
 
ISSN 0103-9741 

 
Monografias em Ciência da Computação 

n° 22/07 
 

Discovering Services with Restricted Location 
Scope in Ubiquitous Environments 

 
José Viterbo Filho 

Markus Endler 
Vagner José do Sacramento Rodrigues 

 
 
 

Departamento de Informática 

 

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO 

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900 

RIO DE JANEIRO - BRASIL 
 

 

 



Monografias em Ciência da Computação, No. 22/07 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena Agosto, 2007

Discovering Services with Restricted Location

Scope in Ubiquitous Environments

José Viterbo Filho, Markus Endler and Vagner José do Sacramento
Rodrigues1

1 Instituto de Informática - Universidade Federal de Goiás

viterbo@inf.puc-rio.br, endler@inf.puc-rio.br, vagner@inf.ufg.br

Abstract. In ubiquitous computing systems, the mobility of users and their devices
results in recurring disconnections and reconnections with different networks, and the
corresponding dynamic change of the network and domain-specific resources and services
accessible from the user’s device. On the other hand, some services are available to be
used only by users that are located in a well defined region. In this highly dynamic
and heterogeneous scenario, applications must be capable of discovering the appropriate
instances of the required services in each visited network or region. In order to support
such spontaneous interaction, we propose a discovery service based on the notion of a
(geographic) location scope. This discovery service is one of the core services of the MoCA
architecture, a middleware that supports the development and deployment of location-
aware ubiquitous applications.

Keywords: Context-aware Computing, Ubiquitous Systems, Service Discovery

Resumo. Em sistemas ub́ıquos, a mobilidade dos usuários e seus dispositivos resulta
na desconexão e reconexão recorrente a diferentes redes, e a correspondente alteração
dinâmica dos recursos espećıficos de cada domı́nio e dos serviços acesśıveis a partir do dis-
positivo do usário. Por outro lado, alguns serviços estão dispońıveis para uso somente dos
usuários que estão situados em regiões bem definidas. Nesse cenário altamente dinâmico
e heterogêneo, as aplicações devem ser capazes de descobrir as instâncias apropriadas
dos serviços necessários em cada rede ou região visitados. A fim de dar apoio a essa
interação espontânea, propomos um serviço de descoberta baseado na noção de escopo
de localização (geográfica). Esse serviço de descoberta é um dos serviços principais da
arquitetura MoCA, um sistema de middleware que provê apoio ao desenvolvimento de
aplicações ub́ıquas cientes de localização.

Palavras-chave: Computação Senśıvel a Contexto, Sistemas Ub́ıquos, Descoberta de
Serviços



In charge of publications:
Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

ii



1 Introduction

Ubiquitous computing environments involve the interaction of diverse computational de-
vices aiming to provide functionalities for the users in a transparent, continuous and seam-
less way [1]. For this purpose, ubiquitous computing environments encompass different
kinds of sensors and mobile devices (e.g. PDAs, notebooks, smartphones), interconnected
through a combination of several wireless network technologies [2]. A software infrastruc-
ture to support the execution of ubiquitous applications has to be flexible and reactive to
deal with the unpredictable, heterogeneous and dynamic nature of the computing envi-
ronments encountered due to the user’s mobility [3].

Some ubiquitous applications have as primary purpose to execute a given task using
the resources or services that are available in the user’s vicinity or in the currently visited
network domain [4], as in a mobile grid application, for instance. Moreover, some services
are available to be provided only within a well defined region. For example, services
provided by active spaces systems such as smart houses, offices or classrooms, are ment to
be used only by the users that are inside a given room. Such services have their location
scope restricted to that limited region and should not be advertised for clients outside their
scope area. On the other hand, some services will be appropriate only to those clients that
have interest in a specific coverage area, like, for instance, a service that transmits images
of a camera or data from sensors located in a given room. This service needs not to be
advertised for that clients that are not interested in the coverage area of the service. For
achieving these features, the underlying infrastructure for ubiquitous computing needs to
rely not only on a location service capable of dynamically locating servers and clients but
also on an appropriate service discovery mechanism capable of matching the scope of the
services with the area of interest of the clients.

