

ISSN 0103-9741

Monografias em Ciência da Computação

n° 19/07

A Polite Policy for Revisiting Web Pages

Críston Pereira de Souza
Eduardo Sany Laber
Caio Dias Valentim

Eduardo Teixeira Cardoso

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 19/07 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena August, 2007

A Polite Policy for Revisiting Web Pages

Críston Pereira de Souza, Eduardo Sany Laber, Caio Dias Valentim e
Eduardo Teixeira Cardoso

{csouza,laber}@inf.puc-rio.br, kakaio9@gmail.com, ecardoso@grad.inf.puc-rio.br

Abstract. We propose and analyze an efficient scheduling policy for revisiting web pages
so as to keep a local repository as up to date as possible. The main contribution of our
policy is the fact that it takes into account the politeness constraint in order to compute
the revisiting times.

Our experiments suggest that the performance of our policy is very close to the optimal
one and that it is significantly better than the one obtained using a reasonable variation
of the policy proposed in [Wolf et. al., WWW 2002].

Keywords: Internet, Search Engines, Revisiting Policies.

Resumo. Neste trabalho, propomos e analisamos uma política de escalonamento eficiente
para revisitação de páginas web de modo a manter o mais atualizado possível um repositório
local. A principal contribuição de nossa política é o fato dela considerar a restrição de
politeness ao computar os instantes de revisitação.

Nossos experimentos sugerem que a performance de nossa política é muito próxima da
obtida por uma política ótima, e é significantemente melhor que a performance obtida por
uma variação da política proposta em [Wolf et. al., WWW 2002].

Palavras-chave: Internet, Máquinas de Busca, Políticas de Revisitação.

In charge of publications:
Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

ii

1 Introduction

A web crawler is one of the core components in a search engine architecture. Its main
function is to download web pages which will be further indexed. Due to the commercial
importance of web crawlers, little is known about how they are implemented by the main
search engines.

As many web pages are frequently modified, the crawler must continuously revisit them
to keep the search engine repository up to date. An obsolete repository may reduce the
quality of the search engine service, as the query result may contain links to web pages
that no longer exist, or to web pages that are no longer related to the user query. As
these repositories are usually very large, only a portion of web pages can be revisited in a
reasonable time interval. Hence, a crawler shall implement a scheduling policy to determine
how many times and when each web page shall be downloaded so as to keep the repository
as up to date as possible.

Scheduling policies must take into account computational environment limitations [3].
The number of downloads a crawler can perform in a given time interval is limited by
the communication channel and the machine characteristics. In addition to that, many
requests to the same web server can overload it. A way to prevent such an overload is
to require a scheduling policy to be ‘polite’. A typical way to be polite is waiting a fixed
amount of time between consecutive requests to the same web server. This constraint is
referred here as politeness constraint.

Two facts suggest a significant impact of the politeness constraint to the crawling
policies [3]. First, the time between requests, typically ranging from 15 to 60 seconds,
is relevant when compared to the crawler cycle and the average download time. Second,
most of web pages are hosted in few web servers. Despite of this scenario, scheduling
policies proposed in previous work [4, 8] do not take into account this constraint in order
to determine when each page shall be revisited. The main contribution of this paper is to
propose and analyze an efficient revisiting policy, which explicitly takes into account the
politeness constraint.

1.1 Problem definition

Our problem consists of devising an efficient scheduling policy for revisiting web pages so
as to keep a repository with n web pages, hosted in m web sites1, as up to date as possible
during a time horizon [0, T]. For this purpose we may execute C parallel crawlers. This
set of crawlers can do at most R downloads in the time horizon [0, T]. The time between
two consecutive requests to the same web server must be at least P (politeness constraint).

Following the approach of [4, 8] we assume, for each page i, a probability distribution
Gi() on the time interval between its consecutive changes. This assumption turns out to
be important to define a way to measure how up to date is a repository.

1.1.1 Measuring repository freshness

There exist different proposals to measure how up to date is a repository [8]. Here, we
employ the staleness metric proposed by Wolf et. al. [8]. Let xi be the number of updates
of page i in the interval [0, T]. Given the update times ti,1, . . . , ti,xi of i, one can compute

1We assume that there is only one web server per web site.

