

ISSN 0103-9741

Monografias em Ciência da Computação

n° 24/07

Applying the
Plan-Recognition / Plan-Generation Paradigm

to Interactive Storytelling: The LOGTELL
Case Study

Börje Karlsson

Angelo E. M. Ciarlini Bruno Feijó
Antonio L. Furtado

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 24/07 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena September, 2007

Applying the Plan-Recognition / Plan-Generation
Paradigm to Interactive Storytelling: The LOGTELL

Case Study
Börje Karlsson, Angelo E. M. Ciarlini1,

 Bruno Feijó, Antonio L. Furtado
1Departamento de Informática – UniRio

borje@inf.puc-rio.br, angelo.ciarlini@uniriotec.br, bruno@inf.puc-rio.br, furtado@inf.puc-rio.br

Abstract. A key issue in interactive storytelling is how to generate stories which are, at
the same time, interesting and coherent. On the one hand, it is desirable to provide
means for the user to intervene in the story. But, on the other hand, it is necessary to
guarantee that user intervention will not introduce events that violate the rules of the
intended genre. This paper describes the usage of a plan recognition / plan generation
paradigm in LOGTELL, a logic-based tool for the interactive generation and dramati-
zation of stories. We focus on the specification of a formal logic model for events and
characters' behaviour and on how the tool helps the interactive composition of plots
through the adaptation of fully or partially generated plots. Based on the model, the
user can interact with the tool at various levels, obtaining a variety of stories agreeable
to individual tastes, within the imposed coherence requirements. The system alternates
stages of goal inference, planning, plan recognition, user intervention and 3D visuali-
zation. Our experiments have shown that the system can be used not only for enter-
tainment purposes but also, more generally, to help in the creation and adaptation of
stories in conformity with a specified genre.

Keywords: storytelling, logic programming, planning, believable agents.

Resumo. Um ponto chave em storytelling interativo é como gerar histórias que sejam,
ao mesmo tempo, interessantes e coerentes. Por um lado, é desejável fornecer meios
para que o usuário possa intervir na história. Mas, por outro lado, é necessário garantir
que a intervenção do usuário não introduza eventos que violem as regras do gênero
desejado. Este trabalho descreve o uso do paradigma de reconhecimento de planos /
geração de planos no LOGTELL, uma ferramenta baseada em lógica para geração
interativa e dramatização de histórias. Nosso foco é na especificação de um modelo
lógico formal para eventos e comportamento de personagens, e em como a ferramenta
auxilia na composição interativa de enredos através da adaptação de enredos total ou
parcialmente gerados. Com base no modelo, o usuário pode interagir com a
ferramente em diferentes níveis, obtendo uma variedade de histórias condizentes com
seus gostos individuais, dentro dos requisitos de coerência impostos. O sistema alterna
estágios de inferência de objetivos, planejamento, reconhecimento de planos,
intervenção do usuário e visualização 3D. Nossos experimentos têm mostrado que o
sistema pode ser usado não somente com propósitos de entretenimento mas também,
de forma mais genérica, para ajudar na criação e adptação de histórias em
conformidade com um genêro especificado.

Palavras-chave: storytelling, programação em lógica, planejamento, agentes
convincentes.

 ii

In charge of publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

 iii

Table of Contents

1 Introduction 1
2 Related Work 2
3 The LOGTELL Architecture 4

3.1 Plot Generation 5
3.2 Composing by Plan Recognition 7

4 User Interaction 8
5 Dramatization 11

5.1 Scene and Actors 13
6 Test Scenario 14

6.1 Examples of Interactive Step-wise Plot Composition 16
7 Concluding Remarks 17
References 17

 1

1 Introduction

In recent years, the convergence of games and filmmaking has been seen as an oppor-
tunity to create storytelling systems in which authors, audience, and virtual agents en-
gage in a collaborative experience. The resulting systems can be useful for many differ-
ent purposes, such as story board production, education and training, and, of course,
entertainment. Different approaches have been proposed, using techniques and con-
cepts from many areas such as Computer Graphics, Artificial Intelligence, Cognitive
Science, Literature and Psychology. The suitability of each approach depends on the
goal of each application.

A first decision to be made before implementing a storytelling system is whether it
should be able to actually create stories or only enable the user to tell different stories
based on previously computed sequences of actions. In the former case, the opportuni-
ties of interaction and the variety of different stories tend to be greater, but a coherent
chaining of actions is more difficult to attain.

A second important point corresponds to the focus of the story models. The focus
can be either on characters or on plots. In a character-based approach, the storyline
usually results from the real-time interaction among virtual autonomous agents. The
main advantage of a character-based model is the ability of anytime user intervention,
which means that the user may interfere with the ongoing action of any character in
the story, thereby altering the plot as it unfolds. Although powerful in terms of interac-
tion, such an extreme interference level may lead the plot to unexpected situations or
miss essential predefined events. Additionally, there is no guarantee that narratives
emerging from the interaction of autonomous agents will be complex enough to create
an interesting drama. By contrast, in plot-based models, characters should follow more
rigid rules, specifying the intended plot structures. A fundamental inspiration for plot-
based approaches has been the seminal work of Vladimir Propp in the field of literary
theory (Propp 1968). Propp observed that significant events within a narrative of a giv-
en genre (in his case, Fairy Tales) can be associated with a fixed repertoire of functions,
and that these occur in certain typical sequences. In a pure plot-based approach, user
intervention might be more limited, but it is usually easier to guarantee coherence and
a measure of dramatic power.

A third decision is whether stories should be told using a first- or a third-person
viewpoint - cf. the notion of focalization in narratology studies (Bal 2002). First-person
tends to be particularly suitable for applications closer to digital games, whereas third-
person is more appropriate for those involving filmmaking.

