

PUC

ISSN 0103-9741

Monografias em Ciência da Computação

n° 21/07

AUML-BP: A Basic Agent Oriented Software
Development Process Model Using AUML

Maíra Athanázio de Cerqueira Gatti
Arndt von Staa

Carlos José Pereira de Lucena

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 21/07 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena August, 2007

AUML-BP: A Basic Agent Oriented Software
Development Process Model Using AUML

Maíra Athanázio de Cerqueira Gatti, Arndt von Staa and Carlos José Pereira de
Lucena

Laboratório de Engenharia de Software – LES

Departamento de Informática
Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brasil

{mgatti, arndt, lucena}@inf.puc-rio.br

Abstract. Agent-Oriented Software Engineering (AOSE) has emerged as the discipline
devoted to the engineering of complex software systems based on the multi-agent sys-
tems paradigm. Research in the field of AOSE includes the identification and devel-
opment of both conceptual tools (e.g., formal modeling) and practical tools (e.g., agent-
based infrastructures) to support software engineers and programmers in the analysis,
design and development of multi-agent systems. Among others, a great deal of effort
in the AOSE area focuses on the definition of methodologies to guide the process of
developing multi-agent systems. As the AOSE methodologies have been proposed so
far, they are not enough for practical agent software development without a clear un-
derstanding of the software development process model that should underlie the
methodology. In order to have a good process and successfully finish the project, it is
necessary to explicitly adopt either general methods and methodologies, or specifically
suitable ones. In this context, this paper proposes AUML-BP (AUML Basic Process), a
basic agent oriented software development process model using AUML.

Keywords: Multi-Agent Systems; Software Engineering for Multi-Agent Systems,
Modeling, Software Process, Software Development Process Model.

Resumo. A Engenharia de Software Orientada a Agentes (AOSE) emergiu como uma
disciplina voltada para a engenharia de sistemas de software complexos baseados no
paradigma de sistemas multiagentes. Para apoiar engenheiros de software e progra-
madores na análise e desenvolvimento de sistemas multiagentes, pesquisadores da á-
rea vêm propondo ferramentas conceituais para a identificação e o desenvolvimento,
tais como modelagem formal, além de ferramentas práticas, tais como infra-estruturas
de agentes. Metodologias AOSE, como vêm sendo propostas, estão muito distantes de
um modelo de processo de desenvolvimento que deve ser a base para se utilizar uma
metodologia. Para ter um bom processo e um projeto completado com sucesso, é ne-
cessário adotar tanto métodos gerais como metodologias específicas, ou especificar me-
todologias adequadas. Neste contexto, este trabalho apresenta AUML-BP (AUML Basic
Process), um modelo de processo de desenvolvimento de software orientado a agente
com o uso de AUML.

Palavras-chave: Sistemas Multiagentes, Engenharia de Software de Sistemas Multia-
gentes, Processo de Software, Modelo de Processo de Desenvolvimento de Software.

 ii

In charge of publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br

 iii

Table of Contents

1 Introduction 1

2 Processes vs. Methodologies 2

3 Related Works 3

4 The AUML Overview 4

4.1 AUML Diagrams 4

4.2 AUML Extensions 8

5 AUML-BP: A Basic Process Using AUML 10

5.1 How the Process is Organized 10

5.2 The AUML-BP Iteration 20

6 Conclusions and Future Works 21

References 22

 1

1 Introduction

Agent technology enables the realization of complex software systems characterized
by situation awareness and intelligent behavior, a high degree of distribution, as well
as mobility support. Agent technology has the potential to play a key role in enabling
intelligent applications and services by improving automation of routine processes,
and supporting the nomadic users with pro-active and intelligent assistance based on
principles of adaptation and self-organization. Hence, agent technology can open the
way to new application domains while supporting the integration of existing and new
software, and make the development process for such applications easier and more
flexible [41].

Agents are often deployed in environments in which they interact, and sometimes
cooperate with other agents (including both, people and software) that have possibly
conflicting aims. Such environments are known as multi-agent systems [42]. Moreover,
agents and multi-agent systems, other than a technology, represent a new paradigm
for the development of autonomous task-oriented software entities that interact with
each other in a high-level way (e.g., via co-operation, coordination of activities, nego-
tiations), leading to possibly very articulated organizations (e.g., teams, coalitions,
markets, swarms) [23].

In this context, agent-oriented software engineering (AOSE) [24][25] has emerged as
the discipline devoted to the engineering of complex software systems based on the
multi-agent systems paradigm. Research in the field of AOSE includes the identifica-
tion and development of both conceptual tools (e.g., formal modeling) and practical
tools (e.g., agent-based infrastructures) to support software engineers and program-
mers in the analysis, design and development of multi-agent systems. Among others, a
great deal of effort in the AOSE area focuses on the definition of methodologies to
guide the process of developing multi-agent systems.

AOSE methodologies, as they have been proposed so far, mainly try to suggest a
clean and disciplined approach to analyze, design and develop multi-agent systems,
using specific methods and techniques. Unfortunately, this is far from being enough
for practical software development without a clear understanding of the software de-
velopment process model that should underlie the methodology.

