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Abstract. Most proposals for synchronization mechanisms in concurrent and distributed systems
have privileged the idea of a single abstraction that can solve all synchronization issues. However,
in the context of loosely coupled wide-area applications, it is interesting to haveavailable different
synchronization mechanisms, so that the developer may choose the most suitablemechanism for
each part of his application. Besides, it is important that synchronization facilities guarantee the
desired constraints while imposing as little blocking as possible. In this work, wediscuss how
the use of dynamic programming language can help us deal with this problem, providing support
for building different building blocks and abstractions. We base our discussion on the Lua pro-
gramming language, and show how we can use it to implement different intra and inter-object
synchronization mechanisms proposed in the literature.

Keywords: Event-based Programming, Distributed Programming, Programming Language

Resumo. Diversas propostas de mecanismos de sincronização para sistemas concorrentes e dis-
tribuídos têm privilegiado a idéia de uma única abstração como solução para todas as questões
relacionadas à sincronização. No entanto, em se tratando de aplicaçõesaltamente distribuídas com
baixo acoplamento entre suas partes, é interessante que haja diferentes mecanismos de sincroniza-
ções disponíveis para que o desenvolvedor possa escolher qual deles é o mais apropriado para
cada uma das partes da aplicação. Além disso, é importante que tais mecanismos garantam as re-
strições necessárias impondo o mínimo possível de bloqueio. Neste trabalho nós discutimos como
o uso de uma linguagem de programação dinâmica pode ajudar na construçãode mecanismos re-
utilizáveis e abstrações sincronização. Baseamos nossa discussão na linguagem de programação
Lua e mostramos como podemos usá-la para implementar diferentes mecanismos propostos na
literatura para sincronização intra e inter-objetos.

Palavras-chave: Programação Orientada a Eventos, Programação Distriuída, Linguagem de Pro-
gramação
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1 Introduction

Synchronization mechanisms for concurrent and distributed environments have been widely inves-
tigated in the eighties and nineties [Briot, Guerraoui e Lohr 1998]. Since that,interest in the matter
seems to have waned, although some groups continue to work in specific niches [Harris et al. 2005,
Miller, Tribble e Shapiro 2005]. This may have been at least partially due to anunderstanding that
many of the issues were resolved.

At the time these works were developed, in the eighties and early nineties, interest in dis-
tributed applications was centered in local area network applications, mostly modeled as strongly
coupled systems. Most of the synchronization techniques proposed in these works were based on
this model. In the late nineties and early 00’s, however, the focus of interestshifted to wide area ap-
plications. Besides interest in Internet applications, we are also witnessing the growth of scenarios
such as grid and mobile computing, which impose dealing with high levels of heterogeneity and
dynamism. In these new environments, loosely coupled, asynchronous systems have gained pop-
ularity. Instead of viewing applications as sequential programs with remote invocations to servers,
it is now common to see a distributed application as a passive loop which must handledifferent
incoming events. In this new scenario of loosely coupled applications, some level of synchroniza-
tion is often necessary. It is still the case that some operations may require mutual exclusion or
other types of intra and inter object synchronization. Indeed, the current growth of systems with
a peer-to-peer architecture tends to generate new interest in synchronization techniques. While
on client-server systems many issues could be dealt with inside a single process, with more sym-
metrical peer-to-peer approaches, there is often the need to synchronize the activities of the peer
processes. However, the way in which these synchronization constraintsare programmed must
be evaluated in the light of new requirements posed by event-orientation, loosecoupling, and dy-
namic execution environments. These seem to demand more flexible mechanisms, thatmay be
redefined and combined even at runtime, and less “hard synchronization”, inthe sense of keeping
less execution threads blocked.

We believe dynamic languages have an important contribution to the understanding and in-
vestigation of synchronization in these new scenarios. Interpreted and dynamic languages have
often been discarded, in the past, due to the performance overhead theyimpose when compared
to more traditional, compiled languages. However, it is now common to use dual programming
models, in which a traditional language may be used for the harder computing chores, and an inter-
preted language for coordination and communication. Besides, in wide-area distributed systems,
communication itself imposes costs that often minimize the relative impact of using interpreted
languages. On the positive side, these languages, due to flexible type systems and extension facil-
ities, can allow synchronization libraries to be seamlessly added to them, creating environments
in which different synchronization techniques can be used and even combined to compose new
mechanisms.

