

ISSN 0103-9741

Monografias em Ciência da Computação

n° 10/07

An Aspect-Oriented Software Architecture
for Code Mobility

Cidiane Aracaty Lobato

Alessandro Fabricio Garcia
Alexander Romanovsky

Carlos José Pereira de Lucena

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 10/07 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena June, 2007

An Aspect-Oriented Software Architecture for Code Mobility*
Cidiane Aracaty Lobato, Alessandro Fabricio Garcia1,

Alexander Romanovsky2, Carlos José Pereira de Lucena

1Computing Department, Lancaster University, Lancaster, UK

2Computing Science School, University of Newcastle, Newcastle upon Tyne, UK

{cidiane, lucena}@inf.puc-rio.br, garciaa@comp.lancs.ac.uk,
alexander.romanovsky@newcastle.ac.uk

Abstract. Mobile agents have come forward as a technique for tackling the complexity
of open distributed applications. However, the pervasive nature of code mobility
implies that it cannot be modularized using only object-oriented (OO) concepts. In fact,
developers frequently evidence the presence of mobility tangling and scattering in
their modules. Despite these problems, they usually rely on OO application
programming interfaces (APIs) offered by the mobility platforms. Such API-oriented
designs suffer a number of architectural restrictions and there is a pressing need for
empowering developers with an architecture supporting a flexible incorporation of
code mobility in the agent applications. This work presents an aspect-oriented software
architecture, called ArchM, ensuring a clean modularization, a more straightforward
introduction, and an improved variability of code mobility in mobile agent systems. It
addresses OO APIs’ restrictions and is independent on specific platforms and
applications. An ArchM implementation provides solutions to fine-grained problems
related to mobility tangling and scattering in the implementation level. The usefulness
and usability of ArchM has been assessed within the context of two case studies, and
through its composition with two mobility platforms.

Keywords: Mobile Agents; Aspect-Oriented Software Development; Reuse.

Resumo. Agentes móveis são utilizados como uma técnica para o tratamento da
complexidade de aplicações distribuídas abertas. Contudo, por sua própria natureza, a
mobilidade de código não pode ser modularizada usando apenas conceitos da
Orientação a Objetos (OO). De fato, desenvolvedores freqüentemente evidenciam o
espalhamento e entrelaçamento da mobilidade de código e, apesar disso, têm se
utilizado apenas de interfaces de programação de aplicações (APIs) OO das
plataformas de mobilidade para a construção de aplicações. As APIs OO impõem
várias restrições arquiteturais aos projetos e isto torna necessária uma arquitetura que
permita a incorporação flexível de mobilidade de código nas aplicações. Este trabalho
apresenta uma arquitetura de software orientada a aspectos, chamada ArchM, que
assegura clara modularização, introdução transparente e aumento de variabilidade da
mobilidade de código nos sistemas. ArchM trata das restrições impostas pelas APIs OO
e é independente de plataformas e aplicações específicas. A utilidade e a usabilidade
de ArchM é medida através de dois estudos de caso e através de sua composição com
duas plataformas de mobilidade.

Palavras-chave: Agentes Móveis; Desenvolvimento Orientado a Aspectos; Reuso.

* This work has been sponsored by the Ministério de Ciência e Tecnologia da Presidência da

República Federativa do Brasil.

 ii

In charge for publications:
Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br

 iii

Table of Contents

1 Introduction 1
2 Mobile Multi-Agent Systems 2

2.1 Basic Concepts 2
2.2 The Mobile Agent Lifecycle 3
2.3 Mobility Strategies and Platforms 4

3 Modularization Of Code Mobility 4
3.1 A Case Study 5
3.2 Using OO APIs from Mobility Platforms 6
3.3 RoleEP/EpsilonJ 8

4 Aspect-Oriented Software Development 9
4.1 Aspect-Oriented Programming 9
4.2 Aspect-Oriented Architecture and Detailed Design 10

5 The ArchM Software Architecture 11
5.1 Components 12
5.2 Interfaces 13
5.3 Architectural Solutions 14

6 The AspectM Detailed Design 15
6.1 The AspectM Framework Structure 15

6.1.1 Improved Modularization of Mobility Concerns 15
6.1.2 Transparent Introduction of Code Mobility 17
6.1.3 Integration with Distinct Platforms 18

6.2 The AspectM Framework Dynamics 19
6.3 Instantiation Process 24

7 The AspectM Case Studies 26
7.1 Expert Committee 26

7.1.1 The Chair Role 26
7.1.2 Mobility Issues of the Chair Role 27

7.2 MobiGrid 33
7.2.1 The MobiGrid Original Design 33
7.2.2 Mobility-Specific Tangling and Scattering in MobiGrid Design 35
7.2.3 The MobiGrid Reengineering using AspectM Framework 36
7.2.4 Summary of The MobiGrid Reengineering Steps 38

8 Evaluation 39
8.1 Evaluation Procedures and Assessment Metrics 39
8.2 Architectural Evaluation 41

8.2.1 Separation of Architectural Concerns 41
8.2.2 Architectural Coupling and Component Cohesion 42
8.2.3 Interface Complexity 44

8.3 Implementation Evaluation 45
8.4 General Analysis 46

 iv

9 Related Work 47
10 Conclusion and Future Work 48
References 49

 1

1 Introduction

Using mobile agents, open distributed applications can be developed to run over the
Internet in a much more flexible way than before [21, 39]. As a result, code mobility
capabilities can be exploited as a means to reduce the complexity of such contemporary
applications. However, with mobile agent systems growing in size and complexity,
developers are still facing the challenge of achieving enhanced system modularization
in the presence of code mobility. The central problem is the invasive and widely-
scoped nature of mobility concerns [22-26, 8, 34, 35, 48, 56], hindering the system
modularity, composability, and evolvability. It is widely recognized nowadays that
these modularity problems occur mainly because the mobility issues cannot be
explicitly captured using only object-oriented (OO) abstractions and mechanisms [22-
26, 49, 56]. This is primarily due to the fact that the implementation of many of these
mobility-specific concerns naturally tends to crosscut other system concerns, such as
the basic agent functionalities and coordination activities [22-26, 49, 55, 56]. Despite
these modularity breakdowns caused by code mobility, the developers have mostly
relied on OO application programming interfaces (APIs) from mobility platforms and
on the Java programming language. Another side effect caused by such inefficient
modularization is that the introduction of the mobility property into stationary agents
is intrusive and error prone.

Modular design support for mobile agents has been studied from different
perspectives, including design patterns (e.g. [3]) and mobility frameworks supporting
the structuring of code mobility concerns in software agents, such as Aglets [43], JADE
[7] and RoleEP/EpsilonJ [56]. Although these frameworks provide OO APIs that offer
a number of mobility abstractions and services, they also inherently bring a number of
design breakdowns. First, they impose architectural restrictions on the agent design,
which are responsible for the tangling and scattering of mobility-specific code over the
system. Second, in order to introduce the mobility capabilities into systems, developers
must usually modify the agent design to: declare that application agent classes extend
specific API classes from mobility platforms, implement the API abstract methods,
declare and possibly specify the implementation of the API interfaces, and explicitly
invoke the API mobility methods on the system classes which are not created to
address mobility concerns. Hence, such implementation strategies result in a high
coupling between the underlying models of mobility platforms and the design of
mobile agent systems. Third, the direct usage of such APIs does not allow the reuse
and explicit handling of the scattered mobility code as variability points in systems
implementation. In other words, the variability points cannot be exposed in separate
modules where extension or exclusion can be applied. Finally, the lack of proper
modularization also makes the composition of the mobility framework with
infrastructures addressing other typical concerns in mobile agent system development,
such as collaboration and learning, more difficult.

In this context, this work presents an aspect-oriented (AO) software architecture, the
ArchM (“Architecting Mobility”), and an example of its implementation, a framework
what we refer as AspectM (“Aspectizing Mobility”), to solve the problem of code
mobility modularization in mobile agent system development. In the ArchM
architecture, architectural aspects [24, 29] are used as unifying abstractions capturing
the mobility issues, which are hard to modularize with object-oriented abstractions.
More specifically, architectural aspects [24, 29] are used to decouple the mobility
concerns from the basic functionalities and other system concerns, including

 2

interaction, adaptation, learning, and autonomy [24]. In the case of the AspectM
framework, which has been implemented in AspectJ [38] and is based on the ArchM
architecture, the mobility aspects promote this decoupling by defining pointcuts that
pick out join points related to the instantiation, migration, initialization, and
destruction of mobile agents, and also defining the advice that are associated with
these pointcuts. These advice are implemented following a general pattern called the
mobility protocol: events are picked out, conditions are checked and the appropriate
mobility-specific methods are invoked. For example, the migration advice is
responsible for checking the need for the agent roaming and for calling the mobility
actions. In summary, the ArchM mobility protocol is defined in such a way that it
prevents the explicit invocations of the mobility services by the mobile agent systems
and it is independent on specific platforms [3, 7, 43, 56] or applications [5, 22-26].

The usefulness and usability of the ArchM architecture has been assessed in the
context of two case studies. The Expert Committee [24] is an open multi-agent system
that supports the management of paper submission and reviews for conferences. The
MobiGrid [5] is a framework for mobile agent support within a grid environment [30].
The assessment of these case studies is based on architectural metrics rooted at
fundamental modularity principles [52], such as separation of concerns, narrow
interfaces, low architectural coupling, high component cohesion and composition
simplicity. Thanks to these metrics, we have assessed to what extent the ArchM
promotes in fact superior modularity in the presence of code mobility. After the ArchM
evaluation, we have observed that it allows: (1) a clean separation between the
mobility-specific concerns and other agent concerns; (2) a more straightforward
introduction of code mobility into software agents; (3) an improved variability of the
mobility concerns, such as a flexible choice of the mobility platform.

This work is organized as follows. Section 2 presents the essential concerns in the
development of mobile agent systems. Section 3 provides a systematic analysis of the
modularity problems caused by the crosscutting nature of code mobility concerns in
terms of a case study. Section 4 recalls the fundamental concepts and definitions of
aspect-oriented software development. Section 5 offers an overview of the ArchM
architecture, while Section 6 presents the detailed issues of an ArchM implementation,
the AspectM framework. The case studies used to evaluate the ArchM architecture are
described in Section 7 and the evaluation results are detailed in Section 8. Section 9
overviews the related work, comparing the ArchM/AspectM with existing proposals,
such as the RoleEP/EpsilonJ [56] framework. Finally, Section 10 presents the
concluding remarks and the future work.

2 Mobile Multi-Agent Systems

2.1 Basic Concepts

Typical mobile agent systems (MAS) consist of a mobility platform and the mobile
agents [33, 58] instantiated on this platform. The platform defines the mechanisms that
support the mobile agent execution, and, in general, provides a framework for MAS
programming. A mobile agent consists of code and data. Code is the program that
implements the agent behavior, which is often derived from the framework provided
by the platform in use. Data are the values of the internal attributes modified during
agent execution, which can be resulted from an agent internal computation and/or

 3

derived from the platform runtime. A mobile agent can move in a distributed system,
from one host to another, carrying its data and code.

Figure 1 presents the physical architecture associated with mobile agent execution:
servers, execution contexts, and the underlying network infrastructure. In MAS
development, some agents are designed to be mobile, but others are designed to be
stationary. A mobile agent only moves to the hosts where a program called agent
server is installed. The agent server enables the agent migration, provides the context to
agent execution, and allows communication between agents. The agent migration is
supported by the negotiation of the local server with other servers. When the agent
migration is required, the agent execution is stopped, the agent is transferred to a
remote server and, upon the mobile code arrival, the agent execution is resumed at the
remote location. In each location, the agent server provides a context, that is, a complete
environment designed for the concurrent execution of mobile agents. Thanks to
contexts, agents also can communicate with each other through message exchanges.

Figure 1. Generic Structure of Mobile Agent Systems

2.2 The Mobile Agent Lifecycle

The mobile agent life is modeled in different stages, which we have termed lifecycle
model. The model stages are instantiation, initialization, migration, and destruction of
mobile agents. Figure 2 shows the mobile agent lifecycle model. Different protocols can
be used to implement each lifecycle stage. The instantiation of the mobile agent is made
only once when it is created. Every agent receives a unique id and an initial state.
Initialization is performed each time the agent arrives at a new host. Destruction means
that the agent terminates all its activities and frees all the resources it was using.
Migration represents a transfer of an agent from one host to another. The instantiation,
initialization, migration and destruction define what we will refer as the agent mobility
protocol. An application developer defines the circumstance when a mobile agent must
be created; we will refer to this circumstance as the instantiation point. On the other
hand, the developers also define the instants where the migration action must be
carried out; we will refer to them as migration points.

Figure 2. The Mobile Agent Lifecycle

Instantiation RemoteInitialization Destruction Migration

 4

Procedures executed by an agent immediately before the departure to remote
environments are called departure procedures. Sending departure messages and
blocking processes are some examples of departure procedures. Procedures executed
immediately after arrival in remote environments are called arrival procedures. Sending
arrival messages and starting processes are example of arrival procedures. In general,
departure and arrival procedures data are related to execution contexts. Such data are
called itinerary throughout this paper. Itinerary includes identifiers for reachable hosts
and visited hosts, and is implemented either statically or dynamically depending on
the restrictions imposed by servers. Itinerary maintenance is particularly important
because an agent must be context-aware; that is, an agent has to access the definition of
the objects that are locally reachable, the agent neighbors, the agent masters, etc.

2.3 Mobility Strategies and Platforms

MAS may follow strong or weak mobility [21], depending on whether the agent state
can or cannot be migrated. On one hand, there are MAS that support the migration of
the execution state (strong mobility), and on the other hand, those that only support
program code and instance data are moved (weak mobility). This work focuses on weak
mobility, since most mobility frameworks support this form of mobility [21, 39]. In
general, the goal of these frameworks is to provide an infrastructure and associated
libraries for the MAS development, beyond the functionalities independent on specific
MAS applications, such as message transport, encoding and parsing or agent lifecycle.
For the application-dependent functionalities, the mobility frameworks allow the
specification of agent types, instantiation and migration points, and other mobility
protocol issues. To achieve that, framework users may use the MAS fundamental
abstractions. For example, Aglets [43] and JADE [7] are Java-based mobility platforms
for MAS development, including abstractions such as agents, agent ids, and agent
contexts. However, Aglets also introduces an agent proxy abstraction to deal with
context and messaging issues; on the other hand, JADE supports MAS development in
compliance with FIPA specifications [20].

Despite these differences, Aglets and JADE APIs implement agents as Java threads
running in contexts. In JADE, the basic class for agent instantiation is the JadeAgent
class; in Aglets, the Aglet class is used. In Aglets, a context is implemented through
the AgletContext interface; in JADE, the context concept corresponds to an
AgentContainer instance. The AgletContext as well as the AgentContainer
instances consist of a complete environment designed for the concurrent execution of
mobile agents. Even though the “Aglet context” and “JADE container” are not
equivalent, there are a number of similarities with respect to the issues we have dealt
in this work. For example, JADE and Aglets API methods correspond: (1)
onCreation() and setup(), (2) dispose() and doDelete(), (3) dispatch()
and doMove(); these methods implement the same functionalities in both platforms.

3 Modularization Of Code Mobility

The literature has pointed out that code mobility is often a widely-scoped property that
crosscuts the modules implementing other system concerns, such as the basic agent
functionalities and coordination activities [22-26, 55, 56]. Although OO frameworks
(Section 2) are essential to the development of mobile agents, they impose architectural
restrictions on MAS design. These architectural restrictions basically can be viewed
from three perspectives: they lead to (1) a poor modularization, which decreases MAS

 5

reusability and evolvability, (2) an inefficient introduction of the code mobility into
stationary agents, and (3) a difficult composition of MAS with other infrastructures
than the mobility platforms. To understand the architectural restrictions above, this
section illustrates more fine-grained design problems relative to code mobility in terms
of the solution using the JADE framework [7]. We analyze two different approaches for
implementation of mobility issues in MAS: direct use of OO APIs from mobility
platforms, and the RoleEP/EpsilonJ [56] framework. The advantages and
disadvantages of each approach are pointed out through a case study, which will be
also used throughout this paper to show the applicability of our proposal for
separation of crosscutting mobility concerns.

3.1 A Case Study

Expert Committee (EC) is an open multi-agent system that supports the management of
paper submission and reviews for conferences, a classical example of an application
based on mobile agents [16, 59]. The EC encompasses two agent types: information and
user agents. Each agent type provides different services. For simplicity purposes, this
section focuses on the description of the user agents. The basic functionality of the user
agents is to infer and keep information about the corresponding users related to their
research interests and their participation in conferences. In addition to their basic
functionality, user agents can collaborate with each other; the collaboration concern is
represented by the roles played by the agents. Each role represents collaborative
activities in specific contexts. Different roles are attributed to each EC agent, but the
main ones are paper author, reviewer, PC member, and chair. Since these roles need to
communicate with each other in the reviewing process, user agents play them in order
to cooperate with each other. Classes are used to represent the basic functionalities of
the agent types and the different roles.

Each role is associated with a set of plans, which are used to implement more
sophisticated collaborative activities; plans are represented by separate classes. The
chair role has plans for distributing review proposals; the reviewer and PC member
roles have plans for evaluating the chair proposals. The chair, PC members and
reviewers negotiate with each other for performing reviews. There are other plans to
address user workloads and invitations to new reviewers. Figure 3 presents some
classes representing EC agent types (ResearcherAgent, InformationAgent), roles
(Reviewer, Chair), and plans (DistributionPlan). The chair role is associated
with a plan for distributing review proposals.