1

the probability of this page to be out of date in a particular time at the interval [0, T].
The staleness metric ai(ti,1, . . . , ti,xi) for a page i is the mean of this probability over the
interval [0, T]. Wolf et. al. [8] showed that ai(ti,1, . . . , ti,xi) is given by

1
T

xi∑
j=0

∫ ti,j+1

ti,j

(
1− λi

∫ ∞

0
(1−Gi(t− ti,j + v))dv

)
dt,

where λ−1
i > 0 is the mean of Gi(·) and Gi = 1−Gi.

The staleness of a repository is the mean of the staleness of its pages.

1.1.2 Non-uniform importance

In typical situations some pages may be more important than others. For example, we
can be more concerned about the staleness of pages with greater chance to be returned by
the search engine in a user query. Some importance metrics have been proposed, such as
PageRank [7] and Embarrassment [8].

When we have non-uniform importances, we shall minimize the weighted staleness of
the repository which is defined as

n∑
i=1

wi × ai(ti,1, . . . , ti,xi),

where wi is the importance of the page i.

1.2 Related work

Cho et. al. propose in [4] various policies for revisiting web pages and study their effective-
ness under two different metrics, the age metric and the freshness metric. They employ a
Poisson process to model the web page changes and, based on that, they determine optimal
frequencies for revisiting them. This work does not consider the politeness constraint and
it does not discuss how the updates shall be distributed to the crawlers.

In [8], Wolf et. al. propose a scheduling policy for revisiting web pages that consists of
three phases. In Phase 1, the number of updates xi of each page i is determined through
the resolution of a non linear integer program. In Phase 2, the time of each update is
analytically determined. Phase 3 solves a transportation problem to assign the updates
programmed at the end of Phase 2 to the available crawlers. They present simulations
where their policy is compared with two polices proposed in [4], the weighted proportional
policy (the number of updates is proportional to wiλi) and the weighted uniform policy
(the number of updates is proportional to wi). Wolf’s policy is significantly better than
these simple policies for most of the parameter values. In these simulations they use a
mixture of 60% Poisson, 30% Pareto and 10% quasi-deterministic in the change interval
distributions of the web pages. As in Cho’s work, the politeness constraint is not taken
into account.

Eckstein et. al. propose in [5] an optimal scheduling algorithm for monitoring in-
formation sources whose contents change at times modeled by a Poisson process. This
monitoring consists of probes to the information sources, respecting a minimal time inter-
val between consecutive probes to the same source (politeness constraint), and a maximal

2

number of probes available for each source (resource limitations). However, their approach
can be directly applied to our problem only in the case where each server hosts only one
web page.

1.3 Main results

Here, we propose an efficient scheduling policy for revisiting web pages. In oppose to the
policies proposed in the literature, the one presented here takes into account the politeness
constraint in the determination of both the number of updates and the update times of
the pages.

Our approach is inspired in Wolf’s approach and it also consists of three phases. In
the first one the number of updates per page is determined through the resolution of a
non linear integer program (NLIP). The main difference from the NLIP of [8] is that we
add a set of inequalities, one for each server, to bound the number of updates per server.
We show that our new NLIP can also be efficiently solved. Then, in Phase 2 we employ a
O(|R| log n) time algorithm to determine, for each page, a list of update times that respect
the politeness constraint. We shall note that the existence of the politeness constraint
avoids us to employ the analytical methods of [8]. Finally, in Phase 3 we assign updates to
crawlers using a much simpler and efficient scheme than the network flow method proposed
in [8].

We carried out experiments where we compare our policy with a variation of the one
proposed in [8]. This variation uses our Phase 3, instead of the original one, to determine
which crawler shall handle each update. The results observed in these experiments indicate
that our policy is able to keep the repository significantly more up to date – for most of our
experiments the staleness achieved by the variation of Wolf’s policy is at least 10% larger
than the one achieved by ours. Although we had initially planned to compare our results
with Wolf’s original policy, at some point we decided to use the aforementioned variation
because our implementation of the Phase 3 of Wolf’s policy was spending a non-reasonable
amount of time to assign updates to crawlers.