In this work, we use the Lua programming language [Ierusalimschy, Figueiredo e Celes 1996,
Ierusalimschy 2006] to investigate synchronization in distributed, event-based settings. We dis-
cuss how different classic intra and inter-object synchronization mechanisms can be integrated
into the language, resulting in an environment in which the programmer can easilyapply different
synchronization mechanisms. Our emphasis is on the use language features to implement syn-
chronization mechanisms using a few basic facilities, and on the integration of these implemented
mechanisms with an asynchronous communication basis. We also discuss how wecan remove
some blocking from some of the previously proposed mechanisms, in line with the asynchronous
nature of many current applications.
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This work is organized as follows. Section 2 describes our basic environment, composed by
Lua and asynchronous distributed programming libraries. Section 3 discusseshow we can imple-
ment distributed monitors on this environment. In Sect. 4 we describe how a request queue can be
added to our basic environment to implement a scheme for intra and inter-object synchronization.
Finally, in Sect. 5 we conclude with a discussion of the presented work.

2 Distributed Programming in Lua

Lua [Ierusalimschy, Figueiredo e Celes 1996] is an interpreted programminglanguage designed
to be used in conjunction with C. It has a simple Pascal-like syntax and a set of functional fea-
tures. Lua implements dynamic typing. Types are associated to values, not to variables or formal
arguments. Functions are first-class values and Lua provides lexical scoping and closures. Lua’s
main data-structuring facility is thetabletype.

The Lua programming language has no support for distributed programming.However, Lua
is easily extended through libraries that can be seamlessly integrated into the language. We have,
over the last few years, experimented with several such extensions fordistributed programming in
Lua, which allow us to combine different programming model in one single environment. In our
work with synchronization mechanisms, we have used the ALua and LuaRPC libraries.

ALua [Ururahy, Rodriguez e Ierusalimschy 2002] is a library for creatingdistributed event-
based applications in Lua. ALua applications are composed of processes thatcommunicate through
the network using asynchronous messages. Processes use thealua.sendprimitive to transmit the
messages.

A message is, by default, a piece of Lua code. The arrival of a messageis treated as an event,
and the default handler for this event is to execute the received code. Because Lua is an interpreted
language, the messages can redefine functions and change the application behavior.

An important characteristic of ALua is that it treats each message as an atomic chunk of code.
It handles each event to completion before starting the next one. This avoids race conditions
leading to inconsistencies in the internal state of the process. For cases in which the application
must include blocking calls, such as direct socket manipulation for transfer of byte streams, we
provide thechannelAPI [Pfeifer et al. 2002].

In line with the asynchronous nature of the ALua, most of its functions return immediately,
and receive as one of their parameters acallback, that is activated when execution of the requested
function is complete.

The ALua basic programming model, in which chunks of code are sent as messages and exe-
cuted upon receipt, is very flexible, and can be used to construct different interaction paradigms,
as discussed in [Ururahy, Rodriguez e Ierusalimschy 2002]. However, programming distributed
applications directly on this programming interface keeps the programmer at a very low level,
handling large strings containing chunks of code. On the other hand, usingfeatures of Lua,
we are able to create new libraries that offer higher-level communication abstractions and inte-
grate them easier into the language. One of the abstractions we have built is theLuaRPC li-
brary [Rossetto e Rodriguez 2005] (implemented by therpc module, which provides support for
Remote Procedure Call [Birrell e Nelson 1984].)

Remote procedure calls are typically synchronous. In fact, this is one of thereasons for which
they have often been deemed inappropriate for wide-area environments [Saif e Greaves 2001]. In
our specific case, the classic blocking structure of an RPC system would alsobe incompatible
with ALua’s event-based nature. To deal with this, LuaRPC uses as its basicprimitive rpc.async.
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This function takes as arguments the ALua process identifier where the functionmust be invoked,
the remote function name; and a callback, which will receive as a parameter the results of the
invocation (Lua allows multiple returns). However,rpc.async does not directly invoke the desired
remote function: it returns a new function which, when called, will send the invocation and return
the control immediately. The callback will be activated upon completion of the remote call. This
design option allows the program to build remote functions and manipulate them as it would any
other function value. LuaRPC also maintains Lua’s treatment of functions as first-class values
across invocations. Remote functions may be passed as arguments in local and remote calls.

