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Abstract. An architectural style can be regarded as a paradigm of architectural modular-
ity that encompasses syntactic descriptions, semantic models and constraints over them.
In this paper, we analyze the in�uence exerted by architectural styles over the nature of
architectural aspects. We propose style-based join point models that expose high-level join
points based on style semantics, with the goal of enhancing composition of architectural
aspects in hybrid software architectures. We present a real-life case study involving several
styles to demonstrate the expressiveness of the style-oriented join point model. We also
assess the scalability of our proposal in the presence of four stylistic composition cate-
gories, namely hierarchy, specialization, conjunction, and overlapping. Finally, we discuss
the interplay of the style-based architecture composition model and the other conventional
models.

Keywords: architectural aspects, architectural styles, style-based composition, semantics-
based composition.

Resumo. Um estilo arquitetural pode ser visto como um paradigma de modularidade no
nível arquitetural, que agrega descrições sintáticas, modelos semânticos e restrições. Neste
artigo, nós analisamos in�uência exercida por estilos arquiteturais sobre a natureza de as-
pectos arquiteturais. Nós propomos modelos de pontos de junção baseados em estilo que
expõem pontos de junção de alto nível, tendo como base a semântica de estilos arquitetu-
rais, para melhorar a composição de aspectos em arquiteturas de software híbridas. Nós
apresentamos um estudo de caso realista que envolve diversos estilos para demonstrar a
expressividade de modelos de pontos de junção baseados em estilo. Também avaliamos a
escalabilidade de nossa proposta no presença de quatro categorias de composição baseada
em estilos, a saber: hierarquia, especialização, conjunção e sobreposição de estilos. Final-
mente, discutimos a relação entre o modelo de composição arquitetural baseado em estilo
e os outros modelos convencionais.

Palavras-chave: aspectos arquiteturais, estilos arquitetural, composição baseada em
estilo, composição baseada em semântica.
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1 Introduction

Architectural aspects are expected to �modularize widely-scoped properties that naturally
crosscut the boundaries of system components at the software architecture level� [2, 6, 14].
However, there is little consensus in the research community on what architectural aspects
are and on the ways they are related to elements in a software architecture. For exam-
ple, most aspect-oriented approaches at the architecture level tend to focus on object or
component modularity hence mimicking the object and component call graph based join
point models in aspect-oriented programming languages. They tend to neglect other well
established architecture-level modularity mechanisms such as architectural styles. This
means that the architecture speci�cation is no longer a blueprint of systematic decisions
and stylistic guidelines governing the design and implementation of the system. Instead
an aspect-oriented architecture is reduced to a high-level model of the aspect-oriented
program to be developed. Consequently the resulting architectures are brittle in nature
making them di�cult to evolve and maintain. Furthermore, ignoring well-established ar-
chitecture modularity mechanisms such as architectural styles makes it di�cult to deploy
an �aspect-oriented thinking� within an existing architecture design process as architects
need to understand the e�ects of crosscutting in the context of well-known architectural
abstractions.

The selection of a particular architectural style [30, 35, 4] or combination of styles [28,
34] for a software system has a signi�cant impact on system decomposition and system-
wide properties. An architectural style prescribes a main kind of system decomposition
and modularization, and adopts distinct component types and connector types, with style-
speci�c semantics. Di�erent architectural styles applied to the same problem can lead to
designs with signi�cantly di�erent properties [33]. Since a style prescribes some kind of
system decomposition and modularization, it is fair to make the assumption that some
system concerns are well modularized while others are not, depending on the choice of
architectural style(s). This raises two key questions. Firstly, how is aspect modularity
related to style modularity? and, secondly, can style-based semantics of components and
connectors serve as a basis of high-level architectural join point models?

In this paper we aim to answer these questions. We �rst revisit some classical exam-
ples of architectural styles from [18] to investigate how the bene�ts and drawbacks of each
architectural style can improve our understanding of architectural aspects (Section 2). We
then de�ne a set of style-based join point models, each derived from our investigation of the
structural and behavioral semantics of a speci�c architecture style and the nature of cross-
cutting in the context of that architecture style (Section 3). These style-based join point
models facilitate aspect speci�cation and composition in the context of real large-scale and
complex systems which are seldom homogeneous. In such systems, di�erent architectural
styles may be used for di�erent parts of the system. Hence, pointcut expressions in an
aspect crosscutting various architectural elements in such a system are inevitably based on
querying over multiple style-based join point models. The pointcut language for our style-
based join point models is presented in Section 4. We then present a real-life case study
involving several styles for which we have investigated the scalability of our style-based as-
pect speci�cation and composition mechanism(Section 5). Section 6 discusses some related
work before we conclude the paper in Section 7.
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2 Architectural styles and aspects

This section presents architectural designs for the KWIC (Key Word In Context) index sys-
tem expressed in three di�erent architectural styles with the twofold goal of: (i) contrasting
the criteria for system decomposition supported by each architectural style, and (ii) an-
alyze the nature of the crosscutting concerns with respect to that style that may emerge
at the architectural level. The KWIC has been used in di�erent contexts to illustrate
the bene�ts and drawbacks of design choices driven by modular decomposition [29] and
architectural styles [18].

We also use the KWIC system to illustrate the client-server and the layered styles. Al-
though it is not straightforward and perhaps even desirable to structure the KWIC using
these styles, we use it as this would allow us to contrast the three styles and showcase dif-
ferent style-speci�c decompositions and crosscutting in the same context. This discussion
supports a better understanding about to what extent a certain widely-adopted architec-
tural pattern exhibits style-speci�c crosscutting features. Second, the three architectural
designs will be also contrasted with respect to their ability to support modular treatment
of a similar architectural intriguing concern. In particular, they are evaluated with respect
to the ease of evolution to incorporate error handling, a widely-scoped in�uencing concern
at the architectural level.

2.1 Pipe and �lter style

Figure 1: KWIC using a pipe and �lter style [18].

