

PUC

ISSN 0103-9741

Monografias em Ciência da Computação
n° 18/07

Applying Analogy for the Generation of
Entity-Relationship Schemas

Antonio L. Furtado

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 18/07 ISSN 0103-9741
Editor: Prof. Carlos José Pereira de Lucena July 2007

Applying Analogy for the Generation of Entity-Relationship Schemas∗∗∗∗

Antonio L. Furtado

furtado@inf.puc-rio.br

Abstract: To support the generation of database schemas of information systems, starting
from analogous predefined schemas, a five-step process is described. It involves generic
and blended spaces, whose utilization is essential to achieve the passage from the source
space into the target space in such a way that differences and conflicts can be detected. and,
whenever possible, conciliated. The convenience to work with multiple source schemas to
cover distinct aspects of a target schema, as well the possibility of creating schemas at the
generic and blended spaces, are briefly considered.

Keywords: .Schema Generation, Analogy, Blending, Lattices, Entity-Relationship Model,
Logic Programming.

Resumo: Para apoiar a geração de esquemas de bancos de dados de sistemas de
informação, partindo de esquemas análogos predefinidos, é descrito um processo em cinco
etapas. Envolve espaços genéricos e espaços aglutinados, cuja utilização é essencial para
efetuar a passagem do espaço fonte ao espaço alvo de tal modo que as diferenças e conflitos
possam ser detetados e, sempre que possível, conciliados. A conveniência de trabalhar com
múltiplos esquemas fonte para cobrir aspectos distintos de um esquema alvo, bem como a
possibilidade de criar esquemas nos espaços genéricos e aglutinados, são brevemente
consideradas.

Palavras-chave: Geração de Esquemas, Analogia, Aglutinação, Reticulados, Modelo
Entidades-Relacionamentos, Programação em Lógica.

∗ This work has been partly sponsored by the Ministério de Ciências e Tecnologia da Presidência da
 República Federativa do Brasil.

In charge of publications

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br

 1

1. Introduction

Designers of information systems soon learn that reusing their previous experience, and
also that of other designers, is a rewarding strategy.
 In particular, we have been working [BBCF, BBFC] on methods and tools for, starting
from some predefined database schema regarded as a source schema, abstract a pattern that
captures its structure, which is then repeatedly used to generate one or more target
schemas. What makes this strategy viable is the intuitive perception of an analogy between
source and target, expressed by saying that the latter is like the former.
 Additionally, the source schema should be a typical example among those that are
analogously structured, and the terminology of its underlying domain should be familiar
even to the less experienced designers. If these requirements are satisfied, it will be possible
to instantiate the positions occupied by variables in the pattern, by prompting the designer
to indicate which names in the target schema being generated correspond to each name in
the example source schema.
 In the present paper, adopting an approach applicable in widely different areas [FT1], we
extend our method so as to take four spaces into consideration. The diagram in figure 1
represents these four spaces, and shows how they are articulated in view of a process
whereby, starting from the source, the target is gradually constructed.

 generic

 source target

 blend

 fig. 1: the four-space approach

 Informally, the generic space originates from the source by importing, in a generalized
format, the elements for which corresponding elements in the target will eventually be
characterized. In practice, both the source and the target will contain other non-
corresponding elements, since analogy is rarely bijective. Viewing the diagram as a lattice
[MB], the generic constitutes the meet of the source and the target spaces. Whereas it
denotes the elements in correspondence in these two spaces, the blended space, as the join
of source and target, inherits all their elements, corresponding or not. Again informally, it is
the space wherein whatever is incomparable or conflicting when putting together source
and target can be detected, often calling for some creative form of adaptation to be
remedied or conciliated [Tu, FT2]. In [Go] blending is formalized in category theory.
 Thi text is organized as follows. Section 2 details how our five-step process can apply
the four-space approach to the interactive generation of target database schemas of an
information system, starting from an example previously specified source schema, which is
a typical illustration of the weak entity concept. The Entity-Relationship (ER) model [BCN]
is used in the presentation. Sections 3 and 4 briefly discuss, respectively, the advantages of
bringing in a multiplicity of source schemas for designing distinct aspects of a target
schema, and the possibility of also creating schemas directly from elements at the generic
and/or blended spaces. Section 5 contains the conclusions.

