
PUC

ISSN 0103-9741

Monografias em Ciência da Computação

n° 16/07

Referee Assignment in Sports Leagues

Alexandre Rocha Duarte

Edward Hermann Haeusler

Celso Carneiro Ribeiro

Sebastián Urrutia

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 16/07 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena July, 2007

Referee Assignment in Sports Leagues

Alexandre R. Duarte and Edward H. Haeusler and Celso C. Ribeiro1 and
Sebastián Urrutia2

1 Departamento de Ciência da Computação - Universidade Federal Fluminense
2 Departamento de Ciência da Computação - Universidade Federal de Minas Gerais

{aduarte,hermann,celso}@inf.puc-rio.br, surrutia@dcc.ufmg.br

Abstract. Optimization in sports is a field of increasing interest. Combinatorial opti-
mization techniques have been applied e.g. to game scheduling and playoff elimination.
A common problem usually found in sports management is the assignment of referees to
games already scheduled. There are a number of rules and objectives that should be taken
into account when referees are assigned to games. We address a simplified version of a ref-
eree assignment problem common to many amateur leagues of sports such as soccer, and
basketball. The problem is formulated by integer programming and its decision version
is proved to be NP-complete. To tackle real-life large instances of the referee assignment
problem, we propose a three-phase heuristic approach based on a constructive procedure, a
repair heuristic to make solutions feasible, and a local search heuristic to improve feasible
solutions. Numerical results on realistic instances are presented and discussed.

Keywords: Referee Assignment, Optimization in Sports, Metaheuristics, Integer Pro-
gramming

Resumo. Nos últimos anos, a otimização em esportes tem despertado o interesse de di-
versos grupos de pesquisa em todo o mundo. Técnicas da otimização combinatória foram
aplicadas, por exemplo, no escalonamento de partidas esportivas. Um problema frequente-
mente enfrentado na gestão esportiva é a alocação de árbitros a partidas previamente
agendadas. Diversas restrições e objetivos devem ser considerados ao se determinar quais
juízes devem apitar quais jogos. Este trabalho considera um versão simplificada do pro-
blema de alocação de juízes comum a várias ligas amadoras de esportes como futebol e
basquete. Foi desenvolvido um modelo de programação inteira para o problema e sua
versão de decisão foi demonstrada ser NP-completa. Para resolver instancias de tamanho
real, uma heurística em três fases é proposta e se baseia num algoritmo construtivo, uma
heurística reparadora para atuar sobre soluções inviáveis e uma busca local para aprimorar
soluções viáveis. Resultados numéricos utilizando instâncias realistas são apresentados e
discutidos.

Palavras-chave: Alocação de Juízes, Otimização em Esportes, Metaheurísticas, Progra-
mação Inteira

In charge of publications:
Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

ii

1 Introduction

Optimization in sports is a field of increasing interest. Some applications have been re-
viewed by Ribeiro and Urrutia [9]. Combinatorial optimization techniques have been ap-
plied e.g. to the traveling tournament problem [4, 11], to playoff elimination [10], and to
the scheduling of a college basketball conference [8]. Easton et al. [5] reviewed scheduling
problems in sports.

A common problem usually found in amateur sports management is the assignment of
referees to games already scheduled. The number of referees to be assigned to each game
may vary depending on the sport or the league: soccer games usually require three referees,
while basketball games require two. There are a number of rules and objectives that should
be taken into account when referees are assigned to games. Games in higher divisions may
require higher-skilled referees. Since referees may officiate several games during the day,
travel feasibility and travel times between the facilities where the games take place have
to be considered. Additionally, and especially in some amateur children leagues, some of
the referees are players or their relatives. In this case, a natural constraint is that a referee
cannot officiate a game in which he/she or a relative is scheduled to play.

Real-life versions of this problem appear in regional amateur leagues in the United
States. Amateur leagues of several sports, such as baseball, basketball and soccer, have
hundreds of games every weekend in different divisions. In a single league in California
there might be up to 500 soccer games in a weekend, to be refereed by hundreds of certified
referees. In the MOSA (Monmouth & Ocean Counties Soccer Association) league, New
Jersey, boys and girls of ages 8 to 18 make up six divisions per age and gender group with
six teams per division, totalizing 396 games every Sunday.

Referee assignment problems in other contexts have been addressed in [6, 7, 12]. Dinitz
and Stinson [3] considered a problem involving referee assignment to tournament sched-
ules, connecting room squares and balanced tournament designs. We address a simplified
version of a referee assignment problem common to many amateur leagues of sports such
as soccer, basketball, and baseball, among others. In the next section, we state the pro-
blem considered in this work. Section 3 presents an integer programming formulation
to this referee assignment problem. The decision version of the problem is proved to be
NP-complete in Section 4. The proposed solution strategy is described in Section 5. In
Section 6, computational results illustrating the application of the proposed approach to
solve real-size randomly generated instances are shown. Concluding remarks and further
extensions of this work are reported in the last Section.