Pipe and �lter systems are used for processing or transforming data streams. As such,
the pipe and �lter style prescribes functional decomposition. Components are functional
entities (��lters�) that usually apply local transformation to their input streams, incremen-
tally, so that output begins before input is consumed. Each �lter has a set of inputs and
a set of outputs. A �lter reads streams of data on its inputs and produces streams of
data on its outputs, delivering a complete instance of the result in a standard order. The
connectors of this style (�pipes�) serve as conduits for the streams, transmitting outputs of
one �lter to inputs of another [18].

Figure 1 presents the KWIC system using the pipe and �lter style. The KWIC sys-
tem reads an ordered set of lines (Input �lter), and any line may be �circularly shifted�
(CircularShift �lter) by repeatedly removing the �rst word and appending it at the end
of the line. The KWIC system sorts all circular shifts of all lines in alphabetical order
(Sort �lter) and outputs a listing of these ordered lines (Output �lter) [29].
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There are several reported advantages associated with the use of pipe and �lter systems,
resulting in enhanced reusability and maintainability of �lters [18]. These advantages are
aligned with the functional decomposition prescribed by the style. One of its disadvantages
is related to data manipulation. The pipe and �lter style is function-oriented � therefore,
data representation is treated as a secondary concern. Changing the data representation is
typically di�cult because data type information is spread across �lter and pipe interfaces.
For the pipe and �lter style, the functional concern is well modularized while the data
concern is not � it crosscuts several architectural elements, as pointed out by the gray
arrows in Figure 1.

Error handling is reported as the Achilles' heel of the pipe and �lter style [4]. Since
pipes and �lters do not share any global state, error handling is hard to address and is often
neglected. Moreover, error handling on pipe and �lter systems may require resynchronizing
the elements when a �lter or pipe crashes, and restarting the system.

2.2 Client and server style

The client-server style de�nes a service-oriented architecture where components can only
be a client or a server. They are organized in terms of requesters and providers of services.
Servers provide services to clients. A client can only be connected to a server and a server
can only be connected to a client. A client requests a service provided by a server, which
performs the service and returns the result to the client. Connectors specify the interaction
between clients and servers.

Figure 2 presents a client-server version for the KWIC system adapted from the abstract
data type (ADT) style [18]. LineStore, CircularShifter and Alphabetizer are servers
that provide character-handling, shift and sort services, respectively. Input and Output

are clients that read an input (a set of lines) and write output (ordered lines), respectively.

Figure 2: KWIC using the client and server style (adapted from the ADT style [18]).

The main advantages of the client-server style is the facility of their use in distributed
systems. Distribution of tasks among servers is straightforward. In addition, it is easy to
add new servers. Supporting error handling in the client-server style is a daunting task.
There are several points of failures: client invocation at the client side, client invocation at
the server side, server reply at the server side and server reply at the client side. For this
reason, it is very di�cult to apply a similar error handling strategy to all the servers in a
modular fashion [4].
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2.3 Layered style

The layered style de�nes a hierarchical organization of the system in layers where each
layer provides services to the layer above it [35]. A typical topological constraint of layered
systems is to restrict the interactions to adjacent layers and the design of layers is based
on increasing levels of abstraction. Connectors specify the interaction between the layers.
Network communication protocols are traditional examples of this kind of style.

Figure 3 depicts the KWIC system using the layered style. This example shows that
the layered architectural style applies a functional modularization of concepts based on an
increasing abstraction level. Each layer has a well-de�ned function providing services to
the upper layers. The layered style presents some advantages: (i) it reduces coupling across
multiple layers; (ii) it hides the inner layers from all except the adjacent outer layer; (iii)
it allows the interchange of di�erent implementations of the same layer. These features
provide bene�ts to evolvability and reusability.

Figure 3: KWIC using a layered style

The main drawback of the layered style is the di�culty of de�ning the right levels of
abstraction on the layers conception. In addition, not all systems are easily structured
in layers, as we can see from the example in Figure 3. Communication between layers
can lead to performance overhead. For example, to read from the input, the layers must
delegate the read tasks to the lower layers until the I_OControl provides this service. Error
handling can be rather expensive for layered architectures with respect to processing time
and programming e�ort [4]. An error can either be handled in the layer where it occurred
or be passed to the next higher layer. In the latter case, the lower layer must transform
the error into an error description meaningful to the higher layer [4].
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2.4 On the interplay of crosscutting and styles

The kind of decomposition supported by the three styles described may favor the clean
modularization of some concerns while others may be not well-modularized. Therefore,
styles may interfere with the nature of the crosscutting concerns at the architectural level.
Architectural aspects can be style-dependent � e.g., data representation for the pipe and
�lter style � or not, such as error handling. In fact, error handling has been extensively
referred in the literature as a classical crosscutting concern in systems following di�erent
kinds of architecture decompositions [22, 26, 37]. Error handling is widely recognized
as: (i) a global design issue [15, 32], (ii) a�ecting almost all the system modules and
their interfaces [7, 27], (iii) both in generic and context-speci�c fashions [7], (iv) an anti-
modularity factor in several well-known architectural styles [4], and (v) exhibits intricate,
heterogeneous relationships with the normal system behavior [19, 10].

An architectural style de�nes a set of properties that are shared by the con�gurations
that are members of the style. These properties can be structural, including a topology, a
common vocabulary, the restrictions on the ways this vocabulary can be used in con�gura-
tions, as well as the semantics of architectural elements. Part of the semantics is also based
on the style features. The semantics can be used in a behavioral composition with architec-
tural aspects. In general, architectural composition is based on the structural information
that are, in general, static. Behavioral composition goes beyond by introducing a more
dynamic approach where the architectural composition is based on semantic information
(object computation or interaction). In scenarios such as these ones, architectural aspects
show up and may demonstrate their usefulness.

