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Abstract. Mobile agents have come forward as a technique for tackling the complexity 
of open distributed applications. However, the pervasive nature of code mobility 
implies that it cannot be modularized using only object-oriented (OO) concepts. In fact, 
developers frequently evidence the presence of mobility tangling and scattering in 
their modules. Despite these problems, they usually rely on OO application 
programming interfaces (APIs) offered by the mobility platforms. Such API-oriented 
designs suffer a number of architectural restrictions and there is a pressing need for 
empowering developers with an architecture supporting a flexible incorporation of 
code mobility in the agent applications. This work presents an aspect-oriented software 
architecture, called ArchM, ensuring a clean modularization, a more straightforward 
introduction, and an improved variability of code mobility in mobile agent systems. It 
addresses OO APIs’ restrictions and is independent on specific platforms and 
applications. An ArchM implementation provides solutions to fine-grained problems 
related to mobility tangling and scattering in the implementation level. The usefulness 
and usability of ArchM has been assessed within the context of two case studies, and 
through its composition with two mobility platforms. 

Keywords: Mobile Agents; Aspect-Oriented Software Development; Reuse. 

Resumo. Agentes móveis são utilizados como uma técnica para o tratamento da 
complexidade de aplicações distribuídas abertas. Contudo, por sua própria natureza, a 
mobilidade de código não pode ser modularizada usando apenas conceitos da 
Orientação a Objetos (OO). De fato, desenvolvedores freqüentemente evidenciam o 
espalhamento e entrelaçamento da mobilidade de código e, apesar disso, têm se 
utilizado apenas de interfaces de programação de aplicações (APIs) OO das 
plataformas de mobilidade para a construção de aplicações. As APIs OO impõem 
várias restrições arquiteturais aos projetos e isto torna necessária uma arquitetura que 
permita a incorporação flexível de mobilidade de código nas aplicações. Este trabalho 
apresenta uma arquitetura de software orientada a aspectos, chamada ArchM, que 
assegura clara modularização, introdução transparente e aumento de variabilidade da 
mobilidade de código nos sistemas. ArchM trata das restrições impostas pelas APIs OO 
e é independente de plataformas e aplicações específicas. A utilidade e a usabilidade 
de ArchM é medida através de dois estudos de caso e através de sua composição com 
duas plataformas de mobilidade. 

Palavras-chave: Agentes Móveis; Desenvolvimento Orientado a Aspectos; Reuso. 
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1  Introduction 

Using mobile agents, open distributed applications can be developed to run over the 
Internet in a much more flexible way than before [21, 39]. As a result, code mobility 
capabilities can be exploited as a means to reduce the complexity of such contemporary 
applications. However, with mobile agent systems growing in size and complexity, 
developers are still facing the challenge of achieving enhanced system modularization 
in the presence of code mobility. The central problem is the invasive and widely-
scoped nature of mobility concerns [22-26, 8, 34, 35, 48, 56], hindering the system 
modularity, composability, and evolvability. It is widely recognized nowadays that 
these modularity problems occur mainly because the mobility issues cannot be 
explicitly captured using only object-oriented (OO) abstractions and mechanisms [22-
26, 49, 56]. This is primarily due to the fact that the implementation of many of these 
mobility-specific concerns naturally tends to crosscut other system concerns, such as 
the basic agent functionalities and coordination activities [22-26, 49, 55, 56]. Despite 
these modularity breakdowns caused by code mobility, the developers have mostly 
relied on OO application programming interfaces (APIs) from mobility platforms and 
on the Java programming language. Another side effect caused by such inefficient 
modularization is that the introduction of the mobility property into stationary agents 
is intrusive and error prone.  

Modular design support for mobile agents has been studied from different 
perspectives, including design patterns (e.g. [3]) and mobility frameworks supporting 
the structuring of code mobility concerns in software agents, such as Aglets [43], JADE 
[7] and RoleEP/EpsilonJ [56]. Although these frameworks provide OO APIs that offer 
a number of mobility abstractions and services, they also inherently bring a number of 
design breakdowns. First, they impose architectural restrictions on the agent design, 
which are responsible for the tangling and scattering of mobility-specific code over the 
system. Second, in order to introduce the mobility capabilities into systems, developers 
must usually modify the agent design to: declare that application agent classes extend 
specific API classes from mobility platforms, implement the API abstract methods, 
declare and possibly specify the implementation of the API interfaces, and explicitly 
invoke the API mobility methods on the system classes which are not created to 
address mobility concerns. Hence, such implementation strategies result in a high 
coupling between the underlying models of mobility platforms and the design of 
mobile agent systems. Third, the direct usage of such APIs does not allow the reuse 
and explicit handling of the scattered mobility code as variability points in systems 
implementation. In other words, the variability points cannot be exposed in separate 
modules where extension or exclusion can be applied. Finally, the lack of proper 
modularization also makes the composition of the mobility framework with 
infrastructures addressing other typical concerns in mobile agent system development, 
such as collaboration and learning, more difficult. 

In this context, this work presents an aspect-oriented (AO) software architecture, the 
ArchM (“Architecting Mobility”), and an example of its implementation, a framework 
what we refer as AspectM (“Aspectizing Mobility”), to solve the problem of code 
mobility modularization in mobile agent system development. In the ArchM 
architecture, architectural aspects [24, 29] are used as unifying abstractions capturing 
the mobility issues, which are hard to modularize with object-oriented abstractions.  
More specifically, architectural aspects [24, 29] are used to decouple the mobility 
concerns from the basic functionalities and other system concerns, including 
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interaction, adaptation, learning, and autonomy [24]. In the case of the AspectM 
framework, which has been implemented in AspectJ [38] and is based on the ArchM 
architecture, the mobility aspects promote this decoupling by defining pointcuts that 
pick out join points related to the instantiation, migration, initialization, and 
destruction of mobile agents, and also defining the advice that are associated with 
these pointcuts. These advice are implemented following a general pattern called the 
mobility protocol: events are picked out, conditions are checked and the appropriate 
mobility-specific methods are invoked. For example, the migration advice is 
responsible for checking the need for the agent roaming and for calling the mobility 
actions. In summary, the ArchM mobility protocol is defined in such a way that it 
prevents the explicit invocations of the mobility services by the mobile agent systems 
and it is independent on specific platforms [3, 7, 43, 56] or applications [5, 22-26]. 

The usefulness and usability of the ArchM architecture has been assessed in the 
context of two case studies. The Expert Committee [24] is an open multi-agent system 
that supports the management of paper submission and reviews for conferences. The 
MobiGrid [5] is a framework for mobile agent support within a grid environment [30]. 
The assessment of these case studies is based on architectural metrics rooted at 
fundamental modularity principles [52], such as separation of concerns, narrow 
interfaces, low architectural coupling, high component cohesion and composition 
simplicity. Thanks to these metrics, we have assessed to what extent the ArchM 
promotes in fact superior modularity in the presence of code mobility. After the ArchM 
evaluation, we have observed that it allows: (1) a clean separation between the 
mobility-specific concerns and other agent concerns; (2) a more straightforward 
introduction of code mobility into software agents; (3) an improved variability of the 
mobility concerns, such as a flexible choice of the mobility platform. 

This work is organized as follows. Section 2 presents the essential concerns in the 
development of mobile agent systems. Section 3 provides a systematic analysis of the 
modularity problems caused by the crosscutting nature of code mobility concerns in 
terms of a case study. Section 4 recalls the fundamental concepts and definitions of 
aspect-oriented software development. Section 5 offers an overview of the ArchM 
architecture, while Section 6 presents the detailed issues of an ArchM implementation, 
the AspectM framework. The case studies used to evaluate the ArchM architecture are 
described in Section 7 and the evaluation results are detailed in Section 8. Section 9 
overviews the related work, comparing the ArchM/AspectM with existing proposals, 
such as the RoleEP/EpsilonJ [56] framework. Finally, Section 10 presents the 
concluding remarks and the future work. 

2  Mobile Multi-Agent Systems 

2.1  Basic Concepts 

Typical mobile agent systems (MAS) consist of a mobility platform and the mobile 
agents [33, 58] instantiated on this platform. The platform defines the mechanisms that 
support the mobile agent execution, and, in general, provides a framework for MAS 
programming. A mobile agent consists of code and data. Code is the program that 
implements the agent behavior, which is often derived from the framework provided 
by the platform in use. Data are the values of the internal attributes modified during 
agent execution, which can be resulted from an agent internal computation and/or 



 

 3

derived from the platform runtime. A mobile agent can move in a distributed system, 
from one host to another, carrying its data and code.  

Figure 1 presents the physical architecture associated with mobile agent execution: 
servers, execution contexts, and the underlying network infrastructure. In MAS 
development, some agents are designed to be mobile, but others are designed to be 
stationary. A mobile agent only moves to the hosts where a program called agent 
server is installed. The agent server enables the agent migration, provides the context to 
agent execution, and allows communication between agents. The agent migration is 
supported by the negotiation of the local server with other servers. When the agent 
migration is required, the agent execution is stopped, the agent is transferred to a 
remote server and, upon the mobile code arrival, the agent execution is resumed at the 
remote location. In each location, the agent server provides a context, that is, a complete 
environment designed for the concurrent execution of mobile agents. Thanks to 
contexts, agents also can communicate with each other through message exchanges. 

 
Figure 1. Generic Structure of Mobile Agent Systems 

2.2  The Mobile Agent Lifecycle 

The mobile agent life is modeled in different stages, which we have termed lifecycle 
model. The model stages are instantiation, initialization, migration, and destruction of 
mobile agents. Figure 2 shows the mobile agent lifecycle model. Different protocols can 
be used to implement each lifecycle stage. The instantiation of the mobile agent is made 
only once when it is created. Every agent receives a unique id and an initial state. 
Initialization is performed each time the agent arrives at a new host. Destruction means 
that the agent terminates all its activities and frees all the resources it was using. 
Migration represents a transfer of an agent from one host to another. The instantiation, 
initialization, migration and destruction define what we will refer as the agent mobility 
protocol. An application developer defines the circumstance when a mobile agent must 
be created; we will refer to this circumstance as the instantiation point. On the other 
hand, the developers also define the instants where the migration action must be 
carried out; we will refer to them as migration points. 

 

 
 

Figure 2. The Mobile Agent Lifecycle 

 

Instantiation RemoteInitialization Destruction Migration 
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Procedures executed by an agent immediately before the departure to remote 
environments are called departure procedures. Sending departure messages and 
blocking processes are some examples of departure procedures. Procedures executed 
immediately after arrival in remote environments are called arrival procedures. Sending 
arrival messages and starting processes are example of arrival procedures. In general, 
departure and arrival procedures data are related to execution contexts. Such data are 
called itinerary throughout this paper. Itinerary includes identifiers for reachable hosts 
and visited hosts, and is implemented either statically or dynamically depending on 
the restrictions imposed by servers. Itinerary maintenance is particularly important 
because an agent must be context-aware; that is, an agent has to access the definition of 
the objects that are locally reachable, the agent neighbors, the agent masters, etc. 

2.3  Mobility Strategies and Platforms 

MAS may follow strong or weak mobility [21], depending on whether the agent state 
can or cannot be migrated. On one hand, there are MAS that support the migration of 
the execution state (strong mobility), and on the other hand, those that only support 
program code and instance data are moved (weak mobility). This work focuses on weak 
mobility, since most mobility frameworks support this form of mobility [21, 39]. In 
general, the goal of these frameworks is to provide an infrastructure and associated 
libraries for the MAS development, beyond the functionalities independent on specific 
MAS applications, such as message transport, encoding and parsing or agent lifecycle. 
For the application-dependent functionalities, the mobility frameworks allow the 
specification of agent types, instantiation and migration points, and other mobility 
protocol issues. To achieve that, framework users may use the MAS fundamental 
abstractions. For example, Aglets [43] and JADE [7] are Java-based mobility platforms 
for MAS development, including abstractions such as agents, agent ids, and agent 
contexts. However, Aglets also introduces an agent proxy abstraction to deal with 
context and messaging issues; on the other hand, JADE supports MAS development in 
compliance with FIPA specifications [20].  

Despite these differences, Aglets and JADE APIs implement agents as Java threads 
running in contexts. In JADE, the basic class for agent instantiation is the JadeAgent 
class; in Aglets, the Aglet class is used. In Aglets, a context is implemented through 
the AgletContext interface; in JADE, the context concept corresponds to an 
AgentContainer instance. The AgletContext as well as the AgentContainer 
instances consist of a complete environment designed for the concurrent execution of 
mobile agents. Even though the “Aglet context” and “JADE container” are not 
equivalent, there are a number of similarities with respect to the issues we have dealt 
in this work. For example, JADE and Aglets API methods correspond: (1) 
onCreation() and setup(), (2) dispose() and doDelete(), (3) dispatch() 
and doMove(); these methods implement the same functionalities in both platforms. 

3  Modularization Of Code Mobility 

The literature has pointed out that code mobility is often a widely-scoped property that 
crosscuts the modules implementing other system concerns, such as the basic agent 
functionalities and coordination activities [22-26, 55, 56]. Although OO frameworks 
(Section 2) are essential to the development of mobile agents, they impose architectural 
restrictions on MAS design. These architectural restrictions basically can be viewed 
from three perspectives: they lead to (1) a poor modularization, which decreases MAS 
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reusability and evolvability, (2) an inefficient introduction of the code mobility into 
stationary agents, and (3) a difficult composition of MAS with other infrastructures 
than the mobility platforms. To understand the architectural restrictions above, this 
section illustrates more fine-grained design problems relative to code mobility in terms 
of the solution using the JADE framework [7]. We analyze two different approaches for 
implementation of mobility issues in MAS: direct use of OO APIs from mobility 
platforms, and the RoleEP/EpsilonJ [56] framework. The advantages and 
disadvantages of each approach are pointed out through a case study, which will be 
also used throughout this paper to show the applicability of our proposal for 
separation of crosscutting mobility concerns. 

