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Abstract. Description Logics is a family of formalisms used to represent knowledge of a
domain. In contrast with others knowledge representation systems, Description Logics are
equipped with a formal, logic-based semantics. Knowledge representation systems based
on description logics provide various inference capabilities that deduce implicit knowledge
from the explicitly represented knowledge.

We present a sequent calculus for ALC, a basic Description Logic. The �rst motivation
for developing such system is the extraction of computational content of ALC proofs. The
present calculus is an intermediate step towards a Natural Deduction System for ALC.
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Resumo.

Lógicas de descrição são uma família de formalismos usados para representação de
conhecimento de um domínio. Em constrate com outros sistemas de representação do
conhecimento, lógicas de descrição são equipadas com uma semântica formal. Sistemas de
representação do conhecimento baseados em lógicas de descrição oferecem várias capaci-
dades de inferência de conhecimentos implícitos a partir de conhecimentos explícitos.

Apresentamos um cálculo de sequents para ALC, uma lógica de descrição básica. A
motivação principal para desenvolvimento deste sistema dedutivo é a extração de conteúdo
computacional a partir de provas (deduções). O presente cálculo é um passo intermediário
no desenvolvimento de um sistema em dedução natural para ALC.
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1 Introduction

Description Logics is a family of formalisms used to represent knowledge of a domain. In
contrast with others knowledge representation systems, Description Logics are equipped
with a formal, logic-based semantics. Knowledge representation systems based on descrip-
tion logics provide various inference capabilities that deduce implicit knowledge from the
explicitly represented knowledge [1].

The use of Description Logics by regular users, that is, non-technical users, would
be wider if the computed inferences could be presented as a natural language text � or
any other presentation format at the domain's speci�cation level of abstraction � without
requiring any knowledge on logic to be understandable [11].

We present a sequent calculus forALC 1, a basic Description Logic. The �rst motivation
for developing such system is the extraction of computational content of ALC proofs. More
precisely, this system was developed to allow the use of natural language to rendering of a
Natural Deduction System proof. So that, the present calculus for ALC is an intermediate
step towards a Natural Deduction System for ALC [3]. A natural language rendering of a
Natural Deduction System is worthwhile in a context like proof of conformance in security
standards [4].

Our Sequent Calculus, compared with other approaches like Tableaux [16] and the
Sequent Calculus for ALC [5, 11, 2] based on this very Tableaux, does not use individual
variables (�rst-order ones) at all. The main mechanism in our system is based on labeled
formulas. The labeling of formulas is among one of the most successful artifacts for keeping
control of the context in the many existent quanti�cation in Logical system and modalities.
For a detailed reading on this approach, we point out [14, 8, 12, 13, 6].

This paper is structured as follows. Section 2 presents the basic notions of Description
Logics. Section 3 presents our Sequent Calculus for ALC. Sections 4 and 5 present,
respectively, the proofs of soundness and completeness of the Sequent Calculus presented.
In Section 6 we present an example of proof for a security standards conformance using our
calculus. Finally, in Section 7 we point out further works and present some conclusions.

2 Description Logics

Description Logics is a family of knowledge representation formalisms used to represent
knowledge of a domain, usually called �world�. For that, it �rst de�nes the relevant concepts
of the domain � �terminology� � and then, using these concepts, specify properties of objects
and individuals of that domain. Comparing to its predecessors formalisms, Description
Logics are equipped with a formal, logic-based semantics. Description Logics di�er each
other from the constructors they provide. Concept constructors are used to build more
complex descriptions of concepts from atomic concepts and atomic roles.

ALC is a basic Description Logics [1] and its syntax of concept descriptions is as
following:

�c ::= ? j A j :�c j �c u �c j �c t �c j 9R:�c j 8R:�c

where A stands for atomic concepts, � for concepts, R for atomic roles.