EC agents need to move in some circumstances, including when they are playing a
specific role. For example, when a user agent is playing the chair role, it needs to
consult the reviewer profiles in order to optimize the paper distribution in terms of the
research interests of each reviewer. If a reviewer profile is not available, it collaborates
with an information agent and requests this agent to search for information of the
specified reviewer. The information agent controls the local database and is able to
query for the profile. However, if the information is not available in the database, the
chair role needs to move and try to find the missing profile in remote environments.
The agent assigns the searching task to the information agents dispersed over the
Internet by roaming through hosts.

 6

Figure 3. An Object-Oriented Design for the EC Agents and Roles

3.2 Using OO APIs from Mobility Platforms

The use of OO APIs provided by existing mobility platforms requires the invasive
implementation of mobility issues. In order to make their agents mobile, developers
usually have to change their agents’ design to extend mobility-specific classes,
implement abstract methods of those mobility classes, implement mobility-specific
interfaces (e.g. serialization interface), and invoke explicitly mobility methods in the
classes implementing other agent concerns. Figure 4 presents the OO design of the EC
mobile agents and their roles using the JADE mobility framework. For simplification, it
only shows some important classes, the others essentially follow the same pattern; we
also omit the classes related to learning, adaptation, and autonomy. The main purpose
of each set of classes, surrounded by a gray rectangle, is to modularize a specific agent
concern, namely interaction, collaboration, mobility, and basic concerns. However,
note that the mobility concerns crosscut classes implementing other agent concerns; it
has a huge impact on the basic agent structure, and on the collaboration and
interaction designs. Although part of the mobility concern is localized in the mobility
classes, such as JADEAgent and Itinerary, mobility-specific code replicates and
spreads across several class hierarchies of an agent.

Figure 4 shows each crosscutting-related problem with a number surrounded by a
circle. There are classes that represent the agent types and roles, extending the abstract
JADEAgent class to incorporate the mobility capabilities. However, the use of
inheritance results in code replication as well as in both code tangling and scattering;
the basic functionality and collaborative activities are amalgamated to mobility
methods (problem). The agent and role classes also need to hold an explicit reference
to mobility elements (e.g. itinerary) as attributes (problem). These classes have
additional methods to manage these elements (problem). In addition, several
methods contain mobility code in order to define the agent migration points, w.r.t. the
decisions on when the agent should move to a remote environment (problem), and
when going back to the home location (problem). As a result, this code is replicated
in various methods of plan, role, and agent type classes.

B
a
sic C

o
n

ce
rn

s

..

Reviewer

chairName
papersToReview
learningComponents
setChair()
addLC()
removeLC()
notifyLC()
returnJudgement()
...

Role

collaboratingAgents
collaborationProtocol
getName()
addAgent()
removeAgent() ...

Agent

goals
plans
sensors
effectors
sendMsg() ...

..

Plan

goal
agent
…
clone()
execute() ...

DistributionPlan

profiles
addLC()
removeLC()
notifyLC()
execute ()
distributePapers()
getProfile()
...

papers
itinerary
submissionDeadline
reviewDeadline
setup()
beforeMove()
afterMove()
distributeProposal()
addHost() ...

Chair

publications
reviews
itinerary
setup()
beforeMove()
afterMove()
setKeyword()
addHost() ...

Researcher
Agent

database
searchProfile()
...

Information
Agent

Collaboration

 7

Figure 4. JADE-Based Design for the Expert Committee System

Moreover, there can be a spread of usual preconditions and postconditions when an
agent moves to another host (problem). Such conditions either can be dependent or
independent from the application agents. Finally, several classes have to implement
the Serializable interface for allowing the objects, which are part of the agent, to be
moved across hosts (problem). All these problems decrease the system reusability
and evolvability, since adding or removing the mobility code from classes requires
invasive changes in those classes. Note that we cannot find a more modular solution
even if we try refactoring of the OO solution presented in Figure 4 or use another
mobility framework. This problem occurs because mobility is a crosscutting concern
independent on the OO decomposition used [22-26, 56].

With respect to problem , the Serializable interface is just a representative
example of the following scenario: OO APIs from platforms usually provide a number
of interfaces with methods that are implemented by systems in order to make plans
and actions automatically be executed at specific moments of the mobile agent
lifecycle; for instance, plans and actions can be automatically executed immediately
after the agent instantiation or immediately before the agent migration. In this way,
mobility-specific code spreads across several plan methods, roles and agent types.

Beyond the architectural restrictions on the agent design, the pervasiveness of
existing mobility frameworks also introduces conceptual problems. The Agent class
has to extend the JADEAgent class even when some agent types are stationary. For
example, it is not possible to directly define the UserAgent class (Figure 4) as a
JADEAgent subclass since the former already extends the Agent class. The same
problem happens when specifying a specific role as mobile (e.g. the Chair class in

Serializable

 mobility-specific members
 methods with mobility code Legend:

Collaboration

Mobility

Basic
Concerns

Interaction
Effector

...

Reviewe
r

chairName
toReview
setChair()
addLC()
removeLC(
)
notifyLC()
…

public class Effector implements
Serializable { ...
}

1

2

7

Rol
e collaboratingAgents

collaborationProtocol
getName()
addAgent()
removeAgent()…

Agent

goals
plans
sensors
effectors
addAgent()
sendMsg()
receiveMsg()…

Sensor

receive()
senseEvent()
...

CVUpdate
Plan

...

Plan

goal
agent
clone()
execute ()…

Distribution
Plan

4

Chai
r

3

Information
Agent

database
searchProfile()
…

public void execute(...) {
...
if (date.getDay() == 1) {
 ...
 agent.move(); } ... }

JADEAgen
t getName()

move()
beforeMove()
afterMove()
…

Information
GatheringPla

n
addLC()
...
execute ()
sendQuery(
)
...

5

public Result sendQuery(...) {
 ...
if (queryResult.value != null)
{... agent.returnHome(); }
... }

Researche
r

Agent

1

2

3

send()

public void beforeMove() {
 ...
 configureItinerary();
 sendArrivalNotification();
 ... }

6

Itinerary

Itinerary(Vector
hosts, Agent agent)
go()
addHost()…

4

papers
itinerary
submitDeadline
reviewDeadline
move()
beforeMove()
afterMove()
distribute
Proposal()
addHost()...

interests
publications
reviews
itinerary
addPC()
move()
beforeMove()
afterMove()
setKeyword(
)
addHost()
…

addLC()
removeLC(
)
execute ()
updateCV()
...

profiles
addLC()
notifyLC()
execute ()
distribute
Papers()
getProfile()..
.

 implements serialization interface
 mobility-specific classes

 8

Figure 4). Moreover, the use of OO frameworks can lead to potential conflicts. For
example, the JADEAgent class defines an abstract method getName(); the Agent
class also has a method getName() with a different purpose. The introduction of
mobility in this system causes implementation clashes, and requires the renaming of
this method and changes in the respective callers.

3.3 RoleEP/EpsilonJ

RoleEP [56] is an approach that addresses the problem of constructing MAS with a
mechanism for separating the mobility and collaboration concerns. To do that, RoleEP
proposes specific abstractions, such as agents, roles, objects and environments. An
environment is composed of attributes, methods, and roles. A role, which can move
between hosts that exist in an environment, is composed of attributes, methods and
binding-interfaces. Role attributes and methods are only available in an environment
to which the role belongs. A binding-interface, which is similar to an abstract method
interface, is used when an object binds itself to a role. Common data and functions that
are used in roles are described by environment attributes and methods.

An object, which cannot move between hosts, is composed of attributes and
methods. Although an object cannot move between hosts, it can move by binding itself
to a role that has mobility functions. An object becomes an agent by binding itself to a
role that belongs to an environment, and can collaborate with other agents within the
environment. The notion of the binding-operation binds binding-interfaces of roles to
concrete methods of objects. The binding-interface defines the interface in order to
receive messages from other roles existing in the same environment. The binding-
operation is permitted only when an object has methods corresponding to the binding-
interface. Binding-operations are implemented by creating delegational relations
between roles and objects dynamically. That is, if a role receives a message
corresponding to its binding-interface from other roles or itself, the role delegates the
message to an object bound to the role.

Regarding this point, it is important to note that RoleEP approach is based on its
own specific concepts and imposes a number of restrictions in the application design.
In other words, using this approach, MAS cannot be constructed only with objects; it is
necessary to use RoleEP-specific concepts, such as environment and role. In fact,
RoleEP concepts are realized by the MAS instantiated from EpsilonJ framework [56]. In
EpsilonJ, an environment class is defined as a subclass of the Environment class, and
a role class is defined as a subclass of the Role class. The Role class is implemented as
a subclass of the Aglets class that has mobility functions. A class of an EpsilonJ’s
object is defined as a subclass of the EpsilonObj class that presents functions for
binding-operations. Figure 5 illustrates the partial result of the EC development
process using mobility services through the EpsilonJ framework.

As we can observe, developers need to extend a number of EpsilonJ classes in order
to instantiate their MAS. As we have demonstrated in Section 3.2, a framework
instantiation process using only OO abstractions and mechanisms hinders a
satisfactory modularization of mobility issues. Moreover, for MAS development using
EpsilonJ, we have implemented drastic changes on the application’s original design.
For instance, for Chair role class access the Aglets mobility services (and not the JADE
ones as before) we make a number of changes in the class inheritance trees of the EC
system (Figure 5). In Section 6, we show that in order to instantiate an application
from AspectM, it is not necessary to extend any classes from framework, while we also
maintain the mobility platform flexibility.

 9

Figure 5. RoleEP-Based Design for Expert Committee System

4 Aspect-Oriented Software Development

Aspect-Oriented Software Development (AOSD) is an emerging area with a goal of
promoting advanced separation of concerns throughout the software development
lifecycle. This section introduces the AOSD concepts and modeling notations. Section
4.1 presents AOP definitions and Section 4.2 shows the AO modeling notations for
architectural and detailed design.

4.1 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) [37] is an emerging programming paradigm with
the goal of improving separation of crosscutting concerns at the implementation level
through new abstractions and composition mechanisms. AspectJ [38] is the most
widely used AO programming language and, therefore, the most representative of a
family of AOP languages, such as JBoss AOP, Spring Framework, etc. Most case
studies found in the literature explore AOP in AspectJ [38] in the context of different
crosscutting concerns, such as exception handling [19], persistence and distribution [50,
54], and design patterns [28]. However, AOP has not been fully explored an improved
end-to-end modularization of code mobility since an early version of the design. The
main abstractions supported by AspectJ are: (1) aspects, (2) join points, (3) pointcuts,
(4) advice, and (5) inter-type declarations. Aspect is the abstraction to support improved
modularity of crosscutting concerns. An aspect can crosscut one or more classes,
changing their structure or dynamics. Join points are well-defined points in the
dynamic execution of a system which are used to specify how classes and aspects are
related. A collection of join points can be specified through a pointcut.

Legend:

Basic
Concerns

Effector

..

Reviewer

chairName
toReview
addLC()
removeLC()
notifyLC() ...

ECRole

collaboratingAgents
collaborationProtocol
getName()
addAgent()
removeAgent() ...

Agent
goals
plans
sensors
effectors
addAgent()
sendMsg()
receiveMsg() ...

Sensor

receive()
senseEvent() ...

CVUpdate
Plan

..

Plan

goal
agent
clone()
execute ()
...

DistributionPlanChai
Information

Agent

database
searchProfile()
…

Researcher
Agent

send() ...

Environment

Roaming

Role

roam()
onRoleCreation()...

onEnvironmentCreation()

ProposalDistribution

addLC()
removeLC()
execute ()
updateCV()
...

profiles
addLC()
removeLC()
notifyLC()
execute ()
distributePapers()
getProfile() ...

interests
publications
reviews
itinerary ...

papers
submitDeadline
reviewDeadline
distribute
Proposal()
addHost() ...

Interaction
EpsilonJObj

onObjCreation()...

Multiple
Inheritance

?

 EpsilonJ Class
 Class created to support RoleEP-specific concepts

Collaboration

 10

Advice is a special method-like construct attached to pointcuts, which defines a
crosscutting feature to affect the dynamic behavior of classes. An advice can run
before, after or around whenever a join point is reached. An aspect can also contain
internal attributes, methods and inter-type declarations. The inter-type declarations
specify new members (attributes or methods) for classes to which the aspect is
attached, or change the inheritance relationship between classes. Unlike advice, which
operates primarily dynamically, inter-type declarations operate statically, at compile-
time. Inter-type declarations are static crosscutting features since they affect the static
structure of components. Aspects can be defined as abstract and extended by concrete
aspects; both methods and pointcuts can be qualified as abstract.

4.2 Aspect-Oriented Architecture and Detailed Design

Aspects can be represented not only at the implementation, but also at the architectural
and detailed design level [4, 6, 13, 29, 30]. In fact, aspects have always a broadly-scoped
impact at the design decomposition and encompass driving architectural concerns [30].
Software architecture is a high-level description of the system organization in terms of
architectural components, their interrelationships and responsibilities [49]. Each
component conforms to and provides the realization of a set of interfaces, which make
available services implemented by the component.

The notion of an aspect-oriented software architecture introduces the concept of an
aspectual component (or architectural aspect) [24, 29]. An aspectual component
modularizes a crosscutting concern at the architectural level. Each of the aspectual
components is related to more than one architectural component, representing their
crosscutting nature. The relationships are associated with the component interfaces,
which are classified in conventional (normal) or crosscutting interfaces. A conventional
interface only provides services to other components. Crosscutting interfaces provide
services to the system, but also specify when and how an architectural aspect affects
other architectural components.

Figure 6 illustrates an aspect-oriented architecture for the aspect called
FaultHandler. The architecture modeling is based on the AOGA notation [12, 24, 40-
41], which extends the aSideML language [11]. These languages are used throughout
this paper: the aSideML language extends UML with semantics and visual notations
for representing aspects at the detailed design level. The AOGA notation suppresses all
information about aspect internal elements and adds notation to represent architectural
aspects. Aspects are represented as diamonds, while a crosscutting interface is
displayed as a small grey circle with its name placed next to the circle.

Figure 6. An Aspect-Oriented Architecture for the FaultHandler Aspect

Figure 7 illustrates the detailed design of the FaultHandler aspect using the
aSideML language [11]. In this language, an aspect is composed of internal structure
and crosscutting interfaces. The internal structure declares the internal attributes and
methods. A crosscutting interface specifies when and how the aspect affects one or more
classes. Each crosscutting interface is composed of inter-type declarations, pointcuts
and advice, and is represented using a rectangle symbol with compartments. The first
compartment represents inter-type declarations, and the second compartment

Server

IServiceIError
Detection

Fault
Handler

 11

represents pointcuts and their attached advice. The notation uses a dashed arrow to
represent the crosscutting relationship. Note that, at the detailed design level, an
architectural component is realized as a set of aspects and auxiliary classes; the
conventional components are refined and implemented as a set of classes.

Figure 7. An Aspect-Oriented Design for the FaultHandler Aspect

The internal structure of the FaultHandler aspect consists of two methods and
one attribute. They were moved from the Server class to the aspect since they are part
of the error-handling concern. The IErrorDetection crosscutting interface (Figure
7) declares how the FaultHandler aspect crosscuts the Server class. This interface
introduces the disabled attribute on Server, and two pieces of advice. There is one
before advice and one after advice, both of them associated with the same pointcut
named services. Note that the FaultHandler aspect modularizes the error-
handling concern, and the Server class contains no exception-handling code. Figure 8
presents interaction diagrams that illustrate when the FaultHandler aspect
dynamically affects the Server class. The join points are the catching of exceptions
FaultException and calls to the getComplaints() method.

Figure 8. The Dynamics of the Server Class and the FaultHandler Aspect

5 The ArchM Software Architecture

This section presents ArchM, an aspect-oriented software architecture (Section 4.2) for
addressing the mobility tangling and scattering (Section 3.2) often found in MAS
design and implementation artifacts. We use the AOGA notation (Section 4.2) in
Figure 9 for presenting the ArchM architecture.

_services()
services_()

IErrorDetection

failures

FaultHandler

reportFault()
fixServer()...

disable

initSystem()
connectDB()
disconnectDB()
getReference() ...

crosscutting
relationship

internal
atributtes

internal
methods

 intertype declarations

advice

Legend:
 _BeforeAdvice
 AfterAdvice_
 aspect

 crosscutting interface

pointcut
name

DBreference ...

Server

disabled = true
failures.add (Exception)
reportFault()

:FaultHandler :Server

getComplaints(…)
services_(Server,

Exception)

FaultException

(a) disabling the server

complaints

:FaultHandler :Server

disabledException

getComplaints(…) _services(Server)

[if disabled = true]

[else]

disabledException

(b) disabling method calls to disabled servers Legend:
 joint point

 12

Figure 9. The ArchM Architecture

In Figure 9, the separation of the mobility concerns and the integration between
mobile agent applications and distinct mobility platforms respectively resulted in the
conception of two architectural aspects (Section 4.2): MobilityProtocol and
MobilityManagement. Section 5.3 explains how these components (Section 5.1) and
interfaces (Section 5.2) interact with each other in order to solve the architectural
restrictions in MAS. Solving these restrictions, ArchM ensures: (1) a clean
modularization of the code mobility, (2) a more straightforward introduction of code
mobility into stationary agents, and (3) an improved variability of the mobility
concerns, such as a flexible choice of the platform.

5.1 Components

The ArchM architecture is composed of five kinds of components:

1. the Kernel component, which modularizes the basic concerns of an agent-based
application;

2. the MobilityProtocol component, which modularizes the mobility protocol
execution (Section 2.2), i.e. the instantiation, migration, remote initialization, and
destruction of agents in applications;

3. the MobilityManagement component, which provides a flexible integration
between MAS and distinct mobility platforms (Section 2.3);

4. other components, which represent additional agent concerns, such as
collaboration and learning;

5. the MobilityPlatform, which represents a specific mobility platform being
used, such as JADE [7] and Aglets [43] (Section 2.3).