Finally, it is necessary to choose between a reactive and a deliberative behaviour for
the characters. In the first option efficiency is the main advantage, but modeling an in-
telligent behaviour is more complicated and the alternatives for the agents are some-
what limited. In the second, planning and reasoning techniques are usually applied to
simulate an intelligent behaviour, but performance is often affected, especially if the
story generation occurs at real-time.

LOGTELL is based on modeling and simulation. The idea behind LOGTELL is to try
to express the basic structure of a genre through a temporal logic model, and then veri-
fy what kind of stories can be generated by simulation, combined with user interven-
tion. In this way, we focus not simply on different ways of telling preexisting stories,
but on the dynamic creation of plots. The model includes typical events and goal-

 2

inference rules. Plots are generated by successive cycles of goal-inference, planning,
plan recognition and user intervention.

Specifically, we try to conciliate both plot-based and character-based modeling. On
the one hand, we borrowed from Propp's ideas, but tried to extend his rather informal
notion of function. In our treatment, typical events are described by parameterized op-
erations with pre-conditions and post-conditions, so that planning algorithms can be
used for plot generation. On the other hand, the goal-inference rules model the beha-
viour of the various actors, thus providing some character-based features. The rules
declaratively specify how situations can bring about new goals for each character.

Our objective is not to create an immersive experience in which the user takes part
in the story as one of the characters. We endeavour, instead, to explore the possibilities
of generating a large variety of coherent stories by means of a plan-recognition/plan-
generation paradigm. For this reason, our stories are told with a third-person view-
point. User intervention is always indirect. During the simulation, the user can inter-
vene either passively, just letting the partially-generated plots that seem interesting to
be continued, or, in a more active way, trying to force the occurrence of situations and
events. These are rejected by the system whenever it finds no valid way to change the
story to accommodate the intervention.

Plot dramatization can be activated for exhibiting the final as also the partially gen-
erated plots. For dramatization, characters are represented by actors in a 3D-world.
During the performance of an event, low-level planning is used to detail the tasks in-
volved in each event. We decided to implement our own graphical engine, so that we
could better guarantee the compatibility between the logical model of our plots and the
corresponding graphical dramatization.

The next section describes related work in the area of storytelling. Section 3 presents
LOGTELL's overall architecture. Section 4 describes the main features of the Interactive
Plot Generator (IPG), which is the kernel of the system. Section 5 illustrates how the
user can interact with LOGTELL to generate stories. Section 6 shows how the generat-
ed plots are dramatized. Section 7 illustrates the use of the tool with an example.
Section 8 contains concluding remarks.

2 Related Work

The approach adopted in the DEFACTO project (Sgouros 1999) uses successive evalua-
tions of rules to control the generation of an interactive story where the user is the pro-
tagonist. The interaction among characters’ goals is explicitly represented and an Aris-
totelian conception of plot is used to lead the story to a climax and then resolve it. The
chaining of events, however, is not explained by pre- and post-conditions, making the
control of what can and what cannot occur rather complex. Additionally, it does not
allow the use of planning algorithms to develop sequences of events for the achieve-
ment of goals. The need of user intervention seems to be high if one wishes to generate
a complete plot. Goals are inferred by means of rules analyzing the current situation,
but the choice of actions to achieve goals appears to be more reactive than deliberative.

The approach described in (Cavazza, Charles, and Mead 2002) adopts a character-
based model to make user interventions at any possible time. Characters are autonom-
ous agents, executing plans to achieve their goals, and, from their interactions, it is ex-
pected that a narrative will eventually emerge. Users are spectators but can “physical-
ly” interact with the context and even advise characters, affecting their decisions and

 3

the resulting stories. In order to decide, at real-time, the actions to be performed, cha-
racters consult a Hierarchical Task Network (HTN), corresponding to pre-compiled
plans. In this way, the system does not have to pay the price of using problem-solving
planners while presenting a 3D animation. It might demand more effort to model the
behaviour of the characters, but it makes sense if one does not consider maximizing the
alternatives as a requirement. The main doubt about pure character-based approaches
is to what extent dramatic and engaging narratives may actually result. The task seems
to be easier with genres like sitcoms, wherein the climax of a story is not so clearly dis-
tinguishable.

The use of Propp’s ideas in pure plot-based approaches leads to systems more con-
cerned with the guidance of interactive stories than with their generation (Spierling et
al. 2002). For each “Proppian” function within a story of a certain genre, such systems
present alternatives to be chosen by the users. Still, we claim that to obtain an effective
method to generate stories, it is necessary to extend Propp’s ideas, adding semantics to
the functions (and to their specializations), so that preconditions, effects and goals can
be fully expressed.

(Paiva, Machado, and Prada 2001) presents the Teatrix environment, where Propp’s
functions are used to model synthetic characters that interact with other characters, di-
rected by children, in a virtual world. Each child directs one character and the synthetic
characters are autonomous. All characters have a role in the story, specifying the func-
tions in which they can take part. Synthetic characters have goals that change accord-
ing to the situation. They plan and try to execute actions (i.e. functions) according to
their roles. The approach seems interesting for education, but the control of the consis-
tency of actions and goals and the generation of dramatic situations are not guaran-
teed. Additionally, the use of pre-defined plans in the planning process can enhance
the performance, but might limit the amount of different stories that can be generated.
Yet another approach related to Propp is the one by (Fairclough and Cunningham
2003), which uses an expert case-based character director system where cases in the
case base are closely tied to Propp’s functions.