2 Problem statement

We consider the general problem, in which each game has a number of refereeing positions
to be assigned to referees. The games are previously scheduled and the facilities and time
slots for each game are known beforehand. In our approach, referees are assigned to empty
refereeing positions, not to games. This allows not only to handle referee assignment
problems in sports requiring different number of referees, but also in tournaments where
different games of the same sport may need different numbers of referees due to the game
division or importance. Games with pre-assigned referees to some refereeing positions can
also be handled by this approach. Each refereeing position to be filled by a referee is called

1

a refereeing slot.
Let S = {1, . . . , n} be the set of refereeing slots. Each refereeing slot j ∈ S has to be

filled by a referee with a previously determined minimum skill level qj . Let R = {1, . . . ,m}
be the set of referees, represented by their indices. Each referee i ∈ R has a certain skill
level, denoted by pi, defining the refereeing slots in which he/she can officiate. Referees
may declare their unavailability to officiate at certain time slots. Furthermore, each referee
i ∈ R establishes Mi as the maximum number of games he/she is able to officiate and Ti

as the target number of games he/she is willing to officiate. Travels are not allowed, i.e.
referees that officiate more than one game in the same day must be assigned to games that
take place at the same facility. Moreover, referees that are also players have a hard facility
assignment constraint: they must officiate at the same facility where they play.

The Referee Assignment Problem (RAP) consists in assigning referees to all refereeing
slots associated to games scheduled to a given time interval (typically, a day or a weekend),
minimizing the sum over all referees of the absolute value of the difference between the
target and the actual number of games assigned to each referee and satisfying a set of hard
constraints listed below:

(a) all refereeing slots must be filled for all games;

(b) referees cannot be assigned to refereeing slots overlapping time slots where they are
already scheduled to play or to officiate;

(c) referees cannot officiate games at time slots where they declared to be unavailable;

(d) referees must meet the minimum skill level established for each refereeing slot;

(e) referees cannot officiate more than a given maximum number of games; and

(f) referees cannot officiate in more than one facility.

3 Integer programming model

The problem described in the previous section can be formulated by integer programming.
We denote by di the absolute value of the difference between the target and the actual
numbers of games assigned to referee i ∈ R. The following variables are used in the
formulation:

xij =

{
1, if referee i ∈ R is assigned to slot j ∈ S
0, otherwise.

Furthermore, C(j) ⊆ S denotes the set of refereeing slots conflicting with slot j ∈ S,
i.e. refereeing slots that take place at different facilities than or overlapping with j. Also,
U(i) ⊆ S represents the set of refereeing slots to which referee i ∈ R cannot be assigned
due to a lower skill level or to his/her unavailability. The RAP integer programming model
can be formulated as:

minimize
m∑

i=1

di (1)

2

subject to:

di ≥ Ti −
n∑

j=1

xij ∀i = 1, . . . ,m (2)

di ≥
n∑

j=1

xij − Ti ∀i = 1, . . . ,m (3)

m∑
i=1

xij = 1 ∀j = 1, . . . , n (4)

n∑
j=1

xij ≤Mi ∀i = 1, . . . ,m (5)

xij + xij′ ≤ 1 ∀i = 1, . . . ,m, ∀j = 1, . . . , n, ∀j′ ∈ C(j) (6)∑
j∈U(i)

xij = 0 ∀i = 1, . . . ,m (7)

xij ∈ {0, 1} ∀i = 1, . . . ,m, ∀j = 1, . . . , n. (8)

The objective function (1) states that the sum over all referees of the slack between
their target and actual numbers of scheduled games is minimized. Constraints (2) and (3)
enforce that di is equal to the absolute value of the difference between the target and actual
numbers of games assigned to referee i ∈ R. Constraints (4) ensure that every refereeing
slot must be assigned to exactly one referee. Constraints (5) establish the upper bound to
the number of refereeing slots that can be assigned to each referee. Constraints (6) ensure
that refereeing slots with timetabling conflicts or taking place at different facilities cannot
be assigned to the same referee. Constraints (7) prevent assignments that violate minimum
skill level and unavailability restrictions (alternatively, all variables xij with j ∈ U(i) may
simply be removed from the model). Constraints (8) establish the integrality of the decision
variables.

4 NP-completeness

We consider the following feasibility decision problem (DRAP):
Problem: REFEREE ASSIGNMENT
Input: Set S of refereeing slots, set R of referees, and the maximum number of games to
be officiated by each referee.
Question: Is there an assignment of referees in R to refereeing slots in S satisfying
constraints (a) to (f)?

Theorem 1. DRAP is NP-complete.

Proof. DRAP is clearly in NP, since the feasibility of any assignment can be checked in
time polynomial in |R| and |S|. To prove its NP-completeness, we use a transformation
from the problem of Partition into Bounded Independent Sets on interval graphs.

Given an undirected graph G = (V,E) and integer numbers k and k′, this problem
consists in deciding whether there exists a partition of V into k independent sets I1, . . . , Ik,
with |Ii| ≤ k′ for 1 ≤ i ≤ k. This problem is NP-complete even if G is an interval graph,
see [1].