The component Kernel modularizes the basic functionality associated with an
agent type. It is also responsible for modularizing the elements of the agent’s intrinsic
knowledge. Alternatively, it can represent an existing object, which needs to be
transformed into an agent. The Kernel component realizes the interface that makes
services available for the agent’s clients, the IServices interface (Figure 9).

Learning

IMigration

IDestruction
Event

IReference
MobileAgent

IInitialization
Event

IMigration
Event

IInstantiation
Event

Legend:
component provided interface

required interface

 crosscutting interface

aspectual component crosscutting relationship

MobilityProtocol

IReference
Table

MobilityPlatform

IPlatform
Services

IPlatform
Events

IReference
Observer

IPlatform
Runtime

Mobility

Management

IMobileAgent
Protocol

Kernel

Collaboration

IApplication
Agent

IApplication
Role

Interaction

IMessage
Reception

IInstantiation

ILearning
Knowledge

IMobileAgent

 13

The MobilityProtocol and MobilityManagement components separate
together the mobility concern from Kernel and other components. In this way, the
MobilityProtocol and MobilityManagement components isolate mobility
concern from the agent basic functionality and intrinsic knowledge (Kernel
component), as well from the other agent concerns (other aspectual and non-aspectual
components). Particularly, the MobilityProtocol component isolates agent mobility
protocols; that is, the MobilityProtocol component isolates crosscutting concerns
referring to instantiation, initialization, migration and destruction protocols (Section
2.2). On the other hand, the MobilityManagement component connects MAS with
the MobilityPlatform component, which modularizes the platform services. It
allows a flexible integration of MAS with different platforms.

Other architectural components are used to improve the separation of specific
crosscutting concerns of MAS, including interaction [24], adaptation [24], learning [24,
27], autonomy [24, 53], coordination [2, 36, 55, 56], context-awareness [47], error
handling [15, 18-19], distribution, persistence and concurrency [50, 54] and design
patterns [9, 28]. In other words, the additional components modularize agent
properties, such as autonomy and adaptation, in such a way the agent properties are
isolated from the agent kernel and from each other. In Figure 9, components that
modularize additional agent concerns are represented by interaction, collaboration and
learning components. These components also implement a number of normal
interfaces; Figure 9 omits them for simplification purposes.

The MobilityPlatform component represents a specific mobility platform being
used. The goal of a mobility platform is to provide an infrastructure and associated
libraries for the MAS development (Section 2.3). In general, mobility frameworks
provided by platforms are object-oriented and allow the specification of a number of
mobility protocol issues. However, the direct use of OO mobility frameworks APIs
requires the invasive implementation of mobility issues (Section 3.2). In the ArchM
architecture, the MobilityPlatform component is completely separated from the
other agent concerns.

5.2 Interfaces

The MobilityManagement component realizes four interfaces (Figure 9). The
IMobileAgent normal interface determines recurrent mobile agent services on
platforms. This interface allows to access to mobile agent services provided by mobility
platforms through the IReferenceMobileAgent interface. The crosscutting nature
of the MobilityManagement component is specified through the
IReferenceObserver interface (Figure 9). This interface crosscuts join points as calls
and/or executions of mobility platform services. For example, the
IReferenceObserver interface provides access to service execution of a mobile
agent lifecycle, such as the destruction of a mobile agent in its platform. The
MobilityManagement component also realizes a conventional interface called
IReferenceTable, which is used to abstract the context and messaging services
provided by different platforms.

The MobilityProtocol component is related to more than one architectural
component, representing its crosscutting nature (Figure 9). The IInstantiation
crosscutting interface determines when and how a mobile agent is instantiated on a
platform to represent a specific agent on an application. For this reason, the
IInstantiation interface crosscuts agent types and roles localized in the Kernel
and Collaboration components, respectively (Figure 9). Thanks to the

 14

IInstantiation interface, we maintain a univocal association between an
application agent or role instance and its respective mobile agent instance on the
platform in use. The specification of the IInstantiation interface corresponds to
the specification of an agent instantiation point in MAS (Section 2.2).

The IMigration defines the components that trigger the agent travel to remote
environments and the agent return to the home host. This interface crosscuts the
IApplicationAgent interface since the mobile agent may have to travel whenever
elements of the agent kernel change or before/after the execution of a service (Figure
9). In addition, the IMigration interface also crosscuts other elements (Figure 9): (1)
the Interaction component, because travels are also motivated by external events or
by messages received from other agents; (2) the Collaboration component, since
travels can be triggered due to some actions performed in the context of an agent role;
and (3) other components (e. g. the LearningKnowledge component), depending on
the agent type/role features. The IMigration interface corresponds to the
specification of an agent migration point (Section 2.2).

Beyond the IInstantiation and IMigration interfaces, the
MobilityProtocol component realizes other interfaces, which crosscut the
IReferenceObserver interface of the MobilityManagement component. For
example, the InstantiationEvent and MigrationEvent interfaces detect the
creation and the migration of a mobile agent. In addition, the
IInitializationEvent interface detects the agent arrival in a new host, and the
IDestructionEvent interface detects the destruction of a mobile agent in the
platform. The access to the mobile agent lifecycle makes the definition of a generic
mobility protocol possible, that is, a mobility protocol (Section 2.2) without any
references to a specific mobility platform. Its purpose is to decrease coupling between
agent architectural elements and platform models.

5.3 Architectural Solutions

The ArchM architecture uses architectural aspects and crosscutting interfaces (Section
4.2) to make a clean modularization of the code mobility possible in MAS. The
MobilityProtocol component implements a generic mobility protocol in order to
prevent the explicit invocations of the mobility services by the other components. To
achieve that, the IInstantiation crosscutting interface is used to determine when
and how a mobile agent is instantiated to represent a specific agent in an application.
In addition, the IMigration interface is used to affect well-defined mobility join
points in order to determine when agents should move.

Other interfaces are used in the ArchM architecture in order to maintain a flexible
integration between Kernel and the MobilityPlatform components; they make
information relative to the mobile agent lifecycle available to the other components.
The IReferenceObserver interface crosscuts join points as calls of mobility platform
services. In turn, the InstantiationEvent, MigrationEvent,
IInitializationEvent, and IDestructionEvent interfaces also crosscut the
IReferenceObserver interface to allow the MobilityProtocol component to
specify a generic mobility protocol.

Finally, the IMobileAgentProtocol and IReferenceMobileAgent interfaces
play a central role in the ArchM architecture. The IMobileAgentProtocol is the
interface that delegates to the IReferenceMobileAgent the mobility services
invoked by the Kernel component; this delegation is independent on platform-
specific issues. The IMobileAgent is the interface that is responsible for delegating to

 15

a specific platform the invoked services; to achieve that, it uses the
IPlatformServices interface provided by the MobilityPlatform component. To
introduce code mobility in MAS, application users then must only perform the
specification of agent instantiation and migration points.

6 The AspectM Detailed Design

In this section, we present our ArchM software architecture (Section 5)
implementation, the AspectM framework. This framework provides solutions to more
fine-grained problems related to the (1) modularization of code mobility (Section
6.1.1), (2) introduction of code mobility into agents (Section 6.1.2), and (3) integration
of MAS with mobility platforms (Section 6.1.3). In other words, we present solutions to
the mobility-specific tangling and scattering problems often found in the detailed
design and implementation levels of MAS development. AspectM contains more than
30 abstract classes and aspects. However, we focus on the description of the AspectM
main elements in order to show how the framework overcomes the problems described
in Section 3, and how they are instantiated to a specific application (Section 6.3). The
dynamics of these elements is also presented in Section 6.2.

6.1 The AspectM Framework Structure

6.1.1 Improved Modularization of Mobility Concerns

Figure 10 illustrates the detailed design of the AspectM MobilityProtocol
component (Section 5.1). The modeling is based on the aSideML language (Section
4.2); we have enhanced the notation to explicitly distinguish the hot spots (variable
parts), which are marked with a star, from the frozen parts of the framework. At the
detailed design level, the MobilityProtocol component is implemented as the
abstract Mobility aspect and its subaspects (ChairMobility aspect in Figure 10).
The abstract Event aspect also appears in Figure 10, but it does not belong to the
MobilityProtocol component; it is used to introduce the existing relationship
between the MobilityProtocol and the MobilityManagement components. The
MobilityManagement component will be presented in detail in Section 6.1.3. The
Expert Committee classes are included in Figure 10, but similar to the Event aspect,
these classes do not belong to the MobilityProtocol component. They are part of
the Kernel (e. g. ResearcherAgent class) or additional components (e. g. Role class
belongs to the Collaboration component).

The purpose of the Mobility aspects is to decouple the mobility concerns from the
basic functionalities and other system concerns. The abstract Mobility aspect
promotes this decouple by defining pointcuts that pick out join points related to the
instantiation, migration, initialization, and destruction of mobile agents. It also
contains the advice that are associated with these pointcuts. These advice are
implemented following a general pattern: events are picked out, conditions are
checked, and the appropriate mobility-specific methods are invoked. In other words,
the Mobility advice are the AspectM frozen spots. For example, the migration advice
is responsible for checking the need for the agent roaming and for calling the mobility
actions in an abstract way. Thus, the Mobility advice jointly correspond to the agent
mobility protocol (Section 2).

 16

Figure 10. AspectM Solution for Expert Committee

Note that the doAfterAgentInstantiation() and doAfterArrivalHost()
methods in the ChairMobility (Figure 10) aspect correspond to the return of the
control flow back to the EC-specific procedures. Conversely, it does not occur in
migration and destruction protocols, where control flow is not deviated back to the EC
system. Note also that the instantiation and migration pointcuts are application
dependent; they run after join points such as those from a Plan subclass (Figure 10);
we need to specify in Mobility subaspects the elements affected by the
instantiation_() and migration_() advice. The initialization and destruction
pointcuts are directly detected from platforms.

In addition to the Mobility and Event aspects, AspectM implements the
MobileElement interface, used by the Mobility aspects to delegate the mobility
protocol actions to a specific platform. More specifically, this interface defines mobile
agent-specific services abstracted from the distinct platforms, and is responsible for
delegating to a specific mobility platform the services provided by its interface. These
services, usually important to the MAS developers, include: (1) methods that grant
access to ids (getName(), getId(), getContextId(), getMessageId(), etc.); (2)
methods implementing the mobile agent lifecycle (move(), clone() and die(), etc.);
and (3) methods for agent messaging (send(), sendAsync(), etc.). Thus, the
MobileElement interface implements the methods that usually crosscut the OO
design of software agents. An inter-type declaration is used to specify if an application
class implements the MobileElement interface. Additional declarations are used to
define which objects implement the Serializable interface and those that
implement the MobileObject interface. These declarations represent the specification
of the IMobileElement crosscutting interface in Figure 10.

Legend:

aspect

hot spot

AfterAdvice_

<<crosscuts>>

IInitialization

IMobileElement

Event

<<crosscuts>>

IInstantiation

IMigration

arrival_()
instantiation_()

migration_()

MobileElement
Serializable
MobileObject

Mobility

destruction_()

IDestruction

String[] getMasterList()
doAfterAgentInstantiation()
doAfterArrivalHost()
doAfterReceivingMessage()
doAfterCloneCreation() …

onArrival() …

IAbstractEvent

onArrival_()
onDestruction_() …

<<crosscutting interface>>

<<crosscutting interface>> <<crosscutting interface>>
<<crosscutting interface>>

<<crosscutting interface>>

<<crosscutting interface>>AspectM
Framework

MobileElement

getId()
move(String local)
die()
send(Message)…

IMobileKnowledge
 mobileAgent

<<crosscutting

<<interface>>

Mobile
Knowledge

ReferenceDescriptor

1

1

getReferenceName() … 1

1

1

IMobileElement
IInstantiation

instantiation_()

agent
descriptor

Chair
Mobility

ResearcherAgent

 ResearcherAgent
 implements MobileElement
Agenda implements Serializable
InformationGatheringPlan
 implements MobileObject

Role

..Reviewer
Information

SearchingPlan

searchProfile()… Chai

<<crosscuts>>

MobileObject

1

*

MobileElement
Serializable
MobileObject

Expert
Committee

IMigration

migration_()

 17

Finally, note that the Mobility aspect holds a reference to the OO mobility
platform and encapsulates the mobility protocol interactions with such a specific
platform (see Section 6.1.3). Figure 10 shows that all the mobility code is localized in
the Mobility aspects. As a result, the agent and role classes are not intermingled with
mobility code, therefore improving their modularity, reusability and changeability. In
fact, the Mobility aspects modularize the crosscutting concerns presented in Section
3, thereby solving the problems , , , , , and .

6.1.2 Transparent Introduction of Code Mobility

The AO design in Figure 10 uses AOP to make an explicit separation of mobility
concerns in MAS possible. The mobility tangling and scattering problems are solved in
AspectM by combining the following design decisions. We use (1) the Mobility
aspect for the generic code mobility, (2) a Mobility subaspect for each mobile element
(role, agent, or plan) in order to prevent the explicit invocation of mobility-specific
methods in MAS classes, and (3) the Mobility pointcuts to bridge the AspectM
framework with MAS.

The use of such an aspect hierarchy inverts the way in which mobility concerns are
typically implemented in MAS: OO abstractions and mechanisms, as inheritance and
delegation, are replaced by AO abstractions and mechanisms. The latter ones are used
to crosscut MAS join points in order to provide the mobility modularization. For
example, in order to solve the problem related to explicit inheritance-based extensions
involving MAS classes and elements of the OO frameworks (Section 3), we have used
AO programming languages idioms [32] that allow the use of interfaces as if we were
using abstract classes; mobility-specific methods can be called by an agent or role class
through the direct use of interfaces while applications can maintain their own agent
hierarchies.

Therefore, in order to introduce mobility-specific concerns into a stationary agent,
the MAS designers only have to specify the following AspectM hot spots: (1) the
elements to be defined as mobile, (2) the instantiation pointcut and methods, (3) the
initialization methods, (4) the migration points, (5) the definition of which objects will
be moved together with the mobile element, and (6) the definition of the serializable
elements. For example, Figure 10 shows that the ChairMobility aspect extends the
Mobility aspect in order to specify the Chair mobility-specific behavior. Concrete
implementations of the AspectM hot spots are defined for the context of the Chair
role: (1) the ResearcherAgent type implements the MobileElement interface,
which allows its instances to become mobile (the ResearcherAgent type must be
declared as mobile because the Chair role depends on this agent type knowledge
wherever it is transferred); (2) the InformationSearchingPlan type implements
the MobileObject interface, so that the plan can be moved with its respective agent;
(3) the Agenda type implements the Serializable interface, which allows an
Agenda object to be moved together with its respective instance; (4) the
ChairItinerary implements the Itinerary class; (5) the getItineraryType()
and getContextList() methods; (6) the instantiation pointcut, which triggers the
agent instantiation protocol (agentInstantiation_() advice); (7) the execution of
the InformationSearchingPlan searchProfile() as the migration pointcut;
and (8) the initialization EC procedures to be executed in the
doAfterArrivalHost() method.

Even though it could be necessary to reengineer MAS classes in order to expose the
appropriate mobility join points to be affected by the Mobility aspects, all we have

 18

described confirms that the AspectM framework in general promotes a seamless
introduction of mobility concerns into stationary agents. Introducing mobility concerns
into agents corresponds to the user’s task of making concrete a Mobility aspect for
each stationary agent on his design. Otherwise, in order to turn a mobile agent into a
stationary one, we just have to remove the concrete Mobility subaspect
corresponding to this agent.

6.1.3 Integration with Distinct Platforms

Figure 11 presents the design elements used to support a flexible integration between
MAS and distinct mobility platforms. These elements implement the
MobilityManagement component of the ArchM architecture (Section 5). A general
strategy of maintaining an agent reference table is applied, once mobility platforms
present meaningful differences in their implementations for context and messaging
services. Thanks to the use of such a table, it is possible to encapsulate contexts and
message proxies through the Mobility aspects. In particular, we deal specifically
with message proxies and formats through the MessageParser class, which executes
parsing between a platform-specific format and the AspectM format (Figure 11). The
AspectM format is independent on a particular mobility platform and contains
MessageParser-specific hot spots: the parser(Message) and parser(Object)
methods (Figure 11). In the following figure, we present other design elements
containing AspectM hot spots that a mobile agent system developer must define in
order to use platform-specific services in a flexible way.

The ReferenceManager class is a stationary agent that is a singleton and
responsible for (1) the reference table instantiation and its update on each agent
instantiation, initialization or destruction, and (2) response to common requests, such
as getting the agent list in a specific context. These services correspond to AspectM
frozen spots and are implemented through an interface with an abstract class behavior
[32]. The AspectM ReferenceManager-specific hot spots are the platform-dependent
methods, such the getMessageId() and send(Message) (Figure 11).

Figure 11. Integrating MAS with the JADE Mobility Platform

MobileAgent

getId()
move()
die()
send(Message)...

MobileElement

Mobilit
y

JadeMobileAgent

mobile
agent

Itinerary
goToNext()
getNext()

ReferenceCreator

Itinerary itinerary
referenceManagerId
mobileObjects...