The interactive drama FAÇADE (Mateas and Stern 2000) is an effort to build an in-
teractive system that integrates characteristics of both plot-based and character-based
approaches. A drama manager is responsible for maintaining the story state. Charac-
ters have autonomy most of the time, but their goals and their behaviour can be
changed by the drama manager, in order to move the plot forward. The interactive sto-
ry has the user as the protagonist. The drama manager automatically selects scenes to
be played. Scenes are composed of beats, which define the granularity of the interac-
tion between characters and plots. The user can directly interfere in the execution of a
beat, determining how the rest of the scene will be played. The approach clearly sepa-
rates higher-level goals, important for the story, from lower-level goals, more specific
of the autonomous behaviour of the characters. Such separation can also be found in
LOGTELL. The generation phase deals only with higher-level goals, which are essen-
tial for the creation of plots. Lower-level goals are assigned to actors when they have to
dramatize an event. The main differences between LOGTELL and FAÇADE result
from the objectives of each system. In FAÇADE, the focus is on letting the user expe-
rience a story from a first-person perspective. As a consequence, the interaction occurs
at real-time, at the level of the beats. In LOGTELL, we focus on the generation of a
maximum of different and coherent stories with a third-person viewpoint. The interac-
tion basically occurs during the generation phase. The user is not allowed to interfere
in the dramatization phase.

 4

The Erasmatron system (Crawford 1999) is intended to support the authoring
process of interactive stories. It tries to balance plot-based and character-based ap-
proaches by using the notions of verbs and sentences. Actions are represented by verbs
with roles assigned to characters to form sentences. Such a proposal is close to the way
we extended Propp’s functions in LOGTELL. Functions are implemented as logical op-
erations, with parameters, pre- and post-conditions.

The use of planning in (Riedl and Young 2004) to create plots has many similarities
with the decisions made while implementing LOGTELL. In both approaches, a non-
linear, least-commitment planner is used to create plots, conciliating actions of many
different characters. The main difference is that LOGTELL does not assume the exis-
tence of one goal for the story as a whole. Instead, at the beginning of the story and af-
ter each planning phase, we use goal-inference rules (defined in a temporal modal log-
ic) to consider new goals induced, for the various characters, by situations arising from
the part of the plot so far generated. On the other hand, plans generated according to
(Riedl and Young 2004) incorporate information explaining the intention of the actions,
which can be useful to help in the dramatization of a plot, in particular to choose a
convincing order of events. In LOGTELL, it is up to the user to choose a compatible
total order of events to be dramatized.

3 The LOGTELL Architecture

LOGTELL comprises a number of distinct modules to provide support for generation,
editing and visualization of interactive plots, as shown in Figure 1. The arrows
represent the dataflow. The general architecture can be seen as a pipeline, where data
is transformed from morphological functions into real-time 3D animations dramatized
by virtual actors and handled by a graphical engine. Consequently, each module has
specific input and output data.

Figure 1: LOGTELL Architecture

The user interfaces with the system through the Plot Manager. The generation of
plots by the Interactive Plot Generator (IPG) is started by the Plot Manager, which rece-
ives the partial plots generated so far and allows the user to intervene in the generation
process. In order to visualize the dramatization of a plot (final or partial), the user
chooses a total order of events, compatible with the partially ordered sequence gener-
ated by IPG, and asks the Plot Manager to activate the Drama Manager.

 5

The Drama Manager is responsible for controlling the dramatization of the plot. In
order to do that, it controls actors for each character in a 3D environment running on
our game engine. During the dramatization, the Drama Manager consults IPG to keep
the coherence between logical and graphical representations of the plot.

For the time being, the context of the stories to be generated and told is directly ac-
cessed by the modules and there is a certain replication of data. IPG uses files directly
specifying the logical context in Prolog and the Drama Manager uses its own graphical
and logical data. In order to eliminate compatibility problems, we are currently imple-
menting the Context Control Module (CCM) to store all data in a single database. CCM
will control the access to the data and format the data items to be used by the other
modules. We are also extending our interface to help the user specify the context via
the Plot Manager.

3.1 Plot Generation

IPG (Ciarlini 1999) semi-automatically generates plots of narratives of a specific genre.
Narratives could be both of literary genres and of more mundane ones, such as the
context of a business information system. In its use for entertainment, the focus is on
checking the logical coherence of a genre and its characters and exploring the variety of
stories that can be generated.

The context for the creation of stories comprises the following schemas:

• static: a set of facts (state), introducing the characters and their initial situation,
as well as the description of the scenarios and other static features needed for the
generation of stories;

• behavioural: a set of logical rules, to infer goals to be pursued by each character,
as certain situations arise in the course of plots; and

• dynamic: a limited repertoire of pre-defined operations (typical of the chosen ge-
nre) in which characters can take part.

Examples of possible facts in our simple swords-and-dragons context, using a
Prolog notation, are listed below:

• dragon('Draco').

• strength('Draco',45).

• affection('Brian','Marian',100).

The facts at a current state change as a consequence of the occurrence of events,
which result from the execution of operations by the various characters. For each oper-
ation, the following data is supplied:

• a list of arguments, indicating the characters involved in the event, locations, etc.;

• a list of pre-conditions, specifying facts that should or should not hold prior to
the execution of the operation;

• a list of post-conditions (effects), specifying facts that hold or cease to hold im-
mediately after the execution of the operation; and

• its representation, specifying details about the exhibition of an event caused by
the operation.

 6

An example of an operation in the fairy tale context is “kidnap”, having a "villain"
as agent and a "victim" as patient. Usual pre-conditions are that “the victim should
presently be fragile” and that “both the victim and the villain should be present at the
victim’s current location”. Post-conditions are that “the victim will be a captive of the
villain” and “both the villain and the victim will be at the villain’s home”. The repre-
sentation of events based on this operation would involve the specification of smaller-
grain actions, such as: the villain getting closer to the victim, grasping the victim and
taking him/her to the villain’s home.