MoCA architecture [5] has been designed to support the development and deployment
of context-aware applications involving mobile devices, and its core services are also ade-
quate for the development and deployment of ubiquitous applications. MoCA’s Location
Inference Service (LIS) allows to infere the location (and follow the movements) of 802.11-
enabled mobile devices within an organization. Hence, MoCA based applications can be
aware of the current location of such devices and be be notified whenever they change
location. And in order to enable applications to discover (and interact with) services that
are available in a given location, we designed, implemented and incorporated into MoCA a
new discovery service named Ubiquitous Discovery Service (UDS) with the aforementioned
location-based search and matching capabilities.

In the next section, we describe a typical scenario of ubiquitous computing where there
are services with such restricted location scope. In Section 3, we discuss the definition of
location scope for ubiquitous applications. In Section 4, we give an overview of the MoCA
architecture. In Section 5 we present the proposed discovery service and in Section 6 we
describe a case study. Section 7 dicusses some related work and, finally, Section 8 draws
some conclusions.

2 Scenarios

In this section we present a ubiquitous computing scenario where services should be avail-
able only for application clients running on devices located in a given region. This scenario

1



highlights the advantages of using a discovery service designed specifically for ubiquitous
envirenmonts and mobile access. Of course, most of the required discovery functionality
could also be implemented by the application, but this would increase the application’s
complexity, make it more dependent on the network and service configurations, and put
an extra burden to the application programmer.

For the proposed scenario, which consists in an active learning environment , let’s
assume that an institution has some classrooms and seminar rooms equipped with several
multimedia and portable devices, as well as several applications that enable a rich and
interactive learning experience among instructors and students. As one of the applications,
consider a slide presentation service, where a server executes on a (static) host, and the
clients run on a tabletPC used by the instructor, allowing him to conduct a slide show in
the classroom. As another application, consider a slide sharing application, where a server
that executes on the tabletPC used by the teacher makes possible for him to share slides
with the students that run a client application on their smartphones, but only with those
located in that same classroom, while interaction by electronic means may be blocked
for devices outside the classroom. In this scenario, a discovery service would be used to
connect the respective clients and servers entering the room.

Considering that these classrooms spread over larger areas, like different floors and
buildings, some basic services, such as a printing service, may be provided for a whole
set of rooms grouped as sub-regions of a larger region. In such a scenario, a user who
wants to print some document must have her application connected to the printing service
available for the region where she is currently located. Again, a discovery service with
location-awareness would be required to discover the corresponding printer server which
has the desired properties (e.g. capabilities, exact physical location, configurations, etc.),
but in this case the knowledge of a hierarchical structure defining compound regions and
their nested sub-regions is also necessary.

3 Defining the Service Scope

The scenarios presented in Section 2 exemplify why in many cases the physical location
of the user needs to be considered when searching for the most appropriate service for a
user. Generally, in ubiquitous computing scenarios, the set of interacting applications and
services changes dynamically and very frequently, due to the users’ mobility and also be-
cause of the intermittent connectivity with wireless networks. Under these circumstances,
many services — like the slide show server described in our scenario, for instance — are
useful only for the users that are in the very same region that is served (or covered) by
the service, while others, — like the printing service — comprise a whole set of regions.
In addition to the region-specific services, of course, there may be several other services
that are available to applications independently of the user’s location or current network
access point.

Based on these considerations, we propose two types of scope of coverage of a service.
Services that are available for any application independently of where is located the device
on which it is running are said to have global area scope, while services that are available
only for application clients running on devices located in a given region are said to have
local area scope. In order to be able to discover services available at a specific network
domain and region, one requires not only a location service for identifying where a mobile

2



device is located at any moment, but also the capability of registering services with their
coverage scope, and of searching them according to this scope and the service requester’s
physical location. In other words, a ubiquitous application client running on a mobile
device must be able to query a discovery service to get the addresses of the services of
interest that are available specifically at a given region. Moreover, mobile devices may also
be service providers. In this case, due to their mobility and to possible disconnections, the
scope of these services will have to be updated very often. Hence, the discovery service
must but also be prepared to cope with the dynamic nature of the service providers i.e. the
fact that some services may suddenly become available or unavailable at a given location
without prior announcement.