3.1  A Case Study 

Expert Committee (EC) is an open multi-agent system that supports the management of 
paper submission and reviews for conferences, a classical example of an application 
based on mobile agents [16, 59]. The EC encompasses two agent types: information and 
user agents. Each agent type provides different services. For simplicity purposes, this 
section focuses on the description of the user agents. The basic functionality of the user 
agents is to infer and keep information about the corresponding users related to their 
research interests and their participation in conferences. In addition to their basic 
functionality, user agents can collaborate with each other; the collaboration concern is 
represented by the roles played by the agents. Each role represents collaborative 
activities in specific contexts. Different roles are attributed to each EC agent, but the 
main ones are paper author, reviewer, PC member, and chair. Since these roles need to 
communicate with each other in the reviewing process, user agents play them in order 
to cooperate with each other. Classes are used to represent the basic functionalities of 
the agent types and the different roles. 

Each role is associated with a set of plans, which are used to implement more 
sophisticated collaborative activities; plans are represented by separate classes. The 
chair role has plans for distributing review proposals; the reviewer and PC member 
roles have plans for evaluating the chair proposals. The chair, PC members and 
reviewers negotiate with each other for performing reviews. There are other plans to 
address user workloads and invitations to new reviewers. Figure 3 presents some 
classes representing EC agent types (ResearcherAgent, InformationAgent), roles 
(Reviewer, Chair), and plans (DistributionPlan). The chair role is associated 
with a plan for distributing review proposals. 

EC agents need to move in some circumstances, including when they are playing a 
specific role. For example, when a user agent is playing the chair role, it needs to 
consult the reviewer profiles in order to optimize the paper distribution in terms of the 
research interests of each reviewer. If a reviewer profile is not available, it collaborates 
with an information agent and requests this agent to search for information of the 
specified reviewer. The information agent controls the local database and is able to 
query for the profile. However, if the information is not available in the database, the 
chair role needs to move and try to find the missing profile in remote environments. 
The agent assigns the searching task to the information agents dispersed over the 
Internet by roaming through hosts. 
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Figure 3. An Object-Oriented Design for the EC Agents and Roles 

3.2  Using OO APIs from Mobility Platforms 

The use of OO APIs provided by existing mobility platforms requires the invasive 
implementation of mobility issues. In order to make their agents mobile, developers 
usually have to change their agents’ design to extend mobility-specific classes, 
implement abstract methods of those mobility classes, implement mobility-specific 
interfaces (e.g. serialization interface), and invoke explicitly mobility methods in the 
classes implementing other agent concerns. Figure 4 presents the OO design of the EC 
mobile agents and their roles using the JADE mobility framework. For simplification, it 
only shows some important classes, the others essentially follow the same pattern; we 
also omit the classes related to learning, adaptation, and autonomy. The main purpose 
of each set of classes, surrounded by a gray rectangle, is to modularize a specific agent 
concern, namely interaction, collaboration, mobility, and basic concerns. However, 
note that the mobility concerns crosscut classes implementing other agent concerns; it 
has a huge impact on the basic agent structure, and on the collaboration and 
interaction designs. Although part of the mobility concern is localized in the mobility 
classes, such as JADEAgent and Itinerary, mobility-specific code replicates and 
spreads across several class hierarchies of an agent.  

Figure 4 shows each crosscutting-related problem with a number surrounded by a 
circle. There are classes that represent the agent types and roles, extending the abstract 
JADEAgent class to incorporate the mobility capabilities. However, the use of 
inheritance results in code replication as well as in both code tangling and scattering; 
the basic functionality and collaborative activities are amalgamated to mobility 
methods (problem ). The agent and role classes also need to hold an explicit reference 
to mobility elements (e.g. itinerary) as attributes (problem ). These classes have 
additional methods to manage these elements (problem ). In addition, several 
methods contain mobility code in order to define the agent migration points, w.r.t. the 
decisions on when the agent should move to a remote environment (problem ), and 
when going back to the home location (problem ). As a result, this code is replicated 
in various methods of plan, role, and agent type classes.  
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Figure 4. JADE-Based Design for the Expert Committee System 
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Figure 4). Moreover, the use of OO frameworks can lead to potential conflicts. For 
example, the JADEAgent class defines an abstract method getName(); the Agent 
class also has a method getName() with a different purpose. The introduction of 
mobility in this system causes implementation clashes, and requires the renaming of 
this method and changes in the respective callers. 

3.3  RoleEP/EpsilonJ 

RoleEP [56] is an approach that addresses the problem of constructing MAS with a 
mechanism for separating the mobility and collaboration concerns. To do that, RoleEP 
proposes specific abstractions, such as agents, roles, objects and environments. An 
environment is composed of attributes, methods, and roles. A role, which can move 
between hosts that exist in an environment, is composed of attributes, methods and 
binding-interfaces. Role attributes and methods are only available in an environment 
to which the role belongs. A binding-interface, which is similar to an abstract method 
interface, is used when an object binds itself to a role. Common data and functions that 
are used in roles are described by environment attributes and methods. 

An object, which cannot move between hosts, is composed of attributes and 
methods. Although an object cannot move between hosts, it can move by binding itself 
to a role that has mobility functions. An object becomes an agent by binding itself to a 
role that belongs to an environment, and can collaborate with other agents within the 
environment. The notion of the binding-operation binds binding-interfaces of roles to 
concrete methods of objects. The binding-interface defines the interface in order to 
receive messages from other roles existing in the same environment. The binding-
operation is permitted only when an object has methods corresponding to the binding-
interface. Binding-operations are implemented by creating delegational relations 
between roles and objects dynamically. That is, if a role receives a message 
corresponding to its binding-interface from other roles or itself, the role delegates the 
message to an object bound to the role. 

Regarding this point, it is important to note that RoleEP approach is based on its 
own specific concepts and imposes a number of restrictions in the application design. 
In other words, using this approach, MAS cannot be constructed only with objects; it is 
necessary to use RoleEP-specific concepts, such as environment and role. In fact, 
RoleEP concepts are realized by the MAS instantiated from EpsilonJ framework [56]. In 
EpsilonJ, an environment class is defined as a subclass of the Environment class, and 
a role class is defined as a subclass of the Role class. The Role class is implemented as 
a subclass of the Aglets class that has mobility functions. A class of an EpsilonJ’s 
object is defined as a subclass of the EpsilonObj class that presents functions for 
binding-operations. Figure 5 illustrates the partial result of the EC development 
process using mobility services through the EpsilonJ framework. 

As we can observe, developers need to extend a number of EpsilonJ classes in order 
to instantiate their MAS. As we have demonstrated in Section 3.2, a framework 
instantiation process using only OO abstractions and mechanisms hinders a 
satisfactory modularization of mobility issues. Moreover, for MAS development using 
EpsilonJ, we have implemented drastic changes on the application’s original design. 
For instance, for Chair role class access the Aglets mobility services (and not the JADE 
ones as before) we make a number of changes in the class inheritance trees of the EC 
system (Figure 5). In Section 6, we show that in order to instantiate an application 
from AspectM, it is not necessary to extend any classes from framework, while we also 
maintain the mobility platform flexibility. 
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Figure 5. RoleEP-Based Design for Expert Committee System 

4  Aspect-Oriented Software Development 

Aspect-Oriented Software Development (AOSD) is an emerging area with a goal of 
promoting advanced separation of concerns throughout the software development 
lifecycle. This section introduces the AOSD concepts and modeling notations. Section 
4.1 presents AOP definitions and Section 4.2 shows the AO modeling notations for 
architectural and detailed design. 

4.1  Aspect-Oriented Programming 

Aspect-Oriented Programming (AOP) [37] is an emerging programming paradigm with 
the goal of improving separation of crosscutting concerns at the implementation level 
through new abstractions and composition mechanisms. AspectJ [38] is the most 
widely used AO programming language and, therefore, the most representative of a 
family of AOP languages, such as JBoss AOP, Spring Framework, etc. Most case 
studies found in the literature explore AOP in AspectJ [38] in the context of different 
crosscutting concerns, such as exception handling [19], persistence and distribution [50, 
54], and design patterns [28]. However, AOP has not been fully explored an improved 
end-to-end modularization of code mobility since an early version of the design. The 
main abstractions supported by AspectJ are: (1) aspects, (2) join points, (3) pointcuts, 
(4) advice, and (5) inter-type declarations. Aspect is the abstraction to support improved 
modularity of crosscutting concerns. An aspect can crosscut one or more classes, 
changing their structure or dynamics. Join points are well-defined points in the 
dynamic execution of a system which are used to specify how classes and aspects are 
related. A collection of join points can be specified through a pointcut.  
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Advice is a special method-like construct attached to pointcuts, which defines a 
crosscutting feature to affect the dynamic behavior of classes. An advice can run 
before, after or around whenever a join point is reached. An aspect can also contain 
internal attributes, methods and inter-type declarations. The inter-type declarations 
specify new members (attributes or methods) for classes to which the aspect is 
attached, or change the inheritance relationship between classes. Unlike advice, which 
operates primarily dynamically, inter-type declarations operate statically, at compile-
time. Inter-type declarations are static crosscutting features since they affect the static 
structure of components. Aspects can be defined as abstract and extended by concrete 
aspects; both methods and pointcuts can be qualified as abstract. 

4.2  Aspect-Oriented Architecture and Detailed Design 

Aspects can be represented not only at the implementation, but also at the architectural 
and detailed design level [4, 6, 13, 29, 30]. In fact, aspects have always a broadly-scoped 
impact at the design decomposition and encompass driving architectural concerns [30]. 
Software architecture is a high-level description of the system organization in terms of 
architectural components, their interrelationships and responsibilities [49]. Each 
component conforms to and provides the realization of a set of interfaces, which make 
available services implemented by the component.  

The notion of an aspect-oriented software architecture introduces the concept of an 
aspectual component (or architectural aspect) [24, 29]. An aspectual component 
modularizes a crosscutting concern at the architectural level. Each of the aspectual 
components is related to more than one architectural component, representing their 
crosscutting nature. The relationships are associated with the component interfaces, 
which are classified in conventional (normal) or crosscutting interfaces. A conventional 
interface only provides services to other components. Crosscutting interfaces provide 
services to the system, but also specify when and how an architectural aspect affects 
other architectural components. 

Figure 6 illustrates an aspect-oriented architecture for the aspect called 
FaultHandler. The architecture modeling is based on the AOGA notation [12, 24, 40-
41], which extends the aSideML language [11].  These languages are used throughout 
this paper: the aSideML language extends UML with semantics and visual notations 
for representing aspects at the detailed design level. The AOGA notation suppresses all 
information about aspect internal elements and adds notation to represent architectural 
aspects. Aspects are represented as diamonds, while a crosscutting interface is 
displayed as a small grey circle with its name placed next to the circle.  

 

  

 
Figure 6. An Aspect-Oriented Architecture for the FaultHandler Aspect 

 

Figure 7 illustrates the detailed design of the FaultHandler aspect using the 
aSideML language [11]. In this language, an aspect is composed of internal structure 
and crosscutting interfaces. The internal structure declares the internal attributes and 
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and advice, and is represented using a rectangle symbol with compartments. The first 
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represents pointcuts and their attached advice. The notation uses a dashed arrow to 
represent the crosscutting relationship. Note that, at the detailed design level, an 
architectural component is realized as a set of aspects and auxiliary classes; the 
conventional components are refined and implemented as a set of classes. 
 

  
Figure 7. An Aspect-Oriented Design for the FaultHandler Aspect 

 

The internal structure of the FaultHandler aspect consists of two methods and 
one attribute. They were moved from the Server class to the aspect since they are part 
of the error-handling concern. The IErrorDetection crosscutting interface (Figure 
7) declares how the FaultHandler aspect crosscuts the Server class. This interface 
introduces the disabled attribute on Server, and two pieces of advice. There is one 
before advice and one after advice, both of them associated with the same pointcut 
named services. Note that the FaultHandler aspect modularizes the error-
handling concern, and the Server class contains no exception-handling code. Figure 8 
presents interaction diagrams that illustrate when the FaultHandler aspect 
dynamically affects the Server class. The join points are the catching of exceptions 
FaultException and calls to the getComplaints() method. 
 

 
Figure 8. The Dynamics of the Server Class and the FaultHandler Aspect 

5  The ArchM Software Architecture 

This section presents ArchM, an aspect-oriented software architecture (Section 4.2) for 
addressing the mobility tangling and scattering (Section 3.2) often found in MAS 
design and implementation artifacts. We use the AOGA notation (Section 4.2) in 
Figure 9 for presenting the ArchM architecture.  
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Figure 9. The ArchM Architecture 

In Figure 9, the separation of the mobility concerns and the integration between 
mobile agent applications and distinct mobility platforms respectively resulted in the 
conception of two architectural aspects (Section 4.2): MobilityProtocol and 
MobilityManagement. Section 5.3 explains how these components (Section 5.1) and 
interfaces (Section 5.2) interact with each other in order to solve the architectural 
restrictions in MAS. Solving these restrictions, ArchM ensures: (1) a clean 
modularization of the code mobility, (2) a more straightforward introduction of code 
mobility into stationary agents, and (3) an improved variability of the mobility 
concerns, such as a flexible choice of the platform. 

5.1  Components 

The ArchM architecture is composed of five kinds of components: 

1. the Kernel component, which modularizes the basic concerns of an agent-based 
application; 

2. the MobilityProtocol component, which modularizes the mobility protocol 
execution (Section 2.2), i.e. the instantiation, migration, remote initialization, and 
destruction of agents in applications; 

3. the MobilityManagement component, which provides a flexible integration 
between MAS and distinct mobility platforms (Section 2.3); 

4. other components, which represent additional agent concerns, such as 
collaboration and learning; 

5. the MobilityPlatform, which represents a specific mobility platform being 
used, such as JADE [7] and Aglets [43] (Section 2.3). 