3 Style-based join point models

An architectural style provides distinct component types and connector types, with style-
speci�c semantics. As shown by the examples in Section 2, in a style-based decomposition,
crosscutting is driven by the semantics of the speci�c style. The behavior of the components
and connectors employed by a style can, therefore, act as a basis to de�ne a high-level style-
based join point model for software architecture models expressed in that style. These style-
based join points can be exposed and used in quanti�ed expressions, so that style-based
composition is supported at the architectural level.

In the following sub-sections we present a join point model for each of the three ar-
chitectural styles from Section 2. The styles are described in Wright [1], an architecture
description language based on a formal, abstract model of system behavior. Wright sup-
ports the description of architectural styles and the formal speci�cation of the behavior of
components and connectors using a notation based on CSP [21]. By using Wright, we make
the semantics of the styles explicit so that our style semantics-based joint point models are
derived from a formal understanding of the style rather than in an ad-hoc way. We �rst
introduce Wright in Section 3.1 before discussing the three representative style-based join
point models in Sections 3.2-4.

3.1 Wright speci�cations

Wright is an architecture description language (ADL) based on the formal description
of the abstract behavior of architectural elements [1]. Wright provides explicit notations
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for the basic architectural abstractions of components, connectors, and con�gurations,
formalizing the general notions of component as computation and connector as pattern
of interaction. In this paper, we use Wright because it supports two important features:
(i) the formal characterization of architectural styles, and (ii) the ability to describe the
behavior of components and connectors. By using Wright, we are able to provide abstract
models of architectural description in which style-speci�c behavioral properties beyond
simple structural descriptions can be speci�ed for individual elements.

3.1.1 Structural speci�cations

The structure of component in Wright consists of a set of ports and a computation. Each
port represents an interaction in which the component may participate. The computation
section of a description describes what the component actually does. A connector in Wright
de�nes a set of roles and the glue. A role specify the behavior of a single participant in
the interaction. The glue of a connector describes how the participants work together to
create an interaction. The computation of a component and the glue of the connector
represent the behavioral speci�cations of these elements. A con�guration is a collection
of component instances combined via connectors. The attachments de�ne the topology of
the con�guration, by associating a component's port with a connector's role.

An architectural style in Wright de�nes a set of properties that are shared by the
con�gurations that are members of the style. These properties can include a common
vocabulary and restrictions on the ways this vocabulary can be used in con�gurations.
Common vocabulary is introduced by declaring a set of component and connector types.
Restrictions are de�ned by means of constraints [1]. Wright provides several sets and
operators for the speci�cation of constraints, such as Components (the set of components
in the con�guration), Connectors (the set of connectors in the con�guration), Name(e)
(the name of element e, where e is a component, connector, port, or role), Type(e), (the
type of element e), Ports(c) (the set of ports on component c), Computation(c), (the
computation of component c), etc. These sets may be used in the style-based pointcut
speci�cations provided in Section 4.

3.1.2 Behavioral speci�cations

In Wright, the behavior of components and connectors are speci�ed using a notation based
on CSP [21]. CSP components are called processes, which interact with each other and
with the environment by communication. The basic unit of a CSP behavior speci�cation
is an event. An event represents an important action. A process is de�ned in terms of
events. Wright adds a notation to CSP to distinguish between initiating an event (event)
and observing an event (written without the overline). Events can carry data. If a process
supplies or outputs data the notation used is event!data. If a process receives or inputs
data, the notation used is event?data. A data carry event does not have to have an overline
if it is used by another process.

Processes are described by combining events and simpler processes. If a is an event and
P is a process, a → P is a process that is initially ready to engage in a and when a occurs,
the process will subsequently behave as P .

√
is a special event in CSP that represents

the act of terminating the entire system successfully. § is the success process, the process
that successfully terminates immediately. The behavior of processes can be extended by
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means of choices. There are two types of choice in CSP: deterministic choice (�) which
is resolved by the environment and nondeterministic choice (u) which is decided by the
process itself. Wright also uses this underlying CSP model, to permit semantic constraints
on systems by providing sets and operators such as: αP: the alphabet of process P, αiP:
the subset of αP that is initiated, αoP: the subset of αP that is observed, Traces(P): the
traces of process P and Failures(P): the failures of process P. Other features from Wright
can be found in [1].

3.2 Pipe and �lter style

Style Pipe-Filter
Connector Pipe
Role Source = DataOutput
Role Sink = DataInput
Glue [ Sink will receive data in the same order delivered

by Source ]
Interface Type DataInput =

(read→ (read-data?x→ DataInput
� end-of-data→ close-port→ §))

u(close-port→ §)
Interface Type DataOutput = (write-data!x→ DataOutput)

u (close-port→ §)
Constraints

∀c ∈ Connectors • Type(c) = Pipe ∧
∀c ∈ Components; p:Port | p ∈ Ports(c) •

Type(p) = DataInput ∨ Type(p) = DataOutput
End Style

Figure 4: Pipe and �lter style in Wright [1].

Figure 4 presents a description of the pipe and �lter style in Wright. The
Pipe-Filter style speci�cation introduces one connector type (Pipe) and two interfaces
types (DataInput and DataOutput). The constraints of the style refer to these types by
name and indicate that (i) all connectors must be pipes and (ii) all components in the
system use only DataInput and DataOutput interfaces on their ports. The informal spec-
i�cation for DataInput is read data repeatedly, closing at or before end-of-data and for
DataOutput is write data repeatedly, closing the port to signal end-of-data. A DataOutput

port has two events with which it communicates, write-data and close-port. Both of
these events are initiated by the component, and so they are written with an overbar. The
informal description for the glue part (Sink will receive data in the same order delivered by
Source) indicates the pattern of interaction for Source and Sink. We provide a speci�cation
in natural language.