 2

2. The four-space schema-generation process

The process will be illustrated through a simple example. We start whith a schema, or,
more precisely, a schema fragment, specifying employees and their dependents, which is
probably the most frequently mentioned illustration of the weak entity concept in ER
modelling. As a fragment, it only needs the elements relevant to characterize weak entities.
 The clauses below introduce two entity classes, employee and dependent. The
identifying attribute of employee is empno, whereas dependent, being a weak entity, relies
on the identifying relationship isdepof, combined with the discriminating attribute depno.
The identifying relationship is 1 to n, being total with respect to dependent and partial with
respect to employee; these properties are indicated by associating pairs of minimum and
maximum values for the participation of instances of each entity in relationship instances:
at least 0 and at most n dependents can be related with exactly one employee. The
relationship has attribute family_tie, with values such as wife, husband, son,

daughter. Note that the fragment does not include, as unessential to the characterization of
weak entities, certain basic properties of employee, such as those referring to the
employment aspect itself.

Schema: Emp_Dep
Clauses --
 entity(employee, empno)
 attribute(employee, empno)
 entity(dependent, [empno/depno-isdepof-empno, depno])
 attribute(dependent, depno)
 relationship(isdepof, dependent/0/n, employee/1/1)
 attribute(isdepof, family_tie)

 The schema will be used at the source space, wherefrom target schemas based on the
weak entity concept can be derived. Starting from this source schema, the process goes
through five consecutive steps, to be described in the sequel.

Step 1 - generating the pattern

From the source schema Emp_Dep, the Weak Entity pattern is obtained (fig. 2.1) by
consistently subbstituting variables for the names of entities, relationships and attributes.

 generic

 source target

 blend

 fig. 2.1: generating the pattern

 3

 Besides clauses built from those of the source schema, the pattern contains mappings,
associating the variables introduced with the corresponding source schema names.
Consistent substitution implies that, to give one example, variable A refers to entity
employee wherever it occurs in the clauses of the pattern.

Pattern: Weak Entity
Example schema: Emp_Dep
Clauses --
 entity(A, B)
 attribute(A, B)
 entity(C, [B/D-E-B, D])
 attribute(C, D)
 relationship(E, C/0/n, A/1/1)
 attribute(E, F)
Mappings --
 A:employee
 B:empno
 C:dependent
 D:depno
 E:isdepof
 F:family_tie

Step 2 - generating the target schema

Suppose the designer wants to specify a Bk_Ed schema, and realizes that this too involves
the weak entity concept: the editions of a book are comparable to the dependents of an
employee, in that to identify an instance of edition, the indication of the book in question
is needed, besides the year of publication as discriminating attribute. The generation (fig.
2.2) is basically done by specializing the clauses of the pattern (belonging to the generic
space), but the diagram also refers to the originating source space, to stress that from it
were extracted the names figuring in the pattern mappings.

 generic

 source target

 blend

 fig. 2.2: generating the target schema

 Specializing the clauses of the pattern is done by substituting an appropriate name
belonging to the underlying domain of Bk_Ed for each pattern variable. Relying on the
assumption of an intuitive understanding of the analogy between the two domains, the
designer is prompted to supply the target schema names through queries of the form:

- What corresponds to <name in the source schema>?

 In our example, this would instantiate the pattern mappings as follows:

 4

employee � book
empno � isbn
dependent � edition
depno � year
isdepof � isedof

noting that the designer may in general, with limitations, deny one or more
correspondences by replying nil. So it may happen, at this stage, that nothing corresponding
to the attribute family_tie comes to mind:

family_tie � nil

 This is indeed the only element in this case that can be absent. Having indicated book as
corresponding to entity employee, the indication of what corresponds to empno is
mandatory, since no entity can lack an identifier. Likewise, if nothing corresponds to
dependent, the indication of isedof as corresponding to isdepof would be an error,
because a binary relationship requires the presence of two participating entities. The
absence of isedof, on the other hand, though not erroneous, would defeat the purpose of
the entire process – the weak entity concept makes no sense without an identifying
relationship.