The component Kernel modularizes the basic functionality associated with an 
agent type. It is also responsible for modularizing the elements of the agent’s intrinsic 
knowledge. Alternatively, it can represent an existing object, which needs to be 
transformed into an agent. The Kernel component realizes the interface that makes 
services available for the agent’s clients, the IServices interface (Figure 9).  
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The MobilityProtocol and MobilityManagement components separate 
together the mobility concern from Kernel and other components. In this way, the 
MobilityProtocol and MobilityManagement components isolate mobility 
concern from the agent basic functionality and intrinsic knowledge (Kernel 
component), as well from the other agent concerns (other aspectual and non-aspectual 
components). Particularly, the MobilityProtocol component isolates agent mobility 
protocols; that is, the MobilityProtocol component isolates crosscutting concerns 
referring to instantiation, initialization, migration and destruction protocols (Section 
2.2). On the other hand, the MobilityManagement component connects MAS with 
the MobilityPlatform component, which modularizes the platform services. It 
allows a flexible integration of MAS with different platforms.  

Other architectural components are used to improve the separation of specific 
crosscutting concerns of MAS, including interaction [24], adaptation [24], learning [24, 
27], autonomy [24, 53], coordination [2, 36, 55, 56], context-awareness [47], error 
handling [15, 18-19], distribution, persistence and concurrency [50, 54] and design 
patterns [9, 28]. In other words, the additional components modularize agent 
properties, such as autonomy and adaptation, in such a way the agent properties are 
isolated from the agent kernel and from each other. In Figure 9, components that 
modularize additional agent concerns are represented by interaction, collaboration and 
learning components. These components also implement a number of normal 
interfaces; Figure 9 omits them for simplification purposes. 

The MobilityPlatform component represents a specific mobility platform being 
used. The goal of a mobility platform is to provide an infrastructure and associated 
libraries for the MAS development (Section 2.3). In general, mobility frameworks 
provided by platforms are object-oriented and allow the specification of a number of 
mobility protocol issues. However, the direct use of OO mobility frameworks APIs 
requires the invasive implementation of mobility issues (Section 3.2). In the ArchM 
architecture, the MobilityPlatform component is completely separated from the 
other agent concerns. 

5.2  Interfaces 

The MobilityManagement component realizes four interfaces (Figure 9). The 
IMobileAgent normal interface determines recurrent mobile agent services on 
platforms. This interface allows to access to mobile agent services provided by mobility 
platforms through the IReferenceMobileAgent interface. The crosscutting nature 
of the MobilityManagement component is specified through the 
IReferenceObserver interface (Figure 9). This interface crosscuts join points as calls 
and/or executions of mobility platform services. For example, the 
IReferenceObserver interface provides access to service execution of a mobile 
agent lifecycle, such as the destruction of a mobile agent in its platform. The 
MobilityManagement component also realizes a conventional interface called 
IReferenceTable, which is used to abstract the context and messaging services 
provided by different platforms. 

The MobilityProtocol component is related to more than one architectural 
component, representing its crosscutting nature (Figure 9). The IInstantiation 
crosscutting interface determines when and how a mobile agent is instantiated on a 
platform to represent a specific agent on an application. For this reason, the 
IInstantiation interface crosscuts agent types and roles localized in the Kernel 
and Collaboration components, respectively (Figure 9). Thanks to the 
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IInstantiation interface, we maintain a univocal association between an 
application agent or role instance and its respective mobile agent instance on the 
platform in use. The specification of the IInstantiation interface corresponds to 
the specification of an agent instantiation point in MAS (Section 2.2). 

The IMigration defines the components that trigger the agent travel to remote 
environments and the agent return to the home host. This interface crosscuts the 
IApplicationAgent interface since the mobile agent may have to travel whenever 
elements of the agent kernel change or before/after the execution of a service (Figure 
9). In addition, the IMigration interface also crosscuts other elements (Figure 9): (1) 
the Interaction component, because travels are also motivated by external events or 
by messages received from other agents; (2) the Collaboration component, since 
travels can be triggered due to some actions performed in the context of an agent role; 
and (3) other components (e. g. the LearningKnowledge component), depending on 
the agent type/role features. The IMigration interface corresponds to the 
specification of an agent migration point (Section 2.2). 

Beyond the IInstantiation and IMigration interfaces, the 
MobilityProtocol component realizes other interfaces, which crosscut the 
IReferenceObserver interface of the MobilityManagement component. For 
example, the InstantiationEvent and MigrationEvent interfaces detect the 
creation and the migration of a mobile agent. In addition, the 
IInitializationEvent interface detects the agent arrival in a new host, and the 
IDestructionEvent interface detects the destruction of a mobile agent in the 
platform. The access to the mobile agent lifecycle makes the definition of a generic 
mobility protocol possible, that is, a mobility protocol (Section 2.2) without any 
references to a specific mobility platform. Its purpose is to decrease coupling between 
agent architectural elements and platform models. 

5.3  Architectural Solutions 

The ArchM architecture uses architectural aspects and crosscutting interfaces (Section 
4.2) to make a clean modularization of the code mobility possible in MAS. The 
MobilityProtocol component implements a generic mobility protocol in order to 
prevent the explicit invocations of the mobility services by the other components. To 
achieve that, the IInstantiation crosscutting interface is used to determine when 
and how a mobile agent is instantiated to represent a specific agent in an application. 
In addition, the IMigration interface is used to affect well-defined mobility join 
points in order to determine when agents should move.  

Other interfaces are used in the ArchM architecture in order to maintain a flexible 
integration between Kernel and the MobilityPlatform components; they make 
information relative to the mobile agent lifecycle available to the other components. 
The IReferenceObserver interface crosscuts join points as calls of mobility platform 
services. In turn, the InstantiationEvent, MigrationEvent, 
IInitializationEvent, and IDestructionEvent interfaces also crosscut the 
IReferenceObserver interface to allow the MobilityProtocol component to 
specify a generic mobility protocol. 

Finally, the IMobileAgentProtocol and IReferenceMobileAgent interfaces 
play a central role in the ArchM architecture. The IMobileAgentProtocol is the 
interface that delegates to the IReferenceMobileAgent the mobility services 
invoked by the Kernel component; this delegation is independent on platform-
specific issues. The IMobileAgent is the interface that is responsible for delegating to 
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a specific platform the invoked services; to achieve that, it uses the 
IPlatformServices interface provided by the MobilityPlatform component. To 
introduce code mobility in MAS, application users then must only perform the 
specification of agent instantiation and migration points. 

6  The AspectM Detailed Design 

In this section, we present our ArchM software architecture (Section 5) 
implementation, the AspectM framework. This framework provides solutions to more 
fine-grained problems related to the (1) modularization of code mobility (Section 
6.1.1), (2) introduction of code mobility into agents (Section 6.1.2), and (3) integration 
of MAS with mobility platforms (Section 6.1.3). In other words, we present solutions to 
the mobility-specific tangling and scattering problems often found in the detailed 
design and implementation levels of MAS development. AspectM contains more than 
30 abstract classes and aspects. However, we focus on the description of the AspectM 
main elements in order to show how the framework overcomes the problems described 
in Section 3, and how they are instantiated to a specific application (Section 6.3). The 
dynamics of these elements is also presented in Section 6.2. 

6.1  The AspectM Framework Structure 

6.1.1  Improved Modularization of Mobility Concerns 

Figure 10 illustrates the detailed design of the AspectM MobilityProtocol 
component (Section 5.1). The modeling is based on the aSideML language (Section 
4.2); we have enhanced the notation to explicitly distinguish the hot spots (variable 
parts), which are marked with a star, from the frozen parts of the framework. At the 
detailed design level, the MobilityProtocol component is implemented as the 
abstract Mobility aspect and its subaspects (ChairMobility aspect in Figure 10). 
The abstract Event aspect also appears in Figure 10, but it does not belong to the 
MobilityProtocol component; it is used to introduce the existing relationship 
between the MobilityProtocol and the MobilityManagement components. The 
MobilityManagement component will be presented in detail in Section 6.1.3. The 
Expert Committee classes are included in Figure 10, but similar to the Event aspect, 
these classes do not belong to the MobilityProtocol component. They are part of 
the Kernel (e. g. ResearcherAgent class) or additional components (e. g. Role class 
belongs to the Collaboration component).  

The purpose of the Mobility aspects is to decouple the mobility concerns from the 
basic functionalities and other system concerns. The abstract Mobility aspect 
promotes this decouple by defining pointcuts that pick out join points related to the 
instantiation, migration, initialization, and destruction of mobile agents. It also 
contains the advice that are associated with these pointcuts. These advice are 
implemented following a general pattern: events are picked out, conditions are 
checked, and the appropriate mobility-specific methods are invoked. In other words, 
the Mobility advice are the AspectM frozen spots. For example, the migration advice 
is responsible for checking the need for the agent roaming and for calling the mobility 
actions in an abstract way. Thus, the Mobility advice jointly correspond to the agent 
mobility protocol (Section 2).  
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Figure 10. AspectM Solution for Expert Committee 

Note that the doAfterAgentInstantiation() and doAfterArrivalHost() 
methods in the ChairMobility (Figure 10) aspect correspond to the return of the 
control flow back to the EC-specific procedures. Conversely, it does not occur in 
migration and destruction protocols, where control flow is not deviated back to the EC 
system. Note also that the instantiation and migration pointcuts are application 
dependent; they run after join points such as those from a Plan subclass (Figure 10); 
we need to specify in Mobility subaspects the elements affected by the 
instantiation_() and migration_() advice. The initialization and destruction 
pointcuts are directly detected from platforms.  

In addition to the Mobility and Event aspects, AspectM implements the 
MobileElement interface, used by the Mobility aspects to delegate the mobility 
protocol actions to a specific platform. More specifically, this interface defines mobile 
agent-specific services abstracted from the distinct platforms, and is responsible for 
delegating to a specific mobility platform the services provided by its interface. These 
services, usually important to the MAS developers, include: (1) methods that grant 
access to ids (getName(), getId(), getContextId(), getMessageId(), etc.); (2) 
methods implementing the mobile agent lifecycle (move(), clone() and die(), etc.); 
and (3) methods for agent messaging (send(), sendAsync(), etc.). Thus, the 
MobileElement interface implements the methods that usually crosscut the OO 
design of software agents. An inter-type declaration is used to specify if an application 
class implements the MobileElement interface. Additional declarations are used to 
define which objects implement the Serializable interface and those that 
implement the MobileObject interface. These declarations represent the specification 
of the IMobileElement crosscutting interface in Figure 10. 
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Finally, note that the Mobility aspect holds a reference to the OO mobility 
platform and encapsulates the mobility protocol interactions with such a specific 
platform (see Section 6.1.3). Figure 10 shows that all the mobility code is localized in 
the Mobility aspects. As a result, the agent and role classes are not intermingled with 
mobility code, therefore improving their modularity, reusability and changeability. In 
fact, the Mobility aspects modularize the crosscutting concerns presented in Section 
3, thereby solving the problems , , , , ,  and . 

6.1.2  Transparent Introduction of Code Mobility 

The AO design in Figure 10 uses AOP to make an explicit separation of mobility 
concerns in MAS possible. The mobility tangling and scattering problems are solved in 
AspectM by combining the following design decisions. We use (1) the Mobility 
aspect for the generic code mobility, (2) a Mobility subaspect for each mobile element 
(role, agent, or plan) in order to prevent the explicit invocation of mobility-specific 
methods in MAS classes, and (3) the Mobility pointcuts to bridge the AspectM 
framework with MAS.  

The use of such an aspect hierarchy inverts the way in which mobility concerns are 
typically implemented in MAS: OO abstractions and mechanisms, as inheritance and 
delegation, are replaced by AO abstractions and mechanisms. The latter ones are used 
to crosscut MAS join points in order to provide the mobility modularization. For 
example, in order to solve the problem related to explicit inheritance-based extensions 
involving MAS classes and elements of the OO frameworks (Section 3), we have used 
AO programming languages idioms [32] that allow the use of interfaces as if we were 
using abstract classes; mobility-specific methods can be called by an agent or role class 
through the direct use of interfaces while applications can maintain their own agent 
hierarchies.  

Therefore, in order to introduce mobility-specific concerns into a stationary agent, 
the MAS designers only have to specify the following AspectM hot spots: (1) the 
elements to be defined as mobile, (2) the instantiation pointcut and methods, (3) the 
initialization methods, (4) the migration points, (5) the definition of which objects will 
be moved together with the mobile element, and (6) the definition of the serializable 
elements. For example, Figure 10 shows that the ChairMobility aspect extends the 
Mobility aspect in order to specify the Chair mobility-specific behavior. Concrete 
implementations of the AspectM hot spots are defined for the context of the Chair 
role: (1) the ResearcherAgent type implements the MobileElement interface, 
which allows its instances to become mobile (the ResearcherAgent type must be 
declared as mobile because the Chair role depends on this agent type knowledge 
wherever it is transferred); (2) the InformationSearchingPlan type implements 
the MobileObject interface, so that the plan can be moved with its respective agent; 
(3) the Agenda type implements the Serializable interface, which allows an 
Agenda object to be moved together with its respective instance; (4) the 
ChairItinerary implements the Itinerary class; (5) the getItineraryType() 
and getContextList() methods; (6) the instantiation pointcut, which triggers the 
agent instantiation protocol (agentInstantiation_() advice); (7) the execution of 
the InformationSearchingPlan searchProfile() as the migration pointcut; 
and (8) the initialization EC procedures to be executed in the 
doAfterArrivalHost() method.  

