology: Introduction to the Theory of Narrative. University of Toronto Press, 2002.
[BBCF] Breitman, K. K., Barbosa, S. D. J., Casanova, M. A. and Furtado, A. L. “Conceptual modeling by

analogy and metaphor”. Submitted for publication.
[BBFC] Barbosa, S. D. J., Breitman, K. K., Furtado, A. L. , Casanova, M. A.. "Similarity and Analogy over

Application Domains". Submitted for publication.
[BS] Barbosa, S. D. J. and de Souza, C. S. “Extending software through metaphors and metonymies”. In

Knowledge-Based Systems, 14, 2001.
[BCN] Batini, C., Ceri, S. and Navathe, S. Conceptual Design – an Entity-Relationship Approach.

Benjamin Cummings, 1992.

 16

[FC] Furtado, A. L., Ciarlini, A. E. M. "Constructing Libraries of Typical Plans". In Proc. CaiSE’01,
The Thirteenth International Conference on Computer Advanced Information System Engineering, 2001.

[FN] Fikes, R. E. and Nilsson, N. J. "STRIPS: A new approach to the application of theorem proving to problem
solving". Artificial Intelligence , 2(3-4), 1971.

[HK] Han, J. and Kamber, M. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2005.
[HT] Holyoak, K. J. and Thagard, P. Mental Leaps: Analogy in Creative Thought. MIT Press, 1996.
[Ka] Kautz, H. A. "A Formal Theory of Plan Recognition and its Implementation". In: Allen, J. F. et al

(eds.) Reasoning about Plans. Morgan Kaufmann, 1991.
[Kn] Knight, K. Unification: "A Multidisciplinary Survey". ACM Computing Surveys, Vol. 21, No. 1,

March, 1989.
[Le] Leake, D., B. Case-Based Reasoning: Experience, Lessons & Future Directions. The MIT Press,

1996.
[LF] Labrou, Y and Finin, T. "History, State of the Art and Challenges for Agent Communication

Languages". In Informatik – Informatique 1, 2000.
[LJ] Lakoff, G. and Johnson, M. Metaphors We Live By. University of Chicago Press, 1980.
[Mo] Morgan, G. Images of organization - Executive edition. Sage Publications, 1998.
[Sc] Schank, R. Tell me a Story: Narrative and Intelligence. Northwestern University Press, 1990.
[SKKR] Sarwar, B. M., Karypis, G., Konstan, J. A., Riedl, J. "Analysis of recommendation algorithms for

e-commerce". In Proc. ACM Conference on Electronic Commerce, p. 158-167, 2000.
[Tu] Turner, M. The Literary Mind. Oxford University Press, 1996.
[Wi] Willensky, R. Planning and Understanding - a Computational Approach to Human Reasoning.

Addison-Wesley, 1983.
[WMSW] Walker, A., McCord, M., Sowa, J. F. and Wilson, W. G. Knowledge Systems and Prolog. Addison-

Wesley, 1987.