 After inspecting the resulting target schema, the designer's knowledge of the target
domain must be used to check its clauses, with a special attention to:

a. possible additions to the target schema, without correspondence in the source
schema.

b. all sorts of modifications to be done in the generated clauses.

 Suppose that the addition and the modification below were judged necessary:

addition: attribute(book,subject)

modification: isedof – min-1:1

with which the Bk_Ed target schema becomes:

Schema: Bk_Ed
Clauses --
 entity(book, isbn)
 attribute(book, isbn)
 attribute(book, subject)
 entity(edition, [isbn/year-isedof-isbn, year])
 attribute(edition, year)
 relationship(isedof, edition/1/n, book/1/1)

Step 3 - blending the source and target schemas

The blended space is pictured as a confluence of the source and the target spaces, taking
into consideration the correspondences registered in the generic space (fig. 2.3).

 5

 generic

 source target

 blend

 fig. 2.3: blending the source and target schemas

 In the database schema-generation process, its elements will be obtained by joining each
entity and relationship of the source schema with its counterpart in the target schema. To
begin with, all information about each entity and relationship, contained in the various
clauses of the two schemas, is collected in separate frames, structured as lists of
property:value pairs.
 Each property of an entity E is represented either by an attribute name, or by a
relationship name tagged with 1 or 2 to indicate, respectively, whether E is the first or the
second participant in the relationship. Since in the present example no restrictions are being
imposed on the values, all value positions are filled with an underscore, a usual convention
for an anonymous variable.
 The properties of a relationship R are similarly represented. They include the identifying
attributes of the two participating entities, the minimum and maximum occurrences for the
first and for the second participant, and other relationship attributes if any. The frames
extracted from the Emp_Dep schema are:

frame of employee = [empno:_, isdepof/2:_]
frame of dependent = [depno:_, isdepof/1:_]
frame of isdepof = [depno:_, empno:_, min-1:0, max-1:n, min-2:1,
 max-2:1, family_tie:_]

and those taken from the Bk_Ed schema are:

frame of book = [isbn:_, subject:_, isedof/2:_]
frame of edition = [year:_, isedof/1:_]
frame of isedof = [year:_, isbn:_, min-1:1, max-1:n, min-2:1,
 max-2:1]

 We shall introduce here a join operation on frames, specifying that, when applied to
entity or relationship frames F1 and F2, a frame J results, whose property-value pairs
comprise:

a. pairs p1:v1 from F1, for each property p1 not corresponding to any property in F2;
b. pairs p2:v2 from F2, for each property p2 not corresponding to any property in F1;
c. pairs p1-p2:v1-2, for each two corresponding properties p1 and p2 in F1 and F2,

respectively.

 Value v1-2 in item c is obtained by, in turn, joining the two values v1 and v2, according to
the following criterion: if the values are identical constants, or at least one of them is a

 6

variable, v1-2 is the result of their unification [Kn]; otherwise the result is a term formed by
the two values prefixed by an asterisk to indicate that they are in conflict.
 The frames characterizing the blended space, obtained by joining the frames taken from
the source and the target schemas, are shown below. Non-corresponding properties and
conflicting values are stressed (in italic, boldface):

Femployee ∨ Fbook = [empno-isbn:_, isdepof/2-isedof/2:_, subject:_]
Fdependent ∨ Fedition = [depno-year:_, isdepof/1-isedof/1:_]
Fisdepof ∨ Fisedof = [depno-year:_, empno-isbn:_, min-1:*(0,1), max-1:n,
 min-2:1, max-2:1, family_tie:_]

 A disclaimer is in order here. We have considered only one simple type of conflict. If
the designer is allowed to perform arbitrary modifications to the target schema initially
obtained by instantiating the pattern variables (cf. step 2), other types of conflict may occur,
calling for the specification of appropriate criteria to handle them. As noted in [FT2],
blending is, in general, a most complex task, requiring a great deal of creativity from the
part of the designer, who may have to devise ad-hoc ways to achieve consistency.

