ISSN 0103-9741

Monografias em Ciéncia da Computacéao
n°® 23/07

Flexibility for Synchronization Abstractions in
Distributed Programming

Bruno Oliveira Silvestre
Noemi de La Rocque Rodriguez
Jean-Pierre Briot

Departamento de Informatica

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE SAO VICENTE, 225 - CEP 22451-900
RIO DE JANEIRO - BRASIL

Monografias em Ciéncia da Computacédo, No. 23/07 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena August, 2007

Flexibility for Synchronization Abstractionsin
Distributed Programming

Bruno Oliveira Silvestre, Noemi de La Rocque Rodriguez, Jean-Pierre Briot!
1 Laboratoire d’Informatique de Paris 6

{brunoos,noemi}@inf.puc-rio.br, jean-pierre.briot@lip6.fr

Abstract. Most proposals for synchronization mechanisms in concurrent and distilsystems
have privileged the idea of a single abstraction that can solve all syrizatiom issues. However,
in the context of loosely coupled wide-area applications, it is interesting todvaiable different

synchronization mechanisms, so that the developer may choose the most sngabsnism for

each part of his application. Besides, it is important that synchronizatiditiéscguarantee the
desired constraints while imposing as little blocking as possible. In this worldiseeiss how
the use of dynamic programming language can help us deal with this problewidipg support

for building different building blocks and abstractions. We base our dismuss the Lua pro-

gramming language, and show how we can use it to implement different irdranter-object

synchronization mechanisms proposed in the literature.

Keywords. Event-based Programming, Distributed Programming, Programming Language

Resumo. Diversas propostas de mecanismos de sincronizacdo para sistemaseriasce dis-
tribuidos tém privilegiado a idéia de uma Unica abstragdo como solugédo pasas questdes
relacionadas a sincroniza¢do. No entanto, em se tratando de aplialiafieente distribuidas com
baixo acoplamento entre suas partes, € interessante que haja diferar@esmes de sincroniza-
¢Oes disponiveis para que o desenvolvedor possa escolher quakdelmais apropriado para
cada uma das partes da aplicacdo. Além disso, é importante que tais mecamiEntaEgas re-
stricdes necessarias impondo o minimo possivel de blogueio. Neste trabsliscutimos como
0 uso de uma linguagem de programacéao dindmica pode ajudar na cond&ug@&oanismos re-
utilizaveis e abstragfes sincronizacdo. Baseamos nossa discussaaagdingle programacao
Lua e mostramos como podemos usé-la para implementar diferentes mecanismo®mgpos
literatura para sincronizacéo intra e inter-objetos.

Palavras-chave: Programacédo Orientada a Eventos, Programacao Distriuida, Linguagemde Pr
gramacao

In charge of publications:

Rosane Teles Lins Castilho

Assessoria de Biblioteca, Documentacéo e Informacéao
PUC-Rio Departamento de Informética

Rua Marqués de Sao Vicente, 225 - Gavea

22451-900 Rio de Janeiro RJ Brasil

Tel. +55 21 3527-1516 Fax: +55 21 3527-1530

E-mail: bib-di@inf.puc-rio.br

Web site: http://bib-di.inf.puc-rio.br/techreports/

1 Introduction

Synchronization mechanisms for concurrent and distributed environmemtbban widely inves-
tigated in the eighties and nineties [Briot, Guerraoui e Lohr 1998]. Sincdnherttest in the matter
seems to have waned, although some groups continue to work in specific ines gt al. 2005,
Miller, Tribble e Shapiro 2005]. This may have been at least partially due tmderstanding that
many of the issues were resolved.