4 The MoCA architecture

The MoCA architecture provides services that support the collection, distribution and
processing of context information probed directly from mobile devices or inferred through
some other services. In addition, MoCA offers a set of APIs that support the implemen-
tation of context-aware applications using the MoCA context-provisioning services. In
Figure 1 we see the main components of MoCA. A service called Monitor must run on
each mobile device to collect raw context data, such as percentage of CPU usage, memory
available, battery level, wireless connectivity, etc. This information is periodically sent
to the Context Information Service (CIS), which is responsible for collecting, storing and
processing the data received, making it available to the interested applications.

Besides context management and synchronous querying, CIS also supports context
monitoring, allowing clients to register their interest in specific context states (involving
one or several context variables) modeled as logical expressions, and to be asynchronously
notified whenever the corresponding context-expression is satisfied (or ceases to be sat-
isfied) [5]. For instance, with the expression {"FreeMemory < 10KB" OR "APChange =
True"}, an application may subscribe to be notified when the free memory of the device
is less than 10KB or when occurs a change of 802.11 network access point.

The Location Inference Service (LIS) is a special MoCA service which is responsible for
inferring the location of a mobile device from the information about RF signal patterns
collected from 802.11 access points [6]. The service keeps track of the location of any
registered device of the system. The location information is provided in terms of symbolic
regions, which correspond to well-defined physical areas in a given organization (i.e. rooms,
halls, buildings) that may be of interest to the location-aware applications. The location
information of each device can be queried by interested applications, which only need to
know the device’s MAC address.

MoCA allows not only the creation of logical regions of arbitrary size and shape but
also their aggregation into a hierarchical structure defining regions and nested sub-regions.
This functionality is implemented in an auxiliary service named Symbolic Region Manager
(SRM), which provides an interface to create, manage and request information about
hierarchies of symbolic regions. However, all composite symbolic regions must be build
from a base set of atomic regions, which are determined by the LIS administrator.

In a way similar with CIS, LIS may also notify subscribed clients when a given device
changes location or whenever any device enters or leaves a given symbolic region, and SRM
may notify subscribers about changes in a hierarchy. This asynchronous communication

3



Figure 1: Architecture of MoCA

functionality reduces the cost to build client applications, since the programers are relieved
from managing the context information delivery.

5 MOCA’s Discovery Service

We designed, implemented and incorporated into MoCA a new discovery service named
Ubiquitous Discovery Service (UDS) for supporting the transparent and spontaneous dis-
covery of services in ubiquitous environments populated with mobile service providers and
requesters. In traditional discovery systems, the domain on which a client may discover
a service is defined by the servers that may be reached by a multicast service advertise-
ment — in systems based on network and IP address — or to those servers inside the
transmission range of a client — in systems based on RF transmission. However, it may
be difficult for the user to discover and select the most appropriate service among the
large number of services available in a ubiquitous environment applying these traditional
means to manage distributed services [7]. To be able to continuously and spontaneously
interact with environments that change all the time, ubiquitous applications have to rely
on a discovery service capable of dynamically registering and finding instances of services
that match these application’s needs considering also their location.