From the example in Figure 4, several high-level, style-speci�c join points emerge (Ta-
ble 1). The pipe and �lter style allows us to state that �this system is a pipe and �lter
system, components CircularShift and Sort are �lters�. The use of style-speci�c join
points allows the de�nition of quanti�ed assertions over them. Architects can resort to
these join points to describe the ways aspects a�ect components and connectors. At the
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Style Join point Where

Pipe-Filter read data Filter, DataInput
write data Filter, Data Output
close port Filter

Client-Server request service Client
receive result Client
invoke service Server
return result Server

Layered receive request Layer
delegate subtask Layer
return result Layer
receive result Layer

Table 1: Style-based join points.

software architecture level, behavior can be composed with respect to these join points.
For example, we can state that, �for all components and connectors in the system S, before
�read data� or �write data�, perform some conversion�.

3.3 Client and server style

In client and server systems, components can be clients or servers. Often, a client sends
requests to a server and waits for a resource to be sent in response to the request. A server
waits for client requests to arrive. If such a request is received, the server processes it and
may return a result.

Style Client-Server
Component Client

Port r = request-service→ receive-result?x→ r u §
Computation = internalCompute→ r.request-service

→ r.receive-result?x→ Computation u§
Component Server

Port p = invoke-service→ return-result!x→ p�§
Computation = p.invoke-service→ internalCompute

→ p.return-result!x→ Computation �§
Connector Link

Role c = request-service→ receive-result?x→ c u §
Role s = invoke-service→ return-result!x→ s�§
Glue = c.request-service→ s.invoke-service→ Glue

�s.return-result!x→ c.receive-result?x→ Glue

�§
Constraints

∃!s ∈ Components, ∀ c ∈ Components:
Type(s)=Server ∧ Type(c)=Client ⇒ connected(c,s)

End Style

Figure 5: Client-Server style in Wright.
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Figure 5 presents a description of the client-server style in Wright. A component
that plays the role c de�ned by the connector type Link is allowed to continuously make
requests for a service and receive results. The Glue part of a connector describes how
the participants work together to create an interaction or, in other words, how the partial
computations of the components are composed to turn into a larger computation.

The following high-level, style-speci�c join points emerge from the description provided
in Figure 5: �request service�, �receive result�, �invoke service� and �return result�(Table 1).
We can express the need for auditing server operations by stating that �after a server
Serv invokes a service S do some auditing on Serv�; we can also express that some data
conversion is need in the client side by stating that �before the client C receives result R do
some conversion on R�.

3.4 Layered style

A layered system is organized hierarchically, each layer receiving requests for services from
the layer above it (upper layer) and delegating tasks to the layer below (lower layer). In
these systems, the components implement a virtual machine at some layer in the hierarchy
and the connectors are de�ned by the protocols that determine how the layers will interact.
Figure 6 presents an speci�cation in Wright for the layered style.

Style Layered
Component Layer

Port sr = delegate-task→ receive-result?x→ sr u §
Port rr = receive-request→ return-result!x→ rr�§
Computation = internalCompute→
sr.delegate-task→ sr.receive-result?x→ Computation u
rr.receive-request→ internalCompute
→ rr.return-result!x→ Computation �§

Connector InterLayer
Role upperRole = receive-request→
return-result!x→ upperRole�§
Role lowerRole = delegate-task→
receive-result?x→ lowerRole u §
Glue = upperRole.receive-request→

lowerRole.delegate-task→ Glue

�lowerRole.receive-result?x→
upperRole.return-result!x→ Glue �§

Constraints

∀ c ∈ Components: Type(c)=Layer
∀ c ∈ Connectors: Type(c)=InterLayer
∃!layer ∈ Components, ∀ c ∈ Components:
connected(c,layer)

End Style

Figure 6: Layered style in Wright.

Some of style-speci�c join points for layered systems are: �delegate subtask�, �receive
request�, �return result� and �receive result� (Table 1). They allow us to specify statements
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such as �for all layers in system S, before �delegate-subtask� perform some conversion�.

3.5 Style-based semantics for architectural aspect composition

In the component-connector view of a system, components are runtime processes and data
stores, and connectors are mechanisms that allow the speci�cation of interaction protocols
between components. System topology is an important issue but system behavior must
be equally considered. Style-based semantics de�nes a high-level join point model that
stands for an abstract model of system behavior at the architectural level. Style-based
composition can be de�ned in terms of such an abstract model.

Formal descriptions of component and connector behaviors such as those provided in
Figures 4, 5 and 6 embed the expression of partial ordering between the di�erent types
of style-based join points. The use of style-based join point models (Table 1) supports
more expressive, �ne-grained composition at the architectural level without breaking the
encapsulation of components.

Sections 4 and 5 show that style-based composition can lead to more expressive com-
position capabilities at the architectural level than a conventional programming-oriented
model permits.

4 Style-based composition

This section illustrates how the style-based join point models presented in Section 3 can be
used for composing architectural aspects. Composition requires mechanisms for selecting
join points and for weaving aspects, according to some strategy. In this context, we de�ne
a pointcut language that supports quanti�cation over architectural elements and their
style-based semantic join points (Section 4.1) and also special connectors that support
style-based composition of aspects (Section 4.2).

4.1 A style-based pointcut language

At the software architecture level, we want high-level, style-based join points, that abstract
away the semantic model used to specify the behavior of architectural elements. For
example, we want to resort to joint points such as �points where a client requests a service�,
�points where a client receives a result from a server� or �points where a layer delegates a
subtask�.

Pointcuts are mechanisms for specifying and picking out join points [22] relevant to the
modularization of a certain crosscutting concern. Accordingly, we de�ne architecture-level
pointcuts as mechanisms for specifying and picking out join points at the architecture level.
Pointcuts can be primitive or composite. Composite pointcuts can be de�ned using the
operators ∧, ∨, ¬. Pointcuts can be de�ned and named in a Pointcuts section (Figure 7).
Primitive pointcut designators can be style-speci�c or general-purpose, but in this paper,
we are interested in style-speci�c pointcuts.