1Attributive Language with Complements
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As usually, the semantics of concept descriptions is de�ned in terms of an interpretation
I = (�I ; �I). The domain �I of �

I is a non-empty set of individuals and the interpretation
function �

I maps each atomic concept A to a set AI � �I and for each atomic role a binary
relation rI � �I ��I . The interpretation function �

I is extended to concept descriptions
inductive as follows:

>I = �I

?I = ;
(:C)I = �I n CI

(C uD)I = CI \DI

(C tD)I = CI [DI

(9R:C)I = fa 2 �I j 9b:(a; b) 2 RI ^ b 2 CIg
(8R:C)I = fa 2 �I j 8b:(a; b) 2 RI ! b 2 CIg

Knowledge representation systems based on description logics provide various inference
capabilities that deduce implicit knowledge from the explicitly represented knowledge. One
of the most important inference services of DL systems is computing the subsumption
hierarchy of a given �nite set of concept descriptions.

De�nition 1. The concept description D subsumes the concept description C, written
C v D, if and only if CI v DI for all interpretations I.

De�nition 2. C is satis�able if and only if there exists an interpretation I such that
CI 6= ;.

De�nition 3. C and D are equivalent, written C � D, if and only if C v D and D v C.

We used to call C v D and C � D terminological axioms. Axioms of the �rst kind are
called inclusions, while axioms of the second kind are called equalities. If and interpretation
sa�s�es an axiom (or a set of axioms), then we say that is a model of this axiom (or set of
axioms).

An equality axiom whose left-hand side is an atomic concept is a de�nition. De�nitions
are used to introduce names for complex descriptions. For instance, the axiom

Mother �Woman u 9hasChild:Person

associates to the description on the right-hand side the name Mother.
A �nite set of de�nitions T where no symbolic name is de�ned more than once is called

a terminology or TBox. In other words, for every atomic concept A there is at most one
axiom in T whose left-hand side is A. Given a T , we divide the atomic concepts occurring
in it into two sets, the name symbols NT that occur on the left-hand side of some axiom
and the base symbols BT that occur only on the right-hand side of axioms. Name symbols
are called de�ned concepts and base symbols primitive concepts. The terminology should
de�nes the name symbols in terms of the base symbols.

Of course, with the de�nitions of the last paragraph, we must also extend the de�nitions
of interpretations. A base interpretation �

I for T is an interpretation just for the base
symbols. An interpretation that interprets also the name symbols is called an extension
of �

I . Since our purpose here is not a complete review of description logics, we will not go
into more details. There are a lot of concerns about such extensions, cyclic de�nitions in
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a TBox and assertions about individuals in a knowledge base � world description or ABox
� we cite [1] for a complete reference.

A knowledge base � TBox and ABox � equipped with its semantics is equivalent to
a set of axioms in �rst-order predicate logic. Thus, as said before, like any other set of
axioms, it contains implicit knowledge that logical inferences can make explicit.

When we are constructing a TBox T , by de�ning new concepts, possibly in terms of
others that have been de�ned before, it is important to enforce the consistence of the TBox.
That is, it is important that new concepts make sense and do not be contradictory with
old ones. Formally, a concept makes sense if there is some interpretation that satis�es the
axioms of T such that the concept denotes a nonempty set in that interpretation.

De�nition 4 (Satis�ability). A concept C is satis�able with respect to T if there exist a
model �

I of T such that CI is nonempty. In this case, �

I is a model of C.

While modeling a domain of knowledge into a TBox other important inference service
is necessary. For instance, it is usually interesting to organize the concepts of a TBox
into a taxonomy. That is, it is important to know whether some concept is more general
than another one: the subsumption problem. Furthermore, other interesting relationships
between concepts is the equivalence.

De�nition 5 (Subsumption). A concept C is subsumed by a concept D with respect to T
if CI � DI for every model �

I of T . In this case we write C vT D or T j= C v D.

De�nition 6 (Equivalence). Two concepts C and D are equivalent with respect to T if
CI = DI for every model �

I of T . In this case we write C �T D or T j= C � D.