Accordingly, in the development of software systems and of multi-agent systems,
the identification of a suitable methodology cannot abstract from the identification of a
specific model for the software development process [26]. Such a model should define
how the different phases of software development should be organized and coordi-
nated with each other, which activities engineers and developers have to undertake in
each stage and when, which technologies and artifacts may be used for those activities,
which products have to be expected for each stage, and which resources need to be in-
volved in the phases of software production process. In other words, the software
process model should guide the entire production effort and complement the guide-
lines identified by a specific methodology.

It is well known that the real process of software construction, if not controlled, can
become a chaotic effort with a low probability of reaching the desired goal within fixed
limits of time and budget. Therefore, when an AOSE methodology is proposed with a
lack of attention to some process model, this lack may strongly undermine the practi-
cal applicability of a methodology.

 2

Moreover, while some well known and documented process models make it possi-
ble to easily capture good experiences and to transfer them to other persons, others
only aim at introducing a minimum level of control of the software development
chaos, thus allowing a high level of reactivity to very dynamic situations. These dif-
ferences in process models have a direct consequence: in order to have a good process
and successfully complete the project, it is necessary to adopt either explicitly general
methods and methodologies, or specifically suitable ones.

In order to fulfill those needs, this paper proposes AUML-BP (AUML Basic Proc-
ess), a basic agent oriented software development process model using AUML, and is
outlined as follows: Section 2 sums up the main related works of agent-oriented soft-
ware development process, Section 3 presents the main AUML concepts, Section 4 de-
scribes the basic process for the agent-oriented software development proposed in this
paper, and Section 5 presents the conclusions and future works.

2 Processes vs. Methodologies

Generally speaking, a development process (or simply process) is an ordered set of
steps that encompasses all of the activities, constraints and resources required to pro-
duce a specific desired output (e.g., a physical artifact) satisfying a set of input re-
quirements. Typically, a process is composed of different phases placed in relation to
each other. Each phase of a process identifies a portion of work (more properly called
work definition) to be conducted within the context of the process, the resources to be
exploited to that purpose and the constraints to be obeyed in the execution of the
phase. Phases are usually comprised of a set of activities that may, in turn, be con-
ceived in terms of smaller atomic units of work (steps) [1].

Software development process (or simply software process) is the coherent set of
policies, organizational structures, technologies, procedures and artifacts that are
needed to conceive, develop, deploy and maintain (evolve) a software product [43].
Consequently, we also can identify that software processes are typically made up of a
set of phases, each specifying which activities should be carried out and which roles
(i.e.: client, analyst, software architect, programmers, etc.) and resources are to be in-
volved in them. However, unlike traditional “development” processes, software proc-
esses should also take into account the fact that the product should not only be devel-
oped but also conceived, often relying on unstable or incomplete requirements; de-
ployed, i.e., put to work in an operational environment; maintained and evolved, de-
pending on novel requirements or changes in the operational environments [1].

On the other hand, a software (development) process model prescribes the phases
around which a process should be organized, which activities should be executed in
some of the phases, in which order such phases should be executed and when itera-
tions and coordination between the work of the different phases should occur. In other
words, a process model defines a skeleton, a template, around which to organize and
detail an actual process. A software development process model (or simply a “process
model”) does not take care of fine-grained work definitions, guidelines, modeling style
for artifacts, as these can change and be adapted from case to case. This is one of the
most important aspects of process models [1].

To be successfully applicable, any phase of a process should be complemented by
some methodological guidelines (including the identification of the techniques and
tools to be used, and the definition of how artifacts have to be produced) that could

 3

help the involved stakeholders accomplish their work according to some defined best
practices.

A methodology is a collection of methods covering and connecting different phases
in a process. The purpose of a methodology is to prescribe a certain coherent approach
to solving a problem in the context of a software process by pre-selecting a number of
methods [44]. Just to clarify, a method prescribes a way of performing some kind of
activity within a process, in order to properly produce a specific output (i.e., an artifact
or a document) starting from a specific input (again, an artifact or a document).

3 Related Works

From the very beginning of software engineering research, a variety of software proc-
ess models have been proposed, from sequential waterfall-like to evolutionary and
transformation-based ones, with the goal of identifying effective, reliable and repro-
ducible ways to produce software. In the software engineering community there is
now a general consensus that for most real-world industrial projects the pervasive wa-
terfall model should be replaced by more flexible and iterative approaches, such as
evolutionary or spiral ones .

Also, it is an acknowledged fact that no single general-purpose process model can
be effective for all projects, and that different commercial and engineering needs may
be satisfied by different process models. In addition, software processes cannot be de-
fined and established once and for ever; they need to be continuously assessed and
improved.

Most of the AOSE methodologies as, for instance, Gaia [22], Roadmap [27], Prome-
theus [28], MASE [29], AOR [30], Massive [31], Ingenias [32], Tropos [33], (Agile)
PASSI [4][5], etc., adopt either a waterfall-like or an evolutionary/incremental model
[1]. In particular these methodologies do not make any explicit reference to the process
model, ending up in promoting a rather standard waterfall process model or – more
rarely – a rough incremental process model. The methodologies that pay more atten-
tion to the process model issue end up explicitly proposing an incremental process
model.

Summarizing, we can state that the need for incremental process models is widely
recognized in the community. Very few methodologies adopt a transformation-like
model, such as, for instance, the DESIRE methodology. Although other attempts in
transforming informal specification into code by means of a transformation process
have been explored so far (consider e.g., Z schemas [34]), these efforts are to be consid-
ered single methods and notations more than complete methodologies.