<<crosscuts>>
initMasters()
addOnReferenceTable()
getAgentListOnContext()
updateReferenceTable()
removeFromTable()

ReferenceManager

getMessageId()
send(Message)

JadeManager

<<crosscuts>>

ReferenceTable

MessageParser

getInstance()
Object parser(Message)
Message parser(Object)

JadeParser

getAgentList()
addOnTable()
updateOnTable()
removeFromTable()

ReferenceTable table

IReferenceManager

IMobileAgen

agent

JadeEvent

public void
onArrival(Object
agent)
…

IEvent

Event

Legend:
AfterAdvice_
 hot spot
 platform
 aspect

JadeAgent

<<crosscuts>>

onArrival_
(Object agent)
…

<<implements>>

getInstance()
createContext()
createAgent()
startAgent()
createMobileAgent()

JadeCreator

Manager
Knowledge

MobileAgent
Knowledge

AspectM
Framework

AspectM
Platform
Instance

 19

The ReferenceCreator class is implemented as a singleton for each context to be
instantiated and is responsible for (1) the context creation for mobile agent execution at
a specific host (createContext()), (2) the instantiation of mobile agents on this
context (createAgent()), (3) the starting of platform services for instantiated agents
(startAgent()), and (4) the template method for the agent instantiation
(createMobileAgent()). The responsibilities from (1) to (3) are platform-dependent
methods, and, thus, they are AspectM ReferenceCreator-specific hot spots.
Conversely, the template method for the agent instantiation is an AspectM frozen spot
(Figure 11).

The MobileAgent class defines mobile agent services abstracted from distinct
platforms (AspectM MobileAgent-specific hot spots). These services include
methods, such as: getName(), getId(), move(), clone(), die(), send(),
sendAsync(), and so forth. In other words, the MobileAgent class is responsible for
delegating to a specific mobility platform the agent services provided by its interface.
This class is also responsible for the communication with the ReferenceManager
class in order to reply to common requests, such as getting the agent list in a specific
context. The communication between a MobileAgent instance and the
ReferenceManager instance is an MobileAgent-specific frozen spot that is
implemented through an interface with an abstract class behavior [32] (Figure 11).

The Event aspect allows detection of relevant platform-specific join points, such as
the mobile agent initialization and destruction. For example, the Mobility aspect
crosscuts the Event aspect when the onArrival() method is executed. This method
is invoked on the onArrival() after advice. In turn, the onArrival() advice is
executed immediately after the detection of the initialization pointcut related to a
specific platform, which must be concrete in an Event subaspect. Note that the body of
the onArrival() method may not have any code line, since its purpose is only to
bridge the specific platform onArrival() method (the AspectM Event-specific hot
spot) with the Mobility aspect initialization pointcut. This same detection strategy is
used to access other agent lifecycle events, such as destruction, and cloning, and
constitutes the AspectM Event-specific frozen spot (Figure 11). We can reach the same
result with OO reflection, but AOP allows the detection of platform-specific events,
such as arrival, destruction, and cloning, in a more natural way.

In addition, Figure 11 shows that the MobileElement interface is the element that
allows MobileAgent objects to represent the mobile elements defined in the
Mobility aspects. The MobileElement class is the central element of the AO design,
once it bridges MAS (e. g. EC) with the classes used to integrate MAS with mobility
platforms (e. g. JADE). If an AO platform instance has been developed (e. g. Aglets or
JADE), such instance can be largely reused in MAS. Finally, note that: (1) the
ReferenceCreator and the ReferenceManager classes implement the
IReferenceMobileAgent interface of the MobilityManagement component; (2)
the MobileAgent class implements the IMobileAgent interface; (3) the Event
aspect implements the IReferenceObserver interface; and (4) the MessageParser
class is an internal MobilityManagement element.

6.2 The AspectM Framework Dynamics

Figure 2 called “The Mobile Agent Lifecycle” illustrates that the existence of a mobile
agent can be represented through stages of a model that include recurrent procedures
from instantiation, initialization, migration and destruction protocols (Section 2). In
the AspectM framework, we have abstracted these recurring procedures from the

 20

analysis of the agent mobility protocol (Section 2). These procedures are then AspectM
frozen spots, which are illustrated in Figure 12.

Figure 12. The AspectM Frozen Spots

The instantiation protocol in the context of an application agent and a platform
mobile agent instantiated from the respective UserAgent and the
PlatformMobileAgent classes is as follows (Figure 13):

1. obtains from user the agent id in the application (id argument in the
agentInstantiation pointcut of the UserAgentMobility aspect);

2. obtains from user the agent reference name in the application (agent argument
in the agentInstantiation pointcut of the UserAgentMobility aspect);

3. creates a mobile agent in the platform (a “platform mobile agent”),
corresponding to the application agent (createMobileAgent() method);

4. configures the relationship between the application agent and the platform
mobile agent (setMobileAgent() method);

5. obtains from user the agent itinerary type (getItineraryType() method), the
list of itinerary context ids (getContextList() method), and other data
necessary to the instantiation protocol;

6. creates the agent itinerary with the data obtained during the previous step
(createItinerary() method);

7. obtains from platform mobile agent the original context id
(getLocalContextId() method);

8. initializes the mobile agent itinerary from strategy defined by user and with the
local context obtained from the previous step as the procedure argument
(initItinerary(home) method);

9. obtains from the user the list of the objects that will be moved together with the
agent (getMobileAgentList() method);

10. associates the mobile object list and the platform mobile agent
(initMobileObjects() method);

11. obtains from user the list of the agent masters (getMasters() method);

12. associates the master list and the platform mobile agent (initMasters()
method);

Instantiation:
1. obtain from user the agent id on the application;
2. instantiate a mobile agent on the platform;
3. obtain from user the list of the context ids;
4. instantiate the itinerary with the previous list;
5. initialize the itinerary with a user strategy;
6. obtain from user the list of the agent tasks;
7. obtain from user the list of the agent masters;
8. include the agent on the reference table.
9. execute application-specific procedures.
 RemoteInitialization:

1. obtain from agent server the new context id;
2. reconfigure agent itinerary with new context data
3. obtain from server the agent message id;
4. update reference table with the context data;
5. send an arrival message to the other agents;
6. init or resume processes;
7. execute application-specific procedures.

Destruction:
1. terminate all processes;
2. send a destruction notification to other agents;
3. remove the agent from the reference table;
4. effect the agent destruction through platform.

Migration:
1. detect a decision movement point;
2. invoke the movement verification procedure;
3. if verification is true, terminate processes;
4. send departure messages to the other agents;
5. effect the change on the agent execution context
 through invocation of platform procedures.

 21

13. obtains a reference to the ReferenceManager agent
(configureManagerId() method);

14. sends a message to the ReferenceManager agent in order to notify mobile
agent instantiation (addOnReferenceTable() method);

15. executes application-specific procedures immediately after the agent
instantiation (doAfterAgentInstantiation() method).

Figure 13. The AspectM Instantiation Protocol

In Figure 14, the agent migration protocol:

1. obtains from user the data related to the migration point (object argument);

2. from data obtained at previous step, invokes a procedure that verifies if
migration must be effective (checkDepartureNecessity() method);

3. if verification returns a true value, executes departure procedures
(prepareToMove() method);

4. changes the agent context through invocation of platform procedures (move()
method).

String type =
getItineraryType(agent)

String[] list =
getContextList(agent)

String home =
getLocalContextId()

MobileObject [] objects =
getMobileObjectList(agent)

String[] masters =
getMasterList(agent)

agent.setMobile
Agent(mobileAgent)

:UserAgent

agentInstantiation_
(id, agent)

:Platform
Creator

getInstance()

createMobileAgent(agent)

new()

Object context =
createLocalContext()

mobileAgent = create
Agent(agent,context)

startAgent
(mobileAgent, context)

return mobileAgent

:Platform
ReferenceManager

configureManagerId() send()

addOnReferenceTable()

doAfterAgent
Instantiation(agent)

send()

createItinerary(type,list)

initItinerary(home)

initMobileObjects(objects)

initMasters(masters)

:UserAgentMobility

:Platform
MobileAgent

 22

Figure 14. The AspectM Migration Protocol

A subtle detail in the MobilityProtocol component design is the
MobileObject interface definition. This interface is used in two situations: (1) to
define a common type for classes from which objects that compose the agent intrinsic
knowledge are instantiated, such as in the case of the getMobileObjectList()
return (Figure 13), or (2) to define a common interface for target objects in the
migration protocol pointcut definition (Figure 14).

The agent initialization protocol is illustrated in Figure 15:

1. obtains from agent server the new local context id (getLocalContextId()
method);

2. reconfigures agent itinerary with new context data (configureItinerary()
method);

3. obtains from agent server the agent message id on the new context
(getMessageId() method);

4. reconfigures agent attributes related to messaging with the context data
(configureMessageId() method);

5. updates the application reference table with the context data, such as context and
message ids, which provide an effective reference to the mobile agent for all
other agents (updateOnReferenceTable());

6. executes application-specific procedures (doAfterArrivalHost() method).

In Figure 15, the updateOnReferenceTable() method as well as the
addOnReferenceTable() method (Figure 13) encapsulate a messaging between
UserAgent and ReferenceManager agents. After updateOnReferenceTable()
execution, new context and message ids are available to ReferenceManager agent.

:UserAgent

aMethod(object)

new()

:PlatformMobileAgent

prepareToMove(
)

move()

moving_(object)

boolean check =
object.checkDepartureNecessity()

[if check=true]

 MobileAgent mobileAgent =

object.getMobileAgent()

:UserAgentMobility

 23

Figure 15. AspectM Initialization Protocol

In Figure 16, the agent destruction protocol:

1. executes application-specific procedures before agent destruction
(doBeforeAgentDestruction() method);

2. removes from application reference table the reference to the mobile agent being
destructed (removeFromReferenceTable() method);

3. affects the mobile agent destruction through invocation of platform procedures
(die() method).

In Figures 13 and 15, note that the doAfterAgentInstantiation() and
doAfterArrivalHost() methods in the UserAgentMobility aspect correspond
to the return of the control flow to application-specific procedures. Note this does not
occur in migration and destruction protocols (Figures 14 and 16) where control flow is
not deviated back to user application.

Figure 16. AspectM Destruction Protocol

doAfter
ArrivalHost(agent)

:PlatformEvent

arrivalHost_
(mobileAgent)

:Platform
MobileAgent

getLocalContextId()

return address

configureItinerary(address)

getMessageId()

return msgId

configureMessageId(msgId)

updateOnReferenceTable()

getAgent()

return agent

send()

:Platform
ReferenceManager :UserAgentMobility

removeFrom
ReferenceTable()

:Platform
MobileAgent :UserAgent

die() destructionAgent_
(mobileAgent)

die()

send()

:Platform
ReferenceManager

doBefore
AgentDestruction()

:UserAgent
Mobility

 24

6.3 Instantiation Process

One of the AspectM development purposes is to improve variability of mobility
concerns in MAS, such as maintaining a flexible choice of mobility platforms in these
systems. For example, in order to integrate a mobile agent system with the Aglets
platform, an Aglets-specific adapter package must be developed from the AspectM
framework. Once this package is independent from a particular mobile agent system,
the classes that perform the integration between this system and the aglets will be
reused in the instantiation process of any application that makes a choice of using
services provided by the Aglets platform. Evidently, depending on the application-
specific requirements, the Aglets package could be adapted in order to maintain the
integration between MAS and different mobility platforms. AspectM users can execute
the following steps to instantiate an application from AspectM framework:

1. for each Mobility subaspect, specify that an agent type or role has the mobility
property, which is implemented by an intertype declaration implements
MobileElement;

2. for each Mobility subaspect, specify the object types that will compose the
agent (or role) mobile object list through intertype declarations implements
MobileObject;

3. for each Mobility subaspect, specify the object types that may be moved
together with the agent (or role) through intertype declarations implements
Serializable;

4. if the itinerary notion is used, specify the application-specific itinerary classes
extending the AspectM Itinerary interface (making concrete the Itinerary
methods, such as the getNext());

5. for each Mobility subaspect, make concrete the getItineraryType() and
getContextList() methods (assuming that the itinerary classes are available);

6. for each Mobility subaspect, specify the instantiation protocol pointcut;

7. for each Mobility subaspect, specify the instantiation protocol procedures. In
the case of application-specific methods, specify the calls to these procedures in
the doAfterAgentInstantiation() method body;

8. for each Mobility subaspect, specify the migration protocol pointcut;

9. for each Mobility subaspect, specify migration protocol procedures, such as the
checkDepartureNecessity() method, which verifies whether the migration
should hold in the context of a migration-specific point;

10. for each Mobility subaspect, specify the initialization protocol procedures, such
as application-specific procedures that will be executed on the
doAfterArrivalHost() method.

For example, Figure 17 presents the UserAgentMobility aspect, which extends
the abstract Mobility aspect in order to specify the mobility-specific behavior to the
UserAgent class. In other words, in the UserAgentMobility aspect we specify the
AspectM hotspots in the context of UserAgent execution.

 25

1: public aspect UserAgentMobility extends Mobility {

2: declare parents: UserAgent implements MobileElement;

3: declare parents: UserMobileObject implements MobileObject;

4: declare parents: UserObject implements Serializable;

5: pointcut agentInstantiation(String referenceName,

6: MobileElement agent): this(agent) && args(referenceName,*)

7: && initialization(UserAgent+.new(String,*));

8: String getItineraryType(MobileElement agent){...}

9: String[] getContextList(MobileElement agent){...}

10: MobileObject[] getMobileObjectList(MobileElement agent){...}

11: String[] getMasterList(MobileElement agent){...}

12: void doAfterAgentInstantiation(MobileElement agent){...}

13: void doAfterArrivalHost(MobileElement agent) {...}

14: pointcut agentMigration(MobileObject object):

15: this(object) && execution(Hashtable

16: UserMobileObject.execute (Vector));

17: ...

18: }

Figure 17. AspectM Instantiation for the UserAgent Class

In Figure 17, we specify the following AspectM hot spots for
UserAgentMobility-specific context:

• Mobile elements’ definition. The UserAgent class declares that implements the
MobileElement interface (line 2). Thanks to this declaration, MobileElement
attributes and methods are inherited by the UserAgent class;

• Mobile object list’s definition. The UserMobileObject class declares that
implements the MobileObject interface (line 3). Thanks to this declaration,
MobileObject attributes and methods are inherited by the
UserMobileObject class. The introduction of a UserMobileObject object in
the UserAgent mobile object list is realized in the getMobileObjectList()
method (line 11);

• Serializable elements’ definition, as the UserObject object (line 4);

• Instantiation pointcut definition (agentInstantiation() in lines 5-7). The
UserAgent constructor is defined as the join point where the mobility code is
introduced in the UserAgent class;

• Instantiation protocol procedures (lines 8-11), such as getItineraryType(),
getContextList(), getMobileObjectList() and getMasterList();

• Instantiation application-specific procedures (doAfterAgentInstantiation()
in line 12). Application-specific procedures are executed immediately after the
agent instantiation on the mobility platform;

• Initialization application-specific procedures (doAfterArrivalHost() in line 13).
Application-specific procedures are executed immediately after the agent arrival
at a new host;

• Migration pointcut definition (agentMigration() in lines 14-16). The
execute() method execution in the UserMobileObject class is defined as a
migration point.

 26

Suppose now the package that bridges the AspectM framework to a specific
platform is not available. The AspectM hot spots must be concrete in order to make the
platform use possible. The instantiation process may apply the following sequence (an
increasing order of complexity): (1) MessageParser; (2) MobileAgent; (3) Event;
(4) ReferenceCreator; and (5) ReferenceManager. Remember the platform
instantiation process is independent on the MAS.

7 The AspectM Case Studies

This section presents the case studies used for the AspectM evaluation: (1) the Expert
Committee (Section 3.1), and (2) the MobiGrid [5]. Both systems were ideal for our
experimental investigation for several reasons. First, the chosen systems have stringent
modularity requirements due to the demand for producing reusable, adaptable and
evolvable MAS architectures. Hence, all the system versions were developed with
modularity principles as main driving design criteria, making sense the exploitation of
AO software architectures. Second, the original architecture of each case study was
developed in different contexts – the first system was developed in our own laboratory,
while the second one has been developed out of our research environment [5]. Finally,
they are realistic systems that involve emphasis on different MAS concerns, such as
mobility, learning, autonomy, and their distinct compositions; they also encompasses
the application of common mobility frameworks, such as JADE [7] and Aglets [43].

7.1 Expert Committee

In the EC system (Section 3.1), the mobility issues and the other agent concerns, such
as the basic functionalities and the collaboration activities, must be separated how
much it is possible. Particularly, for the chair role specification, it is necessary to specify
the mobility protocol in such a way we could implement: (1) a seamless introduction of
the mobility property into the chair role, and (2) a flexible integration between the EC
and different mobility platforms. To do that, we may use the AspectM framework
(Section 6). The next subsections describe the mobility introduction process into the
EC.

7.1.1 The Chair Role

In Figure 3, Role subclasses are used to modularize several roles of the
ResearcherAgent type (Section 3.1). A Role subclass is used to specify the extrinsic
knowledge corresponding to a specific ResearcherAgent role. In other words, the
agent intrinsic knowledge is defined in the class that represents the agent type
(ResearcherAgent class); the extrinsic knowledge is defined in its respective Role
subclass. For example, in the EC system, the Chair class, which is a Role subclass,
defines additional attributes and methods for the ResearcherAgent agent type; in
this way, a ResearcherAgent object can assume the chair role in a collaborative
relationship. Figure 18 presents the Chair role definition. We present only attributes
and methods related to the chair-specific behavior; the methods that define how a chair
role relates to a researcher agent type are not showed, once they are not relevant in this
work.