UDS handles the scopes of availability of services as presented in Section 3, that is, the
specification of the area wherein a requester must be located (or connected) in order to
be able to have access to services provided by a given provider. In practice, a UDS service
record (i.e. service description) contains the scope of a service, in addition to other data
and attributes commonly used for describing services in other discovery protocols, such as
name, access information (IP address and port), description of the service (attribute-valor
pairs). Hence, any provider that registers a service with UDS should inform its coverage

4



scope, otherwise it will be assumed to have global area scope.
As with most discovery services, client applications (i.e. service requesters) may query

UDS to search for a given service, and for this it must specify the search criterion, i.e. the
properties and attributes of the service they are looking for. As part of this criterion, the
client has to inform the region where it is currently located, i.e. the location of the device
on which it is running, and which can be obtained from MoCA’s LIS. In the search process,
UDS will select from all the services that match the criterion provided by the client, only
those service providers that are available for the requester’s current region. Hence, the set
of service providers that UDS will inform to the client will include: those with services that
have global area scope, providers of services with local area scope matching exactly the
location of the client, and providers of services whose area scope have a sub-area matching
the location of the client. To determine the latter, UDS retrieves the location hierarchy
of regions from SRM and subscribes for notifications about any hierarchy change.

Operation Description
Register The service provider sends a message to UDS containing the service name,

description and scope, and informing if it is mobile or stationary (default).
If the scope is not informed, it is assumed to be global. The UDS replys
with a confirmation message containing a unique registration code.

Refresh Periodically, the service provider sends a pulse to UDS containing its
unique registration code to revalidate a service record that it has pre-
viously registered.

Remove The service provider sends a message to UDS containing its unique regis-
tration code to remove a service record that it has previously registered.

Query A client sends a message to UDS containing its location and the description
of the service it is looking for and gets a list of services that matches the
description and whose scope comprises the region of the client. If the client
doesn’t inform its location, it will only get addresses of global services.

Subcribe A client sends a message to UDS containing its location and the description
of the service it wants to subscribe for being notified whenever a service
that matches the description and scope registers at UDS

Unsubcribe A client sends a message to UDS removing a subscription previously posted

Table 1: The main operations implemented by UDS.

UDS also supports providers of services with local area scope, executing on mobile
devices. In this case, it may be possible that a service requester (client) queries UDS
searching for a given service which is unavailable at the moment, but which may eventu-
ally become available as soon as the mobile device where the corresponding provider is
executing enters the same region of the client. In order to handle this kind of situation,
UDS offers another functionality which we believe to be extremely useful for ubiquitous
scenarios like this. To prevent a client application from having to repeatedly poll the
discovery service to check if a desired service has become available, UDS provides also
an asynchronous notification service, which works as follows: a client subcribes for the
detection of a service with a given selection criterion and scope, and when a provider
of a service matching this criterion and scope registers with UDS, the client is notified,
receiving all information needed to connect to that service provider.

Similarly, services offered by providers on mobile devices may become suddenly un-
available at a region for a number of reasons, such as the device’s migration to another

5



place, shortage of energy, drop of the wireless connection, or simply, because the device’s
user turned it off. Hence, a discovery service should also handle this kind of situation,
which is the case for UDS. A UDS service record contains also a field that defines if
that service is mobile, i.e. the provider is executing on a mobile device, or stationary, i.e.
provider running on a static machine. This information is given by the provider when
it registers its service with the UDS, with the following consequence: while stationary
services will stay registered until they are explicitly unregistered by the provider, mobile
services have to periodically refresh their advertisement at the UDS, in order to keep their
UDS service record active. If they fail to do so (within a predefined time interval), UDS
will assume that the service is no longer available and remove the corresponding service
record.

According to all of the aforementioned capabilities, UDS offers an APIs (shown in
Table 1) for the implementation of clients (requesters) and service providers that need
to discover each other in an ubiquitous environment, through queries or asynchronous
notifications.

5.1 Interaction with UDS

The interaction between UDS and the applications devised for the active learning envi-
ronment scenario (presented in Section 2) illustrates well how the discovery service works.
Considering the slide presentation service (SPS), when initiated, the SPS server would
register with UDS informing its location scope as a given classroom (e.g. “room 202”).
When a instructor enters that room and starts the SPS client on his device, it would
first query the LIS server to get its present location (which happens to be the same “room
202”). Then it would query the UDS server to get a list of all appropriate servers available
in “room 202” and would receive the address of that only SPS server.