Spiral models, too, have encountered very limited success. Very likely, the reason is
that only a few complex industrial projects (involving high risks) so far have been car-
ried out. Thus, the need to anticipate and possibly eliminate the risks associated with
complex software development projects in agent based development have simply not
emerged.

 4

4 The AUML Overview

Agent Unified Modeling Language (AUML) [12] is a graphical modeling language that
is being standardized by the Foundation for Intelligent Physical Agents (FIPA [20])
Modeling Technical Committee. AUML was proposed as an extension of the Unified
Modeling Language (UML). So far, there is no recognized standard for modeling a
MAS and AUML emerged as a candidate to assume such a position.

AUML uses decomposition, abstraction and organization characteristics, which are
the attitudes for reducing the complexity of development software. AUML decom-
poses a system into small parts of objects, models, use-case or class, various opera-
tional actions. Concerning the abstraction, it provides a specialized abstract view of
modeling (class, use-case, diagram, interface etc.). It is used to create a set of semantics
and conditions for operation and infrastructure services.

The agent–oriented organization defines a range of elements and notations as a re-
quirements specification for domain modeling. It aims to provide a model and an in-
ternal architecture of an agent system. It usually offers some frameworks (class, dia-
gram, interface, etc.) to show how agents can be constructed in an agent system. The
modeling focuses on one aspect at a time and increases the ability to understand com-
plex problem issues during the time of system design.

The core parts of AUML are mechanisms to model protocols for multi-agent interac-
tion. This is achieved by introducing a new class of diagrams into UML: protocol dia-
grams. Protocol diagrams extend UML state and sequence diagrams in various ways.
Particular extensions in this context include agent roles, multithreaded lifelines, ex-
tended message semantics, parameterized nested protocols, and protocol templates.

This section is based on the main articles and references of AUML, and further de-
tails can be found from [9] to [21].

4.1 AUML Diagrams

AUML Use Case Diagram

AUML Use Cases capture goal-
oriented interactions between
agents with specified roles and the
software system. They are a set of
usage paths through the system,
each with a discrete goal.

 5

AUML Class Diagram

AUML Class Diagram describes
the types of agents in the system
and their static relationships.

Considering the agent view, each
agent class states its roles, attrib-
utes and operations.

The agent class also defines the ca-
pabilities of that agent in the or-
ganization, the perceptions in the
environment, which basically are
the sensors, the protocols on which
the agent interacts with other
agents, and the set of organizations
where the agent plays the roles
with their constraints.

Considering the organizational
view, it is possible to describe the
types of agents with their roles in
the organization and their static
relationships.

 6

AUML Sequence Diagram

The definition of an agent interac-
tion protocol (AIP) describes a
communication pattern, with an
allowed sequence of messages be-
tween agents having different
roles, constraints on the content of
the messages, and a semantics that
is consistent with the communica-
tive acts (CAs) within a communi-
cation pattern.

The lifeline may split up into two
or more lifelines to show AND and
OR parallelism and decisions, cor-
responding to branches in the mes-
sage flow. Lifelines may merge at
some subsequent point.

The XOR can be abbreviated by
interrupting the threads of interac-
tion. The thread of interaction, i.e.
the processing of incoming mes-
sages, is split up into different
threads of interaction; in the case of
the behavior of an agent role it de-
pends on the incoming message.
The lifeline of an agent role is split
accordingly and the thread of in-
teraction defines the reaction to dif-
ferent kinds of received messages.

The purpose of protocol templates
is to create reusable patterns for
useful protocol instances. First, the
protocol as a whole is treated as an
entity in its own right. The protocol
can be treated as a pattern that can
be customized for other problem
domains.

A nested protocol is a protocol
within another protocol. Addition-
ally nested protocols are used for
the definition of repetition of a
nested protocol according to
guards and constrains.

 7

An interleaved protocol is a proto-
col that needs a part (not complete)
of another protocol to be completed
.

Agents can perform various roles
within one interaction protocol.

AUML Collaboration Diagram

It shows the dynamic interaction of
the roles/ agents in a system. The
messages are the performative ex-
changed among roles/ agents.

AUML State Diagram

These show the transitions and
states of a protocol or of a role.

 8

AUML Activity Diagram

These show the activities of a pro-
tocol or of a role.

4.2 AUML Extensions

While conducting experiments with the AUML we discovered a gap between the
AUML Use Cases and static and dynamic diagrams. Basically, it was difficult to depict
the agent functionalities into protocols, state charts and activities. Hence we propose
the use of Agent Stories and Agent Index Cards. They were inspired by the User Sto-
ries [46] present in XP [45], which actually are mini-user stories and “tasks” are stated
in user-oriented terms. In our case, Agent Stories are mini-agent stories and agent
tasks are stated in agent-oriented terms as used in autonomous processors. And the
Agent Index Card is just a way of planning the agent story implementation.

An AUML Use Case has one or more Agent Stories depending on the number of
agents that interact with it. An Agent Story is a scenario that in a separated way de-
scribes all the agent goals and tasks required to accomplish its goals. An agent may
have one or more Agent Stories depending on the number of AUML Use Cases in
which the agent participates.

In order to prioritize the Agent Stories implementation and distribute it in itera-
tions, Agent Index Cards may be used. An Agent Index Card is a prioritized card that
contains the following information: name, importance, notes, estimation time, and
how to demo.