Asynchronous call is interesting because it reflects the possibility of immediately proceeding
with other calls: the order in which the results are received is not important. However, if the
program needs a result to proceed with a thread of activity, synchronous calls may be more con-
venient for the programmer. Functionrpc.sync creates functions that make synchronous calls to
other processes. It receives as a parameter a process identification andthe remote function name.

Functionrpc.sync usesrpc.async for its implementation, allowing us to combine the idea
of suspending a computation for a synchronous call with the asynchronousnature of our envi-
ronment. In this case, the callback that must be executed when the remote function completes is
the “continuation” of the invoking function. To implement this idea, LuaRPC uses Lua’s corou-
tines. Each new remote request is executed inside a new coroutine. When a function created by
rpc.sync makes a remote call, what in fact occurs is an asynchronous call followed by a yield

from the running coroutine. The callback associated to the asynchronous call is a function that
resumes the suspended coroutine when the result arrives. Figure 1 illustrates this behavior.

Figure 1: Flow of control with LuaRPC and coroutines

Because LuaRPC was designed as an abstraction layer over ALua, it also maintains the basic
ALua model of allowing handler redefinition. On the server side, the requests for execution are
processed by handlers (functions) that are selected according to the invoked function. A server
can define new handlers for its exported functions, allowing it, for instance,to execute logging
or auditing code before invoking the function itself. However, if the function does not have a
handler defined, LuaRPC uses a default handler that creates a new coroutine that simply executes
the requested function and returns the results to the client.

Synchronization The option for an event-based system, in which each event is handled to com-
pletion, avoids many synchronization issues. Even when we introduce context-switching, with
coroutines to support the use of synchronous remote calls, the fact that there is no preemption
avoids many classic race conditions. However, there are situations in which we may still need to
enforce synchronization. Because LuaRPC does not block the entire execution while the answer
for a remote call is pending, it potentially creates an internal state consistencyproblem, even if the
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developer knows the possible interruption points. Besides, because we are in a distributed setting,
we may need to synchronize actions occurring at different processes.The next sections discuss
how we can apply different synchronization mechanisms in this environment.

3 Monitors

In this section we discuss an implementation of monitors [Hoare 1974]. Our implementation for
monitors in LuaRPC is based on synchronous calls to acquire and release a lock. The synchronous
call suspends the execution until the lock is acquired.

Monitors provide support for mutual exclusion and for condition synchronization. We next
discuss in detail how we can implement mutual exclusion.

We define amonitoras a structure containing a booleanlock, which indicates if the monitor is
free, an entrance queue, and the identity of its creator.monitor.create creates a new monitor (with
no enclosed functions) and returns a reference to it. Functionsmonitor.take andmonitor.release
control lock acquisition – again using coroutines.monitor.take tries to acquire the lock on a given
monitor. If the lock is free, this function switches its value and execution continues normally. If
the lock is taken,monitor.take puts the current coroutine in the lock’s waiting queue and yields.
Functionmonitor.release symmetrically, releases the lock on a monitor. It verifies whether there
is any coroutine in the monitor entrance queue, and, if so, resumes the first waiting coroutine. Oth-
erwise, it marks the lock as free. Finally, after an “empty” monitor is created, arbitrary functions
can be placed under its protection by calling functionmonitor.doWhenFree:

local function _off()
-- contains synchronous RPC calls

end
-- Creates a monitor
local mnt = monitor.create()
off = monitor.doWhenFree(mnt, _off)

Figure 2 shows the implementation of functionmonitor.doWhenFree, to illustrate how lan-
guage mechanisms facilitate the integration of abstractions into the language. It creates and returns
a new function that encapsulates the one received as a parameter. This new function uses the lock
to guarantee the execution in mutual exclusion in relation to other functions in the monitor. It also
deals with the input parameters and the results. The variable number of the arguments indicated
by the “...” in function definition is passed to the encapsulated function. Thepack function cap-
tures the results in a Lua table that is stored inrets variable. After releasing the lock, the result is
unpacked and returned.