In Figure 18, examples of attributes introduced by the Chair role into the
ResearcherAgent agent type are: the ResearcherAgent instance associated to a
Chair role instance (line 2), a plan of distribution of papers to reviewers (line 3), a list

 27

of papers submitted (line 4), a list of paper reviewers (line 5), the limit dates to submit
(line 6) and to review (line 7) papers, and so on. The Chair role also defines for
ResearcherAgent agent type the methods for manipulation of attributes (lines 15-
18). There are also attributes and methods related to the Chair mobility behavior; for
example, the attribute that defines the Chair itinerary (line 8) and the methods for the
itinerary manipulation (line 19).

1: public class Chair implements Serializable {

2: private ResearcherAgent agent;

3: private DistributionPlan distributionPlan;

4: private List papersList;

5: private List reviewersList;

6: private GregorianCalendar submissionDeadline;

7: private GregorianCalendar reviewDeadline;

8: private Itinerary itinerary; ...

9: public Chair(ResearcherAgent agent){

10: this.agent = agent;

11: distributionPlan = new DistributionPlan ();

12: papersList = new Hashtable();

13: submissionDeadline = new Calendar(); ...

14: }

15: public DistributionPlan getDistributionPlan(){

16: return this.distributionPlan;

17: }

18: ...

19: public void addHost(String host){...}

20: }

Figure 18. The Chair Role Implementation in the Expert Committee

From the Chair implementation in Figure 18, it is reasonable to conclude that the
ResearcherAgent agent type does not possess any attributes and methods
corresponding to chair-specific beliefs and plans. In fact, the Chair class is developed
in order to modularize the Chair role and the ResearcherAgent agent types. In
consequence, it is reasonable also to conclude that the chair-specific mobility issues are
also implemented in a modular way. However, not only the EC role classes, but also
the EC agent types still extend classes and interfaces of APIs provided by the mobility
platforms (Figure 3). The AspectM framework can be used to obtain a new definition
for the chair mobility behavior (Section 6) without the architectural restrictions
imposed by the mobility platforms’ APIs on the MAS design. The EC mobility design
using the AspectM framework is presented in the next section.

7.1.2 Mobility Issues of the Chair Role

In this section, we suppose the package that bridges the AspectM framework with
JADE and Aglets platforms are available. Section 6.3 presents the instantiation process
to obtain this package from the AspectM. We have adopted the following steps in the
AspectM instantiation for the EC classes:

 28

1. for the Chair class, create the ChairMobility aspect extending the abstract
Mobility aspect;

2. in the ChairMobility aspect, specify that the ResearcherAgent type
implements the MobileElement interface (“ResearcherAgent implements
MobileElement” in Figure 11). Thanks to this intertype declaration, the
ResearcherAgent type becomes a mobile element in EC;

3. in the ChairMobility aspect, specify that the InformationSearchingPlan
implements the MobileObject interface (“InformationSearchingPlan
implements MobileObject” in Figure 11). Thanks to this intertype
declaration, the InformationSearchingPlan type becomes a mobile object in
the EC, which can be moved together with a ResearcherAgent instance, and
can be used in the migration pointcut definition;

4. in the ChairMobility aspect, specify that the Agenda type implements the
Serializable interface (“Agenda implements Serializable” in Figure
11). Thanks to this declaration, the Agenda type can be moved together with a
ResearcherAgent instance;

5. since the itinerary notion is used, specify a ChairItinerary class that
implements the AspectM Itinerary interface, which implements the
Itinerary methods, such as the getNext();

6. in the ChairMobility aspect, make concrete the getItineraryType() and
the getContextList() methods;

7. in the ChairMobility aspect, specify the instantiation pointcut, which triggers
the ResearcherAgent instantiation protocol (agentInstantiation());

8. since there are not application-specific methods to be executed during
ResearcherAgent instantiation protocol, not specify procedure calls in the
doAfterAgentInstantiation() method;

9. in the ChairMobility aspect, specify that the searchProfile()execution of
the InformationSearchingPlan type is the ResearcherAgent migration
protocol pointcut;

10. in the ChairMobility aspect, specify the
searchProfileCheckDepartureNecessity() method that verifies if
ResearcherAgent must migrate in the context of the searchProfile();

11. in the ChairMobility aspect, specify the initialization protocol procedures,
such as application-specific procedures to be executed in the
doAfterArrivalHost() method;

12. since there are not application-specific methods to be executed during
ResearcherAgent destruction protocol, not specify procedure calls in the
doBeforeAgentDestruction() method.

Figures 19 to 22 present the mobility protocol defined in the ChairMobility
aspect. The ChairMobility aspect extends the Mobility aspect in order to specify
the chair mobility-specific behavior. In the ChairMobility aspect, we specify the
AspectM hot spots in the context of the Chair role.

 29

Figure 19 presents the ChairMobility intertype declarations and the instantiation
protocol. The instantiation protocol pointcut (lines 5-7) is defined as a
ResearcherAgent instance initialization (line 7) even though the instantiation
protocol is to be executed in a chair-specific context (searchProfile() is a Chair
method, not a ResearcherAgent one). The pointcut refers to the ResearcherAgent
type in order to guarantee that when a Chair role moves, the respective
ResearcherAgent instance is also moved, once Chair behavior may depend on
ResearcherAgent–specific knowledge.

Note also that the getItineraryType() method specifies the agent itinerary type
as the ChairItinerary class (lines 9-11). The getContextList() method specifies
hosts that compose the Chair itinerary (lines 12-17). The getMobileObjectList()
method (lines 18-26) instantiates an InformationSearchingPlan plan, which is
included in the agent mobile object list. There are no procedures to be called during the
ResearcherAgent instantiation protocol. In fact, we have not specified method calls
in the doAfterAgentInstantiation() method (line 8). The ResearcherAgent
type does not specify the existence of any master agents (lines 27-29).

1: public aspect ChairMobility extends Mobility {

2: declare parents: ResearcherAgent implements MobileElement;

3: declare parents: InformationSearchingPlan implements MobileObject;

4: declare parents: Agenda implements Serializable;

5: pointcut agentInstantiation(String referenceName, MobileElement agent):

6: this(agent) && args(referenceName,*) &&

7: initialization(ResearcherAgent+.new(String,*));

8: void doAfterAgentInstantiation(MobileElement agent){ }

9: String getItineraryType(MobileElement agent) {

10: return "expertcommittee.chair.ChairItinerary";

11: }

12: String[] getContextList(MobileElement agent){

13: String[] itinerary = new String[10];

14: itinerary[0] = "Container-1"; ...

15: itinerary[9] = "Container-10";

16: return itinerary;

17: }

18: MobileObject[] getMobileObjectList(MobileElement agent){

19: MobileObject[] mobileObjects = new Task[1];

20: InformationSearchingGoal goal = new

21: InformationSearchingGoal();

22: InformationSearchingPlan plan = new

23: InformationSearchingPlan(goal);

24: mobileObjects[0] = plan;

25: return mobileObjects;

26: }

27: String[] getMasterList(MobileElement agent) {

28: return new String[0];

29: } } ...

Figure 19. The ChairMobility Instantiation Protocol

 30

Figure 20 presents the ChairMobility migration protocol. The migration protocol
pointcut is specified as the searchProfile() method execution (lines 2-3). This
method is implemented in the InformationSearchingPlan class (line 3). The
searchProfileCheckDepartureNecessity() method verifies if a
ResearcherAgent instance needs to move in the context of the searchProfile()
method (lines 4-7). The informationNeedChecking() pointcut and its advice (lines
8-14) are application-specific aspectual elements. In the
informationNeedChecking() advice, any methods introduced in the
ResearcherAgent instance by the “ResearcherAgent implements
MobileElement” declaration can be invoked, including the move() (line 13).

1: public aspect ChairMobility extends Mobility { ...

2: protected pointcut agentMigration(MobileObject object): this(object)

3: && execution(Hashtable InformationSearchingPlan.searchProfile(Vector));

4: public boolean searchProfileCheckDepartureNecessity(Task task, Object

result){

5: if (result == null) { return true; }

6: else { return false; }

7: }

8: pointcut informationNeedChecking(Plan plan):

9: this(plan) && execution(void DistributionPlan.executePlan(..));

10: before (Plan plan): informationNeedChecking(plan) {

11: ...

12: ResearcherAgent agent = plan.getAgent();

13: agent.move(“Container-5”); ...

14: } ...

15: }

Figure 20. The ChairMobility Migration Protocol

Figure 21 presents the ChairMobility initialization protocol. The application-
specific procedures of the initialization protocol are invoked in the
doAfterArrivalHost() method (lines 2-7). First, a test is specified in order to verify
if the mobile agent is located in the original host (line 3). When the agent is not in the
original host, it makes choice of tasks to execute (lines 4-6). Remember that in the
InformationSearchingPlan execution (line 6), if the searchProfile() method
is called, the agent migration protocol is triggered in the Mobility aspect (Figure 20,
lines 2-3).

In Figure 21, other Mobility methods (lines 8-11) could be made concrete
according to application-specific requirements. In EC, these methods are empty, once
they are not being used in chair-specific migration scenarios. In the next case study
(Section 7.2), we show examples where it is necessary to specify methods such as the
doAfterReceivingMessage() and the doBeforeCloneAgent() ones.

 31

1: public aspect ChairMobility extends Mobility { ...

2: protected void doAfterArrivalHost(MobileElement agent) {

3: if (!agent.isAgentOut()) return;

4: InformationSearchingPlan plan =(InformationSearchingPlan)

5: agent.getMobileObjectOfType("InformationSearchingPlan");

6: plan.executePlan((ResearcherAgent)agent, plan.getGoal());

7: }

8: void doAfterReceivingMessage(MobileElement agent, Message message) { }

9: protected void doBeforeCloneAgent(MobileElement agent) { }

10: protected void doAfterCloneAgent(MobileElement agent) { }

11: protected void doAfterCloneCreation(MobileElement agent) { } ...

12: }

Figure 21. ChairMobility Initialization Protocol

Figure 22 presents the ChairMobility destruction protocol. Note that application-
specific procedures to be executed immediately before agent destruction are not
specified (line 2).

1: public aspect ChairMobility extends Mobility { ...

2: protected void doBeforeAgentDestruction(MobileElement agent) {} ...

3: }

Figure 22. ChairMobility Destruction Protocol

Figure 23 illustrates a Chair migration protocol scenario, which corresponds to the
following sequence:

1. SearchingInformationPlan object instantiation. In other words, the creation
of a chair searching information plan. The SearchingInformationPlan plan
implements the MobileObject interface, and, for this reason, its execution
context can be exposed in the agentMigration() pointcut;

2. the ChairMobility aspect detects the searchProfile() method execution in
the context of the SearchingInformationPlan plan through the
agentMigration() pointcut;

3. the ChairMobility aspect captures the SearchingInformationPlan
context information. In this case, the relevant information is the return value of
the searchProfile() method;

4. the ChairMobility aspect executes the
searchProfileCheckDepartureNecessity() method in order to verify if
the agent playing the chair role needs to migrate;

5. the ChairMobility aspect invokes the prepareToMove() method in order to
execute departure procedures;

6. the ChairMobility aspect invokes the move() method in order to change the
agent context through invocation of platform procedures.

 32

Figure 23. Chair Migration Protocol Scenario

Figure 24 presents the EC design using Aglets. Note that, even though the platform
classes now correspond to the Aglets, the EC design remains the same. In other words,
the EC design reaches a flexible integration with distinct mobility platforms (JADE and
Aglets) using the AspectM framework. This occurs also with any other MAS using the
AspectM framework and different platforms.

Figure 24. Expert Committee using AspectM and Aglets

:Information
SearchingPlan

searchProfile()

new()

:Platform
MobileAgent

prepareToMove()

move()

:Chair

moving_(object)

boolean check =
object.searchProfileCheck

DepartureNecessity()

[if check=true]

 MobileAgent mobileAgent =
object.getMobileAgent()

:ChairMobility

MobileAgent

getId()
move()
die()
send(Message)...

MobileElement

Mobility

AgletMobileAgent

mobile
agent

Itinerary
goToNext()
getNext()

ReferenceCreator

Itinerary itinerary
referenceManagerId
mobileObjects...

<<crosscuts>>
initMasters()
addOnReferenceTable()
getAgentListOnContext()
updateReferenceTable()
removeFromTable()

ReferenceManager

getMessageId()
send(Message)

AgletManager

<<crosscuts>>

ReferenceTable

MessageParser

getInstance()
Object parser(Message)
Message parser(Object)

AgletParser

getAgentList()
addOnTable()
updateOnTable()
removeFromTable()

ReferenceTable table

IReferenceManager

IMobileAgen

agent

AgletEvent

public void
onArrival(Object
agent)
…

IEvent

Event

Legend:
AfterAdvice_
 hot spot
 platform
 aspect

Aglet

<<crosscuts>>

onArrival_
(Object agent)
…

<<implements>>

getInstance()
createContext()
createAgent()
startAgent()
createMobileAgent()

AgletCreato
r

Manager
Knowledge

MobileAgent
Knowledge

AspectM
Framework

AspectM
Platform
Instance

 33

7.2 MobiGrid

Our second case study was the MobiGrid framework [5], which is a mobile agent system
within a grid environment project called InteGrade [31]. In this system, mobile agents
are used to encapsulate and execute long processing tasks using the idle cycles of a
network of personal workstations. The agents can migrate whenever the local machine
is requested by its user since they are provided with automatic migration capabilities.
The original MobiGrid architecture was defined based on the OO framework provided
by the Aglets platform [43]. Due to the high coupling between the Aglets underlying
model and the MobiGrid mobile agents, we decided to reengineer the MobiGrid
architecture taking into account the following requirements: (1) to modularize the
MobiGrid mobility-specific concerns, that is, to promote an explicit separation between
the crosscutting mobility concerns and other non-crosscutting MobiGrid concerns; and
(2) to enhance the MobiGrid variability in terms of a flexible choice of distinct mobility
platforms to be used (e. g. Aglets [43], JADE [7], etc.). This section presents the
MobiGrid original design (Section 7.2.1) and the MobiGrid reengineering outcome
using the AspectM framework (Section 7.2.2). We also present the mobility-specific
tangling and scattering problems (Section 7.2.3) solved by the MobiGrid reengineering
steps using AspectM (Section 7.2.4).

7.2.1 The MobiGrid Original Design

Figure 25 presents the MobiGrid detailed design, which results from the composition
between the MobiGrid original design and the OO framework provided by the Aglets
platform [43]. For simplification purposes, we present only the most important design
elements, privileging a partial design view. We do not show the physical view of the
MobiGrid software architecture. Figure 25 distinguishes the hot spots (variable parts),
which are marked with a star, from the frozen parts of the frameworks.

The main concepts of the MobiGrid framework using Aglets are: (1) the task
(TaskAgent class) and its state (TaskState class) that a programmer wants to submit
to the MobiGrid framework, (2) the manager (ManagerAgent class) that the
programmer must reference in order to register his tasks, (3) the server (Server class)
that the MobiGrid maintains in order to use the Aglets runtime and its resources, (4)
the event listeners (TaskCloneListener, TaskMobilityListener, and
ServerListener interfaces) that a programmer must define in order to trigger
specific procedures at special instants of a task or server execution, (5) the proxies
(AgletProxy objects), which are used by the MobiGrid in order to perform message
exchanges among tasks, managers, and servers, and (6) the ids (AgletId objects) that
the MobiGrid uses in order to identify tasks, managers, and servers.

The TaskAgent and the TaskState classes allow the specification of a task and its
state (the MobiGrid hot spots), both moved together with an Aglets mobile agent. To
define a task and its state, a programmer must make these classes and their abstract
methods concrete. In particular, the TaskAgent define() method must be made
concrete in such a way it returns the TaskState object corresponding to the task
that the programmer wants to submit to the MobiGrid framework. The programmer
also must specify the task implementation in the TaskState run() method. The
specification of these hot spots is realized in a MobiGrid client (Client class), which is
the abstraction used to identify a client machine in the grid. To register a task and its
state, each MobiGrid client maintains a reference to a task manager (ManagerAgent
class, see later).

 34

Figure 25. The MobiGrid Original Design

Note that the TaskAgent class extends the abstract Aglet class, which is the basic
class for mobile agent specification on Aglets platform (Aglets hot spot). Note also the
TaskAgent class maintains references to MobilityListener and CloneListener
objects (Aglets hot spots), which correspond to event listeners used for specification of
procedures that must be triggered at specific instants of a mobile agent lifecycle, such
as immediately after a task’s arrival at a new host. A task also maintains a reference to
an AgletProxy object corresponding to the manager responsible for its migration and
cloning. The proxies are mainly used for communication purposes in the Aglets
platform (a frozen spot).