During the generation phase, plots are represented by partially-ordered sets of
events. Partial rather than total ordering is a consequence of the use of non-linear
planning during the simulation, establishing temporal constraints only when neces-
sary, which makes the conciliation of goals easier. As a consequence, the truth of a fact
at a certain time might depend on the final total order that will be chosen later. For in-
stance, suppose there are two events without a predefined order between them: “the
knight gets stronger” and “the knight fights the dragon”. Depending on the order, the
knight has different strength levels at the time he fights the dragon.

For each class of characters, there are goal-inference rules, specifying, in a temporal
modal logic formalism (Ciarlini, Veloso, and Furtado 2000), the goals that the charac-
ters of the class will have when certain situations occur during a narrative. The rules
use the following meta-predicates to speak about the occurrence of an event or the
truth value of a literal (a fact or a negation of a fact) at certain times:

• h(T,LITERAL): LITERAL is necessarily true at time T;

• p(T,LITERAL): LITERAL is possibly true at time T;

• e(T,LITERAL): LITERAL is established at time T; and

• o(T,EVENT): EVENT occurred at time T.

In order to express constraints relating variables, there are two additional meta-
predicates:

• h(CONSTRAINT): CONSTRAINT is necessarily true; and

• p(CONSTRAINT): CONSTRAINT is possibly true.

An example of goal-inference rule appropriate to the present context is: “when the
victim becomes fragile, the villain will regard that as an opportunity and will have the
goal of kidnapping the victim”. Another possible rule is that “when the victim is
kidnapped, the hero will feel motivated to free the victim”. This last rule, is
represented in our logic as follows:

∀ (VIC,T1,VIL) ∧ (T1,kidnapped(VIC,VIL) →

∃ T2 h(T2,not(kidnapped(VIC,VIL))) ∧ h(T2>T1)

It is important to notice that the rules do not determine the specific reaction of a
character. They only indicate goals to be pursued somehow. The events that will even-
tually achieve the goals are determined by the planning algorithm.

The generation of a plot starts by inferring goals of characters from the initial confi-
guration. Given this initial input, the system uses a planner that inserts events in the
plot in order to allow the characters to try to fulfill their goals. When the planner de-
tects that all goals have been either achieved or abandoned, the first stage of the

 7

process is finished. The partial plot then generated is presented to the user by means of
the Plot Manager and can optionally be dramatized. If the user does not like the partial
plot, IPG can be asked to generate another alternative. If the user accepts the plot gen-
erated so far, the process continues by inferring new goals from the situations generat-
ed in the first stage. If new goals are inferred, the planner is activated again to fulfill
them. The process alternates goal-inference, plan generation/recognition and user in-
terference until the moment the user decides to stop or no new goal is inferred.

Notice that, in this process, we mix forward and backward reasoning. In the goal-
inference phase, we adopt forward reasoning, so that situations in the past generate
goals to be fulfilled in the future. In the planning phase, an event inserted in the plot
for the achievement of a goal might have unsatisfied pre-conditions, to be handled
through backward reasoning. Also, to establish them before the event, the planner
might insert previous events with further unfulfilled pre-conditions, and so on, recur-
sively.

The user can also force the occurrence of events at certain times. For instance, the
user could well insert “the wedding of the knight with the princess”. It is also possible
to specify that some situations should be true at certain times along the narrative, leav-
ing to the system the job of planning the events that bring about such situations. It
should be possible to say, for instance, that “the knight will be weaker than the dragon
at a certain time”. This kind of intervention is allowed both at the beginning of the
process and at the pauses occurring between two simulation cycles. The planner tries
to conciliate both inferred goals and user specified events and situations.

Our planning tool is a non-linear planner implemented in Prolog, adapted from
(Yang, Tenenberg, and Woods 1996) with extensions. The use of a non-linear planner,
as suggested before, seems more suitable because it uses a least-commitment strategy.
Constraints (including the order of events) are established only when necessary, mak-
ing easier the conciliation of various goals. Features to permit the abandonment of
goals were included, and also constraint programming techniques for dealing with
numerical pre-conditions.

Our plots are not restricted to incorporating only successful plans. In trying to pro-
vide adequate means for handling negative interactions happening along a plot, we
realized that the solution of conflicts and competitions sometimes requires the presence
of totally or partially failed plans, which conventional plan generators reject. When a
goal is abandoned, events occurring prior to the moment of abandonment must be kept
as part of the narrative, and thus influence its continuation.

We use two main mechanisms to handle goal abandonment and competitive plan
execution: conditional goals and limited goals. A conditional goal has attached to it a
survival condition, which the planner must check to determine whether the goal
should still be pursued. Limited goals are those that are tried once only, and have an
associated limit (expressed as a natural number). The limit restricts the number of new
events that can be inserted to achieve the goal.

3.2 Composing by Plan Recognition

An alternative way to derive plans for goals is to take, from a conveniently structured
library, a pre-existing typical plan, adapting it if necessary to specific circumstances.
We have been using a structure for such libraries of typical plans that also allows plan-
recognition by a method proposed by Kautz (Kautz 1991), and which has been
implemented as a complementary feature of IPG. The method consists of matching

 8

observed events against the plan definitions (also called complex operations) stored in
the library, trying to find one or more plans of which these events may be part.

 A structured library with these typical plans (complex operations) is shown in
Figure 2. Single arrows denote composition (part-of link) and double arrows denote
generalization (is-a link).

Figure 2: Typical Plan Hierarchy

These complex operations have the same syntax shown for (basic) operations, if the
complex operation results from a composition of other possibly complex and/or basic
operations, there will be two more parameters, respectively, a list of the component
operations, and a list declaring any order requirements holding between them.

Complex operations formed by generalization are also represented, branching down
to specialized operations corresponding to alternative ways to reach the same main
effects; clauses is_a(<more-specialized-operation>,<more-general-operation>) declare
this structural link.