The mechanism we have described for mutual exclusion is different from most classic pro-
posals in that it does not provide syntactic encapsulation of the protected functions. This makes
the monitor a dynamic mechanism, allowing functions to be protected only when needed. It also
creates the possibility of having a single monitor protecting functions from different processes,
supporting distributed mutual exclusion. For instance, a process could create a monitor and, add
one of its functions to the monitor. Next, it could pass the monitor to another process that adds
new functions to the monitor. At the time the monitored functions are invoked, they make remote
calls to acquire the lock. However, only one of them will succeed and the others will wait in the
queue for the lock release. Figure 3 illustrates the use of a distributed monitor.

Our monitor mechanism also offers support for waiting and signaling condition variables, as
traditional monitors do. We do not describe this here due to space constraints.
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module("monitor")

-- mnt: monitor created to protect the function
-- func: function to execute in mutual exclusion
function doWhenFree(mnt, func)

-- index to the monitor structure
local idx = mnt.idx
-- ’from’ points to the process that creates the monitor
local take = rpc.sync(mnt.from, "monitor.take")
local release = rpc.async(mnt.from, "monitor.release")
return function (...)

take(idx)
-- invokes the function and captures the results
local rets = pack(func(...))
release(idx)
return unpack(rets)

end
end

Figure 2: Implementation of functionmonitor.doWhenFree.

local isOn = false
local function _off()

-- only turns off if the neighbor is ’on’
if neighbor_state() then isOn = false; end

end
function init(mnt, neighbor)

-- ’mnt’ is a monitor and ’neighbor’ is other process
neighbor_state = rpc.sync(neighbor, "get_state")
off = lock.doWhenFree(mnt, _off)

end

Figure 3: A distributed monitor.

4 Synchronization Constraints and Synchronizers

In the previous section we described how support for monitors can be addedto LuaRPC. In this
section we discuss how the handler mechanism in LuaRPC can be used to defineyet another build-
ing block to facilitate the implementation of other synchronization and coordination abstractions.

Using this handler mechanism, we reimplemented the proposal described in [Frφlund 1996,
Agha et al. 1993] for intra and inter-object synchronization. We chose this proposal because it
provides support for distributed as well as for concurrent synchronization.

Intra-object synchronization in [Frφlund 1996, Agha et al. 1993] is supported bysynchroniza-
tion constraints. As with guards[Riveill 1995, Briot 2000], the idea is to associate constraints or
expressions to a function to determine whether or not its execution should be allowed in a certain
state. This kind of mechanism allows the programmer to separate the specificationof synchroniza-
tion policies from the basic algorithms that manipulate his data structures, as opposed to monitors,
in which synchronization must be hardcoded into the algorithms.

For inter-object synchronization, [Frφlund 1996] and [Agha et al. 1993] propose the use of
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synchronizers. Synchronizers are separate objects that maintain integrity constraints on groups of
objects. They keep information about the global state of the groups and permit or prohibit the
objects method execution according with the global state. To ensure the maintenance of theirs in-
formation, synchronizers also supporttriggers: code that is associated to the execution of methods
in the individual members of the group.

We provide support for these mechanisms through the modulessc (synchronization con-
straints) andsynchronizer. Both modules introduce constraints that must be checked by function
calls. In the case ofsc module, these function calls are local in order to verify the internal state,
whereassynchronizer permits processes to register themselves as synchronizers of each remote
object (or process, in our case) they coordinate, and that must be invoked for the execution of
triggers and for the verification of constraints.

As an example taken from [Frφlund 1996], Fig. 4 illustrates how a program could use syn-
chronization constraints to ensure that the exported functionson and off of a radio button are
remotely invoked in strict alternations.sc.add_constraint associates guard functions to the ex-
ported functions. It receives as arguments the name of function to be guarded and the function that
implements verification. The latter receives as arguments the request, containingthe name and
arguments of the invocation.

local isOn = false
local function can_turn_on(request) return not isOn; end
local function can_turn_off(request) return isOn; end
function on() isOn = true; end
function off() isOn = false; end

sc.add_constraint("on", can_turn_on)
sc.add_constraint("off", can_turn_off)

Figure 4: Defining synchronization constraints.