For the slide sharing application (SSA), we could imagine that some students have
arrived in the classroom before the teacher. When they start the SSA client on their
devices, each application would first query the LIS server to get the location (again the
“room 202”). Then each SSA client would query the UDS server to get a list of all
appropriate servers available in that region and get an empty list as reply. In that case,
each client would subscribe with UDS to be informed if a proper serve becomes available
for that region. When the teacher comes to the room and starts the SSA server, it would
query the LIS server to get the location (“room 202”) and then register with UDS informing
its location scope as “room 202”. In that case, all SSA clients would receive notification
messages from UDS informing the address of the newly arrived server. If some students
arrived late, the SSA clients running on their devices would easily get the address of the
server in the same way described in the first paragraph.

As to the printing service (PS), similarly to the first application described, the PS
server would register with UDS informing the location scope of the service, but this time
the region of scope would be defined as a larger one that contains some sub-regions (e.g.
“2nd floor” that contains rooms 201 to 207). As the UDS server gets the information
about hierarchies of symbolic regions from the SRM (which is responsible for managing
it), if a client application located in “room 205” and other in “room 207”, for instance,
queried UDS to get the address of a PS server, both would receive the address of that
server registered for “2nd floor”.

6



6 Case Study

We designed a prototype application called SlideShare aiming to support interaction
among instructors and students in a classroom. Such an application is useful in the
scenario B we described in Section 2. The SlideShare server, running on the teacher’s
notebook, is able to send a set of images to the students attending a class and carrying
a mobile device where the client application in being executed. For that sake, the scope
of the service is defined to be restricted to the region where the teacher (and his device)
is located, i.e. a given classroom. Figure 2 (a) shows the pop up window the SlideShare
client opens when it connects to a server. Figure 2 (b) shows the SlideShare window
displaying all received images.

Figure 2: The windows shown to the user at the SlideShare client

In fact, with the support of UDS this prototype application could be enhanced to be-
come a P2P collaborative application, allowing the full interaction of teacher and students
without the need of a central server. In such a way, an application running on the mobile
device of a student or teacher that entered in the same room, would register with UDS

7



having its address notified for all other people/applications in the same room. Then it
would subscribe UDS, to be notified whenever a new person/application would come into
the room. This MoCA based P2P application could operate in any place requiring only
the MoCA core services running.

7 Related Works

The need to support not only “administratively scoped” but also “location scoped” dis-
covery services has already been pointed out elsewhere [8] [9]. In nearly all discovery
services already proposed, however, the scope of services are tightly related to the notion
of administrative network domain [10], not considering the fact that the scope of a service
might be restricted by the physical region wherein the given service is applicable. In other
words, in most systems, the scope of a service is defined by the set of clients that can be
reached within a given network.

Generally, in these systems the scope of a service is defined by the clients that are reach-
able by a multicast-based service advertisement (e.g. protocols that employ network-based
address discovery mechanisms like SSDP [11], Jini [12] [13], SLP [14], Salutation [15]), or
by the transmission range of low-level wireless broadacast mechanisms (e.g. systems based
on RF transmissions like Bluetooth Service Discovery Protocol [16]). A different example
is the Splendor protocol [17], a recent proposal of discovery service that takes into account
the location of the service provider and the client, as well as the dynamic characteristics of
systems where users move frequently. Clients and servers using Splendor can notice when
they enter a new environment, and when this happens, they will look for a new service
directory responsible for this new environment. Since in each region the directories are
found using multicast announcements, also here the notion of service scope is very tied to
the administrative scope. In discovery services like the ones just mentioned, the domains
are logical but have no exact correspondance with the physical areas/places. However,
as mentioned earlier, for ubiquitous applications it is often necessary to locate physically
— not logically — nearby resources. For instance, if someone needs to transfer an image
from a PDA to a computer with a larger screen, it is mandatory to select one with such a
display that is close to the user, instead of one that is close to the client or server software
in the network topology [12] [9].