The first step of the plan recognition algorithm is the generation of explanation
graphs for the observed (or selected) events. An explanation graph for an event de-
scribes in which way this event can be used as part of some end-plan. After the graphs
for all observed events are created, they are unified. The final graph will contain all the
end-plans where the observed events fit.

Using this approach in LOGTELL, the user can select a group of events and request
the possible complex operations that contain them. The system will then insert the
complex operations components (if any) in the original plan. More details about this
mode of interaction will be provided in the next section.

4 User Interaction

People who have no special talent for literary composition, like ourselves, find it diffi-
cult to invent interesting plots. Storytelling researchers (Glassner 2004) repeatedly
point out that there may be problems when users participating in a game are prompted

 9

to function as "authors". But we usually do not feel so uncomfortable if asked to adapt
an existing plot, by introducing small modifications in a gradual fashion.

 The underlying philosophy of the system consists of providing the user with ef-
ficient means for exploring coherent alternatives that the story may allow at a given
state, and for guiding the plot at the level of events and characters’ goals.

 In the LOGTELL tool, the user has direct control only over the Plot Manager.
This module, in turn, communicates with IPG to execute plot generation and enforce
coherence, and with the Drama Manager to control plot visualization. The Plot Manag-
er comprises the user graphical interface (implemented in Java), whereby the user can
participate in the choice of the events that will figure in the plot and decide on their
final sequence (Figure 3). Each event is represented by a rectangular box that may as-
sume a specific color according to its current status.

Figure 3: Plot Manager Interface

The user neither has direct control over the scene, nor over the characters them-
selves. Moreover, user intervention is always indirect, in the sense that any user inter-
vention must be validated by IPG before being incorporated to the current plan.

Plot generation and dramatization are two separate processes, in contrast to pure
character-based approaches, where user interaction affects plot structuring at real-time.
This means that only during the simulation process the user has an opportunity to in-
tervene in the creation of the plot.

As explained in the previous section, plots are created in an attempt to fulfill goals
that the characters aim to achieve. At each simulation step, new goals may be inferred
and automatically added to the plot, which causes the insertion of a new set of events.
The events inserted in the plot so far are sent to the graphical interface for user inter-
vention via the Plot Manager, which offers two commands for automatic plot genera-
tion: another and continue. The command another, requests from IPG an alternative
solution to achieve the same goals of the step just finished. The command continue
asks IPG to try to infer new goals and continue the simulation process.

These two commands provide a form of weak user intervention. The user merely se-
lects partially-generated plots that seem interesting from his/her perspective to pro-
ceed with the simulation. This weak form of intervention usually leads the plot to situ-
ations that the author of the story has devised beforehand.

 10

The Plot Manager offers, in addition, two complementary means for strong user in-
tervention in the creation of more personalized stories. Firstly, the command insert
situation allows users to specify situations that should occur at specific times along the
plot by inserting some additional goal to be reached. The specific details of how the
goal will be accomplished are left to IPG, which is charged to find a solution, if one ex-
ists, using the planning algorithm. It must be noted that, in view of performance con-
siderations, a valid computable plan may fail to be obtained if the search limits current-
ly configured in IPG are exceeded. As in the purely automatic generation, the user may
confirm the solution (by indicating continue) or request an alternative (another), which
(as said before), is a case of weak intervention. Secondly, at a lower interaction level,
the user is allowed to explicitly insert events into the plot with the command insert
event. To validate the insertions, the user must invoke IPG through the continue
command. At this moment, all user defined operations are submitted to IPG, which
runs the planning algorithm to check whether or not they are consistent with the ongo-
ing plot. If not, IPG tries to fulfill possible unsatisfied constraints by inserting further
new operations in a specific order. The user may also remove user defined operations
that were not yet incorporated to (or were rejected by) the planner.

Besides these interaction modes, the user can also use two other commands, tree
and recognize. The tree command displays the available hierarchy of typical plans and
can be used, by itself, as a clue to be taken into consideration when inserting new
events in the story. Figure 4 shows the hierarchy for our swords-and-dragons example;
blue edges denote composition (part-of link) and red edges denote generalization (is-a
link).

Figure 4: Plan Hierarchy Interface

When using the recognize command (which is supported by the plan-recognition
feature of IPG) the user needs to mark one or more events already inserted and/or be-
ing considered for insertion in the Plot Manager interface and the system will try to
match these events, as observations, against the library in an attempt to identify one or
more typical plans subsuming them.

The system will then show the typical Plan Hierarchy representing the story genre
in use with the complex operation found (if any) marked in red and its components
marked in orange. The user can then choose if the complex operation found is an inter-

 11

esting one or try to change it into another one that fits the intended story. For example,
the list of observations [attack('Brian', 'Red_Castle'), kill('Brian', 'Draco')] fits in both
rescue and avenge plans and thus suggests two alternative ways to structure the narra-
tive from which the user may draw his preferences. Upon selecting the desired partial
plan, its component events will be inserted in the Plot Manger interface.

The usage of plan hierarchies can be much enriched if literary indices are made
available. For folktales, for example, there is the monumental index compiled by Aarne
and Thompson (Aarne 1964). Their identified themes and motifs have always been an
inexhaustible source of inspiration for novice and even experienced authors. Treated as
fragments of typical plans, they could then be retrieved, to become part of user-
composed plots.

Before dramatization, there must be − as said before − one additional user interac-
tion that is actually mandatory, namely the conversion of the partially-ordered gener-
ated plan into a strict sequence, thereby completing the composition of a proper plot.
Notice that, if the simulation is resumed afterwards, this addition of new temporal
constraints is also an intervention, because it can affect the inference of new goals. To
determine the sequence, the user connects the events in a sequential order of his/her
choice, respecting the temporal constraints supplied by IPG. The plot’s configuration
emerges as the user moves the cursor to draw edges linking the operation boxes, start-
ing from the root. To help the user in this process, we utilize colors to distinguish oper-
ations that are already connected (yellow), operations that − in view of the temporal
constraints − can be immediately connected (green), or cannot yet be connected (red).
The starting root is blue and the current operation being rendered is cyan. To connect
two operation boxes, the user must click with the mouse over the source box and drag
over the destination box (the same process is used to remove a link between two opera-
tions). Once the current plot (or part of it) is thus connected into a linear sequence, it
can be dramatized by invoking the Drama Manager with the render command.