If the TBox is clear from the context or empty we can drop the quali�cation and simply
write j= C v D if C is subsumed by D, and j= C � D if they are equivalent.

Since it is not our main concern in this paper, we will not go into more details about the
equivalence and reductions between reasoning problems in Description Logics. Basically,
the di�erent kinds of reasoning can be reduced to a main inference problem, named the
consistency check for ABox [1].

There exist two main algorithms to reasoning in Description Logics: structural sub-
sumption algorithms and tableaux-based algorithms [1]. One of the di�erences between
them relies on the logical languages that each one can handle.

For the description logic ALN 2 and its subsets, that is, the Description Logic not
allowing full negation (:C), disjunction (C tD) nor full existential (9R:C), the subsump-
tion of concepts can be computed by structural subsumption algorithms. The idea of these
algorithms is compare the syntactic structure of concept descriptions. These algorithms
are usually very e�cient, polynomial time complexity [10] indeed.

For ALC and its extensions, the satis�ability of concepts and the subsumption of con-
cept usually can be computed by tableau-based algorithms which are sound and complete
for these problems [1]. The �rst tableau-based algorithm for satis�ability of ALC-concepts
was presented by [16]. As we said before, some reasoning problems in Description Logics
can be reduced to others, in special, the problem to test the subsumption of concepts
is reduced to the problem of test the (un)satis�ability of a concept description. These

2The letter N means number restrictions and provides the language with the ability to describe at-least
restriction (� nR) and at-most restriction (� nR).
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algorithms use the fact that C v D if and only if C u :D is unsatis�able [1]. Regard-
ing the complexity, the tableau-based satis�ability algorithm for ALC is a PSpace-hard
problem [16].

As a �nal remark, it is well-known after [9] and [15] that any Classical Propositional
Logic axiomatization containing the axiom 8R:(C uD) � 8R:C u 8R:D and the necessi-
tation rule is sound and complete for ALC. As usual, 9R:C can be taken as a shorthand
for :8R::C, as well as 8R:C as a shorthand for :9R::C. Taking 9R:C as the de�ned
concept, the axiom changes to 9R:(C tD) � 9R:C t 9R:D.

3 A Sequent Calculus for ALC

The Sequent Calculus for ALC that it is shown in Figure 1 considers the extension of the
language �c de�ned in the previous section for labeled concepts. The labels are two lists
of (possibly skolemized) role symbols. Its syntax is as following:

L ::= R;L j R(L); L j ;

�lc ::=
L�c

L

where R stands for roles and L for list of roles. That is, the fragment f?;u;t;:;9;8g of
ALC for labeled concepts.

Each labeled ALC concept has an ALC concept equivalent. For example, the labeled
ALC concept Q2;Q1�R1(Q2);R2 is equivalent to 9R2:8Q2:9R1:8Q1:�.

Considering A as an atomic concept and � an ALC formula, the function � : �lc ! �c
transform a labeled ALC concept into an ALC concept. It is de�ned recursive as follows:

�
�
;�;

�
= �

�
�
L1;R�;

�
= �

�
L18R:�;

�

�
�
L1�R;L2

�
= �

�
;

9R:�
�
L1�;

�L2
�

�
�
L1�R(L1);L2

�
= �

�
L19R:�L2

�

�
�
L;L1�R(L);L2

�
= �

�
L

�
�
L1�;

�R(L);L2�

We de�ne � ) � as a sequent where � and � are �nite sequences of labeled con-
cepts. The natural interpretation of the sequent �) � is the ALC formula

d
�2� � (�) vF


2� � (
). Note that � is de�ned only over labeled ALC concepts.
The lists of labels will be omitted whenever it is clear that a rule does not take into

account their speci�c form. This is the case for the structural rules. Capital greek letters
stand for lists of labeled formulas. If L1
L2 is a consistently labeled formula then D(L2) is
the set of role symbols that occur inside the skolemized role expressions in L2. Note that
D(L2) � L1 always holds. The notation L1�L2 has to be taken as a list of labeled formulas
of the form L1
1

L2 ; : : : ; L1
k
L2 for all 
 2 �.