Another contribution of our work is a tight lower bound one the best possible weighted
staleness that can be achieved without violating the politeness constraint. We refer to this
bound as weak politeness. In our experiments we observe that the staleness achieved by our
policy gets very close to the weak politeness lower bound, which indicates that: (i) there
exists just a small room, if any, for improvement on our policy and (ii) the weak politeness
is a suitable tool for evaluating the performance of scheduling policies that respect the
politeness constraint.

1.4 Paper organization

This paper is organized as follows. In Section 2 we present our scheduling policy for
updating web pages in a local repository. In Section 3 we discuss theoretical issues of our
policy. In Section 4 we present our experimental results. Finally, Section 5 is regarded to
our conclusions.

2 A policy for updating web pages in a local repository

In this section we detail each of the three phases of our policy.

3

2.1 Determining the number of updates per page

In order to determine the number of updates per page we solve a non linear integer program.
Some notation is required to explain this program. Let ns be the number of pages in server
s, (s, i) be the ith page of server s, and ws

i be the importance of (s, i). We use As
i (x) to

denote the minimum staleness that can be achieved by (s, i) under the constraint that it
can be updated at most x times. Note that in the definition of As

i (x) we do not consider
the politeness constraint. The goal of the problem S presented below is to determine the
number of updates xs,i for each page (s, i) so as to minimize

m∑
s=1

ns∑
i=1

ws
i A

s
i (xs,i)

constrained to
m∑

s=1

ns∑
i=1

xs,i ≤ R (1)

ns∑
i=1

xs,i ≤ �T/P �, s = 1, . . . ,m (2)

xs,i ∈ N, for every page (s, i) (3)

The objective function of the above formulation computes the weighted staleness of
the repository if page (s, i), for every valid (s, i), is updated xs,i times in equally spaced
instants along the time horizon (this is the best way to distribute the xs,i updates [8]).

Constraint (1) provides an upper bound R on the number of updates allowed along the
time interval [0, T]. An estimate for R can be obtained in terms of the number of crawlers
and the average download time of the pages.

Constraint (2) gives an upper bound on the number of updates per server. In fact,
this constraint is a necessary condition for feasibility, that is, all schedules that satisfy
the politeness constraint satisfy Constraint (2) as well. However, it shall be clear that
Constraint (2) does not ensure that two updates of pages in the same server cannot occur
in a time interval smaller than P . This last requirement is handled in Phase 2.

We present below an efficient algorithm to find the optimal solution for problem S. Its
optimality is proved in [6].

GREEDY Procedure

1. Set all x∗
s,i’s to 0;

2. While R > 0, and there exists s ∈ {1, . . . ,m} such that
∑ns

i=1 x∗
s,i < �T/P �,

(a) Select the page (s, i) which maximizes the staleness reduction

ws
i [A

s
i (x

∗
s,i)−As

i (x
∗
s,i + 1)]

without violating Constraint (2);

(b) x∗
s,i ← x∗

s,i + 1;

(c) R← R− 1;

4

This algorithm can be implemented in O(|R| log n) by using a binary heap structure
which always maintains in its root the page which provides the largest gain in the objective
function.

Thus, at the end of this phase we have the number of updates x∗
s,i for every page (s, i).

2.2 Determining the update times

After calculating the number of updates per page, we define the time when each update
shall occur. Were we not concerned with the politeness constraint we should distribute the
updates of a single page in equally spaced instants throughout the time interval. However,
for our purposes, this solution may not be reasonable since many pages stored in the same
server could be assigned to close instants, which would violate the politeness constraint.
Thus, we need to develop another strategy.

The second phase of our strategy is implemented through a procedure denoted by
MERGE, which takes as input the number x∗

s,i of updates for each page (s, i) and defines
the time tsij of the j-th update of page (s, i). For notational convenience we drop the
server index s in the remaining of this section whenever the context is clear.