Several primitive, style-speci�c pointcut designators are de�ned to specify join points
based on the style semantics. A set of style-speci�c pointcut designators are presented in
Table 2. They are representative examples of designators for the three architectural styles
discussed in Sections 2 and 3. For example, the request-service pointcut matches points
where service requests from clients to servers are made in some client-server con�guration.
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Style Designator Points at which

Pipe-Filter read-data data is read
write-data data is written or delivered
end-of-data end-of-data is signalled
close-port input port is closed

Client-Server request-service clients request a service
invoke-service servers execute a service
return-result servers return a result
receive-result clients receive a result

Layered receive-request layers receive a request
delegate-task upper layers delegate task to lower layers
return-result lower layers return a result to upper layers
receive-result upper layers receive results from lower layers

Table 2: Style-based primitive pointcuts

Similarly, the close-port pointcut captures join points at which input port is closed in a
piper-�lter system.

These examples of style-based pointcuts are based on two key elements of an archi-
tectural style [28] (i) structure � the form of elements from which a system is composed,
including the input and output interfaces of the elements, and (ii) behavior � the pro-
cessing logic of elements by which input data is consumed and output data is produced.
However, architectural pointcuts do not necessarily be limited to pick out sets of structural
and behavioral join points. They can exploit other complementary style elements, such as:
(iii) interaction � the means by which data and control are transferred among di�erent
elements of a system, and (iv) the architectural topology � the paths of interaction among
di�erent elements and the rules governing creation and/or removal of the paths.

One important issue concerning join points is the concept of join point shadow [20],
that is, the static places where join points manifest. In this paper, style-based join points
manifest in elements of component or connector interfaces. Therefore, we de�ne that we
will be able to map any set of join points to a set of client ports. These ports comprise
architectural join point shadows that will be used in the attachments section (Section 3.1.1).

4.2 Composition mechanisms

A pointcut language allows us to specify joint points. The composition between components
based on their style semantics is yet to be de�ned. In this case, we need to resort to
some composition mechanism that combines them. In software architecture, there are
two candidate places for expressing composition: the attachments section and connector'
glue (Section 3.1.1). Since attachments address simple structural component-connector
bindings, the connector and its glue part seem to be the most suitable place where style-
based composition should be de�ned.

Figure 7 presents System1, a client-server system con�guration based
on structural properties. In this con�guration the attachment statement
S*.p as Retrial.faultyService; binds the server ports to the connector role
faultyService. However, we cannot manage to bind the exception handling service w.r.t.
the moment a server receives a request from a client or the moment it returns a result
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Con�guration System1
Style Client-Server
Connector Retrial = {
Role faultyService = {

Invariant: #retrialsoffaultyService 6 3;
}
Role localStateRecovery;
Glue localStateRecovery after faultyService

}
Instances

C1,C2,C3: Client; E: ExceptionHandling;
L1,L2,L3: Link; S1,S2: Server;

Attachments

C1.r as L1.c; S1.p as L1.s;
C2.r as L2.c; S2.p as L2.s;
C3.r as L3.c; S2.p as L3.s;
E.errorLoggingHandler as localStateRecovery;
S*.p as Retrial.faultyService;

End Con�guration

Figure 7: Client-Server system con�guration in Wright based on structural properties.

Con�guration System2
Style Client-Server
Connector Retrial = {
Role faultyService = {

Invariant: #retrialsoffaultyService 6 3;
}
Role localStateRecovery;
Glue localStateRecovery after faultyService

}
Instances

C1,C2,C3: Client; E: ExceptionHandling;
L1,L2,L3: Link; S: Server;

Pointcuts

PortSet: Ports, where PortSet = receive-request;
Attachments

C1.r as L1.c; S.p as L1.s;
C2.r as L2.c; S.p as L2.s;
C3.r as L3.c; S.p as L3.s;
E.errorLoggingHandler as localStateRecovery;
PortSet as Retrial.faultyService;

End Con�guration

Figure 8: Client-Server system con�guration in Wright based on style semantics.
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to a client. Figure 8 presents System2, an alternative client-server system con�guration
based on style semantics. We introduce the Pointcuts section to allow the speci�cation
of user-de�ned pointcuts to be reused in the Attachments section. The pointcut PortSet
selects the points where servers receive requests from any client. The meaning of an
attachment such as PortSet as Retrial.faultyService; is: �bind each server port in
the set PortSet to the connector role Retrial.faultyService�. The granularity of the
composition (glue behavior w.r.t. receiving a request from a client) will be handled by
the connector. At the con�guration level, an architect should only deal with attachments
between ports and roles.

Figure 9 presents a connector that may deal with the Retrial semantics from the
example in Figure 8. It speci�es the protocol in which a service is retried after service
invocations. Figure 10 presents a connector that may be used for composing with respect
to the points where servers returns results back to clients. Other examples of style-based
composition will be presented in Section 5.

Connector Retrial-after-invoke-service
Role bRole = invoke-service→ return-result!x

→ bRole�§
Role cRole = invoke-service→ return-result!x

→ cRole�§
Glue = bRole.invoke-service→ cRole.invoke-service

→ cRole.return-result→ bRole.return-result
→ Glue �§

Figure 9: Composition mechanisms

Connector Retrial-before-return-result
Role bRole = invoke-service→ return-result!x

→ bRole�§
Role cRole = invoke-service→ return-result!x

→ cRole�§
Glue = bRole.invoke-service→ cRole.invoke-service

→ cRole.return-result→ bRole.return-result
→ Glue �§

Figure 10: Composition mechanisms

5 A case study

This section presents a case study in which we have evaluated the applicability of the
style-based join point models (Section 3) and our pointcut language (Section 4.1). Their
scalability will be discussed in the presence of style compositions (Section 5.2) in a real-life
hybrid software architecture. The case study, called Health Watcher (HW), is a Web-based
information system for the registration of complaints to the health public system [37],
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implemented in Java and AspectJ [22]. We have selected this target application since
the application of aspects in this system has shown to be e�ective to improve the modu-
larization of three widely-scoped conventional crosscutting concerns: persistence [37, 31],
distribution [37, 25], and exception handling [10]. In fact, the AO design of Health Watcher
has exhibited superior architectural stability even in the presence of heterogeneous evo-
lutionary changes [25], and when compared with non-AO design alternatives [25]. The
HW architecture has been previously described [13] using the ACME ADL [17] with some
minor extensions for expressing aspectual connectors and con�gurations [13] (Section 4.2).