3

We build an instance of DRAP where the set S = {1, . . . , |V |} has exactly |V | refereeing
slots, each of them associated with a different game. All games take place at the same
date and facility. The minimum skill level associated to each refereeing slot j ∈ S is set
as qj = 1. Let R = {1, . . . , k} be the set of available referees and set Mi = k′, pi = 1,
and U(i) = ∅ for every i ∈ R. The linear time recognition algorithm of Corneil et al. [2]
is used to build an interval representation of G. Each interval of the latter is mapped to
one refereeing slot, whose starting and ending times coincide with the starting and ending
points of the corresponding interval.

We now prove that given the interval graph G and the integer numbers k, k′ ∈ N , there
is a partition of V into independent sets I1, ..., Ik with |Ii| ≤ k′ for 1 ≤ i ≤ k if, and only
if, there is a feasible assignment of the referees in R to the set of refereeing slots S built
as above, subject to constraints (a) to (f), with qj = 1 for all j ∈ S, Mi = k′ and pi = 1
for all i ∈ R.

First, suppose we have a partition of G = (V,E) into independent sets I1, . . . , Ik,
with |Ii| ≤ k′ for 1 ≤ i ≤ k. The slots assigned to referee i ∈ R are exactly those
corresponding to the vertices in Ii. This association guarantees that constraints (a) and
(b) are satisfied. Constraints (c) and (f) are trivially satisfied, since U(i) = ∅, for all i ∈ R,
and all games take place at the same facility. Since pi = 1, for all i ∈ R, and qj = 1, for
all j ∈ S, constraint (d) is also trivially satisfied. Finally, constraint (e) is satisfied since
|Ii| ≤ k′ = Mi for all i ∈ R.

We now consider a feasible solution to an instance of DRAP. We construct the interval
graph G = (V,E) by assigning each refereeing slot j ∈ S to a vertex j ∈ V . There is an
edge (j, j′) ∈ E for each pair j and j′ of overlapping refereeing slots. The partition of V
into the independent sets I1, . . . , Ik is such that vertex j belongs to the independent set Ii

if referee i is assigned to refereeing slot j. As the number of slots assigned to each referee
is bounded by k′, this partition into bounded independent sets is feasible.

5 Solution approach

Algorithm1

RefereeAssignmentHeuristic(MaxIterations1, MaxIterations2)
Solution← BuildGreedyRandomizedSolution();2

if not isFeasible(Solution) then3

Solution← RepairHeuristic(Solution, MaxIterations1);4

end5

if isFeasible(Solution) then6

Solution← ImprovementHeuristic(Solution, MaxIterations2);7

return Solution;8

else9

return no feasible solution was found ;10

end11

Algorithm 1: Referee assignment heuristic.

We propose a three-phase heuristic approach to tackle real-life large instances of the
referee assignment problem. The first phase consists in applying a greedy heuristic to find

4

an initial solution, possibly violating some constraints. The second phase is a repair heuris-
tic, based on the Iterated Local Search (ILS) metaheuristic, applied whenever necessary to
make the initial solution feasible. Finally, another ILS-based heuristic is used to improve
the feasible solution. Algorithm 1 shows the general scheme of this approach.

5.1 Greedy randomized constructive heuristic

The first phase of our approach attempts to build a feasible solution. Its main principle
consists in assigning first the referees that are also players to the facilities where they
have a game. Next, while there are unassigned refereeing slots and unassigned referees,
the heuristic greedily selects a facility with unassigned refereeing slots, obtains an unas-
signed referee and assign refereeing slots to this referee without violating any constraint.
Finally, if any refereeing slot remains unassigned, the solution is completed with infeasible
assignments.

The pseudo-code of this heuristic is presented in Algorithm 2. We denote by Su the
set of all unassigned refereeing slots, by RHF the set of referees associated with a hard
facility constraint, and by RNHF the set of referees with no hard facility constraint, i.e.
R = RHF ∪RNHF . These sets are initialized respectively in lines 2, 3, and 4. The loop in
lines 5 to 15 is performed until all referees associated with hard facility constraints have
been examined and assigned to as many refereeing slots as possible. A referee i with an
associated hard facility constraint is randomly selected in line 6 and removed from RHF in
line 7. The facility f where referee i plays a game is identified in line 8. The loop in lines 9
to 14 investigates all empty refereeing slots corresponding to games that take place at this
facility. If referee i can be assigned to refereeing slot j without violating any constraint
(line 10), then the assignment is made in line 11 and refereeing slot j is removed from the
set of unassigned refereeing slots in line 12.