MERGE Procedure
Execute the following steps for every server s:

1. For each page i = 1, . . . , ns, and for each update j = 1, . . . , x∗
s,i of page (s, i), set

t∗ij ← j T
x∗

s,i+1 ;

2. Sort the updates according to t∗ij (break ties using the page indexes);

3. For each page i = 1, . . . , ns, and for each update j = 1, . . . , x∗
s,i of page (s, i), set

tij ← rij × T

1 +
∑ns

i=1 x∗
s,i

,

where rij is the rank of the j-th update of the (s, i) in the order produced at the end
of Step 2.

Figure 1 illustrates the MERGE procedure. Consider a server s storing two pages,
say p1 and p2, where p1 must be updated just once and p2 3 times, that is, x1 = 1 and
x2 = 3. In this scenario, the algorithm set, at Step 1, t∗11 = T/2, t∗21 = T/4, t∗22 = 2T/4,
e t∗23 = 3T/4. As there are two updates scheduled to the same time (t∗11 = t∗22), the
algorithm schedules the first update of p1 before the second one of p2 (page index order).
Thus, we have the following ranks r21 = 1, r11 = 2, r22 = 3, r23 = 4, at the end of Step
2. Since there are 4 updates scheduled at server s, the algorithm splits the interval [0, T]
into 5 subintervals of equal lengths and it assigns t21 = T/5, t11 = 2T/5, t22 = 3T/5 and
t23 = 4T/5.

MERGE procedure can be easily implemented in O(|R| log n) time.

5

0

0

0

T

T

T

t11

t21 t22 t23

t11t21 t22 t23

T/2 T/2

T/4 T/4 T/4 T/4

T/5 T/5 T/5 T/5 T/5

P1

P2

Merge

Figure 1: An example for MERGE procedure.

2.3 Assigning updates to crawlers

After determining the scheduling times, our policy defines how the crawlers perform the
programmed updates. This problem of assigning crawlers to updates is called the crawler
assignment problem. A strategy to solve this problem is presented in [8].

We employ a strategy much simpler than the one proposed in [8]. We say that an update
j of a page i programmed to time tij (in Phase 2) is free at a given time t if tij < t and
no request was performed to the server where i is stored in the interval [t− P, t]. When a
crawler c is available at time t our strategy assigns to c the most delayed update, among all
free updates at time t. It breaks delay ties (those are only possible for updates associated
with pages stored in distinct servers) selecting the server with the smallest index. This last
rule is consistent with the goal of keeping the interval between consecutive updates of a
page as uniform as possible. This strategy requires O(log m) time per crawler assignment.

Now we describe the strategy of [8] and present some arguments which motivated us to
develop and adopt an alternative strategy. For each crawler k, the strategy of [8] assumes
uniform download times. Therefore, the time interval [0, T] is split into Sk uniform slots,
where Sk is the number of updates that can be performed by crawler k in T time units
(note that the crawlers may have different speeds). The crawler capacity is given by
R =

∑C
k=1 Sk, where C is the number of crawlers. The strategy consists of formulating

the crawler assignment problem as a transportation problem, where the source nodes have
unit supply and correspond to the updates, while the demand nodes have unit demand
and correspond to the crawlers slots. Each source node is connected to a demand node
through a unit capacity edge. The cost of an edge (up, sl) connecting update up to slot sl
is given by the absolute difference between the time in which the update up is programmed
and the initial time of slot sl.

Although running in polynomial time, the known algorithms for the transportation
problem may be very slow for our problem since the number of updates for usual applica-
tions is huge. In addition, in terms of minimizing the staleness, it seems more important
to keep the size of the intervals between consecutive updates as uniform as possible than
trying to exactly match the times programmed so far. This last observation is illustrated
in Figure 2, where we consider a page that is programmed to be updated at times T/12,
4T/12, 7T/12 and 10T/12. If the slots corresponding to these times are not available
(shaded columns in Figure 2), then the approach proposed in [8] tries to assign these up-
dates as close as possible to the programmed times. This may lead to Solution 2 illustrated
at the bottom of Figure 2, where the crosses indicate the slot assigned to each update. As
we can observe, this solution does not distribute the updates in a uniform fashion through-

6

0 T

Solution 2

Solution 1

12
2T

12
3T

12
4T

12
5T

12
6T

12
7T

12
8T

12
9T

12
T

12
10T

12
11T

Figure 2: A potential weakness for the approach proposed in [8] for the crawler assignment
problem. The shaded columns correspond to the non available slots and the crosses indicate
the slot assigned to each update.

out the time horizon, which is bad for the objective function. On the other hand, the
Solution 1 presented at the top of the figure provides a much more uniform distribution.