Considering the labeled formula L1�L2 , the notation
L2
L1 �

L1
L2 denotes exchanging the

universal roles occurring in L1 for the existential roles occurring in L2 in a consistent
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way such that the skolemization is dualy placed. Thus, if � � :� the formulas will be a

negation each other. For example,
R(Q)
Q �

Q

R(Q) is R�Q(R).
The restrictions in the rules (8-r) and (8-l) means that the role R can only be removed

from the left list of labels if none of the skolemized role expressions in the right list depends
on it.

4 Soundness

The soundness of SALC is proved by taking into account the intuitive meaning of each
sequent and establishing that the truth preservation holds. As said in the last section, a
sequent �) � is equivalent in meaning to the ALC formula:

l

�2�

� (�) v
G

2�

� (
)

A sequent is de�ned to be valid or a tautology if and only if its corresponding ALC
formula is.

When using the calculus, the usual axioms of a particular DL theory (TBox or an on-
tology) of the form C v D should be taken as the sequent C ) D. Labeled formulas occur
only during the proof procedure, since they are in practical terms taken as intermediate
data.

Theorem 1 (SALC is sound). Considering 
 a set of sequents, a theory or a TBox, let an

-proof be any SALC proof in which sequents from 
 are permitted as initial sequents (in
addition to the logical axioms). The soundness of SALC states that if a sequent �) � has
an 
-proof, then �) � is satis�ed by every interpretation which satis�es 
. That is,

if 
 `SALC �) � then 
 j=
l

�2�

� (�) v
G

2�

� (
)

for all interpretation �

I .

Proof. We proof Theorem 1 by induction on the length of the 
-proofs. The length of a

-proof is the number of applications for any derivation rule of the calculus.

base case Proofs with length zero are proofs 
 ` � ) � where � ) � occurs in 
.
In that case, it is easy to see that the theorem holds.

For the initial sequents, logical axioms like C ) C, it is easy to see that �(C)I � �(C)I

for every interpretation I since every set is a subset of itself.

Induction hypothesis As inductive hypothesis, we will consider that for proofs of length
n the theorem holds. It is now su�cient to show that each of the derivation rules preserves
the truth. That is, if the premises holds, the conclusion must also hold.
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�) �

�) �
�; �) �

weak-l �) �
�) �; �

weak-r

�1; �1; �2;�2 ) �

�1; �2; �1;�2 ) �
perm-l

�) �1; 
1; 
2;�2
�) �1; 
2; 
1;�2

perm-r

�; L1;R�L2 ) �

�; L1(8R:�)L2 ) �
8-l

�) �; L1;R�L2

�) �; L1(8R:�)L2
8-r

�; L1�R(L1);L2 ) �

�; L1(9R:�)L2 ) �
9-l

�) �; L1�R(L1);L2

�) �; L1(9R:�)L2
9-r

�; L�;; L�; ) �

�; L(� u �); ) �
u-l

�) �; L�; �) �; L�;

�) �; L(� u �);
u-r

�; ;�L ) � �; ;�L ) �

�; ;(� t �)L ) �
t-l

�) �; ;�L; ;�L

�) �; ;(� t �)L
t-r

�) �; L1�L2

�;
L2
L1 :�

L1
L2 ) �

:-l
�; L1�L2 ) �

�) �;
L2
L1 :�

L1
L2

:-r

L1�L2 ) M1
N1 ; : : : ;Mn
Nn

L1�L2;R ) M1
N1;R; : : : ;Mn
Nn;R
prom-1

M1
N1 ; : : : ;Mn
Nn ) L1�L2

R;M1
N1 ; : : : ;R;Mn
Nn ) R;L1�L2
prom-2

�1 ) �1;
L1�L2 L1�L2 ;�2 ) �2

�1;�2 ) �1;�2
cut

In all rules �, � means ALC concepts (formulas without labels), 
i and �i stands for
labeled concepts, �i and �i for list of labeled concepts (for clean presentation of the rules
the list of labels are omitted). In the rules (8-r) and (8-l) note that R 62 D(L2). In the
rule (9-l), R 62 (L1 [ L2). In the rules (prom-1) and (prom-2), Mi and Ni stands for list
of roles.