Even though it could be necessary to reengineer MAS classes in order to expose the 
appropriate mobility join points to be affected by the Mobility aspects, all we have 
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described confirms that the AspectM framework in general promotes a seamless 
introduction of mobility concerns into stationary agents. Introducing mobility concerns 
into agents corresponds to the user’s task of making concrete a Mobility aspect for 
each stationary agent on his design. Otherwise, in order to turn a mobile agent into a 
stationary one, we just have to remove the concrete Mobility subaspect 
corresponding to this agent. 

6.1.3  Integration with Distinct Platforms 

Figure 11 presents the design elements used to support a flexible integration between 
MAS and distinct mobility platforms. These elements implement the 
MobilityManagement component of the ArchM architecture (Section 5). A general 
strategy of maintaining an agent reference table is applied, once mobility platforms 
present meaningful differences in their implementations for context and messaging 
services. Thanks to the use of such a table, it is possible to encapsulate contexts and 
message proxies through the Mobility aspects. In particular, we deal specifically 
with message proxies and formats through the MessageParser class, which executes 
parsing between a platform-specific format and the AspectM format (Figure 11). The 
AspectM format is independent on a particular mobility platform and contains 
MessageParser-specific hot spots: the parser(Message) and parser(Object) 
methods (Figure 11). In the following figure, we present other design elements 
containing AspectM hot spots that a mobile agent system developer must define in 
order to use platform-specific services in a flexible way. 

The ReferenceManager class is a stationary agent that is a singleton and 
responsible for (1) the reference table instantiation and its update on each agent 
instantiation, initialization or destruction, and (2) response to common requests, such 
as getting the agent list in a specific context. These services correspond to AspectM 
frozen spots and are implemented through an interface with an abstract class behavior 
[32]. The AspectM ReferenceManager-specific hot spots are the platform-dependent 
methods, such the getMessageId() and send(Message) (Figure 11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11. Integrating MAS with the JADE Mobility Platform  
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The ReferenceCreator class is implemented as a singleton for each context to be 
instantiated and is responsible for (1) the context creation for mobile agent execution at 
a specific host (createContext()), (2) the instantiation of mobile agents on this 
context (createAgent()), (3) the starting of platform services for instantiated agents 
(startAgent()), and (4) the template method for the agent instantiation 
(createMobileAgent()). The responsibilities from (1) to (3) are platform-dependent 
methods, and, thus, they are AspectM ReferenceCreator-specific hot spots. 
Conversely, the template method for the agent instantiation is an AspectM frozen spot 
(Figure 11). 

The MobileAgent class defines mobile agent services abstracted from distinct 
platforms (AspectM MobileAgent-specific hot spots). These services include 
methods, such as: getName(), getId(), move(), clone(), die(), send(), 
sendAsync(), and so forth. In other words, the MobileAgent class is responsible for 
delegating to a specific mobility platform the agent services provided by its interface. 
This class is also responsible for the communication with the ReferenceManager 
class in order to reply to common requests, such as getting the agent list in a specific 
context. The communication between a MobileAgent instance and the 
ReferenceManager instance is an MobileAgent-specific frozen spot that is 
implemented through an interface with an abstract class behavior [32] (Figure 11). 

The Event aspect allows detection of relevant platform-specific join points, such as 
the mobile agent initialization and destruction. For example, the Mobility aspect 
crosscuts the Event aspect when the onArrival() method is executed. This method 
is invoked on the onArrival() after advice. In turn, the onArrival() advice is 
executed immediately after the detection of the initialization pointcut related to a 
specific platform, which must be concrete in an Event subaspect. Note that the body of 
the onArrival() method may not have any code line, since its purpose is only to 
bridge the specific platform onArrival() method (the AspectM Event-specific hot 
spot) with the Mobility aspect initialization pointcut. This same detection strategy is 
used to access other agent lifecycle events, such as destruction, and cloning, and 
constitutes the AspectM Event-specific frozen spot (Figure 11). We can reach the same 
result with OO reflection, but AOP allows the detection of platform-specific events, 
such as arrival, destruction, and cloning, in a more natural way. 

In addition, Figure 11 shows that the MobileElement interface is the element that 
allows MobileAgent objects to represent the mobile elements defined in the 
Mobility aspects. The MobileElement class is the central element of the AO design, 
once it bridges MAS (e. g. EC) with the classes used to integrate MAS with mobility 
platforms (e. g. JADE). If an AO platform instance has been developed (e. g. Aglets or 
JADE), such instance can be largely reused in MAS. Finally, note that: (1) the 
ReferenceCreator and the ReferenceManager classes implement the 
IReferenceMobileAgent interface of the MobilityManagement component; (2) 
the MobileAgent class implements the IMobileAgent interface; (3) the Event 
aspect implements the IReferenceObserver interface; and (4) the MessageParser 
class is an internal MobilityManagement element. 

6.2  The AspectM Framework Dynamics 

Figure 2 called “The Mobile Agent Lifecycle” illustrates that the existence of a mobile 
agent can be represented through stages of a model that include recurrent procedures 
from instantiation, initialization, migration and destruction protocols (Section 2). In 
the AspectM framework, we have abstracted these recurring procedures from the 
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analysis of the agent mobility protocol (Section 2). These procedures are then AspectM 
frozen spots, which are illustrated in Figure 12. 

  
Figure 12. The AspectM Frozen Spots 

 

The instantiation protocol in the context of an application agent and a platform 
mobile agent instantiated from the respective UserAgent and the 
PlatformMobileAgent classes is as follows (Figure 13): 

1. obtains from user the agent id in the application (id argument in the 
agentInstantiation pointcut of the UserAgentMobility aspect); 

2. obtains from user the agent reference name in the application (agent argument 
in the agentInstantiation pointcut of the UserAgentMobility aspect); 

3. creates a mobile agent in the platform (a “platform mobile agent”), 
corresponding to the application agent (createMobileAgent() method); 

4. configures the relationship between the application agent and the platform 
mobile agent (setMobileAgent() method); 

5. obtains from user the agent itinerary type (getItineraryType() method), the 
list of itinerary context ids (getContextList() method), and other data  
necessary to the instantiation protocol; 

6. creates the agent itinerary with the data obtained during the previous step 
(createItinerary() method); 

7. obtains from platform mobile agent the original context id 
(getLocalContextId() method); 

8. initializes the mobile agent itinerary from strategy defined by user and with the 
local context obtained from the previous step as the procedure argument 
(initItinerary(home) method);  

9. obtains from the user the list of the objects that will be moved together with the 
agent (getMobileAgentList() method);  

10. associates the mobile object list and the platform mobile agent 
(initMobileObjects() method);  

11. obtains from user the list of the agent masters (getMasters() method);  

12. associates the master list and the platform mobile agent (initMasters() 
method); 

Instantiation: 
1. obtain from user the agent id on the application; 
2. instantiate a mobile agent on the platform; 
3. obtain from user the list of the context ids; 
4. instantiate the itinerary with the previous list; 
5. initialize the itinerary with a user strategy; 
6. obtain from user the list of the agent tasks; 
7. obtain from user the list of the agent masters; 
8. include the agent on the reference table. 
9. execute application-specific procedures. 
 RemoteInitialization: 

1. obtain from agent server the new context id; 
2. reconfigure agent itinerary with new context data 
3. obtain from server the agent message id; 
4. update reference table with the context data; 
5. send an arrival message to the other agents;  
6. init or resume processes; 
7. execute application-specific procedures. 

Destruction: 
1. terminate all processes; 
2. send a destruction notification to other agents; 
3. remove the agent from the reference table; 
4. effect the agent destruction through platform. 

Migration: 
1. detect a decision movement point; 
2. invoke the movement verification procedure; 
3. if verification is true, terminate processes; 
4. send departure messages to the other agents; 
5. effect the change on the agent execution context 
     through invocation of platform procedures. 
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13. obtains a reference to the ReferenceManager agent 
(configureManagerId() method); 

14. sends a message to the ReferenceManager agent in order to notify mobile 
agent instantiation (addOnReferenceTable() method); 

15. executes application-specific procedures immediately after the agent 
instantiation (doAfterAgentInstantiation() method). 

 

 

Figure 13. The AspectM Instantiation Protocol 
 

In Figure 14, the agent migration protocol: 

1. obtains from user the data related to the migration point (object argument); 

2. from data obtained at previous step, invokes a procedure that verifies if 
migration must be effective (checkDepartureNecessity() method); 

3. if verification returns a true value, executes departure procedures 
(prepareToMove() method); 

4. changes the agent context through invocation of platform procedures (move() 
method). 
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Figure 14. The AspectM Migration Protocol 

 

A subtle detail in the MobilityProtocol component design is the 
MobileObject interface definition. This interface is used in two situations: (1) to 
define a common type for classes from which objects that compose the agent intrinsic 
knowledge are instantiated, such as in the case of the getMobileObjectList() 
return (Figure 13), or (2) to define a common interface for target objects in the 
migration protocol pointcut definition (Figure 14). 

 

The agent initialization protocol is illustrated in Figure 15: 

1. obtains from agent server the new local context id (getLocalContextId() 
method);  

2. reconfigures agent itinerary with new context data (configureItinerary() 
method); 

3. obtains from agent server the agent message id on the new context 
(getMessageId() method); 

4. reconfigures agent attributes related to messaging with the context data 
(configureMessageId() method); 

5. updates the application reference table with the context data, such as context and 
message ids, which provide an effective reference to the mobile agent for all 
other agents (updateOnReferenceTable()); 

6. executes application-specific procedures (doAfterArrivalHost() method). 

In Figure 15, the updateOnReferenceTable() method as well as the 
addOnReferenceTable() method (Figure 13) encapsulate a messaging between 
UserAgent and ReferenceManager agents. After updateOnReferenceTable() 
execution, new context and message ids are available to ReferenceManager agent.  
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Figure 15. AspectM Initialization Protocol 

In Figure 16, the agent destruction protocol:  

1. executes application-specific procedures before agent destruction 
(doBeforeAgentDestruction() method); 

2. removes from application reference table the reference to the mobile agent being 
destructed (removeFromReferenceTable() method); 

3. affects the mobile agent destruction through invocation of platform procedures 
(die() method). 

In Figures 13 and 15, note that the doAfterAgentInstantiation() and 
doAfterArrivalHost() methods in the UserAgentMobility aspect correspond 
to the return of the control flow to application-specific procedures. Note this does not 
occur in migration and destruction protocols (Figures 14 and 16) where control flow is 
not deviated back to user application. 

  

 

 

 

 

 

 

 
 

 

Figure 16. AspectM Destruction Protocol 
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6.3  Instantiation Process 

One of the AspectM development purposes is to improve variability of mobility 
concerns in MAS, such as maintaining a flexible choice of mobility platforms in these 
systems. For example, in order to integrate a mobile agent system with the Aglets 
platform, an Aglets-specific adapter package must be developed from the AspectM 
framework. Once this package is independent from a particular mobile agent system, 
the classes that perform the integration between this system and the aglets will be 
reused in the instantiation process of any application that makes a choice of using 
services provided by the Aglets platform. Evidently, depending on the application-
specific requirements, the Aglets package could be adapted in order to maintain the 
integration between MAS and different mobility platforms. AspectM users can execute 
the following steps to instantiate an application from AspectM framework: 

1. for each Mobility subaspect, specify that an agent type or role has the mobility 
property, which is implemented by an intertype declaration implements 
MobileElement;  

2. for each Mobility subaspect, specify the object types that will compose the 
agent (or role) mobile object list through intertype declarations implements 
MobileObject; 

3. for each Mobility subaspect, specify the object types that may be moved 
together with the agent (or role) through intertype declarations implements 
Serializable; 

4. if the itinerary notion is used, specify the application-specific itinerary classes 
extending the AspectM Itinerary interface (making concrete the Itinerary 
methods, such as the getNext()); 

5. for each Mobility subaspect, make concrete the getItineraryType() and 
getContextList() methods (assuming that the itinerary classes are available); 

6. for each Mobility subaspect, specify the instantiation protocol pointcut; 

7. for each Mobility subaspect, specify the instantiation protocol procedures. In 
the case of application-specific methods, specify the calls to these procedures in 
the doAfterAgentInstantiation() method body; 

8. for each Mobility subaspect, specify the migration protocol pointcut; 

9. for each Mobility subaspect, specify migration protocol procedures, such as the 
checkDepartureNecessity() method, which verifies whether the migration 
should hold in the context of a migration-specific point; 

10. for each Mobility subaspect, specify the initialization protocol procedures, such 
as application-specific procedures that will be executed on the 
doAfterArrivalHost() method. 

For example, Figure 17 presents the UserAgentMobility aspect, which extends 
the abstract Mobility aspect in order to specify the mobility-specific behavior to the 
UserAgent class. In other words, in the UserAgentMobility aspect we specify the 
AspectM hotspots in the context of UserAgent execution. 
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1:  public aspect UserAgentMobility extends Mobility { 

2:  declare parents: UserAgent implements MobileElement; 

3:  declare parents: UserMobileObject implements MobileObject; 

4:  declare parents: UserObject implements Serializable; 

5:    pointcut agentInstantiation(String referenceName,  

6:    MobileElement agent): this(agent) && args(referenceName,*) 

7:    && initialization(UserAgent+.new(String,*)); 

8:  String getItineraryType(MobileElement agent){...} 

9: String[] getContextList(MobileElement agent){...} 

10: MobileObject[] getMobileObjectList(MobileElement agent){...} 

11: String[] getMasterList(MobileElement agent){...} 

12: void doAfterAgentInstantiation(MobileElement agent){...} 

13: void doAfterArrivalHost(MobileElement agent) {...}  

14: pointcut agentMigration(MobileObject object):  

15:    this(object) && execution(Hashtable  

16:    UserMobileObject.execute (Vector)); 

17: ... 