3 Theoretical Analysis

In this section we discuss a theoretical motivation behind the scheduling policy proposed
in the previous section. This motivation can be translated into the following theorem.

Theorem 1 The cost of the optimal solution of the problem S is a lower bound on the best
staleness achieved by a revisiting schedule that respects the politeness constraint.

The importance of this theorem relies on the fact that it shows that the cost of the
optimal solution for S is a lower bound on the performance of any scheduling algorithm
which aims to minimize the staleness without violating the politeness constraint. This
lower bound may be helpful to measure the performance of other algorithms that one may
propose. In fact, in Section 4 we employ this lower bound to measure the quality of the
scheduling policy presented in this paper.

Theorem 1 is also important to justify the approach employed by our algorithm. Indeed,
our algorithm starts with an optimal solution for the problem S, where the politeness
constraint does not need to be fully satisfied, and in the second phase it adjusts this
solution so as to obtain a new solution which completely satisfies this constraint.

3.1 Proof of Theorem 1

Let B∗ be the minimum staleness that can be achieved for the repository without violating
the politeness constraint and let xopt

s,i be the number of updates performed by page (s, i) in
a scheduling of staleness B∗. In addition, let ts,i(j) be the time of the jth update of page
(s, i) in this scheduling. We have that

B∗ =
m∑

s=1

ns∑
i=1

as
i

(
ts,i(1), . . . , ts,i(x

opt
s,i)

)
.

Now, let x∗
s.i be the number of updates assigned to page (s, i) in the optimal solution

of S. Thus, it remains to show that

m∑
s=1

ns∑
i=1

ws
i A

s
i (x

∗
s,i) ≤

m∑
s=1

ns∑
i=1

ws
i a

s
i

(
ts,i(1), . . . , ts,i(x

opt
s,i)

)
. (4)

7

Since the solution xopt
s,i , for each (s, i), is a feasible solution for problem S, it follows

that

m∑
s=1

ns∑
i=1

ws
i A

s
i (x

∗
s,i) ≤

m∑
s=1

ns∑
i=1

ws
i A

s
i (x

opt
s,i). (5)

In addition, we have

As
i (x

opt
s,i) ≤ as

i (ts,i(1), . . . , ts,i(x
opt
s,i)),

for every page (s, i), since by definition As
i (x

opt
s,i) is the minimum staleness achievable by

page (s, i) under the constraint that it is updated at most xopt
s,i times. From this last

inequality and from (5) we conclude that inequality (4) holds, which establishes our result.

4 Experiments

In order to evaluate the quality of the scheduling policy proposed here, we performed
some experiments where we simulate both the modification and download times of the web
pages.

We considered a time horizon of 24 hours (T = 24), where C = 10 crawlers, with
uniform speeds, are in charge of maintaining up to date a repository of 1 million pages,
distributed in 2000 servers. We assume that each crawler can download 10 pages per second
which implies in up to 864000 downloads in our time interval. Based on that, we set the
capacity R to 864000 × 10. Furthermore, each crawler ensures an interval of 15 seconds
between requests to the same server. For the time between consecutive modifications
of a page we adopted an exponential distribution, that is, the probability of the next
modification of page i occurs within the next t units of time is

1− e−λit,

where λ−1
i is the mean time between consecutive modifications of page i. Although this

distribution is not the most suitable one for some cases [8], it reflects reasonably well the
behavior of most web pages [1, 4, 2].