Next, the loop in lines 16 to 27 attempts to fill the remaining unassigned refereeing
slots with referees without hard facility constraints. In line 17, p is initialized with the
highest skill level among all referees in RNHF . The facility f with the strongest need for
referees with skill level p is greedily selected in line 18. A referee i ∈ RNHF with pi = p
is randomly selected in line 19, removed from RNHF in line 20, and assigned to as many
refereeing slots as possible. The loop in lines 21 to 26 investigates all empty refereeing
slots corresponding to games that take place at facility f . If referee i can be assigned to
refereeing slot j without violating any constraint (line 22), then the assignment is made in
line 23 and refereeing slot j is removed from the set of unassigned refereeing slots in line
24.

If unassigned refereeing slots remain at this stage (line 28), then the loop in lines 29 to
34 makes infeasible assignments to complete the solution. The facility f where the game
corresponding to the unassigned refereeing slot j ∈ Su takes place is determined in line 30.
A referee i ∈ R officiating at this facility is randomly selected in line 31. The assignment
of referee i to refereeing slot j is made in line 32 and refereeing slot j is removed from
the set of unassigned refereeing slots in line 33. The selection in line 31 ensures that each
referee officiates all games at the same facility.

5

Algorithm BuildGreedyRandomizedSolution()1

Su ← {j = 1, . . . , n :
∑m

i=1 xij = 0};2

RHF ← {i = 1, . . . ,m : referee i plays at least one game};3

RNHF ← R−RHF ;4

while RHF 6= ∅ do5

Randomly select a referee i ∈ RHF ;6

RHF ← RHF − {i};7

Let f be the facility where referee i plays a game;8

forall j ∈ Su : refereeing slot j takes place at facility f do9

if referee i can be assigned to refereeing slot j then10

xij ← 1;11

Su ← Su − {j};12

end13

end14

end15

while Su 6= ∅ and RNHF 6= ∅ do16

p← maxi∈RNHF {pi};17

Let f be the facility with the strongest need for referees with skill level18

equal to p;
Randomly select a referee i ∈ RNHF with pi = p;19

RNHF ← RNHF − {i};20

forall j ∈ Su : refereeing slot j takes place at facility f do21

if referee i can be assigned to refereeing slot j then22

xij ← 1;23

Su ← Su − {j};24

end25

end26

end27

if Su 6= ∅ then28

forall sj ∈ Su do29

Let f be the facility where sj takes place;30

Randomly select a referee i ∈ R officiating at facility f ;31

xij ← 1;32

Su ← Su − {j};33

end34

end35

return Solution : referee i ∈ R is assigned to refereeing slot j ∈36

S if and only if xij = 1;
Algorithm 2: Greedy randomized constructive heuristic.

A greedy criterion is applied in line 18 to select a facility with the strongest need for
referees with a certain skill level. We recall that each refereeing slot is associated to one
refereeing position in a game. For instance, a refereeing slot of a soccer game may be
associated with the main referee or with one of the two linesmen. Therefore, a facility
holding soccer games needs at least three referees: the main referee and two linesmen.

6

Suppose that one referee could be assigned to all games as the main referee and two other
referees could be assigned as the first and second linesmen in all games. In this case, each
of these three referees would be associated to the same refereeing position in all games. To
be able to be assigned to all games in the same position, a referee must have a skill level
greater than or equal to the minimum skill level of all refereeing slots associated to this
position. In consequence, the skill level of this referee should be greater than or equal to
the maximum minimum skill level over all refereeing slots.

The above reasoning is used to compute an estimate c1(f, `) of the minimum number of
referees with skill level ` needed to officiate at facility f . We suppose that each refereeing
slot is an abstraction of a real refereeing position. For instance, P1 could be related to the
main referee of a soccer game, P2 to the first linesman, and P3 to the second linesman. In
addition, we assume that the refereeing positions are sorted by the non increasing order
of their minimum skill levels: for the same game, the minimum skill level associated with
a refereeing slot for position Pi cannot be smaller than the minimum skill level associated
with a refereeing slot for position Pj if j > i. To illustrate this idea, we consider an instance
with one single facility a where three games g1, g2, and g3 take place, with three refereeing
positions P1, P2, and P3 each. Table 1 displays the minimum skill level requirements for
each refereeing slot. A “-” denotes that the corresponding game does not require a referee
in this position.

Facility Refereeing positions
a P1 P2 P3

g1 4 − 3
Games g2 5 4 2

g3 6 5 5

Table 1: Minimum skill levels.

Facility a in this example needs at least one referee with skill level greater than or equal
to 6 to be the main referee in all games, one referee with skill level greater than or equal
to 5 to be the first linesman in all games, and another referee with skill level greater than
or equal to 5 to be the second linesman in all games. Therefore, c1(a, 6) = 1, c1(a, 5) = 2,
and c1(a, 1) = c1(a, 2) = c1(a, 3) = c1(a, 4) = 0.

For any two facilities a and b, we say that a has a stronger need than b for referees
with skill level ` if c1(a, `) > c1(b, `). The number c2(f, `) of refereeing slots with minimum
skill level less than or equal to ` to be assigned at each facility f is used to break ties
regarding the first criterion, i.e. whenever c1(a, `) = c1(b, `). Table 2 displays the values
of c2(a, `), ` = 1, . . . , 6, for the same example.