Figure 11: The topology of the Health Watcher system.

In addition, as indicated in Figure 11, the HW architecture involves the instantiation
and composition of �ve di�erent architectural styles: (i) client-server, (ii) layers, (iii)
object-orientation, (iv) repository, and (v) pipe-and-�lter. Each of the styles instantiated
in the HW architecture provides an architectural-relevant set of join points based on the
style semantics (Section 3). Some of those points were in turn explored in the de�nition of
style-based pointcuts for the HW architectural aspects (Section 5.1). Figure 11 presents
the overall architecture topology of the HW system. Browsers are located in client hosts
which communicate with the servlets in the Web server. The Web server also works as a
client by accessing the remote interface exposed by the Application server. The Business
layer in the Application server is connected to an external service � the SUS component �
that is a centralized system with updated information about the Brazilian Public Health
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System. For simplicity, all the interfaces and connector details are omitted in Figure 11.

5.1 Architectural exception handling

The HW system encompasses a number of connectors to modularize the three architectural
crosscutting concerns: persistence, distribution, and exception handling. The following
sections speci�cally concentrate on the discussion about connectors employed to the mod-
ularization of exception handling policies in the HW architecture. Our choice is driven
by the fact that the crosscutting nature of error handling is style agnostic (Section 2.4).
Hence, this also allows us to demonstrate the applicability of style-based pointcuts based
on di�erent architecture decompositions and hybrid software architectures. The other rea-
sons are that: (i) error handling has been extensively referred in the literature as a classical
crosscutting concern [22, 26, 37], and (ii) the bene�ts and drawbacks of aspectizing error
handling using aspect-oriented programming techniques have been well explored nowadays
[10, 23, 37].

In the HW system, exception handling has been used as an error-recovery strategy
that complements other techniques for improving the system reliability, such as the atomic
transaction mechanism (data management layer). In the HW architecture, exception han-
dling promotes the implementation of specialized forward recovery measures, and it is
mostly realized by a ExceptionHandling component in the HW architectural speci�ca-
tion [36, 13]. This component consists of the systemic exception handlers in charge of
either putting the system back in a coherent state or recording some relevant information
for later manual recovery. In the HW system, a number of exceptions are of architec-
tural nature in the sense they are associated with its coarse-grained design structures, i.e.,
components and their interfaces. An exception is architectural if it is raised within an ar-
chitectural component but not handled by the raising component [11, 9]. Such exceptions
cut across the boundaries of architectural components. The architectural exceptions that
�ow between two components determine the �abnormal interaction protocol� to which the
involved components adhere.

Figure 12 presents the de�nition of the main architectural elements to address concerns
speci�c to exception handling in the HW system. Three connectors are used to capture
the crosscutting nature in which the abnormal interaction protocols are employed in the
HW architecture decomposition [36, 13]: (i) termination, (ii) retrial, and (iii) propagation.
The exception handling connectors are special-purpose architecture modularity units that
specify unidirectional point-to-point links through which only exceptions �ow, i.e., they
are �ducts� of exceptions. They denote di�erent forms of composition from the point
where they are raised and the point where the system returns to its operation after the
handler is executed in the ExceptionHandling component. In other words, the exception
connectors are ways that the ExceptionHandling subsystem collaborates with the rest of
the architecture. Notice that such strategies are captured by distinct speci�cations in the
glue clause of each connector. Figure 9 and 10 present two examples of retrial connectors.

Such abnormal interaction protocols are directly or indirectly supported by exception
mechanisms in modern programming languages [15], such as Java and C++. The termina-
tion and propagation policies are directly supported by the Java and AspectJ programming
languages, which were used to implement the HW system. Retrial-based recovery is imple-
mented by explicitly re-invoking the target service from the exception handlers. Di�erent
error handling actions are provided by the ExceptionHandling component, such as stale
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connection handler, server communication fault handler, and information appending han-
dler.

Style-based pointcuts are de�ned in the HW architecture description to attach ar-
chitectural elements to �aspectual� connectors modularizing the abnormal collaboration
protocols. Figure 11 provides a big picture of the list of pointcuts in the light of the HW
architecture topology. For example, the pointcut 1 exploits the join point model de�ned by
the client-server style in order to pick out all the exceptional events not successfully handled
by the servers before they are propagated as results to the clients. Several failures might
happen in the execution of the services made available by all the system servers. This point-
cut is formally described in Figure 12 (lines 29-30). The Retrial-before-return-result
connector (Figure 10) is the protocol attached to such a pointcut. The goal is to: (i)
activate a default handler in charge of logging relevant information associated with server
faults, and (ii) retrying the service execution again before they are propagated as excep-
tional results to the clients. This systemic error handling strategy crosscuts all the result
returns from the three server instances de�ned in the HW architecture.

Note that the Retrial-after-invoke-service connector (Figure 9) could be also
applied at pointcut 1. On the other hand, we cannot specify a composition based on
request-service join points (Table 1) as the exceptional events need to be handled at
the server side in the HW architecture. We need to capture all the return-results

(Table 1), exactly before the results are returned to the clients. The idea is that we have
contextual information for logging details (e.g., time of the request and faulty service)
related to speci�c service failures. Hence, a default handler is in charge of logging those
relevant information associated with server faults before they are propagated as exceptional
results to the clients. Note that this generic exception handling strategy crosscuts all the
result returns from the three server instances de�ned in the HW architecture. Figure 12
describes a list of the pointcuts used to attach the a�ected architectural elements to the
aspectual connectors involved in exception handling.