Step 4 - revising the target (and source) schemas

The resulting blended space can be reinjected into the derived target space, and even into
the originating source space, if the designer admits the possibility of also reconsidering it
(fig. 2.4).

 generic

 source target

 blend

 fig. 2.4: revising the target (and source) schemas

 In our example, a convenient way to call the designer's attention to what was not used
from the source schema is to display together, in frame format, the entire list of current
properties of each entity and relationship in the target schema, expanded as the result of
blending. Such frames are directly obtained from the blend frames by reducing the
corresponding properties back to their names in the target space, and, naturally, keeping the
names of the source space properties until now disregarded:

frame of bookemployee = [isbn:_, isedof/2:_, subject:_]
frame of editiondependent = [year:_, isedof/1:_]
frame of isedofisdepof = [year:_, isbn:_, min-1:1, max-1:n, min-2:1,
 max-2:1, family_tie:_]

 Surely, the designer may or may not judge appropriate to reconsider what was initially
left out, in this case the relationship attribute family_tie. Would there be different "ties"

 7

between edition and book? Ironically, the remark that "so-and-so is a revised edition of
his father" is not uncommon, a playful but expressive metaphoric connection between the
domain of human beings, underlying employee, and books, which may bring to mind that
an edition may be classified as revised, or corrected, or expanded, or abridged,
possible values for a new edtype attribute for the isedof relationsip.
 The reconsideration of a source schema such as Emp_Dep for expansion is more rarely
desirable, especially if one wishes to keep it as a fragment containing only the features
necessary to characterize weak entities. But in case one wants to examine the possibility,
the blend frames can be alternatively renamed as follows:

frame of employeebook = [empno:_, isdepof/2, subject:_]
frame of dependentedition = [depno:_, isdepof/1:_]
frame of isdepofisedof = [depno:_, empno:_, min-1:0, max-1:n, min-2:1,
 max-2:1, family_tie:_]

 What can be the "subject" of an employee? The subject of a book can be some
fictional genre, but can also be a professional field, such as engineering, or accounting,
which may suggest a new attribute profession for the employee entity, with possible
values including engineer and accountant, among others.
 More likely to happen is a further reduction of Emp_Dep to suppress the family_tie
attribute. This would become advisable if the attribute is systematically disregarded, even at
this revision step, in a long series of target schemas generations. Reconsidering a source
schema, and consequently the pattern abstracted from it (as covered in step 5) is a case of
double-loop learning [AS]: the continued use of a model providing clues for its correction
and refinement.

Step 5 - revising the pattern

Since the generic space is often intended as a help to generate not just one but a plurality of
target spaces, conflicts located at the blended space, as well as changes made at the source
space from suggestions motivated by observing the blend, may entail its reconsideration
(fig. 2.5).

 generic

 source target

 blend

 fig. 5: revising the pattern

 In our example, the blend mirrors the fact that an identifying relationship must be total
with respect to the weak entity, but no such requirement is imposed with respect to the
entity on which it relies for identification. So the conflict registerd in property:value pair
min-1:*(0,1) of the frame resulting from the join Fisdepof ∨ Fisedof should motivate the

 8

insertion of a hot spot [Pr], i.e. a place where the specification becomes flexible, in the
Weak Entity pattern.
 The adpoted notation, using a question mark as prefix, will signal that the designer
should be queried about the min-1 property of the relationship denoted by variable E, and
that the value supplied must be chosen as 0 or 1.
 Moreover, if at step 4 a new attribute such as profession is added to the source target,
or if the family_tie relationship attribute is removed from it, the pattern must be modified
accordingly, so that it will continue to reflect the Emp_Dep schema.
 If all these modifications occur, the pattern would become, after the deletion of the lines

 attribute(E, F)