At the time these works were developed, in the eighties and early ninetiegsinierdis-
tributed applications was centered in local area network applications, mostly rdadedtrongly
coupled systems. Most of the synchronization techniques proposed @énwtioelss were based on
this model. In the late nineties and early 00's, however, the focus of inhiét&d to wide area ap-
plications. Besides interest in Internet applications, we are also withessingthih @f scenarios
such as grid and mobile computing, which impose dealing with high levels of heterygene
dynamism. In these new environments, loosely coupled, asynchronstiesrsyhave gained pop-
ularity. Instead of viewing applications as sequential programs with remotesitivos to servers,
it is now common to see a distributed application as a passive loop which must loigfetent
incoming events. In this new scenario of loosely coupled applications, soelefesynchroniza-
tion is often necessary. It is still the case that some operations may requirel exdlusion or
other types of intra and inter object synchronization. Indeed, the dugrewth of systems with
a peer-to-peer architecture tends to generate new interest in syizettiamm techniques. While
on client-server systems many issues could be dealt with inside a singlesgradt more sym-
metrical peer-to-peer approaches, there is often the need to syrmehtioa activities of the peer
processes. However, the way in which these synchronization constampgogrammed must
be evaluated in the light of new requirements posed by event-orientation,doopkng, and dy-
namic execution environments. These seem to demand more flexible mechanismsgythz
redefined and combined even at runtime, and less “hard synchronizatiah& sense of keeping
less execution threads blocked.

We believe dynamic languages have an important contribution to the undéngtamdl in-
vestigation of synchronization in these new scenarios. Interpreted amanityftanguages have
often been discarded, in the past, due to the performance overheadhiese when compared
to more traditional, compiled languages. However, it is now common to use duabprogng
models, in which a traditional language may be used for the harder computing céwodean inter-
preted language for coordination and communication. Besides, in wide4atghuded systems,
communication itself imposes costs that often minimize the relative impact of usingratemp
languages. On the positive side, these languages, due to flexible typasgste extension facil-
ities, can allow synchronization libraries to be seamlessly added to them, creatingnenents
in which different synchronization techniques can be used and even cedntircompose new
mechanisms.

In this work, we use the Lua programming language [lerusalimschy, Figleegr€eles 1996,
lerusalimschy 2006] to investigate synchronization in distributed, everedsettings. We dis-
cuss how different classic intra and inter-object synchronization mé&rharcan be integrated
into the language, resulting in an environment in which the programmer can apgilydifferent
synchronization mechanisms. Our emphasis is on the use language featurelememsyn-
chronization mechanisms using a few basic facilities, and on the integration efithelemented
mechanisms with an asynchronous communication basis. We also discuss huam wamove
some blocking from some of the previously proposed mechanisms, in line witlsyhelaonous
nature of many current applications.

This work is organized as follows. Section 2 describes our basic envirdnomnposed by
Lua and asynchronous distributed programming libraries. Section 3 dis¢tussege can imple-
ment distributed monitors on this environment. In Sect. 4 we describe how a regees can be
added to our basic environment to implement a scheme for intra and intet-syajehronization.
Finally, in Sect. 5 we conclude with a discussion of the presented work.

2 Distributed Programmingin Lua

Lua [lerusalimschy, Figueiredo e Celes 1996] is an interpreted programemggage designed
to be used in conjunction with C. It has a simple Pascal-like syntax and a sgtaifdnal fea-
tures. Lua implements dynamic typing. Types are associated to values, roidbles or formal
arguments. Functions are first-class values and Lua provides lexical gamrclosures. Lua’s
main data-structuring facility is thmabletype.

The Lua programming language has no support for distributed programidimgever, Lua
is easily extended through libraries that can be seamlessly integrated intogbhadan We have,
over the last few years, experimented with several such extensiodsfiobuted programming in
Lua, which allow us to combine different programming model in one single envieo. In our
work with synchronization mechanisms, we have used the ALua and LuaRPfi=ra

ALua [Ururahy, Rodriguez e lerusalimschy 2002] is a library for creatiiggributed event-
based applications in Lua. ALua applications are composed of processestimatinicate through
the network using asynchronous messages. Processes w@dealsendorimitive to transmit the
messages.