Figure 1: The System SALC
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Cut rule Given the sequents �1 ) �1;
L1CL2 and L1CL2 ;�2 ) �2 then, by hypothesis,

we know that they are valid and so
\
�2�1

�(�)I �
\

2�1

�(
)I [ �(L1CL2)I

and
�(L1CL2)I \

\
�2�2

�(�)I �
\

2�2

�(
)I

Let A =
T
�2�1

�(�)I , B =
T

2�1

�(
)I , C =
T
�2�2

�(�)I , D =
T

2�2

�(
)I and
X = �(L1CL2)I . Now me must show that the application of the cut rule preserves the
set inclusion. In other words, given A � (B [ X) and (X \ C) � D, we must have
(A \ C) � (B [D). Which is easy to show using the standard set theory.

Rules weak-l and weak-r Given the sequent � ) �, by the inductive hypothesis we
know that \

�2�

�(�)I �
\

2�

�(
)I

Let A =
T
�2� �(�)I and B =

T

2� �(
)

I . By the hypothesys, A � B and so, by set
theory, A\X � B and A � B [X for any set X interpretation of an arbitrary � formula.
In the �rst case, we archive the interpretation of �; �) �. In the second case, we archive
the interpretation of �) �; �. Showing that both rules are sound.

Rules perm-l and perm-r By the de�nition of the intuitive meaning of a sequent and
its semantics, it is easy to see that both rules are sound. Note that the order of the
formulas in both sides of a sequent do not change the intuitive meaning of its respective
ALC formulas.

Rules prom-1 and prom-2 First, we note that for any C;D ALC concepts and R role,
by the semantics of ALC and subsumption de�nition, we easily show that

C v D ) 9R:C v 9R:D (1)

C v D ) 8R:C v 8R:D (2)

The soundness of rule (prom-1) if easily proved using (1) and the axiom 9R:Ct9R:D �
9R:(C t D). The soundness of rule (prom-2) is proved using (2) and the axiom 8R:C u
8R:D � 8R:(C uD).

Rules 8-r, 8-l, 9-r and 9-l From the de�nition of � function, we know that in all those
four rules, both the premises and the conclusions have, given a interpretation function, the
same semantics.
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Rule u-l Taking the sequent �; L�;; L�; ) � valid as hypothesis, we know that
\
�2�

�(�)I \ �(L�;)I \ �(L�;)I �
\

2�

�(
)I

holds. To show that the rule (u-l) is sound, We must prove that �; L(� u �); ) � is also
valid. In other words,

\
�2�

�(�)I \ �(L(� u �);)I �
\

2�

�(
)I

Let A =
T
�2� �(�)I and B =

T

2� �(
)

I , we can rewrite the hypothesis as (A \

�(L�;)I \ �(L�;)I) � B. Now, by the de�nition of � and the axiom (Section 2)

8R:� u 8R:� � 8R:(� u �)

we have that A \ �(L� u �;)I � B by induction over the list of labels L.

Rule u-r By induction hypothesis �) �; L�; and �) �; L�; are valid sequents, and
so, \

�2�

�(�)I �
\

2�

�(
)I [ �(L�;)I

and \
�2�

�(�)I �
\

2�

�(
)I [ �(L�;)I

holds for all interpretations �

I . Now, suppose the application of the rule (u-r) over the two
sequent above.