Great ubiquitous computing projects chose to apply particular solutions for implement-
ing service discovery. Interactive Workspaces [18] and Aura [19] have similar schemes in
which each environment is responsible for managing the services available locally and the
clients that want to use these services. Oxygen [20] adopts a totally distributed solution
that pays more attention to the mobility of devices and takes into account the location
of the clients to select the services. While in both Interactive Workspaces and Aura a
client only can get information about services that are within the same network domain,
the latter also also supports queries that select the closest services, based in the number
of hops. None of the three, however, give support for locating services based on their
physical location, nor to define the scope of availability for the services as does the system
we implemented. While in those traditional systems the scope of a service is determined
by a network-specific metric which bears no relation with the physical world, in UDS,
on the other hand, service scope is defined in terms of physical locations that are not
associated with network boundaries. Moreover, the matching criterion to select a service

8



with a given location scope also takes into account the hierarchy of regions, thus enabling
a more flexible and appropriate discovery service for ubiquitous computing.

8 Conclusion

A discovery service for ubiquitous systems must consider the mobility of the users and de-
vices, which results in recurring disconnections and reconnections with different networks,
and the corresponding dynamic change of the network and domain-specific resources and
services accessible from the user’s device. In such a dynamic scenario, some applications
are interested in using the resources or services that are available in the user’s vicinity
or in the currently visited network domain, while on the other hand some services are
available to be provided only within a well defined region. Considering these aspects, we
implemented the Ubiquitous Discovery Service (UDS) for the MoCA architecture. In ad-
dition to several other common attributes of a service, UDS also uses the service provider’s
scope of availability, defined in terms of physical regions, as a selection criterion. Hence,
UDS allows application clients (requesters) to search for a service matching the scope of
availability of the server and the client’s location. Furthermore, UDS offers a notification
service that makes possible for client applications to register their interest in services with
given characteristics and scope, and to be asynchronously notified when a desired service
becomes available at the client’s physical location.

To evaluate UDS we have implemented the application called SlideShare, that shows
the behavior of a client/server application where the scope of the service is limited to
a region (a classroom), and hence clients have to discover the correct application server
depending on the location of each other. With this prototype application we tested the
main functionalities of UDS service. A noticeable advantage of this way of implementing
the discovery service is the outcoming simplicity to configure client applications, that
previously need only to know the UDS address. Even the addresses of the basic MoCA
services such as CIS and LIS may be obtained from UDS. As such, this new discovery
service achieves its purpose in liberating the user from the tedious and repetitive activity
of configuring the applications [21]. Moreover, the implementation of services that are
available only for restricted areas (scope), allows the distribution — and hence simplifies
— the management of such services.

As future work, we plan to evolve UDS so as to implement also the management of ad-
ministrative network domain scopes — defining aggregations of devices and services based
on administrative requirements —, but first we will have to adapt the MoCA architec-
ture so as to provide some support for the description of administrative network domains.
Furthermore, we are aware that other ubiquitous applications should be implemented to
fully explore the new functionalities offered by UDS, in particular, to show the benefits of
asynchronous notifications for service provider’s availability.

References

[1] WEISER, M.. The computer for the twenty-first century. Scientific American,
265(3):94–104, September 1991.

9



[2] KINDBERG, T.; FOX, A.. System software for ubiquitous computing. Perva-
sive Computing Magazine, 2002.

[3] MURPHY, A.; PICCO, G. ; ROMAN, G.-C.. Lime: a middleware for physical
and logical mobility. In: PROCEEDINGS OF THE 21ST INTERNATIONAL
CONFERENCE IN DISTRIBUTED COMPUTING SYSTEMS, 2001.

[4] CHAKRABORTY, D.; JOSHI, A. ; AMD T. FININ, Y. Y.. Toward distributed
service discovery in pervasive computing environments. IEEE Transactions
on Mobile Computing, 2006.