Once p is computed in line 17 of Algorithm 2, the facility with the strongest need for
referees with skill level equal to p is determined in line 18 as that which lexicographic
maximizes the following criteria:

• Criterion 1: c1(f, p) (an estimate of the minimum number of referees with skill level
p needed to officiate at facility f).

• Criterion 2: c2(f, p) − c2(f, p − 1) (number of refereeing slots with minimum skill
level equal to p to be assigned at facility f , if p > 1).

7

Skill level Refereeing slots to be assigned at facility a

≤ 1 c2(a, 1) = 0
≤ 2 c2(a, 2) = 1 + 0 = 1
≤ 3 c2(a, 3) = 1 + 1 = 2
≤ 4 c2(a, 4) = 2 + 2 = 4
≤ 5 c2(a, 5) = 3 + 4 = 7
≤ 6 c2(a, 6) = 1 + 7 = 8

Table 2: Computations of the metric c2.

• Criterion 3: c2(f, p) (number of refereeing slots to be assigned with minimum skill
level less than or equal to p at facility f).

• Criterion 4: c2(f,HSL) (number of refereeing slots with minimum skill level less
than or equal to HSL at facility f , where HSL denotes the highest required skill
level in the problem domain).

5.2 ILS-based scheme

Both the repair and the improvement heuristics use similar ILS schemes. They start by
applying a first improving local search to the initial solution. Since the local search involves
moves that change referee assignments for only one facility at a time, it should be applied
to every facility.

Then, for a given number of iterations, a perturbation involving one pair of facilities is
applied to the current solution. Each perturbation is followed by two applications of the
local search procedure, once to each of the facilities of the pair involved in the perturbation.
The solution obtained by local search is accepted if it satisfies a given acceptance criterion.
This scheme is illustrated by the pseudo-code of Algorithm 3.

Algorithm ILS_Scheme(Solution, MaxIterations)1

foreach facility f do2

Solution← LocalSearch(f, Solution);3

end4

for i = 1, . . . , MaxIterations do5

NewSolution← Perturbation(Solution);6

Let f1 and f2 be the facilities involved in the perturbation;7

NewSolution← LocalSearch(f1, NewSolution);8

NewSolution← LocalSearch(f2, NewSolution);9

Solution← AcceptanceCriterion(Solution, NewSolution);10

end11

return Solution;12

Algorithm 3: ILS scheme.

We describe next the local search procedure and its associated neighborhoods, followed
by the repair and improvement heuristics.

8

5.3 Local search and neighborhoods

Solutions built by the constructive heuristic are not necessarily optimal or even feasible.
A local search algorithm successively replaces the current solution by a better one in a
neighborhood of the first, terminating at a local optimum. In a first improving strategy,
the current solution is replaced by the first neighbor whose cost function value improves
that of the current solution. In this work, we consider two neighborhoods:

• swap moves: referees assigned to two refereeing slots are swapped (such moves do
not change the number of games assigned to each referee) and

• replace moves: the referee assigned to a refereeing slot is replaced by another referee
(such moves increase by one the number of games assigned to one referee and decrease
by one the number of games assigned to the other).

As referees cannot be assigned to games at different facilities (hard constraint), only
moves involving referees that officiate at the same facility (or do not officiate at all) are
allowed (otherwise, and unless two referees were assigned to exactly one game each, a
move involving referees that officiate at different facilities would imply on at least one
constraint violation). Such restricted neighborhoods considering only moves involving the
same facility allow the acceleration of the local search.

The local search procedure performed within the ILS scheme is divided into two phases,
both of them using a first improving strategy. In the first phase, only improving moves
are accepted. The second phase also accepts moves leading to solutions at least as good as
the current one, using a tabu list to prevent cycles. Each phase is separated in two parts:
first, only swap moves are considered; next, only replace moves.

5.4 Repair heuristic

The repair heuristic follows the ILS scheme in Algorithm 3, based on local search and
perturbations. It attempts to make feasible the initial solution obtained by the greedy
randomized constructive heuristic. Constraint violations in the initial solution may concern
time conflicts, referee unavailabilities, inadequate skill levels, or maximum numbers of
games. The repair heuristic minimizes the number of constraint violations of an infeasible
initial solution. A modified solution is feasible if and only if it has no constraint violations.

Solutions built by the constructive heuristic have the property that all referees officiate
in at most one facility. Therefore, the local search considers only moves involving referees
that officiate at the same facility (or do not officiate at all) and attempts to find a feasible
solution by minimizing the number of constraint violations. Ties with respect to the
number of constraint violations are broken in favor of the solution with the smaller objective
function value (i.e., the absolute value of the difference between the target and the actual
number of games assigned to each referee involved in a move).