For instance, suppose a simple AUML Use Case on which an Agent A plays the cus-
tomer role, and an Agent B plays the seller role. Agent A wants to order some books
from Agent B.

Figure 1 - AUML Use Case partial view

 9

The AUML Use Case description partial view would be:

AUML Use Case Order book

Roles Customer

Seller

Pre-conditions The agent that plays the Customer role may not be the same as the one that plays
the Seller role

Description 1. The Customer sends a message to all the agents playing the Seller role asking
for books.
2. A Seller agent answers the Customer asking for information about the book.
3. The Customer sends the name or other information.
4. The Seller checks in the systems if the book is available.

a. If it is, the Seller sends a message to the Customer with the price.
b. If it is not, the Seller sends a negative message.

....

The Customer Agent Story for this AUML Use Case is:

Role Customer

AUML Use Case Order a book

Goal Order a book

Tasks 1. Send the message M1 to the Seller
2. Wait for the Seller answer
3. Receive the Seller answer
4. If the Seller answer is positive and contains the price, analyze the price.

a. If can afford it, send the message M2.
b. If cannot afford it, send the message M3.

5. If the Seller answer is negative, sent the message M4.

Messages M1 : [performative: Inform; sender: Customer; receiver: Seller; content: book
name]

M2 : [performative: Reject; sender: Customer; receiver: Seller; content: the price is
expensive]
….

Through the Agent Index Card set define in which order each Agent Story must be
developed. It defines the order according to the Agent Index Card more interdepen-
dently than others and according to the more important agent functionalities. For in-
stance, see the Agent Index Card below:

Figure 2- Agent Index Card for the Order Book Agent Story

 10

5 AUML-BP: A Basic Process Using AUML

AUML-BP is a software development process model that is expected to cover a broad
set of agent development needs. AUML-BP combines OpenUP/Basic [7][35] with the
AUML model language. OpenUP/Basic takes an agile approach to software develop-
ment, with only fundamental content providing a simplified set of work products,
roles, tasks and guidance. It is an iterative software development process that is mini-
mal, complete and extensible. It is a process for small, co-located teams that value col-
laboration and stakeholder benefits over unnecessary deliverables and formality.

From the descriptions of methodology processes we will extract the method frag-
ments. A method fragment is a reusable part of a design process that takes some al-
ready designed pieces of the system and produces a new part of the design following a
precise procedure. The FIPA method fragment definition [36] is composed as follows:

1. A portion of process

2. One or more deliverables (artifacts like (A)UML/UML diagrams, text documents
and so on). Some preconditions (like the required input data or guard condition)

3. A list of concepts (related to the MAS meta-model) to be de-
fined/designed/refined by executing the specific method fragment.

4. Guideline(s) that illustrate(s) how to apply the fragment and best practices re-
lated to it. A glossary of terms used in the fragment

5. Other information (composition guidelines, platform to be used, application area
and dependency relationships useful to assemble fragments) completes this definition.

5.1 How the Process is Organized

AUML-BP method content is focused on a subset of RUP [37] disciplines as follows:
requirements, analysis & design, implementation and test (Figure 3). Although the im-
plementation discipline is based on Test-Driven Development (TDD) [38] which is a
software development technique that involves repeatedly first writing a test case and
then implementing only the code necessary to pass the test. It is our belief that TDD is
an effective way of implementing MAS and some primary result efforts in this direc-
tion can be found in [47].

Figure 3 - The RUP Phases and Disciplines, adapted (copied) from [37].

 11

Analysis & design and Test content are not called only in a separate discipline. The
developer performs low level analysis and design, by identifying classes and internal
parts of components. Implementation discipline concentrates tasks the developer per-
forms to evolve the design into implementation, which is unit-tested and integrated
into the code base.

In what follows we describe for each role the agent related tasks to perform and the
agent related artifacts it is responsible for when executing the activities.

R Analyst – responsible for gathering agent requirements and documenting them as
needed. The Analyst is also responsible for designing the agent solution.

 Task
Find and Outline Agent Requirements

Description This task describes how to capture the agent requirements for the sys-
tem.

Purpose The purpose of this task is to understand stakeholder requirements
considering the agent goals in the systems and communicate these to
the development team.

Discipline Requirements

Role Analyst

Input Glossary

Vision

Supporting Requirements

Use Case

Use Case Model

 12

Output Supporting Agent Requirements

Agent

AUML Use Case

AUML Use Case Model

Guidelines Agent Requirements Gathering Techniques

Find and Outline Agents and AUML Use Cases

Supporting Agent Requirements

 Task
Detail Agent Requirements

Description This task describes how to detail one or more agent requirements for
the system.

Purpose The purpose of this task is to describe one or more agent requirements
in sufficient detail to validate understanding of the agent requirement,
to ensure concurrence with stakeholder expectations and to permit soft-
ware development to begin.

Discipline Requirements

Role Analyst

Input Glossary

Vision

Supporting Agent Requirements

Agent

AUML Use Case

AUML Use Case Model

Output Agent

AUML Use Case

AUML Use Case Model

Agent Story

Agent Index Card

Guidelines Detail AUML Use Case and Scenarios

Create and Detail Agent Story

Create and Detail Agent Index Card

AUML Use Case Formats

Agent Story Formats

Agent Index Card Formats

 13

 Task
Design the Agent Solution

Description Identify the elements and devise the agent interactions, behavior, rela-
tions and data necessary to realize some functionality.