5.2 Composition of styles

Styles can be composed with each other in several ways. The HW architecture involves the
combination of several kinds of styles which directly determines the set of architectural join
points available. The HW system exhibits four types of style composition: (i) hierarchy
(Section 5.2.1), (ii) overlapping (Section 5.2.2), (iii) conjunction (Section 5.2.3), and (iv)
specialization (Section 5.2.4). The following subsections discuss the interplay of these
composition types and the style-based join points in the context of the HW architecture.

5.2.1 Hierarchical composition

In the HW design, distinct styles were used at di�erent levels of architectural hierarchy,
so that the internal architecture of certain components was de�ned in a di�erent style
than its surroundings. This kind of inter-style combination is named hierarchical compo-
sition. Hierarchical composition provides a scoping mechanism for de�ning architectural
pointcuts that applies exclusively to enclosing and/or enclosed elements. For instance, the
Application server is internally structured as a set of layers. In this case, the encapsulation
boundary of the Application component insulates the join points of that particular instance
of the Layers style from the rest of the architecture, which is realizing other architectural
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1 System ...
2 Component ExceptionHandling = {
3 Port communicationFaultHandler = {..}
4 Port errorLoggingHandler = {..}

Port informationAppendingHandler = {..}
Port staleConnetionHandler = {..}

5 }
6 Connector Termination = {
7 Role faultyService ;
8 Role terminationBasedRecovery = {
9 Invariant: returnValue.type 6= Exception;
10 };
11 Glue terminationBasedRecovery
12 after-terminate faultyService;
13 }
14 Connector Retrial-before-return-result = {
15 Role faultyService = {
16 Invariant: #retrialsoffaultyService 6 3;
17 }
18 Role localStateRecovery;
19 Glue localStateRecovery
20 after-retry faultyService;
21 }
22 Connector Propagation = {
23 Role faultyService;
24 Role exceptionTransformation =

Invariant: returnType.value = Exception;
25 Glue exceptionTransformation
26 after-propagate faultyService;
27 }
28 Pointcuts

29 PortSet1: Ports, Failures(P), ∀c ∈ Components: Type(c)= Server,
30 where PortSet1 = return-result
31 PortSet2: Ports, Failures(P), ∀c ∈ Components: Type(c)= Layer,
32 where PortSet2 = delegate-task ∧ c inside Server 33 PortSet3: Ports,
Failures(P), ∀c ∈ Components: Type(c)= Layer ∧ Type(c) = ¬ Client
34 where PortSet3 = delegate-task ∧ c inside Server 35 PortSet4: Ports,
Failures(P), ∀c ∈ Components: Type(c)= hybrid(accessor, �lter),
36 where PortSet4 = data-access 37 }
38 Attachments { .. }
39 End System

Figure 12: HW Architecture Elements for Exception Handling.
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styles. Hence, the set of style-based join points in the internals of the Application com-
ponent is determined by the semantics of the Layers style, in addition to the particular
names of its inner interfaces, connectors, and components.

One of the pointcut descriptions for exception handling in HW has selected all the
exceptions in delegated tasks to layers inside the Application server. It is illustrated as
pointcut 2 in Figure 11, and formally described in Figure 12 (lines 31-32). This architec-
tural pointcut picks up only join points that are exceptional events in components that are
de�ned as layers inside the Application component. The purpose is to associate this point-
cut with the handler used to append relevant layer-speci�c information after the occurrence
of such exceptional events and before they are propagated through di�erent layers in the
internal Application server architecture, so that the topmost handler has enough informa-
tion to implement the error recovery behavior. Note that we relied on a speci�c operator
inside to capture speci�c join points involved in a hierarchical architecture composition
(line 32 in Figure 12).

5.2.2 Overlapping

The most recurring use of multiple styles in the HW architecture was the creation of ar-
chitectural elements that had multiple types, each type taken from a di�erent style. Such
architectural elements form an overlapping zone of styles, and they embody vocabulary
and satisfy constraints from multiple styles. We can say that style-speci�c types are su-
perimposed in those components since they are assuming multiple responsibilities de�ned
by di�erent styles. The presence of overlapping-based compositions in the HW architec-
tures was exploited to express certain useful style-based pointcuts for architectural error
handling strategies.

For example, it was used to quantify over exceptional events returned as results of task
delegations in the internal layers of the Application server with no external communication
to other servers. This pointcut is illustrated as pointcut 3 in Figure 11, and described in
Figure 12 (lines 33-34) using our pointcut language. In other words, it includes any excep-
tion raised by tasks executed by the layers PersistenceMechanism and DataManagement.
On the other hand, it excludes the Business layer since it is a client of the SUS server;
the Business layer is the overlapping zone here since it plays both the roles of client and
layer. This particular pointcut was used to determine that all the internal server exceptions
should follow the termination policy.

5.2.3 Conjunction

Another style composition category found in the HW architecture design was conjunction,
which results in hybrid styles [28]. It involves the combination of two styles through the
union of their design vocabularies, and conjoining their constraints. When more than one
style is used as a supertype, the new style must be a substyle of the conjunction of the
parent styles. In such cases it may be necessary to also de�ne new types of components
or connectors that pertain to more than one style. Hence, the hybrid join point model is
de�ned by the resulting types de�ned by the conjunction.

A stylistic conjunction in HW design was the symbiosis involving the pipe-and-�lter
and repository styles, which encompassed the addition of the components de�ned by the
repository style (accessors and databases) to a pipe-�lter system. Some internal com-

18



ponents of the persistence mechanism had �lter-like behaviors, while also accessing the
system database. That is, those components are subtypes of �lter and accessor types.
Pointcuts were de�ned in the HW architecture to capture exceptions returned as result to
all the data accesses to components in which their types are hybrid, i.e., conjunctions of
accessors and �lters. Figure 12 (lines 35-36) de�nes this pointcut using a special-purpose
composition operator hybrid. In addition, pointcuts were de�ned in the HW architecture
to capture database connection exceptions associated with data writing that were raised
through interfaces that are subtypes of streams. The overall employed strategy was the
retrial of the target database services by using the stale connection handler.