We must show that �) �; L(� u �); is also valid, that is,

\
�2�

�(�)I �
\

2�

�(
)I [ �(L(� u �);)I

holds.
Let A =

T
�2� �(�)I and B =

T

2� �(
)

I to rewrite the hypothesis to A � (B [

�(L�;)I) and A � (B [ �(L�;)I). By basic set theory axioms, given that hypothesis we
have

A � ((B [ �(L�;)I) \ (B [ �(L�;)I))

that, by distributive law
A � B [ (�(L�;)I \ �(L�;)I)

Finally, by the de�nition of � and the axiom 8R:C u8R:D � 8R:(C uD) we conclude that
A � B [ �(LC uD;)I is valid.
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Rule t-l As inductive hypothesis the sequents �; ;�L ) � and �; ;�L ) � are valid.
That is, given A =

T
�2� �(�)I and B =

T

2� �(
)

I , we know that

A \ �(;�L)I � B and A \ �(;�L)I � B

holds. Now considering the application of the rule (t-l) over the two sequents above we
must prove that the resulting sequent �; ;(� t �)L ) � is also valid:

A \ �(;(� t �)L)I � B

Following from the hypothesis and basic set theory we know that if A \ X1 � B an
A \X2 � B than (A \X1) [ (A \X2) � B which gives

A \ (�(;�L)I [ �(;�L)I) � B

and by the axiom 9R:C t 9R:D � 9R:(C tD) and the induction over the list L we have
the desired semantics of the resulting sequent:

A \ (�(;(� t �)L)I) � B

Rule t-r The inductive hypothesis is that � ) �; ;�L; ;�L is valid. As we did before,
taken A =

T
�2� �(�)I and B =

T

2� �(
)

I , it means

A � B [ �(;�L)I [ �(;�L)I

holds. Now by the axiom 9R:(�t�) � 9R:�t9R:�, we get A � B[�(;(� t �)L)I . Wish
is the semantics of the sequent �) �; ;(� t �)L.

Rules :-l and :-r Given a concept L1�L2 and a interpretation �

I we de�ne the set

X = �(L1�L2)I and the interpretation of its negation,
L2
L1 :�

L1
L2 , will be the set X = �I nX.

Moreover, lets take A =
T
�2� �(�)I and B =

T

2� �(
)

I to prove that each of the rules
are sound.

For rule (:-l), the inductive hypothesis is that the premise � ) �; L1�L2 is valid.
Which means that A � (B[X). From the basic set theory this implies that (A\X) � B,
witch is the interpretation of the conclusion.

For rule (:-r), the inductive hypothesis is that the premise �; L1�L2 ) � is valid.
Which means that (A\X) � B. From the basic set theory this implies that A � (B[X),
the interpretation of the conclusion as desired.

5 Completeness

We show relative completeness of SALC regarding the axiomatic presentation of ALC. Since
ALC formulas are not labeled, the completeness must take into account only formulas with,
both, the universal list of roles and the existential list of roles as empty lists. Proceeding
in this way, the ALC sequent calculus deduction rules without labels behave exactly as
sequent calculus rules for classical propositional logic. Thus, in order to prove that SALC is
complete, we have only to derive the axiom 8R:(�u�) � 8R:�u8R:� and the necessitation
rule. The reader must note that the derivation of the necessitation rule is accomplished by
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) �
prom� 2

) R�
8 � r

) 8R:�

On the other hand, the derivation of the axiom 8R:(� u �) � 8R:� u 8R:� is obtained
from the following derivations.

R� ) R�
weak � l

R�;R� ) R�
8 � r

R�;R� ) 8R:�

R� ) R�
weak � l

R�;R� ) R�
8 � r

R�;R� ) 8R:�
u � r

R�;R� ) 8R:� u 8R:�
u � l

R(� u �) ) 8R:� u 8R:�
8 � l

8R:(� u �)) 8R:� u 8R:�

, and

R� ) R�
weak � l

8R:�;R� ) R�
8 � l

8R:�;8R:�) R�

R� ) R�
weak � l

8R:�;R� ) R�
8 � l

8R:�; 8R:� ) R�
u � r

8R:�; 8R:� ) R(� u �)
u � l

8R:� u 8R:� ) R(� u �)
8 � r

8R:� u 8R:� ) 8R:(� u �)

6 An example of proof using SALC

The formalization of text-based information is an important issue for many organizations.
It is very common to encounter situations where knowledge stored in natural-language
documents must be made available to agents (human or software-based) for processing
and decision-making.