The ManagerAgent class allows the instantiation of a manager (MobiGrid frozen
spot), which is a stationary agent that manages references to tasks and clones in a client
(there is a manager on each machine where it is possible to submit a task). The
manager exchanges messages with tasks during registering, migration and cloning
scenarios. When a task is submitted, the manager queries the InteGrade [31]
infrastructure searching for an idle machine to which the task may be dispatched. The
manager also maintains a task clone to ensure the task liveness. In Figure 25, note that
the ManagerAgent class extends the Aglet class (Aglets hot spot) even though a
ManagerAgent object is not a mobile, but rather a stationary agent. The
ManagerAgent class is implemented in this way in order to use the Aglets tools for
messaging. A manager maintains references to AgletProxy objects corresponding to

CloneListener

onCloned ()
onCloning ()
onClone ()

Aglet

addCloneListener()
addMobilityListener()
dispatch(URL destination)
dispose()
AgletContext getContext()
AgletID getAgletID()
AgletProxy getProxy()
handleMessage(Message)
onCreation(Object)
onDisposing()
run() …

TaskAgent

MobilityListener

onArrival()
onDispatching()
onReverting()

ManagerAgent

TaskState

final int liveness

Watcher

1

1

boolean isFinished()
boolean checkPoint()
…

Thread

Server
<<singleton>>

AgletID AgletProxy

1

1

1

1

* 1 AgletContext

AgletRuntime

1 1

Runnable

1

1

ContextListener

agletArrived()
agletDispatched()
…

run()

1 1

TaskClone
Listener

onCloned ()
onCloning ()
onClone ()

TaskMobility
Listener

onArrival()
onDispatching()
onReverting()

1 1

1

1

*
1

1
*

7

7

ServerListener

agletArrived()
agletDispatched()
 …

1

1

1

1

1 * 1

*

1

*

1

tasks * tasks

manager

1 1 Client
<<singleton>>

Serializable

bootstrap()
evacuate()

methods with mobility code

Legend:

mobility-specific

mobility-specific members

implements mobility interfaces

framework hot spot

Aglets
Framework

MobiGrid
Framework

2 2 2 2

3 3

3

3

3

TaskState define()
goHome()
isComingBack()
evacuate()
isEvacuating()
register()
getTaskID()
onCreation(Object)
onDisposing()
run() …

3

3
3

register(AgletID)
evacuate(AgletID)
verifyEmployees()
workDone(AgletID)
onCreation(Object)
onDisposing()
run()
…

4

5

6

6

4

 35

the tasks and clones under its responsibility. Again, the AgletProxy class is used
mainly for communication purposes.

The Server class represents an agent server (MobiGrid frozen spot) that is installed
on each grid machine to provide Aglets resources to MobiGrid agents. To do this, the
server is associated with AgletRuntime and AgletContext objects, which provide
an execution environment for managers and tasks. When its user requests a machine,
the server asks the evacuation of the local tasks. These tasks query their managers,
which communicate with InteGrade looking for idle machines. When the managers get
such information, they take action in order to evacuate the tasks to new machines. To
ask for evacuation of local tasks, the server gets references to TaskAgent objects
(through the AgletContext object associated with a server) and communicates with
them through proxies (Aglets frozen spots). In each server there is a need for a
ContextListener object (Aglets hot spot), which corresponds to a listener used for
specification of procedures to be triggered at specific instants of a context
manipulation.

7.2.2 Mobility-Specific Tangling and Scattering in MobiGrid Design

From the description above, we can observe that the composition of MobiGrid with the
Aglets framework causes a high coupling between such frameworks. In fact, note in
Figure 25 the presence of numbers surrounded by circles throughout the figure. These
elements are the same as defined in Section 3.2 and are used to point out that the
implementation of mobility concerns in the MobiGrid framework has a huge impact on
the basic framework functionalities.

In the MobiGrid framework, agent types extend the Aglet class to incorporate the
mobility capabilities. The use of inheritance results in code replication as well as code
tangling and scattering (problem). The agent classes also need to hold explicit
references to Aglets mobility elements (e.g. aglets ids, contexts, and proxies) as
attributes (problem). These classes also manage these elements by Aglets-specific
mobility methods (problem). As a consequence, the basic functionalities, context-
specific services and messaging exchanges are amalgamated to mobility methods.

A unique method has mobility code in order to decide when a task should move
(evacuate() method). This would not entail any problem except for the fact that in
evolution scenarios, the code related to migration decision is replicated on several
agent type methods. For example, these methods contain replicated mobility code
relative to the decision about when an agent should move to a remote environment
(problem), or when the agent should go back to the home location (problem). In
addition, there is a spread of usual preconditions and postconditions when an agent
moves to another host (problem).

Classes also have to implement the Serializable interface for allowing the
objects, which are part of the agent, to be moved across hosts (problem). Again, the
Serializable interface is just a representative example: OO APIs from platforms
usually provide a number of interfaces with methods that are implemented by systems
in order to ensure that actions can be automatically executed at specific moments
through the mobile agent lifecycle; for instance, MobiGrid procedures are
automatically executed immediately after the mobile agent cloning (TaskAgent
implements CloningListener) or just before and/or immediately after migration
(TaskAgent implements MobilityListener).

 36

7.2.3 The MobiGrid Reengineering using AspectM Framework

Figure 26 presents a partial view of the MobiGrid reengineering using the AspectM.

Figure 26. The MobiGrid Reengineering using the AspectM Framework

In order to perform the MobiGrid reengineering, we basically introduce the Mobility
subaspects (one for each element to be defined as mobile). In order to reengineer the
MobiGrid mobility-specific concerns, we have specified the Mobility hot spots for
each element with mobility requirements (Section 6.3):

1. for each class with mobility requirements (TaskAgent, ManagerAgent, and
Server classes in Figure 25), specify a Mobility subaspect (TaskMobility,
ManagerMobility and ServerMobility subaspects in Figure 26);

2. make concrete the Mobility IMobileElement interface for each Mobility
subaspect (declaration in a Mobility subaspect that the element with mobility
requirements implements the MobileElement interface);

TaskAgent ManagerAgent

TaskState

final int liveness

Watcher

1

1

boolean isFinished()
boolean checkPoint()

Thread

Server
<<singleton>>

Runnable

1

1

run()

1 1

Client
<<singleton>>

MobiGrid
Framework

TaskState define()
isComingBack()
evacuate()
isEvacuating()
register() …

evacuate()

<<crosscuts>> <<crosscuts>> <<crosscuts>>

IInitialization

IMobileElement

Event

<<crosscuts>>

IInstantiation

IMigration

arrival_()
instantiation_()

migration_()
MobileElement
Serializable
MobileObject

Mobility

destruction_()

IDestruction

String[] getMasterList()
doAfterAgentInstantiation()
doAfterArrivalHost()
doAfterReceivingMessage()
doAfterCloneCreation() …

onArrival() …

IAbstractEvent

onArrival_()
onDestruction_() …

<<crosscutting interface>>

<<crosscutting interface>> <<crosscutting interface>> <<crosscutting interface>>

<<crosscutting interface>>

<<crosscutting interface>>
AspectM

Framework

register(ReferenceDescriptor)
evacuate(ReferenceDescriptor)
verifyEmployees()
workDone(ReferenceDescriptor)
…

MobileElement

getId()
move(String local)
die()
send(Message)…

IMobileElement

mobileAgent

<<crosscutting interface>>

<<interface>>

MobileKnowledge

ReferenceDescriptor

1

1

getReferenceName() …

* 1
manager

1

1

IInstantiation

instantiation_()

IMigration

migration_(

IMobileElement

MobileElement
Serializable

IMigration

migration_(

IMobileElement

MobileElement
Serializable

IInstantiation

instantiation_()

tasks
IMigration

migration_(

IMobileElement

MobileElement
Serializable

IInstantiation

instantiation_()

Legend:

aspect

hot spot

AfterAdvice_

MobileObject *

1

Server
Mobility

Manager
Mobility

Task
Mobility

 37

3. make concrete the Mobility IInstantiation interface for each Mobility
subaspect (specification of the instantiation pointcut, which triggers the
instantiation_() advice);

4. make concrete the Mobility IMigration interface for each Mobility
subaspect (specification the migration pointcut that triggers the migration_()
advice);

5. make concrete the Mobility methods corresponding to procedures invoked on
agent instantiation (e. g. getMasterList(), getItineraryType(), etc.);

6. specify MobiGrid-specific instantiation and initialization procedures to be
executed on doAfterAgentInstantiation() and doAfterArrivalHost()
methods, respectively.

Figures 27 to 29 present some code of ServerMobility, ManagerMobility and
TaskMobility aspects. In Figure 27, note the specification of the instantiation
pointcut that triggers the creation of a mobile agent that represents a server on the
platform (lines 3-6). The ServerAgent agent now sends evacuation messages through
MobileElement methods in the ServerMobility aspect.

1: public aspect ServerMobility extends Mobility {

2: declare parents: ServerAgent implements MobileElement;

3: pointcut agentInstantiation(String referenceName,

4: MobileElement agent): this(agent) &&

5: args(referenceName,*) &&

6: initialization(ServerAgent+.new(String,*));

7: void doAfterAgentInstantiation(MobileElement agent){ } ...

8: }

Figure 27. The MobiGrid Reengineering: ServerMobility Aspect

In Figure 28, we have specified the doAfterReceivingMessage() method (lines
8-10), which handles the messages received by the ManagerAgent agent. In other
words, a mobile agent is instantiated on a platform to represent the MobiGrid manager
in order to allow this agent exchange messages with other agents. The manager agent
exchanges messages especially with the tasks under its control.

1: public aspect ManagerMobility extends Mobility {

2: declare parents: ManagerAgent implements MobileElement;

3: pointcut agentInstantiation(String referenceName,

4: MobileElement agent):

5: this(agent) && args(referenceName,*) &&

6: initialization(ManagerAgent+.new(String,*));

7: void doAfterAgentInstantiation(MobileElement agent){ }...

8: void doAfterReceivingMessage(MobileElement agent, Message message){

9: ManagerAgent manager = (ManagerAgent) agent;

10: manager.handleMessage(message); } ...

11: }

Figure 28. The MobiGrid Reengineering: ManagerMobility Aspect

 38

In Figure 29, in the TaskMobility aspect, several methods are specified in order to
implement the TaskAgent mobility-specific behavior. However, even though a
TaskAgent instance is effectively a mobile agent, the itinerary-specific methods have
not been made concrete (lines 8-11). This is due to the next host selection strategy,
which is determined by the InteGrade infrastructure itself [31]. In addition, the
migration protocol pointcut also has not been used (line 20); the TaskAgent migration
is triggered by events not established previously.

1: public aspect TaskMobility extends Mobility {

2: declare parents: TaskAgent implements MobileElement;

3: pointcut agentInstantiation(String referenceName,

4: MobileElement agent): this(agent) &&

5: args(referenceName,*) &&

6: initialization(TaskAgent+.new(String,*));

7: void doAfterAgentInstantiation(MobileElement agent){...}

8: String getItineraryType(MobileElement agent)

9: { return null; }

10: String[] getItineraryList(MobileElement agent)

11: { return null; }

12: Task[] getTaskList(MobileElement agent)

13: { return null; }

14: String[] getMasterList(MobileElement agent){

15: Enumeration idList = agent.

16: getAgentListOnTheContext(agent.getCurrentAddress());

17: /* searching for the manager’s descriptor */

18: String[] masters = new String[1];

19: masters[1] = managerName;

20: return masters;

21: }

22: pointcut agentMigration(Task task);

23: void doAfterReceivingMessage(MobileElement agent,

24: Message message){

25: TaskAgent task = (TaskAgent) agent;

26: task.handleMessage(message);

27: }

28: ...

29: }

Figure 29. The MobiGrid Reengineering: TaskMobility Aspect

7.2.4 Summary of The MobiGrid Reengineering Steps

In the following, we summarize the MobiGrid reengineering steps.

Removing inheritance relationships between MobiGrid and Aglets platform. After we
specify the Mobility agentInstantiation pointcut corresponding to the
MobiGrid object with mobility requirements, and declare through an inter-type
declaration that the object class implements the MobileElement interface, the
Mobility aspect introduces the mobility capabilities into an object (task, manager or
server).

 39

Removing references to Aglets contexts. The direct references to Aglet contexts have
been substituted by invocations of the predefined MobileElement methods, which
are common services abstracted from distinct mobility platforms, and available to all
elements that implement the MobileElement interface. For example, code such as
getAgletContext().getAgletProxies() is substituted with the corresponding
MobileElement service call, the getAgentListOnContext(String) method.

Removing references to Aglets proxies. Proxies have been substituted by agent
descriptors returned by methods such as getAgentListOnContext(). For example,
MobiGrid code that invokes methods such as proxy.sendMessage() is substituted
by MobileElement methods such as sendMessage(Message). To set the Message
argument, it must specify the agent descriptor that corresponds to the message
receiver, which can be obtained through a search among the agent descriptors returned
by the getAgentListOnContext() method.

Removing Aglets listeners. Once the Mobility aspect allows to specify procedures to
be executed before and/or after operations as cloning, migration, and messaging, the
TaskCloneListener, TaskMobilityListener and ServerListener procedures
(Figure 25) have been transferred to corresponding methods in the TaskMobility
aspect (Figure 26).

Removing coupling between servers and Aglets runtime. Once the Mobility aspect
now encapsulates the Aglets internal elements manipulation, we do not need to make
direct references to this platform runtime any more. In Figure 1, the Server has the
evacuate() method, beyond the bootstrap() which manipulates AgletContext
and AgletRuntime objects; in Figure 26, the Server class has only the evacuate()
method.

8 Evaluation

The usefulness and usability of the ArchM architecture (Section 5) has been evaluated
in the context of EC system (Sections 3.1 and 7.1) and MobiGrid framework (Section
7.2), two medium-sized case studies from different application domains and originally
composed with two distinct mobility platforms. In this evaluation, we have not
mentioned application-specific requirements or requirements related to platform
models, since ArchM proposes an architectural solution to code mobility
modularization that is independent on particular MAS platforms or applications. In the
following, we describe the procedures we have applied to evaluate the ArchM
architecture (Section 8.1). After that, we discuss some results on how ArchM
architecture and AspectM framework were effective to address the architectural
restrictions imposed by platforms on MAS design (Section 8.2) as well as the more
fine-grained mobility tangling and scattering problems discussed (Section 8.3).

8.1 Evaluation Procedures and Assessment Metrics

We have used a suite of architectural metrics (Table 1) to support modularity
evaluation of the ArchM software architecture (Section 5). We have not used
conventional architectural assessment methods because they traditionally focus either
on the architecture coverage of scenarios described in the requirements specification
[14], or on the satisfaction of high-level non-functional requirements (e.g. [1]) without a
clear focus on modularity assessment. Our goal here was to assess internal structural
attributes in the architecture description with a direct impact on architecture

 40

modularity. As a consequence, our investigation has provided us with a more fine-
grained understanding of the overall architecture quality since modularity impacts a
huge number of non-functional requirements in MAS, such as reusability, adaptability,
flexibility, changeability and the like.

A discussion about each of those architectural metrics is out of the scope of this
work. Table 1 presents a definition for each of the used metrics and their association
with distinct modularity attributes. This suite includes metrics for architectural
separation of concerns (SoC), architectural coupling, component cohesion and interface
complexity. We have already used similar categories of metrics [24, 51] for evaluating
aspect and object-oriented designs in a number of systematic case studies [9, 10, 18, 28,
42] not related to mobile agent systems. They have been proved to be effective
modularity indicators for detailed design and implementation artifacts. The metrics
can also be classified in two categories according to the architectural viewpoint under
assessment: concern viewpoint or component viewpoint. On one hand, the results of
the SoC metrics are obtained for each concern of interest in the system. On the other
hand, the results of the other metrics are all gathered for each component in the system
architecture. Table 1 also relates the metrics to the viewpoint from which their values
are obtained. For all the employed metrics, a lower value implies a better result.

Table 1. Architectural Metrics Suite

Attribute Metric Definition

Concern Diffusion over
Architectural Components (CDAC)

Counts the number of components that
encompass a concern.

Concern Diffusion over
Architectural Interfaces (CDAI)

Counts the number of interfaces related to a
concern.

Architectural
Separation
of Concerns

Concern Diffusion over
Architectural Operations (CDAO)

Counts the number of operations (defined in
interfaces) that are related to a concern.

C
o
n
ce

rn

Architectural Fan-in Counts the number of components that require
service from a component (caller components).

Architectural
Coupling

Architectural Fan-out Counts the number of components from which the
component requires service (callee components).

Component
Cohesion

Lack of Concern-based Cohesion
(LCC)

Counts the number of concerns addressed by a
component.

Number of Interfaces Counts the number of interfaces of each
component.

Interface
Complexity

Number of Operations Counts the number of operations in the
Interfaces of each component.

C
o
m

p
o
n
en

t

The metrics of SoC measure the degree to which a single concern in the system
maps to the architectural elements (components, interfaces, operations and
parameters). The interface complexity is measured in terms of the total number of
interfaces, operations and parameters of each component. The coupling metrics
measure the number of components connected to each component. The cohesion
metric computes each component’s semantic cohesion based on the number of
concerns addressed by it. The higher the number of different concerns in the
component the lower is the cohesion.

In order to proceed with the measurement of SoC, there is an architecture
shadowing process in which the architect must assign every component element
(interface, operation and parameter) to one or more concerns. In the EC as well in the
MobiGrid, we treated the mobility concerns and the application itself as the driving

 41

concerns to be modularized. After the shadowing of the architecture models, the data
of the SoC metrics (CDAC, CDAI, and CDAO) was manually collected.

8.2 Architectural Evaluation

This section presents the results of the measurement process. The data have been
collected based on the set of defined measures (Section 8.1) in the two case studies. The
presentation is divided into three parts. Section 8.2.1 presents the evaluation results for
the separation of architectural concerns. Section 8.2.2 presents the results for the
coupling and cohesion metrics. Section 8.2.3 presents the results for the interface
complexity metrics. We present the results by means of tables that place the values of
the metrics for the aspect-oriented and non-aspect oriented architectures of each
system side-by-side.

8.2.1 Separation of Architectural Concerns

In the quantitative evaluation of the EC system, the data collected for both AO and
non-AO architectures shows favorable results for the AO version for most of the
metrics used. Table 2 presents the complete data collected for both EC architecture
versions considering the SoC metrics. The application of the SoC metrics allowed us to
evaluate how effective was the separation of the agency concerns in the both EC
architectures. These metrics count the total number of components, interfaces and
operations dedicated to implement a concern.