18: } 

Figure 17. AspectM Instantiation for the UserAgent Class 
 

In Figure 17, we specify the following AspectM hot spots for 
UserAgentMobility-specific context: 

• Mobile elements’ definition. The UserAgent class declares that implements the 
MobileElement interface (line 2). Thanks to this declaration, MobileElement 
attributes and methods are inherited by the UserAgent class; 

• Mobile object list’s definition. The UserMobileObject class declares that 
implements the MobileObject interface (line 3). Thanks to this declaration, 
MobileObject attributes and methods are inherited by the 
UserMobileObject class. The introduction of a UserMobileObject object in 
the UserAgent mobile object list is realized in the getMobileObjectList() 
method (line 11); 

• Serializable elements’ definition, as the UserObject object (line 4); 

• Instantiation pointcut definition (agentInstantiation() in lines 5-7). The 
UserAgent constructor is defined as the join point where the mobility code is 
introduced in the UserAgent class; 

• Instantiation protocol procedures (lines 8-11), such as getItineraryType(), 
getContextList(), getMobileObjectList() and getMasterList(); 

• Instantiation application-specific procedures (doAfterAgentInstantiation() 
in line 12). Application-specific procedures are executed immediately after the 
agent instantiation on the mobility platform;  

• Initialization application-specific procedures (doAfterArrivalHost() in line 13). 
Application-specific procedures are executed immediately after the agent arrival 
at a new host; 

• Migration pointcut definition (agentMigration() in lines 14-16). The 
execute() method execution in the UserMobileObject class is defined as a 
migration point. 
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Suppose now the package that bridges the AspectM framework to a specific 
platform is not available. The AspectM hot spots must be concrete in order to make the 
platform use possible. The instantiation process may apply the following sequence (an 
increasing order of complexity): (1) MessageParser; (2) MobileAgent; (3) Event; 
(4) ReferenceCreator; and (5) ReferenceManager. Remember the platform 
instantiation process is independent on the MAS. 

7  The AspectM Case Studies 

This section presents the case studies used for the AspectM evaluation: (1) the Expert 
Committee (Section 3.1), and (2) the MobiGrid [5]. Both systems were ideal for our 
experimental investigation for several reasons. First, the chosen systems have stringent 
modularity requirements due to the demand for producing reusable, adaptable and 
evolvable MAS architectures. Hence, all the system versions were developed with 
modularity principles as main driving design criteria, making sense the exploitation of 
AO software architectures. Second, the original architecture of each case study was 
developed in different contexts – the first system was developed in our own laboratory, 
while the second one has been developed out of our research environment [5]. Finally, 
they are realistic systems that involve emphasis on different MAS concerns, such as 
mobility, learning, autonomy, and their distinct compositions; they also encompasses 
the application of common mobility frameworks, such as JADE [7] and Aglets [43]. 

7.1  Expert Committee 

In the EC system (Section 3.1), the mobility issues and the other agent concerns, such 
as the basic functionalities and the collaboration activities, must be separated how 
much it is possible. Particularly, for the chair role specification, it is necessary to specify 
the mobility protocol in such a way we could implement: (1) a seamless introduction of 
the mobility property into the chair role, and (2) a flexible integration between the EC 
and different mobility platforms. To do that, we may use the AspectM framework 
(Section 6). The next subsections describe the mobility introduction process into the 
EC. 

7.1.1  The Chair Role 

In Figure 3, Role subclasses are used to modularize several roles of the 
ResearcherAgent type (Section 3.1). A Role subclass is used to specify the extrinsic 
knowledge corresponding to a specific ResearcherAgent role. In other words, the 
agent intrinsic knowledge is defined in the class that represents the agent type 
(ResearcherAgent class); the extrinsic knowledge is defined in its respective Role 
subclass. For example, in the EC system, the Chair class, which is a Role subclass, 
defines additional attributes and methods for the ResearcherAgent agent type; in 
this way, a ResearcherAgent object can assume the chair role in a collaborative 
relationship. Figure 18 presents the Chair role definition. We present only attributes 
and methods related to the chair-specific behavior; the methods that define how a chair 
role relates to a researcher agent type are not showed, once they are not relevant in this 
work. 

In Figure 18, examples of attributes introduced by the Chair role into the 
ResearcherAgent agent type are: the ResearcherAgent instance associated to a 
Chair role instance (line 2), a plan of distribution of papers to reviewers (line 3), a list 
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of papers submitted (line 4), a list of paper reviewers (line 5), the limit dates to submit 
(line 6) and to review (line 7) papers, and so on. The Chair role also defines for 
ResearcherAgent agent type the methods for manipulation of attributes (lines 15-
18). There are also attributes and methods related to the Chair mobility behavior; for 
example, the attribute that defines the Chair itinerary (line 8) and the methods for the 
itinerary manipulation (line 19). 

 
1: public class Chair implements Serializable { 

2: private ResearcherAgent agent; 

3: private DistributionPlan distributionPlan; 

4: private List papersList;  

5: private List reviewersList; 

6: private GregorianCalendar submissionDeadline; 

7: private GregorianCalendar reviewDeadline; 

8: private Itinerary itinerary; ... 

9: public Chair(ResearcherAgent agent){ 

10:    this.agent = agent; 

11:    distributionPlan = new DistributionPlan ();  

12:    papersList = new Hashtable();  

13:    submissionDeadline = new Calendar(); ... 

14: } 

15: public DistributionPlan getDistributionPlan(){ 

16:    return this.distributionPlan;  

17: } 

18: ... 

19: public void addHost(String host){...} 

20: }  

Figure 18. The Chair Role Implementation in the Expert Committee 
 

From the Chair implementation in Figure 18, it is reasonable to conclude that the 
ResearcherAgent agent type does not possess any attributes and methods 
corresponding to chair-specific beliefs and plans. In fact, the Chair class is developed 
in order to modularize the Chair role and the ResearcherAgent agent types. In 
consequence, it is reasonable also to conclude that the chair-specific mobility issues are 
also implemented in a modular way. However, not only the EC role classes, but also 
the EC agent types still extend classes and interfaces of APIs provided by the mobility 
platforms (Figure 3). The AspectM framework can be used to obtain a new definition 
for the chair mobility behavior (Section 6) without the architectural restrictions 
imposed by the mobility platforms’ APIs on the MAS design. The EC mobility design 
using the AspectM framework is presented in the next section. 

7.1.2  Mobility Issues of the Chair Role 

In this section, we suppose the package that bridges the AspectM framework with 
JADE and Aglets platforms are available. Section 6.3 presents the instantiation process 
to obtain this package from the AspectM. We have adopted the following steps in the 
AspectM instantiation for the EC classes: 
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1. for the Chair class, create the ChairMobility aspect extending the abstract 
Mobility aspect; 

2. in the ChairMobility aspect, specify that the ResearcherAgent type 
implements the MobileElement interface (“ResearcherAgent implements 
MobileElement” in Figure 11). Thanks to this intertype declaration, the 
ResearcherAgent type becomes a mobile element in EC; 

3. in the ChairMobility aspect, specify that the InformationSearchingPlan 
implements the MobileObject interface (“InformationSearchingPlan 
implements MobileObject” in Figure 11). Thanks to this intertype 
declaration, the InformationSearchingPlan type becomes a mobile object in 
the EC, which can be moved together with a ResearcherAgent instance, and 
can be used in the migration pointcut definition; 

4. in the ChairMobility aspect, specify that the Agenda type implements the 
Serializable interface (“Agenda implements Serializable” in Figure 
11). Thanks to this declaration, the Agenda type can be moved together with a 
ResearcherAgent instance; 

5. since the itinerary notion is used, specify a ChairItinerary class that 
implements the AspectM Itinerary interface, which implements the 
Itinerary methods, such as the getNext(); 

6. in the ChairMobility aspect, make concrete the getItineraryType() and 
the getContextList() methods; 

7. in the ChairMobility aspect, specify the instantiation pointcut, which triggers 
the ResearcherAgent instantiation protocol  (agentInstantiation()); 

8. since there are not application-specific methods to be executed during 
ResearcherAgent instantiation protocol, not specify procedure calls in the 
doAfterAgentInstantiation() method; 

9. in the ChairMobility aspect, specify that the searchProfile()execution of 
the InformationSearchingPlan type is the ResearcherAgent migration 
protocol pointcut; 

10. in the ChairMobility aspect, specify the 
searchProfileCheckDepartureNecessity() method that verifies if 
ResearcherAgent must migrate in the context of the searchProfile(); 

11. in the ChairMobility aspect, specify the initialization protocol procedures, 
such as application-specific procedures to be executed in the 
doAfterArrivalHost() method; 

12. since there are not application-specific methods to be executed during 
ResearcherAgent destruction protocol, not specify procedure calls in the 
doBeforeAgentDestruction() method. 

Figures 19 to 22 present the mobility protocol defined in the ChairMobility 
aspect. The ChairMobility aspect extends the Mobility aspect in order to specify 
the chair mobility-specific behavior. In the ChairMobility aspect, we specify the 
AspectM hot spots in the context of the Chair role.  
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Figure 19 presents the ChairMobility intertype declarations and the instantiation 
protocol. The instantiation protocol pointcut (lines 5-7) is defined as a 
ResearcherAgent instance initialization (line 7) even though the instantiation 
protocol is to be executed in a chair-specific context (searchProfile() is a Chair 
method, not a ResearcherAgent one). The pointcut refers to the ResearcherAgent 
type in order to guarantee that when a Chair role moves, the respective 
ResearcherAgent instance is also moved, once Chair behavior may depend on 
ResearcherAgent–specific knowledge.  

Note also that the getItineraryType() method specifies the agent itinerary type 
as the ChairItinerary class (lines 9-11). The getContextList() method specifies 
hosts that compose the Chair itinerary (lines 12-17). The getMobileObjectList() 
method (lines 18-26) instantiates an InformationSearchingPlan plan, which is 
included in the agent mobile object list. There are no procedures to be called during the 
ResearcherAgent instantiation protocol. In fact, we have not specified method calls 
in the doAfterAgentInstantiation() method (line 8). The ResearcherAgent 
type does not specify the existence of any master agents (lines 27-29). 

 
1: public aspect ChairMobility extends Mobility { 

2: declare parents: ResearcherAgent implements MobileElement; 

3: declare parents: InformationSearchingPlan implements MobileObject; 

4: declare parents: Agenda implements Serializable; 

5: pointcut agentInstantiation(String referenceName,  MobileElement agent):  

6:    this(agent) && args(referenceName,*) &&    

7:    initialization(ResearcherAgent+.new(String,*)); 

8: void doAfterAgentInstantiation(MobileElement agent){ } 

9: String getItineraryType(MobileElement agent) { 

10:    return "expertcommittee.chair.ChairItinerary";  

11: } 

12: String[] getContextList(MobileElement agent){ 

13:  String[] itinerary = new String[10];    

14:    itinerary[0] = "Container-1";    ...  

15:    itinerary[9] = "Container-10";   

16:    return itinerary; 

17: } 

18: MobileObject[] getMobileObjectList(MobileElement agent){  

19:    MobileObject[] mobileObjects = new Task[1]; 

20:    InformationSearchingGoal goal = new     

21:    InformationSearchingGoal(); 

22:    InformationSearchingPlan plan = new     

23:    InformationSearchingPlan(goal); 

24:    mobileObjects[0] = plan;  

25:    return mobileObjects;  

26: } 

27: String[] getMasterList(MobileElement agent) { 

28:    return new String[0];  

29: } } ... 

Figure 19. The ChairMobility Instantiation Protocol 
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Figure 20 presents the ChairMobility migration protocol. The migration protocol 
pointcut is specified as the searchProfile() method execution (lines 2-3). This 
method is implemented in the InformationSearchingPlan class (line 3). The 
searchProfileCheckDepartureNecessity() method verifies if a 
ResearcherAgent instance needs to move in the context of the searchProfile() 
method (lines 4-7). The informationNeedChecking() pointcut and its advice (lines 
8-14) are application-specific aspectual elements. In the 
informationNeedChecking() advice, any methods introduced in the 
ResearcherAgent instance by the “ResearcherAgent implements 
MobileElement” declaration can be invoked, including the move() (line 13). 

 
1: public aspect ChairMobility extends Mobility { ... 

2: protected pointcut agentMigration(MobileObject object): this(object)  

3:    && execution(Hashtable InformationSearchingPlan.searchProfile(Vector)); 

4: public boolean searchProfileCheckDepartureNecessity(Task task, Object 

result){ 

5:    if (result == null) { return true; }   

6:    else { return false; }  

7: } 

8: pointcut informationNeedChecking(Plan plan):  

9:    this(plan) && execution(void DistributionPlan.executePlan(..)); 

10: before (Plan plan): informationNeedChecking(plan) { 

11:    ... 

12:    ResearcherAgent agent = plan.getAgent(); 

13:    agent.move(“Container-5”);    ... 

14: } ... 

15: } 

Figure 20. The ChairMobility Migration Protocol 
 

Figure 21 presents the ChairMobility initialization protocol. The application-
specific procedures of the initialization protocol are invoked in the 
doAfterArrivalHost() method (lines 2-7). First, a test is specified in order to verify 
if the mobile agent is located in the original host (line 3). When the agent is not in the 
original host, it makes choice of tasks to execute (lines 4-6). Remember that in the 
InformationSearchingPlan execution (line 6), if the searchProfile() method 
is called, the agent migration protocol is triggered in the Mobility aspect (Figure 20, 
lines 2-3).  

In Figure 21, other Mobility methods (lines 8-11) could be made concrete 
according to application-specific requirements. In EC, these methods are empty, once 
they are not being used in chair-specific migration scenarios. In the next case study 
(Section 7.2), we show examples where it is necessary to specify methods such as the 
doAfterReceivingMessage() and the doBeforeCloneAgent() ones. 
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1: public aspect ChairMobility extends Mobility { ... 