For the exponential distribution, we have that [8]

Ai(xi) = 1 +
xi + 1
λiT

(e−λiT/(xi+1) − 1).

Unless we state the opposite the reader shall assume the following settings in our
experiments: (i) the pages are distributed in the servers according to a Zipf distribution
[9] with parameter θ = 1 (many pages concentrated in a few servers); (ii) the pages have
uniform weights and (iii) the λi parameters of the exponential distribution are uniformly
distributed in the interval [10−2, 1].

In all of our experiments the weighted staleness achieved by our policy, referred as PSP
(Polite Scheduling Policy) in the remaining of this paper, is compared with the weighted
staleness of two other policies named MP2 and Modified Wolf (M-Wolf for short) and also
with three theoretical bounds, NonPolite, InfCrawlers, and Weak Politeness (WP).

8

• MP2 is a policy similar to PSP except for the fact that instead of executing the
MERGE procedure (Phase 2), MP2 distributes the x∗

s,i updates assigned to (s, i),
at the end of Phase 1, in equally spaced interval throughout the time horizon [0, T].
The motivation behind MP2 is checking the effectiveness of Procedure MERGE by
comparing it with another reasonable strategy, that is, the one implemented by MP2.

• M-Wolf is a policy that first computes the number of updates per page and the times
for these updates using the approach of [8] and, then, it runs Phase 3 of PSP to assign
updates to crawlers. It shall be observed that the execution of Phase 3 ensures that
M-Wolf respects the politeness constraint.

• InfCrawlers is the weighted staleness achievable if we would be able to exactly follow
the scheduling times defined by MERGE procedure. This metric is useful to inves-
tigate the quality of the assignment strategy proposed at Phase 3 – if the weighted
staleness of PSP gets close to InfCrawlers we can conclude that Phase 3 of PSP
successfully assigned the programmed updates to the crawlers.

• WP is the cost of the optimal solution for problem S. Recall that WP provides
a lower bound on the optimal weighted staleness. The closer the staleness of the
solution provided by PSP gets to this bound, the better it is.

• The NonPolite metric is the minimum weighted staleness that can be obtained if
a large enough number of crawlers are allowed to perform R downloads along the
time interval [0, T] without respecting the politeness constraint. This is the bound
reported in the experiments of [8]. The NonPolite metric is interesting to measure
the price of being polite, that is, how much we pay in terms of staleness for respecting
the politeness constraint.

The graph of Figure 3 is obtained varying the parameter θ of the Zipf’s distribution
that defines the distribution of pages on servers. We observed the following results.

1. The staleness achieved by PSP is smaller than the one obtained by MP2 which
indicates that the way MERGE sets the update times in Phase 2 provides a non-
negligible gain.

2. PSP staleness got extremely close to the InfCrawlers metric. This result is quite
interesting since it suggests that the simple assignment strategy of Phase 3 cannot
be improved using the more sophisticated and time consuming approach of [8].

3. PSP’s staleness got close to the lower bound WP, 3% above in the average, which
indicates that PSP had a performance very close to the optimal one.

4. The staleness of M-Wolf was 9.5% above the staleness of PSP in average. This
significant difference occurred because some of updates scheduled by M-Wolf could
not be executed in the time interval [0,T], otherwise the politeness constraint would
be violated.

5. The difference between WP bound and NonPolite bound gets bigger as the distri-
bution becomes more biased in favor of many pages concentrated in a few servers, a
typical scenario in the Web. This is somehow expected since the politeness constraint
exerts a strong influence in this case.

9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

parameter θ

st
al

en
es

s

M−Wolf
MP2
PSP
InfCrawlers
WP
NonPolite

Figure 3: Weighted staleness of the repository as a function of the parameter θ of the Zipf
distribution used to sample the number of pages per server.

The graph of Figure 4 is obtained varying the way we set the λi’s of the exponential
distribution. The values of the λi’s were selected according to a Zipf’s distribution, where
a higher value of θ parameter indicates that a few pages are quite often modified. Again,
the staleness achieved by PSP is better than those obtained by M-Wolf and MP2, close
to the WP lower bound and extremely close to the InfCrawlers bound. We also ran some
experiments where we varied the page weights. Since the results observed are similar to
those reported in the other experiments we omit its details.