A message is, by default, a piece of Lua code. The arrival of a megstigated as an event,
and the default handler for this event is to execute the received cedauBe Lua is an interpreted
language, the messages can redefine functions and change the appliehéviob

An important characteristic of ALua is that it treats each message as an atamicaf code.
It handles each event to completion before starting the next one. This aemieTonditions
leading to inconsistencies in the internal state of the process. For casaicmthe application
must include blocking calls, such as direct socket manipulation for transfgrte streams, we
provide thechannelAPI [Pfeifer et al. 2002].

In line with the asynchronous nature of the ALua, most of its functions return inatedy
and receive as one of their parametecalback that is activated when execution of the requested
function is complete.

The ALua basic programming model, in which chunks of code are sent asigessand exe-
cuted upon receipt, is very flexible, and can be used to construct differteraction paradigms,
as discussed in [Ururahy, Rodriguez e lerusalimschy 2002]. Howpwegramming distributed
applications directly on this programming interface keeps the programmer ay dovelevel,
handling large strings containing chunks of code. On the other hand, tesgres of Lua,
we are able to create new libraries that offer higher-level communicatioraabtstrs and inte-
grate them easier into the language. One of the abstractions we have builtLigaReC li-
brary [Rossetto e Rodriguez 2005] (implemented byrtitemodule, which provides support for
Remote Procedure Call [Birrell e Nelson 1984].)

Remote procedure calls are typically synchronous. In fact, this is one océdisens for which
they have often been deemed inappropriate for wide-area environnsatifte [Greaves 2001]. In
our specific case, the classic blocking structure of an RPC system woultheliscompatible
with ALua’s event-based nature. To deal with this, LuaRPC uses as itsgrasitive r pc. async.

This function takes as arguments the ALua process identifier where the funaistrbe invoked,
the remote function name; and a callback, which will receive as a parameterstiits ref the
invocation (Lua allows multiple returns). Howevepg. async does not directly invoke the desired
remote function: it returns a new function which, when called, will send the ati@t and return
the control immediately. The callback will be activated upon completion of the remibtd his
design option allows the program to build remote functions and manipulate them addk avy
other function value. LuaRPC also maintains Lua’s treatment of functions asléisst-values
across invocations. Remote functions may be passed as arguments in loecahaiel calls.
Asynchronous call is interesting because it reflects the possibility of immediatatggding
with other calls: the order in which the results are received is not importantvektr, if the
program needs a result to proceed with a thread of activity, synchsorells may be more con-
venient for the programmer. Functiopc. sync creates functions that make synchronous calls to
other processes. It receives as a parameter a process identificatithre aachote function name.
Functionr pc. sync usesr pc. async for its implementation, allowing us to combine the idea
of suspending a computation for a synchronous call with the asynchrovatuse of our envi-
ronment. In this case, the callback that must be executed when the remote fuoctipietes is
the “continuation” of the invoking function. To implement this idea, LuaRPC use$ laggou-
tines. Each new remote request is executed inside a new coroutine. Whettiarfumeated by
rpc. sync makes a remote call, what in fact occurs is an asynchronous call followedite! d
from the running coroutine. The callback associated to the asynchroafius a function that
resumes the suspended coroutine when the result arrives. Figure 1 ilsitiiateehavior.

LuaRPC
Remote request .
——————————®| | coroutine.create -
H ()>‘ Coroutine
coroutine.yield() M»

-
Bl

Remote call's result

-t
coroutine.resume() o

return()

Figure 1: Flow of control with LuaRPC and coroutines

Because LuaRPC was designed as an abstraction layer over ALua, it afdainsathe basic
ALua model of allowing handler redefinition. On the server side, the requasexécution are
processed by handlers (functions) that are selected according to thedhfunction. A server
can define new handlers for its exported functions, allowing it, for instaiocexecute logging
or auditing code before invoking the function itself. However, if the functioesdnot have a
handler defined, LuaRPC uses a default handler that creates a nesirt®tbat simply executes
the requested function and returns the results to the client.