2: protected void doAfterArrivalHost(MobileElement agent) { 

3:    if (!agent.isAgentOut()) return; 

4:    InformationSearchingPlan plan =(InformationSearchingPlan) 

5:    agent.getMobileObjectOfType("InformationSearchingPlan"); 

6:    plan.executePlan((ResearcherAgent)agent, plan.getGoal()); 

7: } 

8: void doAfterReceivingMessage(MobileElement agent, Message message) { } 

9: protected void doBeforeCloneAgent(MobileElement agent) { } 

10: protected void doAfterCloneAgent(MobileElement agent) { } 

11: protected void doAfterCloneCreation(MobileElement agent) { }  ... 

12: } 

Figure 21. ChairMobility Initialization Protocol 

 

Figure 22 presents the ChairMobility destruction protocol. Note that application-
specific procedures to be executed immediately before agent destruction are not 
specified (line 2). 

 
1: public aspect ChairMobility extends Mobility { ... 

2: protected void doBeforeAgentDestruction(MobileElement agent) {} ... 

3: } 

Figure 22. ChairMobility Destruction Protocol 

 

Figure 23 illustrates a Chair migration protocol scenario, which corresponds to the 
following sequence: 

1. SearchingInformationPlan object instantiation. In other words, the creation 
of a chair searching information plan. The SearchingInformationPlan plan 
implements the MobileObject interface, and, for this reason, its execution 
context can be exposed in the agentMigration() pointcut; 

2. the ChairMobility aspect detects the searchProfile() method execution in 
the context of the SearchingInformationPlan plan through the 
agentMigration() pointcut; 

3. the ChairMobility aspect captures the SearchingInformationPlan 
context information. In this case, the relevant information is the return value of 
the searchProfile() method; 

4. the ChairMobility aspect executes the 
searchProfileCheckDepartureNecessity() method in order to verify if 
the agent playing the chair role needs to migrate; 

5. the ChairMobility aspect invokes the prepareToMove() method in order to 
execute departure procedures; 

6. the ChairMobility aspect invokes the move() method in order to change the 
agent context through invocation of platform procedures. 
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Figure 23. Chair Migration Protocol Scenario 

 

Figure 24 presents the EC design using Aglets. Note that, even though the platform 
classes now correspond to the Aglets, the EC design remains the same. In other words, 
the EC design reaches a flexible integration with distinct mobility platforms (JADE and 
Aglets) using the AspectM framework. This occurs also with any other MAS using the 
AspectM framework and different platforms. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 24. Expert Committee using AspectM and Aglets 
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7.2  MobiGrid 

Our second case study was the MobiGrid framework [5], which is a mobile agent system 
within a grid environment project called InteGrade [31]. In this system, mobile agents 
are used to encapsulate and execute long processing tasks using the idle cycles of a 
network of personal workstations. The agents can migrate whenever the local machine 
is requested by its user since they are provided with automatic migration capabilities. 
The original MobiGrid architecture was defined based on the OO framework provided 
by the Aglets platform [43]. Due to the high coupling between the Aglets underlying 
model and the MobiGrid mobile agents, we decided to reengineer the MobiGrid 
architecture taking into account the following requirements: (1) to modularize the 
MobiGrid mobility-specific concerns, that is, to promote an explicit separation between 
the crosscutting mobility concerns and other non-crosscutting MobiGrid concerns; and 
(2) to enhance the MobiGrid variability in terms of a flexible choice of distinct mobility 
platforms to be used (e. g. Aglets [43], JADE [7], etc.). This section presents the 
MobiGrid original design (Section 7.2.1) and the MobiGrid reengineering outcome 
using the AspectM framework (Section 7.2.2). We also present the mobility-specific 
tangling and scattering problems (Section 7.2.3) solved by the MobiGrid reengineering 
steps using AspectM (Section 7.2.4). 

7.2.1  The MobiGrid Original Design 

Figure 25 presents the MobiGrid detailed design, which results from the composition 
between the MobiGrid original design and the OO framework provided by the Aglets 
platform [43]. For simplification purposes, we present only the most important design 
elements, privileging a partial design view. We do not show the physical view of the 
MobiGrid software architecture. Figure 25 distinguishes the hot spots (variable parts), 
which are marked with a star, from the frozen parts of the frameworks.  

The main concepts of the MobiGrid framework using Aglets are: (1) the task 
(TaskAgent class) and its state (TaskState class) that a programmer wants to submit 
to the MobiGrid framework, (2) the manager (ManagerAgent class) that the 
programmer must reference in order to register his tasks, (3) the server (Server class) 
that the MobiGrid maintains in order to use the Aglets runtime and its resources, (4) 
the event listeners (TaskCloneListener, TaskMobilityListener, and 
ServerListener interfaces) that a programmer must define in order to trigger 
specific procedures at special instants of a task or server execution, (5) the proxies 
(AgletProxy objects), which are used by the MobiGrid in order to perform message 
exchanges among tasks, managers, and servers, and (6) the ids (AgletId objects) that 
the MobiGrid uses in order to identify tasks, managers, and servers. 

The TaskAgent and the TaskState classes allow the specification of a task and its 
state (the MobiGrid hot spots), both moved together with an Aglets mobile agent. To 
define a task and its state, a programmer must make these classes and their abstract 
methods concrete. In particular, the TaskAgent define() method must be made 
concrete in such a way it returns the TaskState object corresponding to the task 
that the programmer wants to submit to the MobiGrid framework. The programmer 
also must specify the task implementation in the TaskState run() method.  The 
specification of these hot spots is realized in a MobiGrid client (Client class), which is 
the abstraction used to identify a client machine in the grid. To register a task and its 
state, each MobiGrid client maintains a reference to a task manager (ManagerAgent 
class, see later). 
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Figure 25. The MobiGrid Original Design 
 

Note that the TaskAgent class extends the abstract Aglet class, which is the basic 
class for mobile agent specification on Aglets platform (Aglets hot spot). Note also the 
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the tasks and clones under its responsibility. Again, the AgletProxy class is used 
mainly for communication purposes. 

The Server class represents an agent server (MobiGrid frozen spot) that is installed 
on each grid machine to provide Aglets resources to MobiGrid agents. To do this, the 
server is associated with AgletRuntime and AgletContext objects, which provide 
an execution environment for managers and tasks. When its user requests a machine, 
the server asks the evacuation of the local tasks. These tasks query their managers, 
which communicate with InteGrade looking for idle machines. When the managers get 
such information, they take action in order to evacuate the tasks to new machines. To 
ask for evacuation of local tasks, the server gets references to TaskAgent objects 
(through the AgletContext object associated with a server) and communicates with 
them through proxies (Aglets frozen spots). In each server there is a need for a 
ContextListener object (Aglets hot spot), which corresponds to a listener used for 
specification of procedures to be triggered at specific instants of a context 
manipulation. 

7.2.2  Mobility-Specific Tangling and Scattering in MobiGrid Design 

From the description above, we can observe that the composition of MobiGrid with the 
Aglets framework causes a high coupling between such frameworks. In fact, note in 
Figure 25 the presence of numbers surrounded by circles throughout the figure. These 
elements are the same as defined in Section 3.2 and are used to point out that the 
implementation of mobility concerns in the MobiGrid framework has a huge impact on 
the basic framework functionalities.  

In the MobiGrid framework, agent types extend the Aglet class to incorporate the 
mobility capabilities. The use of inheritance results in code replication as well as code 
tangling and scattering (problem ). The agent classes also need to hold explicit 
references to Aglets mobility elements (e.g. aglets ids, contexts, and proxies) as 
attributes (problem ). These classes also manage these elements by Aglets-specific 
mobility methods (problem ). As a consequence, the basic functionalities, context-
specific services and messaging exchanges are amalgamated to mobility methods.  

A unique method has mobility code in order to decide when a task should move 
(evacuate() method). This would not entail any problem except for the fact that in 
evolution scenarios, the code related to migration decision is replicated on several 
agent type methods. For example, these methods contain replicated mobility code 
relative to the decision about when an agent should move to a remote environment 
(problem ), or when the agent should go back to the home location (problem ). In 
addition, there is a spread of usual preconditions and postconditions when an agent 
moves to another host (problem ).  

Classes also have to implement the Serializable interface for allowing the 
objects, which are part of the agent, to be moved across hosts (problem ). Again, the 
Serializable interface is just a representative example: OO APIs from platforms 
usually provide a number of interfaces with methods that are implemented by systems 
in order to ensure that actions can be automatically executed at specific moments 
through the mobile agent lifecycle; for instance, MobiGrid procedures are 
automatically executed immediately after the mobile agent cloning (TaskAgent 
implements CloningListener) or just before and/or immediately after migration 
(TaskAgent implements MobilityListener). 
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7.2.3  The MobiGrid Reengineering using AspectM Framework 

Figure 26 presents a partial view of the MobiGrid reengineering using the AspectM. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 26. The MobiGrid Reengineering using the AspectM Framework 
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3. make concrete the Mobility IInstantiation interface for each Mobility 
subaspect (specification of the instantiation pointcut, which triggers the 
instantiation_()  advice); 

4. make concrete the Mobility IMigration interface for each Mobility 
subaspect (specification the migration pointcut that triggers the migration_()  
advice);   

5. make concrete the Mobility methods corresponding to procedures invoked on 
agent instantiation (e. g. getMasterList(), getItineraryType(), etc.); 

6. specify MobiGrid-specific instantiation and initialization procedures to be 
executed on doAfterAgentInstantiation() and doAfterArrivalHost() 
methods, respectively. 

 

Figures 27 to 29 present some code of ServerMobility, ManagerMobility and 
TaskMobility aspects. In Figure 27, note the specification of the instantiation 
pointcut that triggers the creation of a mobile agent that represents a server on the 
platform (lines 3-6). The ServerAgent agent now sends evacuation messages through 
MobileElement methods in the ServerMobility aspect. 

 
1: public aspect ServerMobility extends Mobility { 

2: declare parents: ServerAgent implements MobileElement; 

3: pointcut agentInstantiation(String referenceName,   

4:    MobileElement agent): this(agent) && 

5:    args(referenceName,*) &&    

6:    initialization(ServerAgent+.new(String,*)); 

7: void doAfterAgentInstantiation(MobileElement agent){ } ... 

8: } 

Figure 27. The MobiGrid Reengineering: ServerMobility Aspect 

 

In Figure 28, we have specified the doAfterReceivingMessage() method (lines 
8-10), which handles the messages received by the ManagerAgent agent. In other 
words, a mobile agent is instantiated on a platform to represent the MobiGrid manager 
in order to allow this agent exchange messages with other agents. The manager agent 
exchanges messages especially with the tasks under its control. 

 
1: public aspect ManagerMobility extends Mobility { 

2: declare parents: ManagerAgent implements MobileElement; 

3: pointcut agentInstantiation(String referenceName,   

4:    MobileElement agent):  

5:    this(agent) && args(referenceName,*) &&    

6:    initialization(ManagerAgent+.new(String,*)); 

7: void doAfterAgentInstantiation(MobileElement agent){ }... 

8: void doAfterReceivingMessage(MobileElement agent, Message message){ 

9:   ManagerAgent manager = (ManagerAgent) agent; 

10:   manager.handleMessage(message); } ... 

11: }  

Figure 28. The MobiGrid Reengineering: ManagerMobility Aspect 
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In Figure 29, in the TaskMobility aspect, several methods are specified in order to 
implement the TaskAgent mobility-specific behavior. However, even though a 
TaskAgent instance is effectively a mobile agent, the itinerary-specific methods have 
not been made concrete (lines 8-11). This is due to the next host selection strategy, 
which is determined by the InteGrade infrastructure itself [31]. In addition, the 
migration protocol pointcut also has not been used (line 20); the TaskAgent migration 
is triggered by events not established previously. 

 
1: public aspect TaskMobility extends Mobility { 

2: declare parents: TaskAgent implements MobileElement; 

3: pointcut agentInstantiation(String referenceName,   

4:    MobileElement agent): this(agent) && 

5:    args(referenceName,*) &&    

6:    initialization(TaskAgent+.new(String,*)); 

7: void doAfterAgentInstantiation(MobileElement agent){...} 

8: String getItineraryType(MobileElement agent)  

9:    { return null; } 

10: String[] getItineraryList(MobileElement agent)  

11:    { return null; } 

12: Task[] getTaskList(MobileElement agent) 

13:    { return null; } 

14: String[] getMasterList(MobileElement agent){ 

15:    Enumeration idList = agent. 

16:    getAgentListOnTheContext(agent.getCurrentAddress()); 

17:    /* searching for the manager’s descriptor */ 

18:    String[] masters = new String[1]; 

19:    masters[1] = managerName;   

20:    return masters; 

21: } 

22: pointcut agentMigration(Task task); 

23: void doAfterReceivingMessage(MobileElement agent,  

24:    Message message){ 

25:    TaskAgent task = (TaskAgent) agent; 

26:    task.handleMessage(message); 

27: } 

28: ... 

29: } 

Figure 29. The MobiGrid Reengineering: TaskMobility Aspect 

7.2.4  Summary of The MobiGrid Reengineering Steps 

In the following, we summarize the MobiGrid reengineering steps. 

Removing inheritance relationships between MobiGrid and Aglets platform. After we 
specify the Mobility agentInstantiation pointcut corresponding to the 
MobiGrid object with mobility requirements, and declare through an inter-type 
declaration that the object class implements the MobileElement interface, the 
Mobility aspect introduces the mobility capabilities into an object (task, manager or 
server).  
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Removing references to Aglets contexts. The direct references to Aglet contexts have 
been substituted by invocations of the predefined MobileElement methods, which 
are common services abstracted from distinct mobility platforms, and available to all 
elements that implement the MobileElement interface. For example, code such as 
getAgletContext().getAgletProxies() is substituted with the corresponding 
MobileElement service call, the getAgentListOnContext(String) method. 