Recall that the capacity R is an input for our policy. In the experiments described above
we set R as the product between the number of crawlers C and the number of updates a
crawler can perform in the interval [0, T] (R = 8.64× 106 for our default parameters). We
ran some experiments to measure the sensibility of our algorithm w.r.t. the choice of R.
The results are presented in Figure 5. If we set R smaller than the real capacity, then the
staleness of the repository gets larger since the crawlers perform less updates than they
could. The staleness also gets larger when R grows above the real capacity, however, for
other reasons. The main one is that less important updates, that is, updates that would
not be scheduled if we had set R to the real capacity, are selected instead of more important
ones. The conclusion of this experiment is that R must be carefully selected in order to
minimize the staleness.

We conclude this section mentioning that both Phases 1 and Phase 2 of our policy took
just a few seconds to execute in a Pentium III Xeon 2.4 GHz with 1 GB of RAM memory.
The time for assigning an update to a crawler at Phase 3 is very low due to its O(log n)
time complexity – this constrasts with the network flow method of [8] that is very time
consuming (at least its direct implementation).

5 Conclusions

In this work we proposed an efficient scheduling policy for revisiting web pages so as to
keep a local repository as up to date as possible. In addition, we presented a simple way

10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

parameter θ

st
al

en
es

s

M−Wolf
MP2
PSP
InfCrawlers
WP
NonPolite

Figure 4: Weighted staleness of the repository as a function of the parameter θ of the Zipf
distribution used to sample the rate of change λi of each page i.

3 4 5 6 7 8 9 10 11 12 13

x 10
6

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

capacity R

st
al

en
es

s

Figure 5: Weighted staleness of the repository as a function of R.

11

to compute a lower bound on the best staleness that can be achieved. To the best of our
knowledge this is the first policy presented in the literature that takes into account the
politeness constraint to compute the number of updates per page and the updates times.

The results of our experiments suggest that the performance of our policy is very
close to the optimal one and it is significantly better than the one obtained by the policy
proposed in [8].

References

[1] B.E. Brewington and G. Cybenko. How dynamic is the Web? Computer Networks,
33(1-6):257–276, 2000.

[2] BE Brewington, G. Cybenko, D. Coll, and NH Hanover. Keeping up with the changing
Web. Computer, 33(5):52–58, 2000.

[3] Carlos Castillo, Mauricio Marin, Andrea Rodríguez, and Ricardo Baeza-Yates. Schedul-
ing algorithms for Web crawling. In Latin American Web Conference (WebMedia/LA-
WEB), pages 10–17, Riberao Preto, Brazil, October 2004. IEEE CS Press.

[4] Junghoo Cho and Hector Garcia-Molina. Effective page refresh policies for web crawlers.
ACM Trans. Database Syst., 28(4):390–426, 2003.

[5] J. Eckstein, A. Gal, and S. Reiner. Optimal Information Monitoring under a Politeness
Constraint. Technical report, Tech. Rep. RRR 16-2005, RUTCOR, Rutgers University,
Piscataway, NJ, 2005.

[6] A. Federgruen and H. Groenevelt. The Greedy Procedure for Resource Allocation
Problems: Necessary and Sufficient Conditions for Optimality. Operations Research,
34(6):909–918, 1986.

[7] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford Digital Library Technologies
Project, 1998.

[8] J. L. Wolf, M. S. Squillante, P. S. Yu, J. Sethuraman, and L. Ozsen. Optimal crawling
strategies for web search engines. In WWW ’02, pages 136–147, New York, NY, USA,
2002. ACM Press.

[9] G.K. Zipf. Human Behavior and the Principle of Least Effort: An Introduction to
Human Ecology. Addison-Wesley Press, 1949.

12

	ModeloCapa.pdf
	A Polite Policy for Revisiting Web Pages
	Críston Pereira de Souza
	Eduardo Sany Laber
	Caio Dias Valentim
	Eduardo Teixeira Cardoso