Figure 5 illustrates the creation of a synchronizer that coordinates a set of distributed radio
buttons, enforcing that at most one of them is activated at any time. When one of the buttons
receives a request, it contacts the synchronizer in order to verify the remote constraints, allowing
or not the button to execute the function, and execute the appropriate triggers.

local activated = false
local function can_turn_on(request) return not activated; end
local function trigger_on(request) activated = true; end
local function trigger_off(request) activated = false; end
-- defines constraint and triggers for each distributed button
for _, bt in ipairs(buttons) do

synchronizer.set_trigger(bt, "on", trigger_on)
synchronizer.set_trigger(bt, "off", trigger_off)
synchronizer.add_constraint(bt, "on", can_turn_on)

end

Figure 5: A synchronizer defining a remote constraint and triggers for a setof distributed buttons.

Both synchronizer.set_trigger andsynchronizer.add_constraint receive, as their argu-
ment, the remote process identification, the name of the function in this process, and the function
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to be executed once the synchronizer is contacted. For triggers, this function typically updates
the global state, and for constraints, it must return, respectively, true orfalse to permit or prohibit
the constrained function execution. Moreover, the function to be executed receives as a parameter
information about the constrained function into the variablerequest.

To implement synchronization constraints and synchronizers, we developed a new handler
to LuaRPC that manipulates a queue of requests. The handler processes the queue until this is
empty or the remaining requests cannot be executed due to the synchronizationrules. A request is
executed only if all of its local constraints and remote verifications evaluate to true. However, when
a requested function is executed, we need to restart the queue evaluation because this function can
have modified the internal or global states, making some request newly eligible forexecution.

We first implemented the scheme as in [Frφlund 1996], that is, verifying and executing the
requests in a sequential fashion – a new request is handled only after theprevious one is completed.
However, evaluating remote constraints is expensive because the processcommunicates with the
synchronizer and blocks until the answer arrives. Figure 6-a shows adiagram illustrating this
scheme. The synchronizerS imposes constraints on the functionoff andget_state does not have
any constraint. However, the processP executes the requestget_state after the synchronizer’s
answer arrives.

Figure 6: Diagram of (a) the original and (b) our proposals for constraints evaluation.

To explore more concurrency in this system, we implemented an alternative scheme. In this,
each request is verified inside a new coroutine, so the process can suspend it while the synchro-
nizer verifies the constraints, and handle other request. This is shown in theFig. 6-b. The two
implementations differ only in two lines of code: one line to create a new coroutine and other line
to start its execution.

Our implementation checks the synchronization constraints before contact the synchronizers,
avoiding the network communication if the local verification fails. However, because new function
calls can now modify the internal state during the remote constraints checking, it verifies the syn-
chronization constraints again when it receives all replies from synchronizers in order to guarantee
that the internal states still allows the request execution.

As future work, we intend to evolve this implementation to a generic queue processing model,
which may be used as a base to create new scheduling and synchronization policies. Synchro-
nizers and synchronization constraints would become one possible policy. The idea is that this

7



model built over LuaRPC provides for the developer a set of primitives to easily define new
synchronization policies — this is somewhat similar to the redefinition of scheduling policies
in Converse[Kale et al. 1996] and Proactive [Caromel, Klauser e Vayssiere 1998]. Moreover, the
policies could be dynamically changed.

5 Final Remarks

In this work we explored the possibility of building different synchronizationmechanisms for
concurrent and distributed threads of execution upon a single basis. As opposed to the idea of
finding a general solution for the issue of synchronization and embedding it into aprogramming
language, which has been a constant goal for many years [Hoare 1978], we believe each applica-
tion and even each part of an application may have different synchronizationrequirements. For
example, the constraints in Sect. 4 guarantee that functions start executing only inallowed states,
but they do not provide mutual exclusion. However, the application can combineconstraints with
other abstraction, such as monitor, to assure the mutual exclusion.

So it is important to explore language features that can help us create building blocks that facil-
itate the creation of the needed synchronization abstractions. Lua is an interpreted programming
language and provides functions as first-class values. We use these characteristics in LuaRPC
to offer a remote function calls abstraction over the ALua and the handler redefinition mecha-
nism, which is used to implement the synchronization constraints and synchronizers. Furthermore,
coroutine allows us to implement synchronous remote calls using asynchronousprimitive, and the
monitor. It also permits us to introduce more concurrency in the constraints evaluation.

The coupling of synchronization requirements with environments that are event-oriented at
their basis is an interesting problem for wide-area computing. The model we explored is one in
which coroutines and asynchronous calls allow us to combine synchronization abstractions, while
at the same time avoiding the hardships of dealing with preemptive threads. We believe this is a
direction that should be further explored.
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