Synchronization The option for an event-based system, in which each event is handled to com-
pletion, avoids many synchronization issues. Even when we introduce temtghing, with
coroutines to support the use of synchronous remote calls, the fact thatish® preemption
avoids many classic race conditions. However, there are situations in which ystithaeed to
enforce synchronization. Because LuaRPC does not block the entoetiexewhile the answer

for a remote call is pending, it potentially creates an internal state consigiestgm, even if the

developer knows the possible interruption points. Besides, because Wwezadistributed setting,
we may need to synchronize actions occurring at different proce3$esnext sections discuss
how we can apply different synchronization mechanisms in this environment.

3 Monitors

In this section we discuss an implementation of monitors [Hoare 1974]. Our implementation f
monitors in LuaRPC is based on synchronous calls to acquire and release BHeaynchronous
call suspends the execution until the lock is acquired.

Monitors provide support for mutual exclusion and for condition syncheditn. We next
discuss in detail how we can implement mutual exclusion.

We define anonitoras a structure containing a booldank, which indicates if the monitor is
free, an entrance queue, and the identity of its creawart or . cr eat e creates a new monitor (with
no enclosed functions) and returns a reference to it. Funatimsor . t ake andnoni t or . r el ease
control lock acquisition —again using coroutinesni t or . t ake tries to acquire the lock on a given
monitor. If the lock is free, this function switches its value and execution continu@satly. If
the lock is takenponi t or . t ake puts the current coroutine in the lock’s waiting queue and yields.
Functionmoni t or . r el ease symmetrically, releases the lock on a monitor. It verifies whether there
is any coroutine in the monitor entrance queue, and, if so, resumes the first wartndgice. Oth-
erwise, it marks the lock as free. Finally, after an “empty” monitor is created, anpifinctions
can be placed under its protection by calling functioni t or . doWhenFr ee:

local function _off()
-- contains synchronous RPC calls
end
- Creates a nonitor
local mt = monitor.create()
of f = nonitor.doWenFree(mt, _off)

Figure 2 shows the implementation of functiomi t or. doWenFr ee, to illustrate how lan-
guage mechanisms facilitate the integration of abstractions into the languagatdtscand returns
a new function that encapsulates the one received as a parameter. Wiisiotion uses the lock
to guarantee the execution in mutual exclusion in relation to other functions in the maoréiiso |
deals with the input parameters and the results. The variable number of theents indicated
by the “ ..” in function definition is passed to the encapsulated function. pebk function cap-
tures the results in a Lua table that is storedeirs variable. After releasing the lock, the result is
unpacked and returned.

The mechanism we have described for mutual exclusion is different from ctassic pro-
posals in that it does not provide syntactic encapsulation of the protectetidios. This makes
the monitor a dynamic mechanism, allowing functions to be protected only when ndedbst
creates the possibility of having a single monitor protecting functions from diffenercesses,
supporting distributed mutual exclusion. For instance, a process coule eresonitor and, add
one of its functions to the monitor. Next, it could pass the monitor to another processltsa
new functions to the monitor. At the time the monitored functions are invoked, they make remote
calls to acquire the lock. However, only one of them will succeed and thethill wait in the
gueue for the lock release. Figure 3 illustrates the use of a distributed monitor.

Our monitor mechanism also offers support for waiting and signaling conditicablas, as
traditional monitors do. We do not describe this here due to space constraints.

4

modul e(" moni tor")

- mt: ronitor created to protect the function
- func: function to execute in mutual exclusion
function doWenFree(mt, func)
- index to the nonitor structure
local idx = mt.idx
- 'from points to the process that creates the nonitor
ocal take = rpc.sync(mt.from "nonitor.take")
local release = rpc.async(mt.from "nonitor.release")
return function (...)
take(i dx)
- invokes the function and captures the results
[ocal rets = pack(func(...))
rel ease(i dx)
return unpack(rets)
end
end

Figure 2: Implementation of functioroni t or . dowhenFr ee.

[ocal isOn = fal se
local function _off()
- only turns off if the neighbor is 'on’
i f neighbor_state() then isOn = fal se; end
end
function init(mt, neighbor)
- 'mt’ is a monitor and 'neighbor’ is other process
nei ghbor _state = rpc. sync(nei ghbor, "get state")
off = lock. doWhenFree(mt, off)
end

Figure 3: A distributed monitor.