In [4] we discuss the principles involved in an ontology-based approach to the formaliza-
tion of normative texts in the domain of Information Security (IS). In that paper, we discuss
the use of tools and techniques from the �elds of natural-language understanding, Descrip-
tion Logics and ontologies to formalize (and extract knowledge from) natural-language
texts.

We must brie�y present some IS-related terminology: security controls (or simply con-
trols) are low-level technical measures that can be deployed in order to protect the organi-
zation's devices and processes against potential threats; and security policy, consisting of
set of actions to be taken in order to comply with the adopted security standards. All of
these concepts will be formalize as concepts in an ontology.

An important issue after the formalization of the normative texts is the validation of
security controls against the policies which the controls are supposed to implement. For
the validation task we developed the SALC . This section presents a simple example of how
a subsumption inference could be proved using SALC system and also the outline of the
proof constructed. This outline gives the basic ideas of how this proof could be further
explained to a non-technical users.
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AdministerRemotely v AccessRemotely
NetworkConnect v NetworkTra�c
NetwareServer v System
Action0002 � 9hasVerb:(Con�gure u

9hasTheme:System u
9hasPurpose:(Encrypt u
9hasTheme:(NetworkConnect u
9isInstrumentOf:(AccessRemotely u
9hasTheme:System))))

Control0001 � 9hasVerb:(Encrypt u
9hasTheme:NetworkTra�c u
9hasInstrument:SSL u
9isInstrumentOf:(AdministerRemotely u
9hasTheme:NetwareServer))

9hasVerb:Y � 9hasVerb:(Con�gure u 9hasTheme:X u 9hasPurpose:Y )

Figure 2: Some axioms of an IS ontology

Figure 2 presents some axioms of an IS ontology. The intuitive meaning of the last
axiom is that �Con�guring X to achieve Y� is equivalent to �Achieving Y�.

We usually would like to verify if a �security control� is the implementation of a speci�c
�action�. From a logical point of view, this can be stated as a subsumption problem � given
two concepts to represent the control and the action. Let us considering the Control0001
and the Action0002 from the ontology in Figure 2. For the sake of better comprehension,
the meaning of Action0002 is �Con�gure every system to encrypt connections used for
remote access to the system� and the meaning of Control0001 is �Network tra�c for the
remote administration of the Netware server must be encrypted using SSL�. 3

Figure 3 presents the complete proof derivation of Control0001 v Action0002 using
SALC . The outline of this proof is given bellow:

Since �Encrypt the NetworkConnection� is the same as �Encrypt the Network-
Tra�c�, NetwareServer is a System, and AdministerRemotely implies Access-
Remotely, then

� Control0001, requiring that one

� Encrypt the NetworkTra�c using SSL in order to AdministerRemotely the
NetwareServer, implies

� Encrypt the NetworkTra�c in order to AdministerRemotely the Netware-
Server, and hence,

� Encrypt the NetworkTra�c in order to AccessRemotely a System, and
hence,

� Encrypt the NetworkConnection in order to AccessRemotely a System,
which conforms to

3That is, the concepts are the formalizations of the natural language texts.
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� Action0002, according to this detailed proof on Figure 3

7 Conclusion and Further Works

As a the natural sequence of this article we are currently working on the proof that our
system is still complete and sound without the �cut-rule�. This proof will follow the general
idea of Gentzen's Cut-Elimination Theorem [7].

Future investigation must also include: (1) the extension of this calculus in order to
deal with stronger Description Logics, mainly, SHIQ [1]; (2) the development of a Natural
Deduction System based on SALC .

Another interesting thing to be investigated is a comparison with others inference
algorithms � like the structural subsumption algorithms and Tableaux [1] � regarding
complexity. Furthermore, we have also start the development of a prototype theorem
prover for SALC .
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