The perturbation procedure within the repair heuristic changes the facility where one
of the referees officiates, according to the following steps:

1. select a facility f with infeasible referee assignments;

2. select the highest minimum skill level `∗ over all refereeing slots in facility f assigned
to referees with at least one violation;

9

3. determine a referee r that officiates at another facility f ′ (or does not officiate at all)
whose skill level is greater than or equal to `∗;

4. randomly select referees other than r that officiate at facility f ′ and assign them to
the refereeing slots currently assigned to r;

5. assign referee r to any refereeing slot at facility f currently assigned to a referee with
at least one violation.

The solution NewSolution obtained after a perturbation followed by local search is
accepted by procedure AcceptanceCriterion if and only if it has fewer constraint violations
or the same number of violations and a smaller objective function value than the current
solution. The maximum number of iterations was set at one thousand.

5.5 Improvement heuristic

Once a feasible solution is known, the improvement heuristic is performed as an attempt
to reduce the current value of the objective function, i.e. to minimize the sum over all
referees of the absolute value of the difference between the target and the actual number
of games assigned to each of them. The improvement heuristic is also based on the ILS
scheme presented in Section 5.2.

The local search used in the improvement heuristic differs slightly from that used in the
repair heuristic: swap moves are not performed (because they cannot improve the objective
function) and only moves and perturbations that preserve feasibility are considered.

The perturbations applied to the current solution within the improvement heuristic
select two referees that officiate at different facilities and swap all their assignments, ac-
cording to the following steps:

1. Choose a possible perturbation: select two referees officiating at different facilities.
If the swap of all their assignments do not preserve feasibility, then go to the final
step. Otherwise, temporarily perform the swap of all assignments of the two selected
referees.

2. Look ahead: for each of the two selected referees whose target number of games
is greater than the new (after the swap) number of games he will officiate, check
if there are other refereeing slots in which he could officiate at the new facility.
This look ahead procedure only checks refereeing slots that are currently assigned
to referees officiating more games than their targets and only until the referee under
investigation does not officiate more games than his/her target. Whenever possible,
temporarily replace the previously assigned referee by the new referee involved in the
perturbation.

3. Accept the perturbation: if the perturbation applied to these two referees (swap of
all their assignments) followed by all possible replace moves in the destination facility
for each referee (look ahead) decreases the objective function value, then accept the
perturbation by making final all temporary changes. Otherwise, go to step 4.

10

4. Return: go back to the first step to select a new pair of referees, unless all pairs
of referees have already been considered. In this case, perform the swap of all as-
signments of the pair of referees that preserves feasibility and increases the least the
objective function.

Solution NewSolution obtained after a perturbation followed by local search is always
accepted, because the heuristic chooses either an improving perturbation or the one that
deteriorates the least the current solution. The maximum number of iterations was set at
200.

6 Computational results

Only very small instances with up to 40 games and 60 referees could be exactly solved
by a commercial solver such as CPLEX 9.0, applied directly to the integer programming
model presented in Section 3. In this section, we report computational results obtained on
realistic, real-size randomly generated instances.

6.1 Test problems

Test instances have been randomly generated following patterns similar to those observed
in real-life soccer instances. They have up to 500 games and up to 1000 referees, with
different number of referees, different numbers of facilities, and different patterns of the
target number of games each referee is willing to officiate. Each game has three refereeing
positions.

Two different patterns were used to generate the target number of games Ti each referee
i ∈ R is willing to officiate. According to pattern P0, Ti is an integer randomly selected in
the interval [0,Mi]. According to pattern P1, Ti is proportional to 1/pi, i.e. the higher the
referee skill level is, the lower his/her target number of games is. Each game is associated
to a division selected randomly. The higher is a game division, the higher are the minimum
skill levels of its refereeing slots.

Table 3 presents the parameter values used to generate the test problems. Five different
instances were generated for each of the 36 parameter combinations, in a total of 180 test
problems.

Games Referees Facilities Patterns
300 450, 525, 600 40, 50 P0, P1

400 600, 700, 800 55, 65 P0, P1

500 750, 875, 1000 65, 85 P0, P1

Table 3: Instances dimensions combinations.

6.2 Numerical results

The experimental results reported in this section were obtained on a 2.0 GHz Pentium IV
processor with 512 Mbytes of RAM memory running Windows 2000TM. All codes were
implemented in C.

11

Tables 4 to 9 summarize the results obtained by our heuristic approach for some classes
of parameter combinations. Initial solutions are computed by the greedy randomized
heuristic. Computation times (in seconds) and objective function values are average re-
sults over ten runs for each instance. For each phase of the heuristic (construction, repair,
improvement), we present its computation time (in seconds) and the objective function
value of the solutions found. For the construction and repair phases, we also report the
number of runs where a feasible solution was found.

The constructive heuristic ran in less than 0.1 second for all instances and found feasible
solutions for most of them. The repair heuristic succeeded to find a feasible solution in
most cases in less than one minute, whenever the constructive heuristic failed. We stress
the importance of quick procedures for finding initial solutions for hard combinatorial
problems in sports, as already noticed by Ribeiro and Urrutia [11].

The improvement phase improved the objective function value of feasible initial solu-
tions by up to 63%. Instances with more facilities or fewer referees were harder in terms
of computation times and building feasible solutions.