The tool also offers a facility for querying the IPG module about the state of any
element of the narrative at a specific time Ti, using our temporal modal logic. This fea-
ture allows advanced users to find out, for instance, why an operation or goal is not
being allowed, and helps authors to revise and tune the story requirements.

5 Dramatization

We have developed our own engine to support the graphical representation of the
plots. It is implemented in C++ and uses the OpenGL graphical API to support real-
time rendering of the 3D elements. Characters in a generated plot are regarded as ac-
tors for the dramatization.

The graphical engine does not have to perform any intelligent processing. It is mere-
ly responsible for rendering, at each frame, the scene and the current actors’ aspect and
movements, resulting from real-time interactions with the scene and, occasionally,
with other actors. In doing that, it follows the ordered sequence of events generated at
the previous stages of simulation. The Drama Manager is the module that synchronizes
characters’ actions and the overall graphical representation.

The Drama Manager's job is not limited to assigning the actions that specific charac-
ters must perform. It translates symbolic operations into fully realized 3D visual graph-
ical animations. And it must guarantee the synchronism and logical coherence between

 12

the intended world and its graphical representation. Figures 5 and 6 show some snap-
shots of the dramatization of the generated plots.

As received from IPG, the plot is organized as a sequence of events, each one asso-
ciated with a discrete time instant. The simulation occurs in continuous real-time and
the duration of an operation rendering is not previously known. Variable attributes
change as the event is dramatized. In order to make logical and graphical representa-
tions compatible, the values of the variables before the dramatization of each event
must agree with the pre-conditions of the event and the values at the end with its post-
conditions.

Figure 5: Draco attacking Marian’s castle.

Figure 6: Hoel meeting Marian before getting married.

The dramatization starts by the selection of a specific event and the execution of the
command render in the Plot Manager. All subsequent chained events from this point
to the end are visualized, unless the user interrupts the process. When an event is acti-
vated for rendering, the engine uses the current values of the pertinent attributes as a
starting point for the representation.

 The user can alternate between plot generation and dramatization. In this case,
after a dramatization, new events and time constraints can be added either by the user
or by IPG. If dramatization is activated again, it can start only at events that occur be-
fore the modifications.

 13

 The Drama Manager converts all events into actions, which are delegated to
specific actors, at specific times, according to the plot order of events. Whenever an
event finishes, the Drama Manager asks the Plot Manager to give it the next event. If
none exists, the dramatization stops.

 The dramatization of an event ends when the involved actors(s) finish enacting
the associated graphical representation. In our experiments, this may take from a few
seconds to about one minute, depending on the kind of operation and on the scenario
features.

5.1 Scene and Actors

For the graphical representation of the plots, according to the genre of the story being
represented, the engine loads a specific scenario. The scenario is represented by a 3D
environment that is suitable for the events and characters that the story is supposed to
contain, taking into consideration the conventions of the genre (e.g. the presence of cas-
tles).

Because most events have an association with the place where they are performed,
actors should be constrained, while moving through the scene, to maintain graphical
coherence with respect to how they follow the plot directions. Buildings, such as castles
and other genre-related objects, serve, more than as an ornament, as a conditioning fac-
tor to orient the displacements of the characters, the absolute and relative position
where an action is to be executed, and the form to treat collisions. We make use of ter-
rain reasoning and path-planning based on waypoints (Pozzer et al. 2004).

Actors have a geometric structure amenable to graphical representation, and are
provided with a minimum of planning capabilities, at a low level of detail. Since actors
are expected to play the assigned roles achieving an adequate performance, some ru-
dimentary planning resources are indispensable, so that, in real-time, an actor be able
to make decisions and to schedule the necessary micro-actions. In general, simple path-
finding algorithms and direct inter-agent communication schemes are sufficient. Each
actor must also incorporate behaviours for interacting with the physical environment
and with the other actors. Contrary to the generality of the IPG planner, the local plan-
ning of each actor must be simplified to ensure short response times.

During graphical representation of the plot, all control of the actions each actor is
supposed to perform is made by the Drama Manager. It acts as a director that coordi-
nates sequences of actions performed by the whole cast. It continuously monitors the
representation process, activating new tasks whenever the previous ones have been
finished. As a director, it also controls the positioning of the (virtual) camera, which an
option of LOGTELL permits to be transferred to the user. The manual option provides
zooming, rotation, and vertical and horizontal shifting; some users have found particu-
larly entertaining to look at the scene from a bird's eye perspective, watching the plot
unfold with all locations in view.

For IPG, as the number of characters increase, the computational effort required to
control such characters and their interactions may become prohibitive. However, the
use of fewer characters − a small number of actors, consequently − may lead to poor
graphical representations. The test scenario used as an example in this paper, based on
swords-and-dragons tales, features two heroes, one villain, one victim and a magician.
To enhance the diversity and liveliness of plots, but also to turn the representation
more realistic, we introduced a supporting cast, consisting of groups of soldiers (guar-
dians) in charge of the protection of locations where the leading actors live, and where

 14

events take place. As opposed to the leading actors, whose actions are predetermined
by the plot, these extras are endowed with a higher although still limited level of beha-
vioural autonomy.