[5] SACRAMENTO, V.; ENDLER, M.; RUBINSZTEJN, H. K.; LIMA, L. S.;
GONÇALVES, K.; NASCIMENTO, F. N. ; BUENO, G. A.. MoCA: A middleware
for developing collaborative applications for mobile users. IEEE Distributed
Systems Online, 5(10), 2004.

[6] NASCIMENTO, F. N.; SACRAMENTO, V.; BAPTISTA, G.; RUBINSZTEJN, H. K.
; ENDLER, M.. Development and evaluation of a positining service based in
ieee 802.11 (in Portuguese). In: PROCEEDINGS OF THE XXIV BRAZILIAN
SYMPOSIUM ON COMPUTER NETWORKS (SBRC 2006), 2006.

[7] THOMPSON, M. S.; MIDKIFF, S. F.. Service description for pervasive service
discovery. In: PROCEEDINGS OF IEEE INTERNATIONAL CONFERENCE ON
DISTRIBUTED COMPUTING SYSTEMS WORKSHOPS (ICDCSW’05), 2005.

[8] FRIDAY, A.; DAVIES, N. ; CATTERALL, E.. Supporting service discovery
querying and interaction in ubiquitous computing environments. In: PRO-
CEEDING OF THE 43RD ACM SOUTHEAST CONFERENCE, 2001.

[9] MCGRATH, R.. Discovery and its discontents: Discovery protocols for ubiq-
uitous computing. Technical Report UIUCDCS-R-99-2132, Department of Com-
puter Science University of Illinois, Urbana-Champaign, May 2002.

[10] EDWARDS, W. K.. Discovery systems in ubiquitous computing. Pervasive
Computing Magazine, 5(2):70–77, April-June 2006.

[11] JERONIMO, M.; WEAST, J.. UPnP Design by Example. Intel Press, 2003.

[12] FRIDAY, A.; DAVIES, N.; WALLBANK, N.; CATTERALL, E. ; PINK, S.. Sup-
porting service discovery, querying and interaction in ubiquitous comput-
ing environments. Wireless Networks, 10(6):631–641, 2004.

[13] HARIHAR, K.; KURKOVSKY, S.. Using jini to enable pervasive computing
environments. In: PROCEEDING OF THE 43RD ACM SOUTHEAST CONFER-
ENCE, March 2005.

[14] GUTTMAN, E.. Service location protocol: Automatic discovery of ip net-
work services. IEEE Internet Computing, 3(4):71–80, 1999.

[15] SALUTATION CONSORTIUM. Salutation Architecture Specification v. 2.1,
1999.

10



[16] BLUETOOTH CONSORTIUM. Specification of the Bluetooth System v. 1.1
core, 2001.

[17] ZHU, F.; MUTKA, M. ; NI, L.. Splendor: A secure, private and location-aware
service discovery protocol supporting mobile services. In: PROCEEDING
OF THE 1ST IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COM-
PUTING AND COMMUNICATIONS (PERCOM’03), 2003.

[18] JOHANSON, B.; FOX, A. ; WINOGRAD, T.. The interactive workspaces
project: Experiences with ubiquitous computing rooms. Pervasive Com-
puting Magazine, 2002.

[19] SOUSA, J. P.; GARLAN, D.. Aura: An architectural framework for user
mobility in ubiquitous computing environments. In: PROCEEDINGS OF
3RD IEEE/IFIP CONFERENCE ON SOFTWARE ARCHITECTURE, 2002.

[20] RUDOLPH, L.. Project oxygen: Pervasive, human-centric computing - an
initial experience. In: PROCEEDINGS OF 13TH INTERNATIONAL CONFER-
ENCE IN ADVANCED INFORMATION SYSTEMS ENGINEERING (CAISE 2001),
2001.

[21] ZHU, F.; MUTKA, M. ; NI, L.. Classification of service discovery protocols in
pervasive computing environments. Technical Report MSU-CSE 02-2, Michigan
State University, East Lansing, 2002, 2002.

11