Render the agent design visually to aid in solving the problem and
communicating the solution.

Purpose The purpose of this task is to describe the software agents so that they
support the required behavior, are of high quality and fit within the
architecture.

Discipline Analysis & Design

Role Analyst

Input Class Diagram

Sequence Diagram

Architecture

Supporting Agent Requirements

AUML Use Case

Agent Story

Agent Index Card

Output Agent Class Diagram

Agent Interaction Protocol Diagram

Agent Collaboration Diagram

 14

(Refined) Agent Class Diagram

Guidelines Agent Design

AUML Use Case Realizations

Agent Communication Patterns

Agent Designing Visually

R Architect – responsible for the software architecture, which includes the key techni-
cal decisions that constrain the overall design and implementation for the project. It
also includes the agent software architecture and its features.

 Task
Analyze Architecture Requirements

Description Analyze the architecturally significant requirements and define an ar-
chitecture candidate for the system based on experience gained from
similar systems or in similar problem domains. Define the architecture
patterns, key mechanisms, and, where applicable, modeling conven-
tions for the system.

As a second step, apply the same steps to the agent architecture re-
quirements.

Purpose To provide sufficient guidance and direction for the team to be able to
perform analysis and design in consistent and coherent ways.

Discipline Analysis & Design

Role Architect

Input Glossary

Vision

Use Case Model

AUML Use Case Model

Agent Story

Output Architecture

 15

Agent Architecture

Design

Agent Design

Guideline Analyze the Architecture

Analyze the Agent Architecture

Analyze the Integration of both Architectures

 Task
Demonstrate the Architecture

Description Present at least one solution that proves that the planned (agent) archi-
tecture will meet the agent requirements.

Purpose Reduce the risk of reworking the software (agent) architecture by illus-
trating at least one architecture that supports the (agent) requirements
of the system.

Discipline Analysis & Design

Role Architect

Input Vision

Supporting Requirements

Architecture

Supporting Agent Requirements

Agent Architecture

Output Architectural Proof-of-Concept

Agent Architectural Proof-of-Concept

Guidelines Architectural Proof-of-Concept

Agent Architectural Proof-of-Concept

 Task
Develop the Architecture

Description Make concrete decisions about the (agent) architecture to provide
guidance and direction to the development work for the iteration.

Purpose Provide a skeletal design with the agent skeletal design also to enable
more comprehensive design activities to be performed coherently by
the team.

Discipline Analysis & Design

Role Architect

Input Vision

Supporting Requirements

 16

Architecture

Supporting Agent Requirements

Agent Architecture

Design

Agent Design

Output Architecture

Design

Agent Architecture

Agent Design

Guidelines Identify design mechanisms

Identify reuse opportunities

Identify architecturally significant design elements

Define development and test architectures

Document and communicate decisions

R Developer – create a solution (or part of it) by doing (agent) design,
(agent) implementation, unit tests and integration of components and agents.

 Task
Implement Developer Tests and the Solution

Description Implement one or more tests that enable the validation of the individ-
ual software components through execution.

Implement source code necessary to pass the test and to provide new
functionality or fix defects.

 17

Purpose The purpose of this task is to produce an implementation for part of the
solution (such as a class or component), or to fix one or more defects.
The result is typically new or modified source code, which is generally
referred to the implementation.

Test-Driven Development (TDD) is a software development technique
that involves repeatedly first writing a test case and then implementing
only the code necessary to pass the test.

Discipline Implementation & Test

Role Developer

Input Supporting Requirements

Use Case

Design

Output Implementation

Guidelines Test-Driven Development (TDD)

Mock Objects

Refactoring

 Task
Implement Developer Agent Tests and the Agent Solution

Description Implement one or more tests that enable the validation of the individ-
ual software agents through execution.

Implement source code necessary to pass the test and to provide new
agent functionality or fix agent defects.

Purpose The purpose of this task is to produce an implementation for part of the
agent solution (such as a protocol or component), or to fix one or more
agent defects. The result is typically new or modified source code,
which is generally referred to the agent implementation.

Discipline Implementation & Test

Role Developer

Input Supporting Requirements

Supporting Agent Requirements

Use Case

Agent Use Case

Design

Agent Design

Output Implementation

Agent Design

Guidelines Test-Driven Development (TDD)

Mock Agents

 18

Refactoring

 Task
Refine the Solution

Description Identify the elements that had their interactions, behavior, relations,
and data necessary to realize some functionality updated/ refactored.

Purpose The purpose of this task is to keep the design consistent.

Discipline Implementation & Test

Role Developer

Input Design (Class Diagram, Sequence Diagram)

Output Design (Class Diagram, Sequence Diagram)

Guidelines Refactoring

 Task
Refine the Agent Solution

Description Identify the agents that had their interactions, behavior, relations and
data necessary to realize some functionality updated/ refactored.

Purpose The purpose of this task is to keep the agent design consistent.

Discipline Implementation & Test

Role Developer

Input Agent Design

 Agent Class Diagram

 Agent Interaction Protocol Diagram

 Agent Collaboration Diagram

Output Agent Design

 Agent Class Diagram

 Agent Interaction Protocol Diagram

 Agent Collaboration Diagram

Guidelines Refactoring

The Tester role has the same activities as in the OpenUP/Basic – responsible for testing
the system from a larger perspective than the developer does, making sure the system
works as defined and is accepted by the customer. Hence this role will not be de-
scribed here since it can be found in the OpenUP/Basic definition [35].