 F:family_tie

and the addition or modification of three lines (in boldface):

Pattern: Weak Entity
Example schema: Emp_Dep
Clauses --
 entity(A, B)
 attribute(A, B)
 attribute(A, G)
 entity(C, [B/D-E-B, D])
 attribute(C, D)
 relationship(E, C/?(0,1)/n, A/1/1)
Mappings --
 A:employee
 B:empno
 G:profession
 C:dependent
 D:depno
 E:isdepof

3. Covering different aspects through multiple source schemas

Patterns to model the same concept can be obtained from different source schemas. We
chose the Emp_Dep example to construct the Weak Entity pattern, but other examples
could be selected, from which a family of versions of the pattern would be obtained and
made available to designers. Originating from source schemas featuring different sets of
names, the mapping section of each version would differ from that of the others. More
importantly, not all clauses might be identical, reflecting permissible structural variations,
according to which the versions could be classified. A designer would then have a chance
to utilize the version appearing more congenial to the case on hand.
 Repeating the generation process with a second version is another advantage, allowing
one way to check the result. Assume, for instance, that a version of Weak Entity is
available, wherein the identifying relationship is total with respect to both participating
entities. If the designer of Bk_Ed had not noted at step 2 the need to correct the
specification of isedof, blending it with the schema generated from the second version of
the pattern would reveal the conflict.

 9

 But the application of more than one source must also be considered along a separate
line of reasoning. Early studies on analogy and metaphor [LJ] already argued in favour of
the use of multiple sources to provide a fuller characterization of a target possessing many
properties, which might however be grouped into a manageable number of clusters. In
[Mo], a set of eight metaphors served to explore the concept of organization from the
viewpoints of different competing theories.
 We worked with Emp_Dep as source schema to characterize a structural feature of the
Bk_Ed schema, namely the reliance on an identifying relationship to designate instances of
a weak entity. Many other sources can be brought in to suggest other types of properties.
Clearly books can be seen as products, merchandises, objects of intellectual property,
library items, etc.
 Besides attributes and relationships, operations can be defined for books. As a library
item, for instance, a book can be lent to a reader, if lost or damaged it can be replaced, etc.
In [FCBB] we included, both in schemas and in patterns, clauses defining operations in
terms of their pre- and post-conditions [FN]. Integrity constraints expressed e.g. in first-
order logic notation could also be added.
 Notice that such extensions, obviously of practical interest, especially in the context of a
combined use of a multiplicity of source schemas, would lead to more difficult consistency
verification, and, in particular, would necessitate a far more involved treatment of blends
than we presented here.
 On the other hand, the name of the source schema used to derive a certain set of
properties of a concept serves to designate a distinct aspect of the concept. And, as stressed
in [HT], when performing a problem-solving algorithm of exponential or high polynomial
complexity to instances of an entity, for example, one can establish that only the properties
derived from the one (or the few) designated source(s) will be considered, thereby reducing
the computational effort.

4. Categorizations from the generic and the blended spaces

Whereas the patterns at the generic space are preserved to help in the future creation of any
number of target schemas, the frames composed at the blended space are only used in
connection with a specific source-target pair, and can in principle be discarded after the
generation process terminates.
 And yet both spaces, whose role is no more than auxiliary in the derivation of targets
from sources, can give rise to new full-fledged conceptual spaces, through a process
sometimes called categorization [FT1]. This is more easily accomplished when generic and
blend represent the confluence of spaces associated with the same underlying domain.
 Entities employee and student provide an example of this situation, since both have
human beings as underlying domain. Their corresponding properties can conveniently be
named identically, so that they can more appropriately be called common properties, to be
factored out to characterize a person entity – in a sense, a materialization of the generic
space. Both the common and the exclusive properties of employee and student are, in
turn, inherited by the trainee entity, which materializes the blended space. In [BBFC] we
represented these four entity classes as nodes of the lattice induced by is-a links, and