Removing references to Aglets proxies. Proxies have been substituted by agent 
descriptors returned by methods such as getAgentListOnContext(). For example, 
MobiGrid code that invokes methods such as proxy.sendMessage() is substituted 
by MobileElement methods such as sendMessage(Message). To set the Message 
argument, it must specify the agent descriptor that corresponds to the message 
receiver, which can be obtained through a search among the agent descriptors returned 
by the getAgentListOnContext() method.  

Removing Aglets listeners. Once the Mobility aspect allows to specify procedures to 
be executed before and/or after operations as cloning, migration, and messaging, the 
TaskCloneListener, TaskMobilityListener and ServerListener procedures 
(Figure 25) have been transferred to corresponding methods in the TaskMobility 
aspect (Figure 26). 

Removing coupling between servers and Aglets runtime. Once the Mobility aspect 
now encapsulates the Aglets internal elements manipulation, we do not need to make 
direct references to this platform runtime any more. In Figure 1, the Server has the 
evacuate() method, beyond the bootstrap() which manipulates AgletContext 
and AgletRuntime objects; in Figure 26, the Server class has only the evacuate() 
method. 

8  Evaluation 

The usefulness and usability of the ArchM architecture (Section 5) has been evaluated 
in the context of EC system (Sections 3.1 and 7.1) and MobiGrid framework (Section 
7.2), two medium-sized case studies from different application domains and originally 
composed with two distinct mobility platforms. In this evaluation, we have not 
mentioned application-specific requirements or requirements related to platform 
models, since ArchM proposes an architectural solution to code mobility 
modularization that is independent on particular MAS platforms or applications. In the 
following, we describe the procedures we have applied to evaluate the ArchM 
architecture (Section 8.1). After that, we discuss some results on how ArchM 
architecture and AspectM framework were effective to address the architectural 
restrictions imposed by platforms on MAS design (Section 8.2) as well as the more 
fine-grained mobility tangling and scattering problems discussed (Section 8.3). 

8.1  Evaluation Procedures and Assessment Metrics 

We have used a suite of architectural metrics (Table 1) to support modularity 
evaluation of the ArchM software architecture (Section 5). We have not used 
conventional architectural assessment methods because they traditionally focus either 
on the architecture coverage of scenarios described in the requirements specification 
[14], or on the satisfaction of high-level non-functional requirements (e.g. [1]) without a 
clear focus on modularity assessment. Our goal here was to assess internal structural 
attributes in the architecture description with a direct impact on architecture 
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modularity. As a consequence, our investigation has provided us with a more fine-
grained understanding of the overall architecture quality since modularity impacts a 
huge number of non-functional requirements in MAS, such as reusability, adaptability, 
flexibility, changeability and the like.  

A discussion about each of those architectural metrics is out of the scope of this 
work. Table 1 presents a definition for each of the used metrics and their association 
with distinct modularity attributes. This suite includes metrics for architectural 
separation of concerns (SoC), architectural coupling, component cohesion and interface 
complexity. We have already used similar categories of metrics [24, 51] for evaluating 
aspect and object-oriented designs in a number of systematic case studies [9, 10, 18, 28, 
42] not related to mobile agent systems. They have been proved to be effective 
modularity indicators for detailed design and implementation artifacts. The metrics 
can also be classified in two categories according to the architectural viewpoint under 
assessment: concern viewpoint or component viewpoint. On one hand, the results of 
the SoC metrics are obtained for each concern of interest in the system. On the other 
hand, the results of the other metrics are all gathered for each component in the system 
architecture. Table 1 also relates the metrics to the viewpoint from which their values 
are obtained. For all the employed metrics, a lower value implies a better result. 
 
 

Table 1. Architectural Metrics Suite 

Attribute Metric Definition  

Concern Diffusion over  
Architectural Components (CDAC) 

Counts the number of components that 
encompass a concern. 

Concern Diffusion over 
Architectural Interfaces (CDAI) 

Counts the number of interfaces related to a 
concern. 

Architectural 
Separation  
of Concerns 

Concern Diffusion over 
Architectural Operations (CDAO) 

Counts the number of operations (defined in 
interfaces) that are related to a concern. 

C
o
n
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rn
 

Architectural Fan-in Counts the number of components that require 
service from a component (caller components). 

Architectural 
Coupling 

Architectural Fan-out Counts the number of components from which the 
component requires service (callee components). 

Component 
Cohesion 

Lack of Concern-based Cohesion 
(LCC) 

Counts the number of concerns addressed by a 
component. 

Number of Interfaces Counts the number of interfaces of each 
component. 

Interface 
Complexity 

Number of Operations Counts the number of operations in the  
Interfaces of each component. 

C
o
m

p
o
n
en

t 

 

The metrics of SoC measure the degree to which a single concern in the system 
maps to the architectural elements (components, interfaces, operations and 
parameters). The interface complexity is measured in terms of the total number of 
interfaces, operations and parameters of each component. The coupling metrics 
measure the number of components connected to each component. The cohesion 
metric computes each component’s semantic cohesion based on the number of 
concerns addressed by it. The higher the number of different concerns in the 
component the lower is the cohesion. 

In order to proceed with the measurement of SoC, there is an architecture 
shadowing process in which the architect must assign every component element 
(interface, operation and parameter) to one or more concerns. In the EC as well in the 
MobiGrid, we treated the mobility concerns and the application itself as the driving 
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concerns to be modularized. After the shadowing of the architecture models, the data 
of the SoC metrics (CDAC, CDAI, and CDAO) was manually collected. 

8.2  Architectural Evaluation 

This section presents the results of the measurement process. The data have been 
collected based on the set of defined measures (Section 8.1) in the two case studies. The 
presentation is divided into three parts. Section 8.2.1 presents the evaluation results for 
the separation of architectural concerns. Section 8.2.2 presents the results for the 
coupling and cohesion metrics. Section 8.2.3 presents the results for the interface 
complexity metrics. We present the results by means of tables that place the values of 
the metrics for the aspect-oriented and non-aspect oriented architectures of each 
system side-by-side. 

8.2.1  Separation of Architectural Concerns 

In the quantitative evaluation of the EC system, the data collected for both AO and 
non-AO architectures shows favorable results for the AO version for most of the 
metrics used. Table 2 presents the complete data collected for both EC architecture 
versions considering the SoC metrics. The application of the SoC metrics allowed us to 
evaluate how effective was the separation of the agency concerns in the both EC 
architectures. These metrics count the total number of components, interfaces and 
operations dedicated to implement a concern. 
 
  

Table 2. Expert Committee Architectures: Separation of Concerns Measures 

#components 
(CDAC) 

#interfaces (CDAI) #operations (CDAO) Concern 

AO Non-AO AO Non-AO AO Non-AO 

Kernel 1 1 4 2 68 14 

Interaction 1 2 3 9 10 22 

Adaptation 1 2 2 6 5 34 

Autonomy 1 2 3 7 31 80 

Collaboration 1 2 4 6 37 87 

Mobility 1 2 3 3 20 35 

Learning 1 2 2 4 6 16 

 

We can observe significant differences between the AO and non-AO versions for all 
the SoC metrics. Table 2 shows that the non-AO architecture requires two components 
to address each of the system concerns (CDAC metric), except for the Kernel concern. It 
happens because the Kernel component needs to inevitably embody functionalities 
from the different concerns besides to implement the kernel-specific functionalities; the 
Kernel component plays the mediator role and, as a consequence, propagates 
information relative to every concern to the other “colleague” components (Section 
3.1). On the other hand, each component in the AO version is responsible for 
implementing the functionalities associated with exactly one concern because such 
information is directly collected from the context where it is generated through 
crosscutting interfaces; as a result, the design of the Kernel component and its 
interfaces are not affected by other concerns. 
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We can also observe in Table 2 that the AO version requires fewer interfaces (CDAI 
metric) and operations for most of the system concerns, with the exception of the 
Kernel concern. The Kernel concern in the AO version is represented by the Kernel 
component. This component needs to expose new interfaces in the AO version to 
enable the implementation of the different aspectual components. However, all these 
additional interfaces are part of the Kernel functionalities and separation of 
architectural concerns is not hindered. As we can see in Table 2, there is also a 
significant increase in the number of operations (CDAO metric) for almost all the 
agency concerns in the non-AO version; the only exception is the Kernel concern. The 
Interaction concern, for example, is addressed in the AO version by 3 interfaces and 10 
operations. While the same Interaction concern in the non-AO version requires 9 
interfaces and 22 operations. This growth in the non-AO architecture is mainly caused 
by the use of the mediator-based pattern, which requires the additional interfaces in 
the Kernel component with their associated operations. 

Table 3 shows the results for the three SoC metrics for the MobiGrid architectures. 
The AO architecture performed better than the non-AO version in terms of SoC. As 
shown in Table 3, the mobility concerns are scattered over fewer architectural 
components in the AO architecture (CDAC metric). These concerns are present in 4 
components in the non-AO architecture, whereas they crosscut only 3 components in 
the AO architecture. This occurs because, in the non-AO architecture, the MobiGrid 
component encompasses issues for explicitly handling of mobility lifecycle events. 
These events are captured by the IMobileElement crosscutting interface in the AO 
architecture, which makes the mobility-related interfaces unnecessary in the 
MobiGrid component.  
 
 

Table 3. MobiGrid Architectures: Separation of Concerns Measures 

#components 
(CDAC) 

#interfaces (CDAI) #operations (CDAO) Concern 

AO Non-AO AO Non-AO AO Non-AO 

Mobility 3 4 13 23 326 407 

Application 
(MobiGrid) 

1 1 1 1 18 18 

 

The SoC metrics also showed better results for the AO architecture in terms of 
number of interfaces (CDAI metric) – 13 vs. 32 – and number of operations (CDAO 
metric) – 326 vs. 407. This is mainly caused because the MobilityProtocol and 
MobilityManagement aspectual components need fewer interfaces and operations 
for handling events. The aforementioned absence of mobility interfaces in the 
MobiGrid component also contributes to this difference. 

8.2.2  Architectural Coupling and Component Cohesion 

Tables 4 and 5 present the results for architectural coupling and component cohesion 
metrics for the Expert Committee and MobiGrid architectures, respectively. As in 
subsection 8.2.1, the tables in this subsection and in subsection 8.2.3 place the metrics 
values for the AO and non-AO architectures side-by-side. However, since the values 
here are for each component (component viewpoint), the bottom of the tables also 
provides the total values (sum of all the component measures) that represent the 
results for the overall architecture viewpoint. Therefore, rows labeled “Total” indicate 
the tally for the system architecture, while rows labeled “Diff” indicate the percentage 
difference between the AO and non-AO architectures in the system viewpoint relative 
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to each metric. A positive value means that the non-AO architecture fared better, 
whereas a negative value indicates that the AO architecture exhibited better results. 

As we can observe in Table 4, there is an expressive coupling increase in the non-
AO Expert Committee architecture considering the number of requiring components 
(Architectural Fan-in metric). The fan-in is 12 in the non-AO architecture, while it is 9 
in the AO architecture, representing a difference of 25% in favor of the latter. This 
occurs because in the AO version the services of several aspects (e.g. Adaptation, 
Autonomy, Learning) are not requested by other components granted to the 
dependency inversion promoted by AO architectures.  
 
 

Table 4. Expert Committee Architectures: Coupling and Cohesion Measures 

Architectural  
Fan-Out 

Architectural  
Fan-In 

#Concerns  
(Lack of Cohesion) 

Component 

AO Non-AO AO Non-AO AO Non-AO 

Kernel 0 6 5 5 1 7 

Interaction 3 2 2 2 1 1 

Adaptation 2 1 0 1 1 1 

Autonomy 2 1 0 1 1 1 

Collaboration 1 1 1 1 1 1 

Mobility 2 1 1 1 1 1 

Learning 1 0 0 1 1 1 

Total: 11 12 9 12 7 13 

Diff: -8.3% - 25.0% -46.2% 

 

With respect to the architectural fan-out, the measures did not show an expressive 
difference from the system viewpoint; the difference was lower than 10% (Table 4). We 
assess the lack of cohesion of a component counting the number of distinct concerns 
addressed by it, which is captured by the Lack of Concern-based Cohesion (LCC) 
metric. LCC measurement resulted in better results for the AO version (13 vs. 7 = 
46.2%). This superiority is justified by the fact that in the non-AO architecture, the 
Kernel component needs to implement required interfaces associated with the six 
system concerns (CBLC metric). Hence, there is an explicit architectural tangling in the 
Kernel component. 

The AO architecture of the MobiGrid system presented better outcomes in terms of 
the two coupling metrics and in terms of the cohesion metric as well (Table 5). The 
non-AO architecture exhibited architectural fan-out 50% higher than the AO 
architecture. This difference is a consequence of the reduction of fan-out in both 
MobiGrid and MobilityManagement components in the AO version, since they do 
not have to explicitly call the MobilityProtocol component for notifying events. 
Being an aspectual component, MobilityProtocol captures the events by means of 
crosscutting interfaces. MobilityPlatform also contributes for decreasing the fan-
out, because it does not need to be connected to the MobilityManagement 
component in order to notify events. In this case, the aspectual 
MobilityManagement component observes the events by means of its 
IReferenceObserver crosscutting interface. For the same reasons, the architectural 
fan-in metric also presented worse results for the publisher-subscriber version of the 
architecture (50% higher). In this case the fan-in reduction is observed in the 
MobilityProtocol and MobilityManagement components. 
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Table 5. MobiGrid Architectures: Coupling and Cohesion Measures 

Architectural  
Fan-Out 

Architectural  
Fan-In 

#Concerns  
(Lack of Cohesion) 

Component 

AO Non-AO AO Non-AO AO Non-AO 

MobilityPlatform 0 1 1 1 1 1 

MobilityManagement 1 2 1 2 1 1 

MobilityProtocol 2 2 0 2 1 1 

MobiGrid 0 1 1 1 1 2 

Total: 3 6 3 6 4 5 

Diff: -50.0% -50.0% -20.0% 

 

Similar to the Expert Committee case, the cohesion measures in the MobiGrid 
architectures pointed out a difference in favor of the AO solution only in one of the 
components, namely the MobiGrid component. This component encompasses two 
concerns in the non-AO solution: the MobiGrid concern, which is the primary purpose 
of the original definition of this component, and the mobility concern. Conversely, in 
the AO solution, the MobiGrid component is not affected by the mobility concern and 
entirely dedicated to its main concern. 