The guidelines explain how to informally represent the artifacts. In general, these
guidelines recommend capturing the information in an existing artifact, spreadsheet,
database, table, e-mail, etc.

 19

Reusable method content is created separate from its application in processes.
Method content provides step-by-step explanations, describing how specific develop-
ment goals are achieved independent of the placement of these steps within a devel-
opment life cycle.

Processes take method elements (step-by-step explanations, describing how specific
development goals are achieved) and relate them into semi-ordered sequences that are
customized to specific types of projects. In OpenUP/Basic the method’s elements are
organized into reusable pieces of process called capability patterns, providing a consis-
tent development approach to common problems. These patterns are made of activities
organizing tasks (from the method content), grouping them in a sequence that makes
sense for the particular area where that pattern is applied.

Moreover OpenUP/Basic has a delivery process for iterative development through-
out four phases. The iteration template patterns are put together, as many times as
needed, depending on how the project manager needs to instantiate them to create a
project plan.

The figures bellow summarize and illustrate how a set of development goals are re-
lated and achieved step-by-step:

Figure 4 - The Analyst activities and artifacts relationships step-by-step

For instance, when the Analyst executes the Find and Outline Agent Requirements
he/she uses the Actor and Use Case artifacts in order to refine it and extract the agent
capabilities, functionalities and interactions. The result of this activity will be the
Agent and AUML Use Case artifacts.

The Detail Agent Requirements activity has the Agent and AUML Use Case arti-
facts as the inputs and generates the Agent Stories and Agent index Cards artifacts
outputs.

Finally, the Design Agent Solution activity receives Agent, AUML Use Case, Agent
Stories and Agent Index Cards as input and generates the Agent Collaboration, Se-
quence and Class Diagrams which will be refined by the Developer in the Refine the

 20

Agent Solution activity after the execution of the Implement Developer Agent Tests
and the Agent Solution activity as shown in Figure 5 below.

The Developer may use Mock Agents [39] when executing the Implement Devel-
oper Agent Tests and the Agent Solution activity. Mock Agent would be used as agent
unit test based on the Agent Stories and Agent Index Card, and the goal is to develop
the agent to pass in the agent unit test.

After all the agents are implemented separately, then it is necessary to execute inte-
gration tests, which will be the execution of test cases based on the AUML Use Case.
The integration test represents the real agent interactions and the goal is to find any
logical path fault during their executions, for instance a deadlock.

Figure 5 - The Developer activities and artifacts relationships step-by-step using Test Driven Development

5.2 The AUML-BP Iteration

As stated previously, AUML-BP uses iterative development with a life cycle consisting
of several iterations, just like RUP. Iteration incorporates a loosely sequential set of ac-
tivities in business modeling, requirements, analysis and design, development (which
means implementation & test), test and deployment, in various proportions depending
on where in the development cycle the iteration is located.

The project is broken down into four phases: Inception (deciding what to build),
Elaboration (addressing the largest risks, demonstrate technical feasibility), Construc-
tion (building the software with a working version at each iteration), Transition
(documentation, training, deployment of software).

Each phase is made up of iterations. This allows an evolving understanding of the
agent requirements, continuous user involvement and addresses the highest risks first.

 21

Figure 6 - An AUML-BP Iteration

6 Conclusions and Future Works

This work presented AUML-BP, a basic process for the development of agent-oriented
systems using the AUML modeling language. In order to define the process, it was
necessary to extend the AUML since it does not define any methods for the integration
of the requirements phase with the analysis & design phase, which is important during
agent software development because the agent sequence, agent collaboration and
agent activity diagram designs are not feasible tasks. Thus we proposed the use of
Agent Story and Agent Index Card for this purpose.

We described all the activities with their respective inputs and outputs and their as-
sociated roles. And we also illustrated the process with the main agent related activi-
ties step-by-step and an AUML-BP iteration. We still have to evaluate this process with
a case study.

We also want to create an EPF Composer plug-in for the AUML-BP such as there is
for the OpenUP/Basic and others. The EPF Composer (Eclipse Process Framework
Composer) [40] is a tool platform for process engineers, project leads, project and pro-
gram managers who are responsible for maintaining and implementing processes for
development organizations or individual projects. With EPF, it is possible to keep and
maintain a knowledge base of intellectual capital that allows us to browse, manage
and deploy content.

EPF Composer also provides catalogs of pre-defined processes for typical project
situations that can be adapted to individual needs. It provides a way of representing
best development practices for specific disciplines, technologies or development styles,
and allows you to set-up your own organization-specific capability pattern libraries.
Finally, the documented processes created with EPF Composer can be published and
deployed as Web sites.

Thus we believe that the AUML-BP plug-in for EPF Composer can be used as a
powerful tool during the agent-oriented development process.

 22

References

[1] L. Cernuzzi, M. Cossentino, F. Zambonelli. Process Models for Agent-Based De-
velopment. International Journal on Engineering Applications of Artificial Intelligence
(EAAI). Elsevier. 2004.