Table 2. Expert Committee Architectures: Separation of Concerns Measures

#components
(CDAC)

#interfaces (CDAI) #operations (CDAO) Concern

AO Non-AO AO Non-AO AO Non-AO

Kernel 1 1 4 2 68 14

Interaction 1 2 3 9 10 22

Adaptation 1 2 2 6 5 34

Autonomy 1 2 3 7 31 80

Collaboration 1 2 4 6 37 87

Mobility 1 2 3 3 20 35

Learning 1 2 2 4 6 16

We can observe significant differences between the AO and non-AO versions for all
the SoC metrics. Table 2 shows that the non-AO architecture requires two components
to address each of the system concerns (CDAC metric), except for the Kernel concern. It
happens because the Kernel component needs to inevitably embody functionalities
from the different concerns besides to implement the kernel-specific functionalities; the
Kernel component plays the mediator role and, as a consequence, propagates
information relative to every concern to the other “colleague” components (Section
3.1). On the other hand, each component in the AO version is responsible for
implementing the functionalities associated with exactly one concern because such
information is directly collected from the context where it is generated through
crosscutting interfaces; as a result, the design of the Kernel component and its
interfaces are not affected by other concerns.

 42

We can also observe in Table 2 that the AO version requires fewer interfaces (CDAI
metric) and operations for most of the system concerns, with the exception of the
Kernel concern. The Kernel concern in the AO version is represented by the Kernel
component. This component needs to expose new interfaces in the AO version to
enable the implementation of the different aspectual components. However, all these
additional interfaces are part of the Kernel functionalities and separation of
architectural concerns is not hindered. As we can see in Table 2, there is also a
significant increase in the number of operations (CDAO metric) for almost all the
agency concerns in the non-AO version; the only exception is the Kernel concern. The
Interaction concern, for example, is addressed in the AO version by 3 interfaces and 10
operations. While the same Interaction concern in the non-AO version requires 9
interfaces and 22 operations. This growth in the non-AO architecture is mainly caused
by the use of the mediator-based pattern, which requires the additional interfaces in
the Kernel component with their associated operations.

Table 3 shows the results for the three SoC metrics for the MobiGrid architectures.
The AO architecture performed better than the non-AO version in terms of SoC. As
shown in Table 3, the mobility concerns are scattered over fewer architectural
components in the AO architecture (CDAC metric). These concerns are present in 4
components in the non-AO architecture, whereas they crosscut only 3 components in
the AO architecture. This occurs because, in the non-AO architecture, the MobiGrid
component encompasses issues for explicitly handling of mobility lifecycle events.
These events are captured by the IMobileElement crosscutting interface in the AO
architecture, which makes the mobility-related interfaces unnecessary in the
MobiGrid component.

Table 3. MobiGrid Architectures: Separation of Concerns Measures

#components
(CDAC)

#interfaces (CDAI) #operations (CDAO) Concern

AO Non-AO AO Non-AO AO Non-AO

Mobility 3 4 13 23 326 407

Application
(MobiGrid)

1 1 1 1 18 18

The SoC metrics also showed better results for the AO architecture in terms of
number of interfaces (CDAI metric) – 13 vs. 32 – and number of operations (CDAO
metric) – 326 vs. 407. This is mainly caused because the MobilityProtocol and
MobilityManagement aspectual components need fewer interfaces and operations
for handling events. The aforementioned absence of mobility interfaces in the
MobiGrid component also contributes to this difference.

8.2.2 Architectural Coupling and Component Cohesion

Tables 4 and 5 present the results for architectural coupling and component cohesion
metrics for the Expert Committee and MobiGrid architectures, respectively. As in
subsection 8.2.1, the tables in this subsection and in subsection 8.2.3 place the metrics
values for the AO and non-AO architectures side-by-side. However, since the values
here are for each component (component viewpoint), the bottom of the tables also
provides the total values (sum of all the component measures) that represent the
results for the overall architecture viewpoint. Therefore, rows labeled “Total” indicate
the tally for the system architecture, while rows labeled “Diff” indicate the percentage
difference between the AO and non-AO architectures in the system viewpoint relative

 43

to each metric. A positive value means that the non-AO architecture fared better,
whereas a negative value indicates that the AO architecture exhibited better results.

As we can observe in Table 4, there is an expressive coupling increase in the non-
AO Expert Committee architecture considering the number of requiring components
(Architectural Fan-in metric). The fan-in is 12 in the non-AO architecture, while it is 9
in the AO architecture, representing a difference of 25% in favor of the latter. This
occurs because in the AO version the services of several aspects (e.g. Adaptation,
Autonomy, Learning) are not requested by other components granted to the
dependency inversion promoted by AO architectures.

Table 4. Expert Committee Architectures: Coupling and Cohesion Measures

Architectural
Fan-Out

Architectural
Fan-In

#Concerns
(Lack of Cohesion)

Component

AO Non-AO AO Non-AO AO Non-AO

Kernel 0 6 5 5 1 7

Interaction 3 2 2 2 1 1

Adaptation 2 1 0 1 1 1

Autonomy 2 1 0 1 1 1

Collaboration 1 1 1 1 1 1

Mobility 2 1 1 1 1 1

Learning 1 0 0 1 1 1

Total: 11 12 9 12 7 13

Diff: -8.3% - 25.0% -46.2%

With respect to the architectural fan-out, the measures did not show an expressive
difference from the system viewpoint; the difference was lower than 10% (Table 4). We
assess the lack of cohesion of a component counting the number of distinct concerns
addressed by it, which is captured by the Lack of Concern-based Cohesion (LCC)
metric. LCC measurement resulted in better results for the AO version (13 vs. 7 =
46.2%). This superiority is justified by the fact that in the non-AO architecture, the
Kernel component needs to implement required interfaces associated with the six
system concerns (CBLC metric). Hence, there is an explicit architectural tangling in the
Kernel component.

The AO architecture of the MobiGrid system presented better outcomes in terms of
the two coupling metrics and in terms of the cohesion metric as well (Table 5). The
non-AO architecture exhibited architectural fan-out 50% higher than the AO
architecture. This difference is a consequence of the reduction of fan-out in both
MobiGrid and MobilityManagement components in the AO version, since they do
not have to explicitly call the MobilityProtocol component for notifying events.
Being an aspectual component, MobilityProtocol captures the events by means of
crosscutting interfaces. MobilityPlatform also contributes for decreasing the fan-
out, because it does not need to be connected to the MobilityManagement
component in order to notify events. In this case, the aspectual
MobilityManagement component observes the events by means of its
IReferenceObserver crosscutting interface. For the same reasons, the architectural
fan-in metric also presented worse results for the publisher-subscriber version of the
architecture (50% higher). In this case the fan-in reduction is observed in the
MobilityProtocol and MobilityManagement components.

 44

Table 5. MobiGrid Architectures: Coupling and Cohesion Measures

Architectural
Fan-Out

Architectural
Fan-In

#Concerns
(Lack of Cohesion)

Component

AO Non-AO AO Non-AO AO Non-AO

MobilityPlatform 0 1 1 1 1 1

MobilityManagement 1 2 1 2 1 1

MobilityProtocol 2 2 0 2 1 1

MobiGrid 0 1 1 1 1 2

Total: 3 6 3 6 4 5

Diff: -50.0% -50.0% -20.0%

Similar to the Expert Committee case, the cohesion measures in the MobiGrid
architectures pointed out a difference in favor of the AO solution only in one of the
components, namely the MobiGrid component. This component encompasses two
concerns in the non-AO solution: the MobiGrid concern, which is the primary purpose
of the original definition of this component, and the mobility concern. Conversely, in
the AO solution, the MobiGrid component is not affected by the mobility concern and
entirely dedicated to its main concern.

8.2.3 Interface Complexity

Tables 6 and 7 show the results for the interface complexity metrics for the Expert
Committee and MobiGrid architectures, respectively. Regarding the Expert Committee
system (Table 6), the metrics demonstrate the modularity benefits obtained in the AO
version compared to the non-AO one. There was a bigger difference in the number of
interfaces specified for each version (35 vs. 21 = 43.2%), which favors the AO version.
This difference is mainly due to the additional interfaces of the Kernel component,
but it is also a result of the values collected for other components. The increase in the
number of interfaces metric for the non-AO version is also reflected in the number of
operations. Table 6 shows that the number of operations is 38.5% higher in the non-AO
version. Again, it happens because the Kernel component plays the mediator role
and, as a consequence, it has additional interfaces and operations to propagate
information relative to every concern to the other “colleague” components.

Table 6. Expert Committee Architectures: Interface Complexity Metrics

#Interfaces #Operations Component

AO Non-AO AO Non-AO

Kernel 4 16 68 115

Interaction 3 5 10 13

Adaptation 2 4 5 29

Autonomy 3 4 31 49

Collaboration 4 4 37 47

Mobility 3 2 20 19

Learning 2 2 6 16

Total: 21 35 177 288

Diff: -43.2% - 38.5%

 45

The use of aspects had a strong positive influence in the interface complexity of the
MobiGrid architectural components, as shown in Table 7. For the non-AO architecture,
the number of interfaces was more than 40% higher than in the AO solution. Also, the
number of operations was higher in the non-AO solution (19.1%). The main reason for
this result is the decrease in the number of interfaces of the MobilityManagement
aspect. In the non-AO solution, the conventional component has interfaces to
propagate mobility events relative to the initialization, migration, destruction and
instantiation of agents. On the other hand, in the AO solution, the aspectual
component MobilityProtocol crosscuts the IReferenceObserver interface and
directly observes the events when MobilityPlatform notifies them. Hence, the
interfaces to propagate them are not necessary.

Table 7. MobiGrid Architectures: Interface Complexity Metrics

#Interfaces #Operations Component

AO Non-AO AO Non-AO

MobilityPlatform 3 4 176 185

MobilityManagement 4 9 124 155

MobilityProtocol 6 8 26 61

MobiGrid 1 3 18 24

Total: 14 24 344 425

Diff: -41.7% -19.1%

8.3 Implementation Evaluation

Through the direct use of OO APIs provided by mobility platforms, several MAS
classes that represent the agent types and roles need to extend the basic class for
mobile agent instantiation to incorporate the mobility capabilities (e. g. JADEAgent
class in Section 2.3). The use of inheritance results in code replication as well as in both
code tangling and scattering; the agent basic functionalities and collaborative activities
are amalgamated to mobility-specific methods (problem).

To solve this problem, AspectM provides the agentInstantiation pointcut. This
pointcut is abstract and must be made concrete by AspectM users in the Mobility
subaspect (a hot spot). In other words, an agent type constructor must be defined as
the join point where the code mobility is introduced in the agent type class. The
agentInstantiation advice then executes the instantiation protocol (a frozen spot),
which instantiates a mobile agent corresponding to the application agent in the
platform in use.

Before the agentInstantiation pointcut is made concrete, it is necessary to
specify that the agent type implements the AspectM MobileElement interface
through an intertype declaration in a Mobility subaspect. Thanks to this declaration,
the agent type becomes a mobile element in an application; the agent can use the
mobility-specific services independently on a particular platform. For example,
itinerary-related attributes and methods are encapsulated in the AspectM, but their
maintenance and configuration are implemented in a Mobility subaspect through the
MobileElement interface methods.

As a consequence, the MobileElement interface also solves the problems and
described in Section 3.2. Using this interface, the agent and role classes do not need to
hold an explicit reference to mobility elements (e.g. itinerary) as attributes (problem

), or have additional methods to manage these elements (problem). Using the

 46

AspectM, it becomes possible to isolate the itinerary-related and other
MobileElement issues from the basic functionality and other system concerns.

In addition, thanks to the abstract agentMovement pointcut (a hot spot), AspectM
users make concrete the migration points (Section 2.2) corresponding to a specific
agent. Users can also specify the abstract mobility-specific methods, such as the
checkMobilityNeed(), which is used to verify if an agent needs to migrate (Section
6.2). The migration points as well as the mobility-specific methods are called by the
agentMigration advice, which implements the agent migration protocol (a frozen
spot). This advice solves the problems and , once mobility concerns are isolated
from the basic functionality. The same idea is used to solve the spread of usual
preconditions and postconditions that are independent on the MAS applications
(problem). The instantiation, migration, arrival, and destruction advice implement
together the generic mobility protocol.

A solution similar to the MobileElement interface also solves the problem
(Section 3.2). Through an intertype declaration, AspectM users specify in Mobility
subaspects which elements are serializable. For example, an AspectM user must
specify that his itinerary class is serializable, once itinerary attributes must be moved
together with mobile agents; on the other hand, in the EC, the Agenda class is also
specified as serializable, once an agenda object must be moved together with the chair
role.

The problem also refers to platform-specific interfaces (Section 3.2); the
application agent types must declare and possibly specify the implementation of OO
API interfaces (e. g. AgletMobilityListener interface in Section 7.2.1). As
AspectM encapsulates the platform-specific issues, these interface declarations become
unnecessary. AspectM users need only declare the types that implement the
MobileElement, Serializable, and MobileObject interfaces (Section 6.2).

In addition, the MobileElement interface also solves conceptual mismatches and
conflicts (Section 3.2). Remember that, using OO API interfaces, some types extend a
platform-specific class for mobile agent instantiation (e.g. JADEAgent), even when
agent or roles types are stationary; the introduction of mobility also causes
implementation clashes, and requires the renaming of methods and changes in
respective callers. AspectM solves these problems once the use of MobileElement
interface is isolated from the basic functionalities and the other system concerns in the
Mobility aspects.

Finally, we provide significant experimental evaluation of the benefits of the
AspectM implementation in [52]. We have used the AJATO tool for measuring [17].
The comparative percentage of structural elements (classes, methods, etc.) in both OO
and AO implementations of our case studies points out that the AspectM numbers are
smaller by about 20%.

8.4 General Analysis

The use of the architectural modularity metrics allowed us to observe the following:

Addressing Restrictions and Conceptual Mismatches. First, after a careful joint analysis
of the EC and MobiGrid architectures, we observed that both non-AO designs imposed
some undesirable bidirectional couplings. For example, in the case of EC, all the
“colleague” components need to inevitably contain references to the “mediator”
component and vice-versa. Conversely, the AO architectural solutions for both EC and
MobiGrid have reduced the overall architecture couplings by making almost all the

 47

inter-component relationships unidirectional (aspects affect the components). This
phenomenon is observed mostly from the fan-in and fan-out measures (Section 8.2.2).
For example, the Kernel component has the fan-out zero in the AO version of the EC
architecture, while it is 6 in the mediator-based version (Table 4). This coupling
decrease in the EC and MobiGrid versions that follow the ArchM architecture are
reflected in the AspectM use. Solutions for architectural restrictions and conceptual
mismatches (Section 6) are achieved by replacing the direct use of OO abstractions and
mechanisms, as inheritance and delegation, by AO abstractions and mechanisms.

Promoting Superior Variability and Enhanced Composability. Variability and
adaptability were main driving requirements in the architecture design of EC and
MobiGrid. In these systems, mobility issues should be modularized in order to
promote easier variation of the mobility platforms. However, the non-modularization
of mobility crosscutting concerns in the non-AO architectures hindered the satisfaction
of these variability goals. This problem can be observed in the SoC measures (Section
8.2.1) where the results in Tables 2 and 3 show the tangling and scattering of several
concerns, such as mobility, learning, and collaboration. As a result, the plugability of
elements realizing such concerns becomes cumbersome. Conversely, using ArchM
facilitated the variability of the mobility platform in EC and MobiGrid systems. This is
reflected in AspectM, which is generic enough and independent of specific mobility
frameworks. It has some abstract intermediary classes and interfaces to bridge our
framework with the chosen mobility platform (Section 6.1.3). Reuse of services of the
mobility platform is achieved because AspectM provides a customization point to plug
in a specific mobility platform. In order to change from one framework to another,
MAS developers only have to perform some setups. There was no impact on the design
and implementation of other agent concerns. Although the AO composition required
some refactoring to expose certain join points to other aspects, it was more
straightforward than the OO composition, including the scenarios involving the
composition between the AspectM framework and infrastructures [5].

9 Related Work

Design support for mobile agents has been studied from different perspectives,
including solutions supporting the structuring of code mobility [7, 8, 34, 35, 43, 48, 56].
Holder et al. [34] proposes a programming model for programming of the dynamic
layout separately from the application’s logic, including support to mobility. However,
despite FarGo’s programming model being very close to Java’s own model, its focus is
on general widely-distributed applications, not necessarily autonomous-agents-based
applications [34]. Bouraqadi-Saâdani [8] presents a design of an infrastructure for
applications where the mobility concerns are cleanly separated from other concerns,
but his focus is mainly on strong mobility [8]. Ubayashi [56], Keeney [35] and
Montanari [48] also propose a policy-based separation of concerns for code mobility.
However, as the OO APIs from mobility platforms are largely in use [7, 21, 39, 43, 56],
we consider that these approaches do not deal with the code mobility management at
the same time they provide solutions to the usual fine-grained problems found in MAS
development (Section 3.2). For example, the EpsilonJ reflective framework, which
supports the RoleEP approach [56], supports mobility, but the agent programmers
have to extend several EpsilonJ interfaces and abstract classes, which decreases the
code mobility modularization (Section 3.3).