For the purposes of our example IPG totally ignores and not even distinguishes in-
dividual extras, since only as groups they have some influence over the plot conduc-
tion. For instance, when the plot is being represented, the graphical engine queries IPG
about the current protection level of each location. At this moment, a proportional
number of guardians is inserted into the scenario, together with the leading characters.
We feel that, either as partially or fully autonomous graphical entities, supporting ac-
tors positively contribute plot visualization.

The degree of autonomy conceded to the extras leaves them free to perform certain
actions randomly, such as walking in different directions; this feature is being im-
proved with the integration of an AI middleware (Karlsson and Feijó 2005) into the
Drama Manager.

When the actors are required to participate in some plot event, which has always a
higher priority, the Drama Manager makes them interrupt momentarily whatever they
were doing. So, the autonomous actions are not allowed to interfere with the execution
of the plot; for instance, the guardians cannot inadvertently kill a leading actor.

6 Test Scenario

The test scenario currently in use for LOGTELL corresponds to a small sub-class of the
popular swords-and-dragons genre. The possible events were modeled by just a few
parameterized operations, which can nevertheless generate a considerable variety of
different plots. The specified operations were the following:

• go(CH,PL): character CH goes to place PL;

• reduce_protection(VIC,PL): the protection of place PL (represented by the num-
ber of guardians) is spontaneously reduced by the prospective victim VIC;

• kidnap(VIL,VIC): the villainous character VIL kidnaps VIC;

• attack(CH,PL): character CH attacks place PL (fighting the guardians);

• fight(CH1,CH2): character CH1 fights character CH2;

• kill(CH1,CH2): character CH1 kills character CH2;

• free(HERO,VIC): character HERO frees character VIC, raising the degree of affec-
tion of VIC for HERO;

• marry(CH1,CH2): the two characters get married;

• donate(CH1, CH2): strength level of character CH2 is raised by the magical pow-
ers of CH1; and

• bewitch(CH1,CH2): the double effect of this operation is to instill an evil nature
into CH2 and, at the same time, make him or her much stronger.

Besides these basic operations, a hierarchy of complex operations (structured by is-a
or part-of links) was added:

• adventure - located at the root position, operation adventure has components: do
villainy, retaliate, accompany and donate; and specializes into: rescue or avenge.

 15

• rescue, avenge - these are the two species of adventure. The rescue variety has
components: abduct, liberate, marry, accompany, donate. The other variety,
avenge, has components: murder, execute, accompany, donate. While, as Figure
2 shows, there are direct edges leading to some of the components, other compo-
nents, namely accompany and donate, are inherited from adventure via the is-a
link. Note that, for both rescue and avenge, the is-a inheritance mechanism
would also indicate do villainy and retaliate as components − but the existence of
direct edges to specific forms of villainy and retaliation (the pair abduct, liberate
for rescue and murder, execute for avenge) in fact overrules the is-a non-specific
paths. In other words, one can say that the choice of a villainy preempts the
choice of the appropriate retaliation.

• do villainy, retaliate, accompany - do villainy specializes into: abduct or murder;
retaliate specializes into: liberate or execute; accompany specializes into: help or
false help. Accompany here evokes the convention, pointed out by folklorists,
that certain persons who aid (or hinder) the hero in his mission march by his side
(playing the role of helpers or of false heroes).

• abduct, murder, execute, liberate, help, false help. Abduct has components: re-
duce protection, attack, kidnap; murder has components: reduce protection, at-
tack, fight, kill; liberate has components: attack, fight, kill, free; execute has com-
ponents: attack, fight, kill; help has components: attack, fight, free; effortless false
help has components: free, marry.

We left out two basic operations from this hierarchy. As operation go is in fact a
component of practically all others, it is therefore assumed to be always present. And
bewitch was deliberately excluded, since any plot including it should not be
considered typical in the context of our genre (a sort of tolerated transgression of the
conventions).

The model of the genre was completed by the following goal-inference rules, pre-
sented here in English for simplicity:

• If a character plays the role of a victim, this character will spontaneously do
something that puts her/him in a less protected situation.

• If the strongest character playing an heroic role is still weaker than the villain,
this character will want to get stronger.

• If the protection level of a victim is reduced, the villain will want to kidnap the
victim.

• If a victim is kidnapped, a hero will want to free her.

• If the affection levels of two characters vis-à-vis each other exceeds a threshold,
they will want to marry.

• If a victim is killed, a hero will want to avenge her

As one of the possible starting configurations, we defined an initial state including
the following information:

• Marian is a princess, living in a palace (the victim).

• Brian and Hoel are knights (the heroes).

• Turjan is a forest-dwelling magician (a donor, in Propp's sense).

• Draco is a dragon whose lair is in a red castle (the villain).

 16

• The princess, the dragon, and the magician have protecting guardians around
their homes.

• Each character is endowed with a certain strength level for fighting.

• The two heroes have a high affection for the princess, which is not reciprocated
by her.

• Turjan is neutral with respect to all the others.

6.1 Examples of Interactive Step-wise Plot Composition

Using the tool, it is possible to generate many different plots. An example plot tells the
classical happy-ending story: “The protection of Marian’s castle is reduced. Draco
regards that as an opportunity to kidnap her. Draco then goes to Marian’s Castle,
attacks the castle and kidnaps Marian. As a noble knight, Brian feels compelled to save
her. But, before that, he needs to ask for Turjan’s magic to raise his strength. He then
goes to Draco’s Castle, attacks the castle and fights Draco. He kills Draco and frees
Marian, who starts loving her saviour. Motivated by their mutual affection, Brian and
Marian go to the church and marry each other.”

Figure 7: An example of a generated plot.

 The plot in Figure 7 follows the same course until the point where Marian is
kidnapped, but, after that, it can be summarized as follows: “The two knights, Brian
and Hoel, propose to save the princess. They both go to Draco’s castle and attack the
guardians. But Brian alone fights Draco, and finally defeats and kills it. Hoel then is
seen to free Marian, causing her to fall in love with him and become his wife. In spite
of doing most of the effort to save Marian, Brian is not able to marry the princess.”