[2] T. De Wolf, and T. Holvoet, Towards a Methodolgy for Engineering Self-
Organising Emergent Systems, In Self-Organization and Autonomic Informatics (I),
Vol. 135 of Frontiers in Artificial Intelligence and Applications. H. Czap, R. Unland, C.
Branki and H. Tianfield (editors), pp 18 - 34. ISBN: 1-58603-577-0, IOS Press. Proc. of
the Int. Conf. on Self-Organization and Adaptation of Multi-agent and Grid Systems
(SOAS 2005), Glasgow, Scotland, UK (PDF) [Best Paper Award]

[3] PASSI: a Process for Agents Societies Specification and Implementation (web
site)

[4] A. Chella, M. Cossentino, L. Sabatucci, and V. Seidita. From PASSI to Agile
PASSI: Tailoring a Design Process to Meet New Needs. In Proc. of IEEE/WIC/ACM
International Joint Conference on Intelligent Agent Technology, Beijing, China, Sep-
tember 2004.

[5] A. Chella, M. Cossentino, L. Sabatucci, and V. Seidita. Agile PASSI: An Agile Pro-
cess for Designing Agents. International Journal of Computer Systems Science & En-
gineering. Special issue on "Software Engineering for Multi-Agent Systems," 21(2).
March 2006.

[6] M.Cossentino and A. Chella. Designing a problem specific design process for
multi-agent systems. In Proc. of The Intelligent Agent Architectures: Combining the
Strengths of Software Engineering and Cognitive Systems Workshop at the Nineteenth
National Conference on Artificial Intelligence, San Jose, California, July 2004.

[7] Basic Unified Process: A Process for Small and Agile Projects
http://www.eclipse.org/proposals/beacon/Basic%20Unified%20Process.pdf, July,
2007.

[8] Scrum: A Simple Process For Managing Complex Projects
http://www.controlchaos.com/, July, 2007.

[9] Odell, J., Parunak, H. and Bauer, B. (2000) "Extending UML for Agents," In: Wag-
ner, G., Lesperance, Y. and Yu, E. Proceedings of the Agent-Oriented Information Sys-
tems Workshop, AOIS 2000, Eds., Austin, pp. 3-17.

[10] Odell, J., Parunak, H. and Bauer, B. (2001) "Representing agent interaction pro-
tocols in UML," In Agent-Oriented Software Engineering, First International Work-
shop, AOSE 2000, Ciancarini, P., Wooldridge, M., Eds., LNCS 1957 Springer, Limerick,
Ireland. pp. 121-140.

[11] Parunak, H. and Odell, J. (2002), "Representing social structures in UML," In
Agent-Oriented Software Engineering II, Wooldridge, M., Weiss, G. and Ciancarini, P.,
Eds., LNCS 2222, Springer-Verlag, Berlin, pp. 1-16.

 23

[12] B. Bauer, J. P. Müller, J. Odell. Agent UML: A Formalism for Specifying Mul-
tiagent Interaction. Agent-Oriented Software Engineering, Paolo Ciancarini and Mi-
chael Wooldridge eds., Springer-Verlag, Berlin, pp. 91-103, 2001.

[13] Huget, M. (2002) "Agent UML Class Diagrams Revisited," In Proceedings of
Agent Technology and Software Engineering (AgeS), Bauer, B., Fischer, K., Muller, J.
and Rumpe, B., Eds., Erfurt, Germany.

[14] Huget, M. (2002) "Generating Code for Agent UML Sequence Diagrams." In
Proceedings of Agent Technology and Software Engineering (AgeS), Bernhard Bauer,
Klaus Fischer, Jorg Muller and Bernhard Rumpe (eds.), Erfurt, Germany, October.

[15] Bauer, B. (2002) "UML Class Diagrams revisited in the context of agent-based
systems." In: M. Wooldridge, P. Ciancarini, and G. Weiss (Eds.) Proceedings of Agent-
Oriented Software Engineering, Second International Workshop, AOSE 2001, LNCS
2222 Springer, Canada, p. 101-118.

[16] Huget, M-P., An Application of Agent UML to Supply Chain Management,
in Proceedings of the Fourth International Bi-Conference Workshop on Agent-
Oriented Information Systems, Bologna, Italy, 2002.

[17] Beer, M., et al., Designing Community Care Systems with AUML, in Proceed-
ings of the International Conference E.U-LAT e-Health, Cuernavaca, Mexico, 2003.

[18] Odell, J., Parunak, H. and Fleisher, M., "The Role of Roles in Designing Effec-
tive Agent Organizations" In Software Engineering for Large-Scale Multi-Agent Sys-
tems, Garcia, A., Lucena, C., Zamobnelei, F., Omicini, A and Carstro, J., Eds., LNCS,
Springer-Verlag, 2003.

[19] Peres, J., Bergmann, U. Experiencing AUML for MAS Modeling : A Critical
View, SEAS 2005, Uberlandia, MG.

[20] FIPA Agent UML Web Site – http://www.auml.org, 2007.

[21] FIPA ACL– Agent Communication Language Specification -
http://www.fipa.org/repository/aclspecs.html, 2007.

[22] Wooldridge, M., Jennings, N. and Kinny, D.; The Gaia methodology for agent-
oriented analysis and design. Journal of Autonomous Agents and Multi-Agent Sys-
tems, 3(3):285–312, 2000.

[23] Jennings, N. R.; An agent-based approach for building complex software sys-
tems. Communications ACM, 44(4):35–41, 2001.