4 Synchronization Constraints and Synchronizers

In the previous section we described how support for monitors can be &ldedRPC. In this
section we discuss how the handler mechanism in LuaRPC can be used tydeéinether build-
ing block to facilitate the implementation of other synchronization and coordinatidraatisns.

Using this handler mechanism, we reimplemented the proposal describedpiumnfg-1996,
Agha et al. 1993] for intra and inter-object synchronization. We chaisepttoposal because it
provides support for distributed as well as for concurrent symihadion.

Intra-object synchronization in [Blund 1996, Agha et al. 1993] is supportedsynchroniza-
tion constraints As with guards[Riveill 1995, Briot 2000], the idea is to associate constraints or
expressions to a function to determine whether or not its execution should edlio a certain
state. This kind of mechanism allows the programmer to separate the specifidaymehroniza-
tion policies from the basic algorithms that manipulate his data structures, asdgpaesonitors,
in which synchronization must be hardcoded into the algorithms.

For inter-object synchronization, [@und 1996] and [Agha et al. 1993] propose the use of

synchronizersSynchronizers are separate objects that maintain integrity constraintsusgf
objects. They keep information about the global state of the groups andtmerprohibit the
objects method execution according with the global state. To ensure the matgafdheirs in-
formation, synchronizers also supptiiggers code that is associated to the execution of methods
in the individual members of the group.

We provide support for these mechanisms through the modulgsynchronization con-
straints) andynchr oni zer . Both modules introduce constraints that must be checked by function
calls. In the case afc module, these function calls are local in order to verify the internal state,
whereasynchroni zer permits processes to register themselves as synchronizers of each remote
object (or process, in our case) they coordinate, and that must beeihfok the execution of
triggers and for the verification of constraints.

As an example taken from [Blund 1996], Fig. 4 illustrates how a program could use syn-
chronization constraints to ensure that the exported functiorendof f of a radio button are
remotely invoked in strict alternationsc. add_const rai nt associates guard functions to the ex-
ported functions. It receives as arguments the name of function to besglamnd the function that
implements verification. The latter receives as arguments the request, contamingme and
arguments of the invocation.

local isOn = false

local function can_turn_on(request) return not isOn; end
local function can_turn_off(request) return isOn; end
function on() isOn = true; end

function off() isOn = false; end

sc.add_constraint("on", can_turn_on)
sc.add_constraint("off", can_turn_off)

Figure 4: Defining synchronization constraints.

Figure 5 illustrates the creation of a synchronizer that coordinates a setrifuted radio
buttons, enforcing that at most one of them is activated at any time. Whenfdhe buttons
receives a request, it contacts the synchronizer in order to verifiethete constraints, allowing
or not the button to execute the function, and execute the appropriate triggers

local activated = false
local function can_turn_on(request) return not activated; end

local function trigger_on(request) activated = true; end
local function trigger_off(request) activated = fal se; end
-- defines constraint and triggers for each distributed button
for _, bt in ipairs(buttons) do

synchroni zer.set _trigger(bt, "on", trigger_on)

synchroni zer.set _trigger(bt, "off", trigger_off)

synchroni zer. add_constraint(bt, "on", can_turn_on)
end

Figure 5: A synchronizer defining a remote constraint and triggers fora gestributed buttons.

Both synchroni zer. set _trigger andsynchroni zer. add_constraint receive, as their argu-
ment, the remote process identification, the name of the function in this processednddtion

6

to be executed once the synchronizer is contacted. For triggers, thisofutypically updates
the global state, and for constraints, it must return, respectively, trisdsarto permit or prohibit
the constrained function execution. Moreover, the function to be executentes as a parameter
information about the constrained function into the varialklpiest .