8.2.3  Interface Complexity 

Tables 6 and 7 show the results for the interface complexity metrics for the Expert 
Committee and MobiGrid architectures, respectively. Regarding the Expert Committee 
system (Table 6), the metrics demonstrate the modularity benefits obtained in the AO 
version compared to the non-AO one. There was a bigger difference in the number of 
interfaces specified for each version (35 vs. 21 = 43.2%), which favors the AO version. 
This difference is mainly due to the additional interfaces of the Kernel component, 
but it is also a result of the values collected for other components. The increase in the 
number of interfaces metric for the non-AO version is also reflected in the number of 
operations. Table 6 shows that the number of operations is 38.5% higher in the non-AO 
version. Again, it happens because the Kernel component plays the mediator role 
and, as a consequence, it has additional interfaces and operations to propagate 
information relative to every concern to the other “colleague” components. 
 
 

Table 6. Expert Committee Architectures: Interface Complexity Metrics 

#Interfaces #Operations Component 

AO Non-AO AO Non-AO 

Kernel 4 16 68 115 

Interaction 3 5 10 13 

Adaptation 2 4 5 29 

Autonomy 3 4 31 49 

Collaboration 4 4 37 47 

Mobility 3 2 20 19 

Learning 2 2 6 16 

Total: 21 35 177 288 

Diff: -43.2% - 38.5% 
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The use of aspects had a strong positive influence in the interface complexity of the 
MobiGrid architectural components, as shown in Table 7. For the non-AO architecture, 
the number of interfaces was more than 40% higher than in the AO solution. Also, the 
number of operations was higher in the non-AO solution (19.1%). The main reason for 
this result is the decrease in the number of interfaces of the MobilityManagement 
aspect. In the non-AO solution, the conventional component has interfaces to 
propagate mobility events relative to the initialization, migration, destruction and 
instantiation of agents. On the other hand, in the AO solution, the aspectual 
component MobilityProtocol crosscuts the IReferenceObserver interface and 
directly observes the events when MobilityPlatform notifies them. Hence, the 
interfaces to propagate them are not necessary.  
 
  

Table 7. MobiGrid Architectures: Interface Complexity Metrics 

#Interfaces #Operations Component 

AO Non-AO AO Non-AO 

MobilityPlatform 3 4 176 185 

MobilityManagement 4 9 124 155 

MobilityProtocol 6 8 26 61 

MobiGrid 1 3 18 24 

Total: 14 24 344 425 

Diff: -41.7% -19.1% 

8.3  Implementation Evaluation 

Through the direct use of OO APIs provided by mobility platforms, several MAS 
classes that represent the agent types and roles need to extend the basic class for 
mobile agent instantiation to incorporate the mobility capabilities (e. g. JADEAgent 
class in Section 2.3). The use of inheritance results in code replication as well as in both 
code tangling and scattering; the agent basic functionalities and collaborative activities 
are amalgamated to mobility-specific methods (problem ). 

To solve this problem, AspectM provides the agentInstantiation pointcut. This 
pointcut is abstract and must be made concrete by AspectM users in the Mobility 
subaspect (a hot spot). In other words, an agent type constructor must be defined as 
the join point where the code mobility is introduced in the agent type class. The 
agentInstantiation advice then executes the instantiation protocol (a frozen spot), 
which instantiates a mobile agent corresponding to the application agent in the 
platform in use.  

Before the agentInstantiation pointcut is made concrete, it is necessary to 
specify that the agent type implements the AspectM MobileElement interface 
through an intertype declaration in a Mobility subaspect. Thanks to this declaration, 
the agent type becomes a mobile element in an application; the agent can use the 
mobility-specific services independently on a particular platform. For example, 
itinerary-related attributes and methods are encapsulated in the AspectM, but their 
maintenance and configuration are implemented in a Mobility subaspect through the 
MobileElement interface methods.  

As a consequence, the MobileElement interface also solves the problems  and  
described in Section 3.2. Using this interface, the agent and role classes do not need to 
hold an explicit reference to mobility elements (e.g. itinerary) as attributes (problem 

), or have additional methods to manage these elements (problem ). Using the 
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AspectM, it becomes possible to isolate the itinerary-related and other 
MobileElement issues from the basic functionality and other system concerns. 

In addition, thanks to the abstract agentMovement pointcut (a hot spot), AspectM 
users make concrete the migration points (Section 2.2) corresponding to a specific 
agent. Users can also specify the abstract mobility-specific methods, such as the 
checkMobilityNeed(), which is used to verify if an agent needs to migrate (Section 
6.2). The migration points as well as the mobility-specific methods are called by the 
agentMigration advice, which implements the agent migration protocol (a frozen 
spot). This advice solves the problems  and , once mobility concerns are isolated 
from the basic functionality. The same idea is used to solve the spread of usual 
preconditions and postconditions that are independent on the MAS applications 
(problem ). The instantiation, migration, arrival, and destruction advice implement 
together the generic mobility protocol.  

A solution similar to the MobileElement interface also solves the problem  
(Section 3.2). Through an intertype declaration, AspectM users specify in Mobility 
subaspects which elements are serializable. For example, an AspectM user must 
specify that his itinerary class is serializable, once itinerary attributes must be moved 
together with mobile agents; on the other hand, in the EC, the Agenda class is also 
specified as serializable, once an agenda object must be moved together with the chair 
role. 

The problem  also refers to platform-specific interfaces (Section 3.2); the 
application agent types must declare and possibly specify the implementation of OO 
API interfaces (e. g. AgletMobilityListener interface in Section 7.2.1). As 
AspectM encapsulates the platform-specific issues, these interface declarations become 
unnecessary. AspectM users need only declare the types that implement the 
MobileElement, Serializable, and MobileObject interfaces (Section 6.2). 

In addition, the MobileElement interface also solves conceptual mismatches and 
conflicts (Section 3.2). Remember that, using  OO API interfaces, some types extend a 
platform-specific class for mobile agent instantiation (e.g. JADEAgent), even when 
agent or roles types are stationary; the introduction of mobility also causes 
implementation clashes, and requires the renaming of methods and changes in 
respective callers. AspectM solves these problems once the use of MobileElement 
interface is isolated from the basic functionalities and the other system concerns in the 
Mobility aspects. 

Finally, we provide significant experimental evaluation of the benefits of the 
AspectM implementation in [52]. We have used the AJATO tool for measuring [17]. 
The comparative percentage of structural elements (classes, methods, etc.) in both OO 
and AO implementations of our case studies points out that the AspectM numbers are 
smaller by about 20%. 

8.4  General Analysis 

The use of the architectural modularity metrics allowed us to observe the following: 

Addressing Restrictions and Conceptual Mismatches. First, after a careful joint analysis 
of the EC and MobiGrid architectures, we observed that both non-AO designs imposed 
some undesirable bidirectional couplings. For example, in the case of EC, all the 
“colleague” components need to inevitably contain references to the “mediator” 
component and vice-versa. Conversely, the AO architectural solutions for both EC and 
MobiGrid have reduced the overall architecture couplings by making almost all the 
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inter-component relationships unidirectional (aspects affect the components). This 
phenomenon is observed mostly from the fan-in and fan-out measures (Section 8.2.2). 
For example, the Kernel component has the fan-out zero in the AO version of the EC 
architecture, while it is 6 in the mediator-based version (Table 4). This coupling 
decrease in the EC and MobiGrid versions that follow the ArchM architecture are 
reflected in the AspectM use. Solutions for architectural restrictions and conceptual 
mismatches (Section 6) are achieved by replacing the direct use of OO abstractions and 
mechanisms, as inheritance and delegation, by AO abstractions and mechanisms. 

Promoting Superior Variability and Enhanced Composability. Variability and 
adaptability were main driving requirements in the architecture design of EC and 
MobiGrid. In these systems, mobility issues should be modularized in order to 
promote easier variation of the mobility platforms. However, the non-modularization 
of mobility crosscutting concerns in the non-AO architectures hindered the satisfaction 
of these variability goals. This problem can be observed in the SoC measures (Section 
8.2.1) where the results in Tables 2 and 3 show the tangling and scattering of several 
concerns, such as mobility, learning, and collaboration. As a result, the plugability of 
elements realizing such concerns becomes cumbersome. Conversely, using ArchM 
facilitated the variability of the mobility platform in EC and MobiGrid systems. This is 
reflected in AspectM, which is generic enough and independent of specific mobility 
frameworks. It has some abstract intermediary classes and interfaces to bridge our 
framework with the chosen mobility platform (Section 6.1.3). Reuse of services of the 
mobility platform is achieved because AspectM provides a customization point to plug 
in a specific mobility platform. In order to change from one framework to another, 
MAS developers only have to perform some setups. There was no impact on the design 
and implementation of other agent concerns. Although the AO composition required 
some refactoring to expose certain join points to other aspects, it was more 
straightforward than the OO composition, including the scenarios involving the 
composition between the AspectM framework and infrastructures [5]. 

9  Related Work 

Design support for mobile agents has been studied from different perspectives, 
including solutions supporting the structuring of code mobility [7, 8, 34, 35, 43, 48, 56]. 
Holder et al. [34] proposes a programming model for programming of the dynamic 
layout separately from the application’s logic, including support to mobility. However, 
despite FarGo’s programming model being very close to Java’s own model, its focus is 
on general widely-distributed applications, not necessarily autonomous-agents-based 
applications [34]. Bouraqadi-Saâdani [8] presents a design of an infrastructure for 
applications where the mobility concerns are cleanly separated from other concerns, 
but his focus is mainly on strong mobility [8]. Ubayashi [56], Keeney [35] and 
Montanari [48] also propose a policy-based separation of concerns for code mobility. 
However, as the OO APIs from mobility platforms are largely in use [7, 21, 39, 43, 56], 
we consider that these approaches do not deal with the code mobility management at 
the same time they provide solutions to the usual fine-grained problems found in MAS 
development (Section 3.2). For example, the EpsilonJ reflective framework, which 
supports the RoleEP approach [56], supports mobility, but the agent programmers 
have to extend several EpsilonJ interfaces and abstract classes, which decreases the 
code mobility modularization (Section 3.3).  
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We introduced the use of AOP for modularization of code mobility in [45]. 
Subsequently, we presented the AspectM framework in [46]. Comparing to 
RoleEP/EpsilonJ approach [56], the use of binding-operation [56] eliminates the 
necessity of AOP-style weaving, and inter-type declarations in AspectJ can be replaced 
by adding role methods through binding-operation. However, the advice construct 
does not correspond to any model constructs in RoleEP. This is a weak point of RoleEP, 
which often causes code duplication [56]. The EpsilonJ framework is also dependent on 
the Aglets platform [56]. Now we present this paper as an extension of [46], including a 
number of improvements, especially explained. First, we provide an aspect-oriented 
software architecture, the ArchM, for code mobility that is independent on particular 
model implementations. Second, we survey the essential concerns in MAS 
development under the perspective of software engineering point of view. Third, our 
systematic analysis of the modularity problems caused by the crosscutting nature of 
code mobility encompasses the usual fine-grained problems found in MAS 
development. Fourth, we introduce the notion of architectural aspects to solve the 
problem of code mobility modularization. Fifth, we explain more detailed issues of the 
AspectM framework [46], including the dynamics and implementation of its internal 
elements. Finally, we present the case studies, including a number of code examples, 
used to evaluate the ArchM architecture, beyond the evaluation procedures, metrics 
and the results themselves.  

10  Conclusion and Future Work 

The facets of a mobility strategy should be transparent to the rest of a mobile agent 
system so that changes in the mobility concerns have no impact on the implementation 
of the other agent concerns. On the other hand, modularity occupies a pivotal position 
in the design of good mobility architectures: it is during architectural design that 
crucial modularity-related requirements in MAS such as adaptability, flexibility, 
reusability, maintainability, testability, etc., must be addressed. However, building 
modular MAS architectures is a challenging task mainly because they need to reason 
and make decisions with respect to a number of crosscutting architectural mobility 
concerns. This paper presents the ArchM, an aspect-oriented software architecture that 
ensures a clean modularization of the mobility concerns, a transparent introduction of 
code mobility into stationary agents, and an improved variability of the mobility 
concerns. Even though the ArchM is independent on particular mobility frameworks 
or applications, an ArchM implementation, the AspectM framework, was also 
presented to provide solutions to more fine-grained problems related to tangling and 
scattering of code mobility. The ArchM/AspectM allowed us not only to specify the 
basic mobility behaviors, but also the specification of the agent types or roles that are 
mobile, the declaration of the traveling circumstances, the calls to departure and the 
control of agent itinerary. The ArchM evaluation presented better outcomes in terms of 
the separation of concerns, coupling, cohesion and complexity metrics when compared 
to the original architectures of the case studies we have architected. A next step is to 
evaluate the ArchM architecture in the light of different architectural attributes other 
than modularity issues, such as performance and availability.  
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