[24] Ciancarini, P. And Wooldridge, M., Agent-Oriented Software Engineering.
Proceedings of the 1st International Workshop on Agent-Oriented Software Engineer-
ing, Springer Verlag, LNCS, Vol. 1957, pp. 1-24, 2001.

[25] Zambonelli, F. and Omicini, A., 2004. Challenges and Research Directions in
Agent-Oriented Software Engineering. Journal of Autonomous Agents and Multi-
agent Systems, vol. 9, No. 3, Kluwer Academic Publishers, pp 253-283, 2004.

 24

[26] Boehm, B., A Spiral Model of Software Development and Enhancement. IEEE
Computer, Vol. 21, Nº 5, May, 1988, pp. 61-72, 1988.

[27] Juan, T., Pearce, A. and Sterling, L., ROADMAP: Extending the Gaia Method-
ology for Complex Open Systems. Proceeding of the First International Conference on
Autonomous Agents and Multi-Agent Systems - AAMAS ’02, July 15-19, 2002, Bologna
(Italy), pp. 3-10, 2002.

[28] Padgham, L. and Winikoff, M., Prometheus: A Methodology for Developing
Intelligent Agents. Proceedings of the First International Conference on Autonomous
Agents and Multi-Agent Systems - AAMAS ’02, Third International Workshop on
Agent-Oriented Software Engineering AOSE-2002, July 15, 2002, Bologna (Italy), pp.
135-146, 2002.

[29] DeLoach, S., Wood, M. and Sparkman, C., Multiagent Systems Engineering.
International Journal of Software Engineering and Knowledge Engineering, vol. 11,
No. 3, pp. 231-258, 2001.

[30] Wagner, G., The Agent-Object-Relationship Metamodel: Towards a Unified
View of State and Behavior. Information Systems, Vol. 28, No. 5, July, 2003, Elsevier,
pp. 475-504, 2003.

[31] Lind, J., Iterative Software Engineering for Multiagent Systems, the
MASSIVE Method. Springer Verlag, New York, Secaucus, NJ, USA, 2001.

[32] Gómez-Sanz, J. and Pavón, J., Agent Oriented Software Engineering with
INGENIAS. Proceedings of the 3rd Central and Eastern Europe Conference on Multi-
agent Systems, Springer Verlag, LNCS 2691, pp. 394-403, 2003.

[33] Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., and Mylopoulos, J., A
Knowledge Level Software Engineering Methodology for Agent Oriented Pro-
gramming. In: Proceedings of the 5th International Conference on Autonomous
Agents. ACM Press, Montreal (Canada), pp. 648-655, 2001.

[34] d’Inverno, M., Fisher, M., Lomuscio, A., Luck, M., de Rijke, M., Ryan, M. and
Wooldridge, M., Formalisms for Multi-Agent Systems. The Knowledge Engineering
Review, 12(3): 315–321, 1997.

[35] Balduino, R., Lyons, B., OpenUP - A Process for Small and Agile Projects, Oc-
tober 2006, http://www.eclipse.org/epf/general/OpenUP_Basic.pdf , accessed in July
2007.

[36] FIPA. 2003. Method fragment definition. FIPA Document,
http://www.fipa.org/activities/methodology.html.

[37] Kruchten, P. 2000 The Rational Unified Process: an Introduction, Second Edi-
tion. 2nd. Addison-Wesley Longman Publishing Co., Inc.

[38] Beck, K., Test Driven Development. Publisher Addison-Wesley, 240pg., 2002.

[39] Coelho, R., Kulesza, U., von Staa, A., and Lucena, C., Unit testing in multi-
agent systems using mock agents and aspects. In Proceedings of the 2006 interna-

 25

tional Workshop on Software Engineering For Large-Scale Multi-Agent Systems
(Shanghai, China, May 22 - 23, 2006). SELMAS '06. ACM Press, New York, NY, 83-90.

[40] Eclipse Process Framework Composer (EPF Composer),
http://www.eclipse.org/epf/, July 2007.

[41] Bauer, B., Odell, J.: UML 2.0 and Agents: How to Build Agent-basedSystems
with the new UML Standard, Journal of Engineering Applicationsof Artificial Intelli-
gence, Volume 18, Issue 2, March 2005, pp. 141-157.

[42] Luck, M., McBurney, P., Preist, Ch.: Agent Technology: Enabling Next Gen-
eration Computing, A Roadmap for Agent Based Computing. AgentLink, 2003,
http://www.agentlink.org/roadmap.

[43] Fuggetta, A., 2000. Software Process: a Roadmap. Proceedings of the Confer-
ence on the Future of Software Engineering, June 4-11, 2000, Limerick (Ireland), ACM
Press, New York (USA), pp. 25-34.

[44] Ghezzi, C., Jazayeri, M., and Mandrioli, D., 1991. Fundamentals of Software
Engineering. Prentice Hall International, Upper Saddle River, NJ (USA).

[45] Beck, K. (2000) Extreme Programming Explained: Embrace Change, Addison-
Wesley.

[46] Beck, K. (2001) Planning Extreme Programming, Addison-Wesley.

[47] Tiryaki, A. M., Öztuna, S., Dikenelli, O. and Erdur, R. C., Sunit: A unit testing
framework for test driven development of multi-agent systems. In 7th International
Workshop on Agent-Oriented Software Engineering, 2006. 3.5.