 17

7 Concluding Remarks

Having implemented and extended an initial version of LOGTELL, we have been
running a number of experiments, which seem to demonstrate that combining goal
inference, plan generation/recognition and user participation constitutes a promising
strategy towards the production of plots which are both entertaining and coherent.
Moreover, our modeling method, based on temporal logic, has proved adequate to
capture the conventions of genres encompassing stories with a high degree of
regularity, such as fairy tales (as one could foresee, on the basis of Propp's pioneering
work) and, consequently, simple swords-and-dragons narratives.

On the negative side, we must admit that modern and post-modern genres, with
their emphasis on a more radical transgression of any conventions should not be so
easy to formalize in a systematic way.

Also, plan generation is unfortunately limited by computational complexity consid-
erations. There is however a continuing research effort to improve its efficiency, and
we intend to look into that, to try to upgrade the performance of the IPG planning
algorithms. What we have already verified is that an interactive regime, with the
intervention of the user at various stages and at different levels, as our methods and
implemented tools favour, does much to expand such bounds. A particularly effective
help to this interaction is provided by using plan-recognition over libraries of typical
plans, which offer expert advice to all kinds of users.

A specific topic for our future research is how to alter the LOGTELL approach in
order to offer more advanced dramatization resources, such as investing more on affec-
tive computing (Izard 1991, Velázquez 1997) and improving automatic camera control.

To explore the range of applications of LOGTELL is yet another objective of our
project. The system could be used, for example, to generate side quests in MMORPGs.
Our efforts are now mainly concentrated on the continuing development of our tool, so
as to cope with genres involving more sophisticated forms of communication among
the characters and a deeper treatment of drives and emotions (Gratch and Marsella
2004).

Acknowledgments

This work has been partly sponsored by CNPq, CAPES and FINEP. We would also like
to thank Fabio Binder for his work on the graphics engine.

References

Aarne, A. 1964. The Types of the Folktale: A Classification and Bibliography. Translated and
enlarged by Thompson, S., FF Communications.

Bal, M. 2002. Narratology - Introduction to the Theory of Narrative. University of Toronto
Press.

Cavazza, M., Charles, F., and Mead, S. 2002. Character-based interactive storytelling.
IEEE Intelligent Systems, sp. issue on AI in Interactive Entertainment, 17(4):17-24.

Ciarlini, A. 1999. Geração interativa de enredos. PhD thesis, Depto. de Informática,
PUC-Rio, Brazil.

 18

Ciarlini, A., Veloso, P., and Furtado, A. 2000. A Formal Framework for Modelling at
the Behavioural Level. In Proc. of the Tenth European-Japanese Conference on Information
Modelling and Knowledge Bases, Saariselkä, Finland.

Crawford, C. 1999. Assumptions underlying the Erasmatron storytelling system. In
Working Notes of the 1999 AAAI Spring Symposium on Narrative Intelligence.

Fairclough, C. and Cunningham, P. 2003. A Multiplayer Case Based Story Engine.
Technical Report TCD-CS- 2003-43, Computer Science Department, Trinity College
Dublin, Dublin, Ireland.

Glassner, A. 2004. Interactive Storytelling. A K Peters.

Gratch, J. and Marsella, S. 2004. A domain independent framework for modelling
emotion. In Journal of Cognitive Systems Research, 5(4):269-306.

Karlsson, B. and Feijó, B. 2005. AI Middleware as Means for Improving Gameplay. In
Proceedings of the ACM SIGCHI International Conference on Advances in Computer
Entertainment Technology, Valencia, Spain.

Kautz, H. 1991. A Formal Theory of Plan Recognition and its Implementation. In
Reasoning about Plans. J. F. Allen et al. (eds.). Morgan Kaufmann, San Mateo, EUA.

Izard, C. E. 1991. The psychology of emotions. New York: Plenum Press, New York.

Mateas, M., and Stern, A. 2000. Towards integrating plot and character for interactive
drama. In Socially Intelligent Agents: the Human in the Loop, AAAI Fall Symposium,
technical report, p. 113-118, Menlo Park, USA.

Paiva, A., Machado, I., and Prada, R. 2001. Heroes, villians, magicians, ...: Dramatis
personae in a virtual story creation environment. In Proc. Intelligent User Interfaces 2001:
129-136, Santa Fe, USA.

Pozzer, C. T., Feijo, B., Ciarlini, A. et al. 2004. Managing Actions and Movements of
Non-Player Characters in Computer Games. In Proc. of the Brazilian Symposium on
Computer Games and Digital Entertainment.

Propp, V. 1968. Morphology of the Folktale, Laurence Scott (trans.), Austin: University of
Texas Press.

Riedl, M.; Young, M. 2004. An intent-driven planner for multi-agent story generation.
In Proceedings of the 3rd International Conference on Autonomous Agents and Multi Agent
Systems, New York, USA.

Spierling, U., Braun, N., Iurgel, I., and Grasbon, D. 2002. Setting the scene: playing
digital director in interactive storytelling and creation. Computers&Graphics, 26:31-44.

Sgouros, N. M. 1999. Dynamic generation, management and resolution of interactive
plots. Artificial Intelligence, 107(1):29-62.

Velázquez, J. D. 1997. Modeling emotions and other motivations in synthetic agents. In
AAAI-97: Proceedings of The Fourteenth National Conference on Artificial Intelligence, p. 10-
15, Menlo Park, USA. AAAI Press.

Yang, Q., Tenenberg, J. and Woods, S. 1996. On the Implementation and Evaluation of
Abtweak. In Computational Intelligence Journal, 12(2):295-318.