To implement synchronization constraints and synchronizers, we dedetopew handler
to LuaRPC that manipulates a queue of requests. The handler processgetie until this is
empty or the remaining requests cannot be executed due to the synchronizketsoi\ request is
executed only if all of its local constraints and remote verifications evaluate tdHnveever, when
a requested function is executed, we need to restart the queue evaluatasdthis function can
have modified the internal or global states, making some request newly eligildecioution.

We first implemented the scheme as ingliend 1996], that is, verifying and executing the
requests in a sequential fashion —a new request is handled only afpeet@us one is completed.
However, evaluating remote constraints is expensive because the prooassinicates with the
synchronizer and blocks until the answer arrives. Figure 6-a shasiagaam illustrating this
scheme. The synchronizeimposes constraints on the functioff andget _st at e does not have
any constraint. However, the procesgxecutes the requegét _st at e after the synchronizer’'s
answer arrives.

2 S 2 S
off() off()
Check(“off") Check(“off")
get_state() \ get_state() \
) get_state()
Atf% ,state 4"%
) off()) off()
get_state()
yState
(a) (b)

Figure 6: Diagram of (a) the original and (b) our proposals for comggr@valuation.

To explore more concurrency in this system, we implemented an alternativeacle this,
each request is verified inside a new coroutine, so the process camaduispdile the synchro-
nizer verifies the constraints, and handle other request. This is shown kigthé-b. The two
implementations differ only in two lines of code: one line to create a new coroutinethedlime
to start its execution.

Our implementation checks the synchronization constraints before contaghttie@nizers,
avoiding the network communication if the local verification fails. However, bssaew function
calls can now modify the internal state during the remote constraints checkiegifiés the syn-
chronization constraints again when it receives all replies from syncters in order to guarantee
that the internal states still allows the request execution.

As future work, we intend to evolve this implementation to a generic queue gingaaodel,
which may be used as a base to create new scheduling and synchronizéitias p&ynchro-
nizers and synchronization constraints would become one possible polieyid&a is that this

model built over LuaRPC provides for the developer a set of primitives tiyedsfine new

synchronization policies — this is somewhat similar to the redefinition of scheduliligjgso

in Converse[Kale et al. 1996] and Proactive [Caromel, Klauser e &gs$998]. Moreover, the
policies could be dynamically changed.

5 Final Remarks

In this work we explored the possibility of building different synchronizatioachanisms for
concurrent and distributed threads of execution upon a single basisppbsed to the idea of
finding a general solution for the issue of synchronization and embedding it primgaamming
language, which has been a constant goal for many years [Hoa8¢ ¥8¥believe each applica-
tion and even each part of an application may have different synchronizatioimements. For
example, the constraints in Sect. 4 guarantee that functions start executing alhbyvied states,
but they do not provide mutual exclusion. However, the application can cornbirgraints with
other abstraction, such as monitor, to assure the mutual exclusion.

So itis important to explore language features that can help us create builoiikg that facil-
itate the creation of the needed synchronization abstractions. Lua is an itedrpregramming
language and provides functions as first-class values. We use theseteliatics in LuaRPC
to offer a remote function calls abstraction over the ALua and the handler riéidefimecha-
nism, which is used to implement the synchronization constraints and synamarfurthermore,
coroutine allows us to implement synchronous remote calls using asynchiumité/e, and the
monitor. It also permits us to introduce more concurrency in the constraints tgalua

The coupling of synchronization requirements with environments that are¢-exiented at
their basis is an interesting problem for wide-area computing. The model we eaptoone in
which coroutines and asynchronous calls allow us to combine synchronizbstractions, while
at the same time avoiding the hardships of dealing with preemptive threads. Weshbigis a
direction that should be further explored.

References

[Agha et al. 1993]AGHA, G. et al. Abstraction and modularity mechanismsdocuarrent com-
puting.IEEE parallel and distributed technology: systems and applications, n. 2, p. 3-14,
1993.

[Birrell e Nelson 1984|BIRRELL, A.; NELSON, B. Implementing remote procedcalls.ACM
Trans. on Computer Systemws2, n. 1, p. 39-59, fev. 1984.