 48

We introduced the use of AOP for modularization of code mobility in [45].
Subsequently, we presented the AspectM framework in [46]. Comparing to
RoleEP/EpsilonJ approach [56], the use of binding-operation [56] eliminates the
necessity of AOP-style weaving, and inter-type declarations in AspectJ can be replaced
by adding role methods through binding-operation. However, the advice construct
does not correspond to any model constructs in RoleEP. This is a weak point of RoleEP,
which often causes code duplication [56]. The EpsilonJ framework is also dependent on
the Aglets platform [56]. Now we present this paper as an extension of [46], including a
number of improvements, especially explained. First, we provide an aspect-oriented
software architecture, the ArchM, for code mobility that is independent on particular
model implementations. Second, we survey the essential concerns in MAS
development under the perspective of software engineering point of view. Third, our
systematic analysis of the modularity problems caused by the crosscutting nature of
code mobility encompasses the usual fine-grained problems found in MAS
development. Fourth, we introduce the notion of architectural aspects to solve the
problem of code mobility modularization. Fifth, we explain more detailed issues of the
AspectM framework [46], including the dynamics and implementation of its internal
elements. Finally, we present the case studies, including a number of code examples,
used to evaluate the ArchM architecture, beyond the evaluation procedures, metrics
and the results themselves.

10 Conclusion and Future Work

The facets of a mobility strategy should be transparent to the rest of a mobile agent
system so that changes in the mobility concerns have no impact on the implementation
of the other agent concerns. On the other hand, modularity occupies a pivotal position
in the design of good mobility architectures: it is during architectural design that
crucial modularity-related requirements in MAS such as adaptability, flexibility,
reusability, maintainability, testability, etc., must be addressed. However, building
modular MAS architectures is a challenging task mainly because they need to reason
and make decisions with respect to a number of crosscutting architectural mobility
concerns. This paper presents the ArchM, an aspect-oriented software architecture that
ensures a clean modularization of the mobility concerns, a transparent introduction of
code mobility into stationary agents, and an improved variability of the mobility
concerns. Even though the ArchM is independent on particular mobility frameworks
or applications, an ArchM implementation, the AspectM framework, was also
presented to provide solutions to more fine-grained problems related to tangling and
scattering of code mobility. The ArchM/AspectM allowed us not only to specify the
basic mobility behaviors, but also the specification of the agent types or roles that are
mobile, the declaration of the traveling circumstances, the calls to departure and the
control of agent itinerary. The ArchM evaluation presented better outcomes in terms of
the separation of concerns, coupling, cohesion and complexity metrics when compared
to the original architectures of the case studies we have architected. A next step is to
evaluate the ArchM architecture in the light of different architectural attributes other
than modularity issues, such as performance and availability.

Acknowledgments. This work is partially supported by European Commission as part of
the grant IST-2-004349: European Network of Excellence on AOSD (AOSD-Europe),
2004-2008. Alexander Romanovsky is supported by IST RODIN project.

 49

References

[1]

Al-NAEEM, T.; GORTON, I.; BABAR, M. A.; RABHI, F.; BENATALLAH, B. A
Qualitydriven Systematic Approach for Architecting Distributed Software
Applications. In Proc. of INTERNATIONAL CONFERENCE ON SOFTWARE
ENGINEERING, p. 244–253, NY, USA, 2005. ACM Press.

[2]

AMOR, M.; FUENTES, L.; TROYA, J. Training Compositional Agents in
Negotiation Protocols Using Ontologies. Journal of Integrated Computer-
Aided Engineering, n. 2, v. 11, p. 179–194, 2004.

[3]

ARIDOR, Y.; LANGE, D. Agent Design Patterns: Elements of Agent Application
Design. Proceedings of the 2nd INTERNATIONAL CONFERENCE ON
AUTONOMOUS AGENTS (Agents '98), ACM Press, 1998, pp. 108-115.

[4]

BANIASSAD, E. L. A.; CLEMENTS, P. C.; ARAÚJO, J.; MOREIRA, A.; RASHID,
A.; TEKINERDOGAN, B. Discovering Early Aspects. IEEE Software, v. 23, 2006,
p. 61-70.

[5]

BARBOSA, R.; GOLDMAN, A. MobiGrid: Framework for Mobile Agents on
Computer Grid Environments. Proc. of MOBILITY AWARE TECHNOLOGIES
AND APPLICATIONS, 2005, Springer-Verlag, pp.147-157.

[6]

BATISTA, T.; CHAVEZ, C.; GARCIA, A.; SANT’ANNA, C.; KULESZA, U.;
RASHID, A.; FILHO, F. Reflections on Architectural Connection: Seven Issues
on Aspects and ADLs. WORKSHOP ON EARLY ASPECTS - ASPECT-
ORIENTED REQUIREMENTS ENGINEERING AND ARCHITECTURE
DESIGN AT ICSE'06, Shanghai.

[7]

BELLIFEMINE, F.; POGGI, A.; RIMASI, G. JADE: A FIPA-Compliant Agent
Framework. Proceedings of the PRACTICAL APPLICATIONS OF
INTELLIGENT AGENTS AND MULTI-AGENTS, April 1999; pp. 97-108.

[8]

BOURAQADI-SAÂDANI, N. M. N.; LEDOUX, T.; SÜDHOLT, M. "A Reflective
Infrastructure for Coarse-Grained Strong Mobility and its Tool-Based
Implementation", INTERNATIONAL WORKSHOP ON EXPERIENCE WITH
REFLECTIVE SYSTEMS, Japan, 2001.

[9]

CACHO, N.; SANT'ANNA, C.; FIGUEIREDO, E.; GARCIA, A.; BATISTA, T.;
Lucena, C. Composing Design Patterns: A Scalability Study of Aspect-Oriented
Programming. Proc. 5th INTERNATIONAL CONFERENCE ON ASPECT-
ORIENTED SOFTWARE DEVELOPMENT, Bonn, Germany, 20-24 March 2006.

[10]

CACHO, N.; BATISTA, T.; GARCIA, A.; SANT’ANNA, C.; BLAIR, G.
Improving Adaptability of Reflective Middleware with Aspect-Oriented
Programming. In Proc. INTERNATIONAL CONFERENCE ON GENERATIVE
PROGRAMMING AND COMPONENT ENGINEERING, October 2006.

[11]

CHAVEZ, C. A Model-Driven Approach to Aspect-Oriented Design. PhD
Thesis, Computer Science Department, PUC-Rio, Rio de Janeiro, 2004.

[12]

CHAVEZ, C.; GARCIA, A.; KULESZA, U.; SANT’ANNA, C.; LUCENA, C.
Taming Heterogeneous Aspects with Crosscutting Interfaces. Journal of the
Brazilian Computer Society, SBC, May 2006.

[13]

CHITCHYAN, R. et al. A Survey of Analysis and Design Approaches. AOSD-
Europe Report D11, May 2005.

 50

[14]

CLEMENTS, P.; KAZMAN, R.; KLEIN, M. Evaluating Software Architectures:
Methods and Case Studies. Addison-Wesley, Boston, MA, USA, 2002.

[15]

DAMASCENO, K.; CACHO, N.; GARCIA, A.; ROMANOVSKY, A.; LUCENA,
C. Context-Aware Exception Handling in Mobile Agent Systems: The MoCA
Case. In 5th INT. WORKSHOP ON SOFTWARE ENGINEERING FOR LARGE-
SCALE MULTI-AGENT SYSTEMS AT ICSE 2006, Shanghai, China, 2006.

[16]

DELOACH, S., WOOD, M., SPARKMAN, C. Multiagent Systems Engineering.
International Journal of Software Engineering and Knowledge Engineering,
11(3):231--258, 2001.

[17]

FIGUEIREDO, E.; GARCIA, A.; LUCENA, C. AJATO: an AspectJ Assessment
Tool. Proc. of the ECOOP.06, Demo Session, Nantes, France, July 2006.

[18]

FILHO, F.; CACHO, N.; FERREIRA, R.; FIGUEIREDO, E.; GARCIA, A.;
RUBIRA, C. Exceptions and Aspects: the Devil is in the Details. Proceedings of
the 14th INTERNATIONAL CONFERENCE ON FOUNDATIONS ON
SOFTWARE ENGINEERING, Portland, USA, November 2004.

[19]

FILHO, F.; RUBIRA, C.; FERREIRA, R.; GARCIA, A. Aspectizing Exception
Handling: A Quantitative Study. In Advances in Exception Handling
Techniques, LNCS 4119, September 2006.

[20] FIPA. Foundation for Intelligent Physical Agents. http://www.fipa.org.

[21]

FUGGETTA, A.; PICCO, G.; VIGNA, G. Understanding Code Mobility. IEEE
Transactions on Software Engineering, v.24, n.5, p.342-361, 1998.

[22]

GARCIA, A. et al. Engineering Multi-Agent Systems with Aspects and Patterns.
Journal of the Brazilian Computer Society, n.1, v.8, Jul.2002, p. 57-72.

[23]

GARCIA, A.; SANT'ANNA, C.; CHAVEZ, C.; SILVA, V.; LUCENA, C.; STAA,
A. v. Separation of Concerns in Multi-Agent Systems: An Empirical Study. In: C.
LUCENA et al, eds. Software Engineering for Multi-Agent Systems II.
Springer-Verlag, LNCS 2940, January 2004.

[24]

GARCIA, A. From Objects to Agents: An Aspect-Oriented Approach. PhD
Thesis, Computer Science Department, PUC-Rio, April 2004.

[25]

GARCIA, A.; LUCENA, C.; COWAN, D. Agents in Object-Oriented Software
Engineering. Software: Practice & Experience, Elsevier, Volume 34, Issue 5,
May 2004, pp. 489 - 521.

[26]

GARCIA, A.; KULESZA, U.; SANT’ANNA, C.; LUCENA, C. The Mobility
Aspect Pattern. Proc. of the 4th LATIN-AMERICAN CONFERENCE ON
PATTERN LANGUAGES OF PROGRAMMING, August 2004, Fortaleza, Brazil.

[27]

GARCIA, A.; KULESZA, U.; SARDINHA, J.; MILIDIÚ, R.; LUCENA, C. The
Learning Aspect Pattern. In Proc. of the 11th CONFERENCE ON PATTERN
LANGUAGES OF PROGRAMS, Monticello, USA, September 2004.

[28]

GARCIA, A.; SANT'ANNA, C.; FIGUEIREDO, E.; KULESZA, U.; LUCENA, C.;
Staa, A. Modularizing Design Patterns with Aspects: A Quantitative Study.
Transactions on Aspect-Oriented Software Development, Springer-Verlag,
Lecture Notes in Computer Science, pp. 36 - 74, Vol. 1, No. 1, February 2006.

[29]

GARCIA, A.; LUCENA, C. Taming Heterogeneous Agent Architectures with
Aspects. Communications of the ACM, July 2006.

 51

[30]

GARCIA, A. et al. On the Modular Representation of Architectural Aspects.
Proc. of the 3rd. EUROPEAN WORKSHOP ON SOFTWARE ARCHITECTURE,
Nantes, France, September 2006.

[31]

GOLDCHLEGER, A. et al. InteGrade: Object-Oriented Grid Middleware
Leveraging Idle Computing Power of Desktop Machines. Concurrency and
Computation: Practice & Experience, v. 16, p. 449-459. March, 2004.

[32]

HANENBERG, S.; UNLAND, R.; SCHMIDMEIER, A. AspectJ Idioms for
Aspect-Oriented Software Construction. In Proceedings of the 8th EUROPEAN
CONFERENCE ON PATTERN LANGUAGES OF PROGRAMMING AND
COMPUTING, Irsee, Germany, June 2003.

[33]

HARRISON, C.; CHESS, D.; KERSHENBAUM, A. Mobile Agents: Are they a
good idea? Technical report, IBM, March 1995.

[34]

HOLDER, O.; BEN-SHAUL, I.; GAZIT, H. "Dynamic Layout of Distributed
Applications in FarGo", 21st INTERNATIONAL CONFERENCE ON
SOFTWARE ENGINEERING, ACM Press, 1999.

[35]

KEENEY, J.; CAHILL, V. "Chisel: a policy-driven, context-aware, dynamic
adaptation framework", Policies for Distributed Systems and Networks, 2003.

[36]

KENDALL, E. A. Role Model Designs and Implementations with Aspect-
oriented Programming. In OOPSLA ’99: Proc. of the 14th ACM SIGPLAN
CONFERENCE ON OBJECT-ORIENTED PROGRAMMING, SYSTEMS,
LANGUAGES, AND APPLICATIONS, p. 353–369, NY, USA, 1999. ACM Press.

[37]

KICZALES, G. et al. “Aspect-Oriented Programming”. Proc. of the ECOOP’97,
LNCS (1241), Springer-Verlag, Finland, June, 1997.

[38]

KICZALES, G. et al. “An Overview of AspectJ”. Proc. of ECOOP’2001,
Budapest, Hungary, 2001.

[39]

KINIRY, J.; ZIMMERMAN, D.: A Hands-On Look at Java Mobile Agents, IEEE
Internet Computing, vol.1, No.4, 1997.

[40]

KRECHETOV, I.; TEKINERDOGAN, B.; GARCIA, A.; CHAVEZ, C.; KULESZA,
U. Towards an Integrated Aspect-Oriented Modeling Approach for Software
Architecture Design. 8th INTERNATIONAL WORKSHOP ON ASPECT-
ORIENTED MODELING, March 20-24, 2006, Bonn, Germany.

[41]

KULESZA, U.; GARCIA, A.; LUCENA, C. Towards a Method for the
Development of Aspect-Oriented Generative Approaches. WORKSHOP ON
EARLY ASPECTS AT OOPSLA'04, November 2004, Vancouver, Canada.

[42]

KULESZA, U.; SANT’ANNA, C.; GARCIA, A.; COELHO, R.; STAA, A. v.;
LUCENA, C. Quantifying the Effects of Aspect-Oriented Programming: A
Maintenance Study. Proceedings of the 9th INTERNATIONAL CONFERENCE
ON SOFTWARE MAINTENANCE, Philadelphia, USA, September 2006.

[43]

LANGE, D.; OSHIMA, M. Programming and Deploying Java Mobile Agents
with Aglets. Addison-Wesley, 1998.

[44]

LIPPERT, M.; LOPES, C. A Study on Exception Detection and Handling Using
Aspect-Oriented Programming. In: Proc. of INTERNATIONAL CONFERENCE
ON SOFTWARE ENGINEERING, Limerick, Ireland, may 2000, pp. 418–427.

 52

[45]

LOBATO, C; GARCIA, A.; ROMANOVSKY, A.; SANT’ANNA, C.; KULESZA,
U.; LUCENA, C. Mobility as an Aspect: The AspectM Framework. Proc. of
WASP At SBES’04, Brasilia, Brazil, 2004.

[46]

LOBATO, C.; GARCIA, A.; LUCENA, C.; ROMANOVSKY, A. A Modular
Implementation Framework for Code Mobility. 3rd IEE MOBILITY
CONFERENCE 2006, 25-27 October 2006, Bangkok, Thailand.

[47]

LOUGHRAN, N. et al. A Domain Analysis of Key Concerns - Known and New
Candidates. Technical Report AOSD-Europe Deliverable D43, 2006.

[48]

MONTANARI, R.; TONTI, G.; STEFANELLI, C. "Policy-based separation of
concerns for dynamic code mobility management". COMPUTER SOFTWARE
AND APPLICATIONS CONFERENCE, 2003.

[49]

PACE, A.; TRILNIK, F.; CAMPO, M. Assisting the Development of Aspect-
based MAS using the SmartWeaver Approach. In Software Engineering for
Large-Scale Multi-Agent Systems, LNCS 2603, March 2003.

[50]

RASHID, A.; GHITCHYAN, R. Persistence as an Aspect. In: Proceedings of the
2nd INTERNATIONAL CONFERENCE ON ASPECT-OORIENTED
SOFTWARE DEVELOPMENT, USA, March 2003.

[51]

SANT’ANNA, C.; GARCIA, A.; CHAVEZ, C.; STAA, A.; LUCENA, C. On the
Reuse and Maintenance of Aspect-Oriented Software: An Evaluation
Framework. In Proc. of the XVII BRAZILIAN SYMPOSIUM ON SOFTWARE
ENGINEERING, p.19–34, October 2003.

[52]

SANT'ANNA, C.; LOBATO, C.; KULESZA, U.; CHAVEZ, C.; GARCIA, A.;
Lucena, C. On the Quantitative Assessment of Modular Multi-Agent
Architectures. Proceedings of NETOBJECTDAYS, September 2006, Germany.

[53]

SHAW, M.; GARLAN, D. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall (1996).

[54]

SOARES, S.; LAUREANO, E.; BORBA, P. Implementing Distribution and
Persistence Aspects with AspectJ. In: Proceedings of the ACM CONFERENCE
ON OBJECT-ORIENTED PROGRAMMING, SYSTEMS, LANGUAGES, AND
APPLICATIONS, 2002, pp. 174-190.

[55]

TAMAI, T.; UBAYASHI, N.; ICHIYAMA, R. An Adaptive Object Model with
Dynamic Role Binding. ICSE 2005: 166-175.

[56]

UBAYASHI, N.; TAMAI, T. Separation of Concerns in Mobile Agent
Applications. Proceedings of INTERNATIONAL CONFERENCE REFLECTION
2001, LNCS 2192, Kyoto, Japan, September 2001, Springer, pp. 89-109.

[57]

WEISS, G. et al. Capturing Agent Autonomy in Roles and XML. In Proc.
INTERNATIONAL JOINT CONFERENCE ON AUTONOMOUS AGENTS AND
MULTI-AGENT SYSTEMS, p.105–112, NY, USA, 2003.

[58] WHITE, J. E. Mobile Agents. Tec. Report, General Magic, Los Angeles, 1995.

[59]

ZAMBONELLI, F., JENNINGS, N., WOOLDRIDGE, M. Organizational
Abstractions for the Analysis and Design of Multi-agent Systems. In:
CIANCARINI, P., WOOLDRIDGE, M., eds. Agent-Oriented Software
Engineering, Springer-Verlag (2001).