Construction Repair Improvement
Instance secs. value feas. secs. value feas. secs. value

I1 0.02 1286.20 10 — — — 32.34 619.60
I2 0.02 1360.00 5 0.47 1338.00 10 31.81 623.40
I3 0.02 1269.00 2 0.60 1247.00 10 33.87 621.60
I4 0.03 — — 1.14 1303.20 10 30.28 627.20
I5 0.03 1302.67 3 1.40 1259.14 10 33.73 654.00

Table 4: 500 games, 750 referees, 65 facilities, and pattern P0.

Construction Repair Improvement
Instance secs. value feas. secs. value feas. secs. value

I1 0.02 1752.75 8 0.66 1709.00 10 31.59 1022.60
I2 0.02 1669.57 7 0.02 1675.67 10 30.34 888.60
I3 0.02 — — 5.91 1569.80 10 29.55 942.00
I4 0.03 1777.00 1 1.53 1725.00 10 31.81 1033.80
I5 0.02 1704.80 5 0.49 1704.80 10 28.17 952.00

Table 5: 500 games, 750 referees, 65 facilities, and pattern P1.

Construction Repair Improvement
Instance secs. value feas. secs. value feas. secs. value

I1 0.03 — — 11.27 1111.60 10 22.74 612.60
I2 0.03 — — 6.69 1231.60 10 24.18 715.20
I3 0.03 — — 11.33 1182.40 10 22.29 672.60
I4 0.03 — — 4.61 1229.00 10 23.45 692.80
I5 0.03 — — 3.39 1234.60 10 19.50 646.00

Table 6: 500 games, 750 referees, 85 facilities, and pattern P0.

12

Construction Repair Improvement
Instance secs. value feas. secs. value feas. secs. value

I1 0.03 — — 2.75 1670.60 10 25.85 1043.80
I2 0.02 — — 19.29 1649.50 8 26.15 1147.00
I3 0.03 — — 14.77 1586.60 10 24.65 1107.60
I4 0.03 — — 1.22 1602.80 10 25.59 1007.40
I5 0.03 — — 2.69 1611.20 10 24.60 1002.80

Table 7: 500 games, 750 referees, 85 facilities, and pattern P1.

Construction Repair Improvement
Instance secs. value feas. secs. value feas. secs. value

I1 0.03 1582.80 10 — — — 45.07 574.40
I2 0.02 1627.40 10 — — — 42.92 609.20
I3 0.03 1535.40 10 — — — 44.62 558.20
I4 0.03 1655.60 10 — — — 43.28 576.60
I5 0.02 1626.00 10 — — — 43.31 619.20

Table 8: 500 games, 875 referees, 65 facilities, and pattern P0.

Construction Repair Improvement
Instance secs. value feas. secs. value feas. secs. value

I1 0.03 2195.20 10 — — — 39.64 1091.80
I2 0.03 2040.20 10 — — — 42.33 955.40
I3 0.02 2153.40 10 — — — 41.34 1032.20
I4 0.03 2173.40 10 — — — 42.54 1069.00
I5 0.03 2137.60 10 — — — 39.73 1035.00

Table 9: 500 games, 875 referees, 65 facilities, and pattern P1.

In another experiment, we compared the results obtained by the heuristic with those
found by CPLEX 9.0 when applied to formulation (1)-(8) for some small instances that
could be exactly solved within reasonable computation time. The heuristic always received
the same computation time that CPLEX took to find the optimal solution. Some numerical
results are summarized in Table 10. For each instance, we first give its identification and
the pattern used for its generation. The two next columns display the optimal solution
value and the computation time in seconds taken by CPLEX (and, consequently, given to
the heuristic). Next, the table shows the average and the best solution values found by the
heuristic over ten runs. The last column gives the time taken to find the best solution in
the corresponding run. These results show that the heuristic was able to find the optimal
solution for three out of the five test instances considered in this table. Furthermore, the
times taken by the heuristic are significantly smaller than those observed with CPLEX,
even for the small instances that the latter was able to solve to optimality.

In the last computational experiment, we replaced by a quadratic penalization the linear
objective function penalizing the absolute value of the difference between the target and the
actual numbers of games assigned to each referee. Figure 1 displays results for instance
I3 with 500 games, 750 referees, 85 facilities, and pattern P1. This figure shows that

13

Instance CPLEX Heuristic
identification pattern optimum secs. average best secs.

I2 P0 43 164.00 47.00 44 18.99
I3 P0 18 200.00 20.80 18 3.05
I5 P0 44 137.00 45.20 44 11.45
I2 P1 65 128.00 67.20 65 15.32
I5 P1 72 47.00 82.40 75 8.83

Table 10: 33 games, 57 referees, 5 facilities, patterns P0 and P1.

more balanced solutions can be obtained, in which the occurrences of larger differences are
replaced by those of smaller differences concentrated at only one unit. The computation
times of the constructive, repair, and improvement heuristics were not affected by the
change of the objective function.