 10

showed that, their properties being so specified, the meet and the join of the frames of
employee and student, yield, respectively, the frames of person and trainee.
 When different underlying domains are involved, categorization can still be envisaged.
The resulting blend is then populated with hybrid entities, which may either appear realistic
or fantastic, depending on the context. Conflating persons, objects or events is a powerful
literary practice, and, surprisingly, offers sometimes intuitive clues to solve problems, as in
the buddhist monk riddle expounded in [Tu]. A blend conflating persons and books, for
instance, might make sense in a cartoon universe, as a Digital Storytelling application
aiming to teach children how to use the facilities of a library. Apart from Information
Systems, on which the present paper concentrates, and Digital Storytelling, other Computer
Science areas such as Software Engineering have drawn significantly from the notions of
analogy [BS] and blending [IB].

5. Concluding remarks

Although simple, the weak entity example helped us to gain a better understanding of
design by analogy. Having developed an interactive logic programming tool, we were able
to run experiments with the current version of the five-step process.
 Much work remains to be done, especially to extend the process as described in section
2, in order to cope with an ampler variety of conflicts, and to develop semi-automatic
algorithms and/or heuristics to recommend adequate strategies for handling the different
situations that may arise in practice.
 The topics sketched in sections 3 and 4 should also be included as objectives for future
research, aiming at their integration in a more comprehensive treatment of the schema
generation problem.

Referencces

[AS] Argyris, C. and Schon, D. A. Organizational Learning II: Theory, Method, and Practice, FT Press,

1995.
[BBCF] Breitman, K. K., Barbosa, S. D. J., Casanova, M. A. and Furtado, A. L. “Conceptual modeling by

analogy and metaphor”. Proceedings of CIKM, 2007.
[BBFC] Barbosa, S. D. J., Breitman, K. K., Furtado, A. L. , Casanova, M. A.. "Similarity and analogy over

application domains". Proceedings of SBBD, 2007.
[BS] Barbosa, S. D. J. and de Souza, C. S. “Extending software through metaphors and metonymies”. In

Knowledge-Based Systems, 14, 2001.
[BCN] Batini, C., Ceri, S. and Navathe, S. Conceptual Design – an Entity-Relationship Approach.

Benjamin Cummings, 1992.
[FCBB] Furtado, A.L., Casanova, M.A., Barbosa, S.D.J., Breitman, K.K. "Plot mining as an aid to

characterization and planning". Technical Report MCC07, PUC-Rio, 2007.
[FN] Fikes, R. E. and Nilsson, N. J. "STRIPS: A new approach to the application of theorem proving to

problem solving". Artificial Intelligence , 2(3-4), 1971.
[FT1] Fauconier, G. and Turner, M. Conceptual projection and middle spaces. Technical Report 9401,

University of California, San Diego, 1994.
[FT2] Fauconier, G. and Turner, M. The Way we Think. Basic Books, 2002.
[Go] Goguen, J. "An Introduction to Algebraic Semiotics, with Application to User Interface Design". In

Computation and Metaphor, Analogy and Agents. Nehaniv, C. (ed.). Springer-Verlag, 1999.
[HT] Holyoak, K. & Thagard, P. Mental Leaps. The MIT Press, 1996.

 11

[IB] Imaz, M. and Benyon, D. Designing with Blends. The MIT Press, 2007.
[Kn] Knight, K. Unification: "A Multidisciplinary Survey". ACM Computing Surveys, Vol. 21, No. 1,

March, 1989.
[LJ] Lakoff, G. & Johnson, M. Metaphors We Live By. University of Chicago Press, 1980.
[MB] MacLane, S. and Birkhoff, G. Algebra. MacMillan, 1967.
[Mo] Morgan, G. Images of organization - Executive edition. Sage Publications, 1998.
[Pr] Pree, W. Design Patterns for Object-Oriented Software Development. Addison-Wesley, 1995.
[Tu] Turner, M. The Literary Mind. Oxford University Press, 1996.