5.2.4 Specialization

Specialization is a kind of relationship in which a style is a substyle of another by strength-
ening the constraints, or by providing more specialized versions of some of the element
types. For instance, a pipeline style might specialize the pipe-�lter style (Section 2.2) by
prohibiting non-linear structures and by specializing a �lter element type to a pipeline
�stage� that has a single output port. Style specializations lead us to think what happens
with the original join point model of the new style. In general, the family of join points
is a superset of the join points de�ned by the parent style since types may be subtypes
of other types, with the interpretation that: (i) a subtype satis�es all of the architectural
properties of its supertype(s), and (ii) that subtype respects all of the contraints of those
supertypes.

6 Discussion and related work

The characterization of style-based compositions for aspect-oriented software architectures
provides more expressive means for software architects document the crosscutting impact of
certain components over the architectural decomposition. The de�nition and the rationale
behind style-based join point models is the result of the analysis of existing AO ADLs
[3, 13] and our extensive experience over the last six years designing and assessing aspect-
oriented architectures for a number of distinct application domains. Such AO applications
include a re�ective middleware system [5], multi-agent systems [16], a design measurement
tool [5, 8], a context-sensitive tourist guide system [12], a CVS system [10], and product
lines for quality control measurements [24] and J2ME games [24].

Style-Based Join Points and Existing ADLs. Even though the nature of several cross-
cutting concerns is dependent on the chosen architectural styles (Section 2) and the rules
governing each family of software architectures, the existing architecture speci�cation ap-
proaches do not fully o�er support for style-based pointcut speci�cations. The exploitation
of style-based join point models seems to address better at the architectural level the recur-
ring problem of pointcut fragility that is common concern in conventional programming-
level join point models. For example, if the name of a certain interface or component
changes, syntax-based pointcut declarations are likely to be undesirably broken in the
presence of architecture maintenance and evolution. In our previous empirical study on
architecture stability [25] based on the HW sytem, we observed that style-based point-
cuts tended to be more stable in the presence of widely-scoped design changes because
the frequency of syntactical changes in architecture descriptions occur much often than
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the stylistic architectural choices [25]. It was evidenced by the nature of changes found
in the deployed version of the HW system. Of course, it does not impede architectures of
using conventional pointcut designators in conjunction with style-based designators. For
example, a within pointcut could be de�ned to match points in the execution that belong
to any kind of con�guration, component or connector.

Architectural Aspect Interactions. In HW case study, the architecture exhibited some
points of interaction involving two or more crosscutting concerns. The interactions man-
ifested in direct and indirect forms. The direct forms included situations where ex-
plicit connectors were used to bind the components modularizing the crosscutting con-
cerns. For instance, some required interfaces in the ExceptionHandling component ac-
cess the AbortOperation port provided by the TransactionManagement component in
the DataManagement Layer. The indirect interactions involved two or more aspectual
connectors which have join points in common. Such interactions were resolved at the
con�guration-level architectural description using extra operators in the attachments part
[13].

As a result, we have extended the ACME language to support two basic kinds of
resolution operators at the attachment level for solving interaction con�icts: precedence
and XOR. There were situations where a precedence was speci�ed as valid for the whole
architecture, and scenarios where they were de�ned for speci�c join points. For example,
the Retrial connector has precedence over the Termination connector at all the join
points they have in common, while at the port savingService, the Termination connector
is tried �rst and, secondly, the backward recovery with abort in case the exception was not
successfully handled. When there is a precedence relation between two connectors X and Y,
where the execution of Y depends on the satisfaction of a condition associated with X, the
architect can explicitly document it using a condition statement together with the around
glue in X. The XOR operator was used to indicate, for instance, that for every shared join
point, only one of the either termination or retrial should be non-deterministically chosen.

7 Conclusions

This paper discussed the in�uence of architectural styles in the de�nition of architectural
aspects. The selection of an architecture pattern determines the design space for the par-
ticular problem at the architect hands. Like any abstraction, the chosen style emphasizes
some concerns of the problem and suppresses others [33]. Some concerns are expected to
be well localized within speci�c kinds of modular units de�ned by the style, while others
are expected to crosscut their boundaries. We have concentrated our discussion in three
well-known architectural styles: pipe-and-�lter, client-server and layered patterns. Based
on the formal speci�cation of these styles, we de�ned a style-based architectural point-
cut language and a composition mechanism. We have evaluated the applicability of our
proposal using the Health Watcher system where we could exploit the combined use of
architectural styles in pointcut de�nitions. By exploring exception handling scenarios that
a�ects this example, we have illustrated the expressiveness of the style-based composition
model in the presence of di�erent kinds of style combinations.

We have concluded that: (i) architectural aspects are widely-scoped properties that
naturally crosscut the boundaries of system components with respect to the main kind of
decomposition prescribed by an architectural style; (ii) for each architectural style, there
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are particular join points for the style-speci�c component and connectors ; (iii) aspectual
composition is expressed in the attachments section and in the glue clause inside the
connector. While the attachments section models structural composition, the glue part
models style-based behavioral composition.

Although we have used the Wright ADL notation in this work, the presentation of the
style-based join point models and composition in this paper are enough generic. As a result,
they can be easily applied using other notations. For instance, there is a straightforward
conversion from Wright to the ACME ADL via a direct tool interchange support de�ned
in [17]. Similarly, other formal de�nition languages can be used instead of CSP to de�ne
the style-speci�c behavior. As a future work we intend to formally specify the aspect-
oriented architectural style in order to document the family of aspect-oriented software
architectures.
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