[Briot, Guerraoui e Lohr 1998]BRIOT, J.; GUERRAOUI, R.; LOHR, Koncurrency and Distri-
bution in Object-Oriented ProgrammingCM Computing Surveys. 30, n. 3, 1998.

[Briot 2000]BRIOT, J.-P. Actalk: A framework for object-oriented comrent programming - de-
sign and experience. In; BAHSOUN, J.-P. et al. (E@bject-Oriented Parallel and Distributed
Programming[S.l.]: Hermes Science Publications, Paris, France, 2000. p. 209-231.

[Caromel, Klauser e Vayssiere 1998] CAROMEL, D.; KLAUSER, W.; VAYERE, J. Towards
seamless computing and metacomputing in j@@ncurrency Practice and Experienddfiley
& Sons, Ltd., v. 10, n. 11-13, p. 1043-1061, Sep-Nov 1998.

[Frelund 1996]FRPLUND, S. Coordinationg Distributed Objects: An Actor-Based Approach to
Synchronization[S.l.]: The MIT Press, 1996.

[Harris et al. 2005]JHARRIS, T. et al. Composable memory transaction®RPoPP '05: Proceed-
ings of the tenth ACM SIGPLAN symposium on Principles and practice olig@lareogramming
[S.L]: ACM Press, 2005. p. 48-60.

[Hoare 1974]JHOARE, C. A. R. Monitors: an operating system structurimgcept. Commun.
ACM, ACM Press, New York, NY, USA, v. 17, n. 10, p. 549-557, 1974. ISBRI150782.

[Hoare 1978]HOARE, C. A. R. Communicating sequential procesd@simun. ACMv. 21, n. 8,
p. 666-677, 1978.

[lerusalimschy 2006]IERUSALIMSCHY, RRrogramming in Luasecond. [S.l.]: lua.org, 2006.

[lerusalimschy, Figueiredo e Celes 1996]IERUSALIMSCHY, R.; FIGUEIRER.; CELES, W.
Lua - an extensible extension langua§eftware: Practice and Experience 26, n. 6, p. 635—
652, 1996.

[Kale et al. 1996]KALE, L. et al. Converse: an interoperable frant&iar parallel programming.
In: Proc. of IPPS’96: 10th Intl Parallel Processing Symposiy8il.: s.n.], 1996. p. 212-217.

[Miller, Tribble e Shapiro 2005]MILLER, M. S.; TRIBBLE, E.; SHAPIRO, J. @Gaurrency
among strangers — Programming in E as plan coordinationSymposium on Trustworthy
Global Computing (European Joint Conference on Theory and PractiSefivare [S.I.: s.n.],
2005. LNCS 3705.

[Pfeifer et al. 2002]PFEIFER, A. et al. An event-driven system for digted multimedia appli-
cations. In:Proceedings of DEBS’02 — International Workshop on Distributed EBased Sys-
tems (held in conjunction with IEEE ICDCS 200%)enna: [s.n.], 2002. p. 583-584.

[Riveill 1995]RIVEILL, M. Synchronising shared objecBistributed Systems Engineering Jour-
nal, v. 2,n. 2, p. 112-125, June 1995.

[Rossetto e Rodriguez 2005]ROSSETTO, S.; RODRIGUEZ, N. Integratingptee invocations
with asynchronism and cooperative multitasking. Third International Workshop on High-
level Parallel Programming and Applications.1.: s.n.], 2005.

[Saif e Greaves 2001]SAIF, U.; GREAVES, D. Communication primitives for ubgs systems
or RPC considered harmful. InMorkshop on Smart Appliances and Wearable Computing (in
conj. with ICDCS’01) Mesa, AZ: [s.n.], 2001.

[Ururahy, Rodriguez e lerusalimschy 2002JURURAHY, C.; RODRIGJEN.; IERUSALIM-
SCHY, R. ALua: Flexibility for parallel programmingComputer Language£lsevier Science
Ltd., v. 28, n. 2, p. 155-180, dez. 2002.