Figure 1: Linear vs. quadratic objective functions.

Table 11 details the differences between the target and the actual numbers of games
assigned to each referee in the solutions obtained with the linear and quadratic cost func-
tions. We observe that 76 extremely privileged referees (i.e., those officiating exactly their
target number of games) in the solution obtained with the linear cost function lose their
privileges in the solution obtained with the quadratic cost function. Also, 23 referees that
were far from their targets are now very close to them (i.e., their differences are now equal
to one). The new solution obtained with the quadratic cost function is certainly more fair
than that associated with the linear costs.

Difference Linear Quadratic
0 255 179
1 182 281
2 156 149
3 67 66
4 50 43
5 23 18
6 13 10
7 3 3

Table 11: Differences in the linear and quadratic objective functions.

7 Concluding remarks

We introduced in this paper the referee assignment problem, a new optimization problem
in sports. The problem was formulated as an integer model and the NP-completeness of
its decision version was proved.

A three-phase heuristic was proposed and implemented. Computational results on re-
alistic instances showed the effectiveness of the greedy randomized constructive heuristic

14

combined with the repair heuristic to build feasible solutions. The improvement proce-
dure used in the third phase was able to substantially improve solution quality. We also
illustrated the importance of a quick construction procedure to build initial solutions.

We also compared the solutions obtained by the heuristic with those produced by
CPLEX for some small instances that could be solved to optimality in reasonable com-
putation times. The heuristic not only was able to find the optimal solutions for several
instances, but also the computation times to find the best solution were significantly smaller
than those observed with CPLEX.

Finally, we investigated and compared the behavior of an alternative quadratic objective
function, which was able to find more fair solutions than the formulation with a linear cost
function.

We are currently working on some extensions addressing further constraints of real-life
applications, such as the existence of hard and soft links between some referees. In these
situations, some referees may want to work with the same referees as partners in every
game they officiate. This is the case when they are more confident to officiate together,
but also when they want to travel in car pools or to officiate with relatives. Decision makers
may also want referee assignments matching preferences regarding the facilities, divisions,
and time slots where the referees officiate.

Another extension occurs when referees are able to officiate games in different facilities.
In this case, travel times between facilities should also be considered for feasibility matters.
They can also be incorporated to the objective function, so as that the minimization of the
total traveling time turns out to be another objective. The minimization of the waiting
times between consecutive games assigned to the same referee is also relevant.

The referee assignment problem has clearly the flavor of a multi-criteria optimization
application. We are also investigating the use of multi-criteria methods coupled with a
decision support system for its solution in practice.

References

[1] H.L. Bodlaender and K. Jansen. Restrictions of graph partition problems - Part I.
Theoretical Computer Science, 148:93–109, 1995.

[2] D.G. Corneil, S. Olariu, and L. Stewart. The ultimate interval graph recognition
algorithm? In Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 175–180. SIAM, 1998.

[3] J.H. Dinitz and D.R. Stinson. On assigning referees to tournament schedules. Bulletin
of the Institute of Combinatorics and its Applications, 44:22–28, 2005.

[4] K. Easton, G. L. Nemhauser, and M. Trick. The traveling tournament problem:
Description and benchmarks. In Proceedings of the 7th International Conference on
Principles and Practice of Constraint Programming, pages 580–584, London, 2001.
Springer-Verlag.

[5] K. Easton, G.L. Nemhauser, and M. Trick. Sports scheduling. In J.T. Leung, editor,
Handbook of Scheduling: Algorithms, Models and Performance Analysis, pages 52.1–
52.19. CRC Press, 2004.

15

[6] J.R. Evans. A microcomputer-based decision support system for scheduling umpires
in the American baseball league. Interfaces, 18:42–51, 1988.

[7] J.R. Evans, J.E. Hebert, and R.F. Deckro. Play ball - The scheduling of sports officials.
Perspectives in Computing, 4:18–29, 1984.

[8] G.L. Nemhauser and M.A. Trick. Scheduling a major college basketball conference.
Operations Research, 46:1–8, 1997.

[9] C.C. Ribeiro and S. Urrutia. OR on the ball: Applications in sports scheduling and
management. OR/MS Today, 31:50–54, 2004.

[10] C.C. Ribeiro and S. Urrutia. An application of integer programming to playoff elimi-
nation in football championships. International Transactions in Operational Research,
12:375–386, 2005.

[11] C.C. Ribeiro and S. Urrutia. Heuristics for the mirrored traveling tournament problem.
European Journal of Operational Research, to appear.

[12] M.B. Wright. Scheduling English cricket umpires. Journal of the Operational Research
Society, 42:447–452, 1991.

16

	Introduction
	Problem statement
	Integer programming model
	NP-completeness
	Solution approach
	Greedy randomized constructive heuristic
	ILS-based scheme
	Local search and neighborhoods
	Repair heuristic
	Improvement heuristic

	Computational results
	Test problems
	Numerical results

	Concluding remarks

