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Abstract. Recovery oriented software is built with the perspective that hardware or 
software failures and operation mistakes are facts to be coped with, since they are 
problems that cannot be fully solved while developing real complex applications. 
Consequently, any software will always have a non-zero chance of failure. Some of 
these failures may be caused by defects that may be removed or encapsulated. From 
the point of view of removing or encapsulating defects, a failure is considered to be 
trivial, when i) the required effort to identify and eliminate or encapsulate the causing 
defect is small, ii) the risk of making mistakes in these steps is also small, and iii) the 
consequences of the failure are tolerable. It is highly important to design systems in 
such a way that most (ideally all) of the failures are trivial. Such systems are called 
“debuggable systems”. In this work, we present the results of systematic applying 
techniques that focus in creating debuggable software for real embedded applications.  

Keywords: Software Engineering, Reliability, Debuggabulity, Recovery Oriented 
Software. 

Resumo. Sistemas orientados à recuperação são construídos sob a perspectiva de que 
falhas de hardware ou software e erros de operação são fatos com os quais se deve 
conviver, pois é virtualmente impossível evita-los no desenvolvimento de sistemas 
complexos. Consequentemente, todo software possui uma chance diferente de zero de 
falhar. Algumas dessas falhas podem ser causadas por defeitos que podem ser remo-
vidos ou encapsulados. Do ponto de vista da remoção ou do encapsulamento de defei-
tos, uma falha é considerada trivial quando i) o esforço necessário para identificar e 
eliminar ou encapsular o defeito causador é pequeno, ii) o risco de cometer erros nesses 
passos também é pequeno, e iii) as conseqüências de uma falha são toleráveis. É muito 
importante projetar sistemas de forma que a maioria das (idealmente todos as) falhas 
seja trivial. Tais sistemas são chamados “sistemas depuráveis”. Nesse trabalho, apre-
sentamos os resultados da aplicação sistemática de técnicas que focam na criação de 
sistemas depuráveis para sistemas embarcados reais. 
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1  Introduction 

When examining processes and software development environments currently being 
used, it is possible to notice that, although there are a large number of tools and techni-
ques available to develop software, most of the effort (specially code writing) is still 
essentially manual. Hence, there is a great chance of errors due to human fallibility. 
This is particularly critical in cases where a system requires a high level of dependabi-
lity, as is the case of embedded systems, supervisory systems or process control sys-
tems.  

Recovery oriented systems are built with the perspective that hardware failure, 
software faults and operation mistakes are facts to be coped with, not problems to be 
solved during development time [Fox, 2002; Brown et al, 2002]. The recovery oriented 
software axioms are the following: 

• It is impossible to build fault-free software, and if we succeed in doing so we will 
not be able to know it. 

• It is not allowed to assume that software, even if perfect, will not be affected by 
external issues, such as hardware or platform failure. 

• It is not allowed to assume that one can foresee all possible failures that software 
might display. 

• Some failures can be tolerated to some extent, if their consequences are assuredly 
below an acceptable threshold. 

For the purpose of this paper, a software fault, or defect, is a code fragment that, when 
exercised in a certain way, generates an error. An error is an unacceptable state with 
respect to the specification of the real world with which the software interacts. Errors 
may also be due to external sources, such as machine failure or operating system failu-
re among many others. A failure is an error that has been observed by some means [A-
vizienis, 2004]. A defect or external error source is said to be encapsulated if it still re-
mains but is controlled in such a way that its consequences are acceptable. Examples 
are controls that observe and adequately handle transient failures. 

It follows that the main objective of software development must not just be to assure 
that it is free from faults, but it should be a system for which the risk of failures is 
acceptable and the consequences of these failures are also acceptable. It is important to 
notice that the causes of the failures that might happen (either during development 
time or during production) are unknown; otherwise the defects could have been 
removed or at least encapsulated. In response to a failure, it must be possible for a user 
to quickly resume his/her work [Fox, 2002; Brown et al, 2002]. This means that a 
recovery oriented system must minimize its failure downtime time intervals. This is 
particularly important in embedded systems due to the potential damage that system 
unavailability or malfunction might represent.  

The risk and the nature of acceptable failures are a function of the requirements and 
the application domain of the system under development. Among others, factors that 
affect this identification are: risk of loss of life, serious damage to equipment, or to the 
business. Other factors are loss of work and time to restore the state of the system to a 
correct state with minimal loss of performed work. 

However, besides restoring the system to a valid state as quickly as possible, it is 
still necessary to properly identify and remove the causes of the failure. This will 
reduce the risk of the same cause provoking a failure in the future. However, a failure 
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might have a number of causes, such as coding or design mistakes, software misuse or 
transient hardware malfunction. Failures can also be caused by accidental situations, 
without a specific location; for example, magnetic fields or radiation may induce 
hardware failures. This shows the importance of creating mechanisms to quickly detect 
and assure that the damage will remain below acceptable limits as is usual in fault 
tolerant systems [Avizienis et al, 2004] [Pullum, 2001]. Different from these, however, 
is the need to quickly identify and remove the fault, and redeploy the corrected system. 

Recovery oriented software must focus on the following issues [Fox, 2002; Brown et 
al, 2002]: 

• Minimize the risk of the software containing faults; 

• Minimize the impact of external events; 

• Reduce the mean time to repair (MTRP); 

• Reduce the mean time to recover (MTRC); 

• Minimize the consequences of a failure. 

By MTRP we mean the time elapsed since the failure identification until its complete 
removal from the software, with a new released version. By MTRC we mean the time 
elapsed since the moment when the failure occurred until the moment this service is 
restored (completely or partially) in a reliable way. 

[Avizienis et al, 2004] list four ways to implement fault tolerance: 

• Fault prevention; 

• Fault tolerance (operate properly in the presence of fault consequences); 

• Fault removal; and 

• Fault forecasting. 

This work focuses on preventing faults in a system, controlling external faults, redu-
cing the MTRC and enabling fault tolerance in a system. We propose the systematic 
and combined use of well-known software development techniques and tools. By do-
ing this, we are complementing the problem of developing fault tolerant systems with 
the requirement of generating debuggable software. 

This paper is structured as follows: 

• The section “Debuggable Software” presents some concepts related to 
debuggable software; 

• The section “Debuggable software development process” discusses how to 
properly spend efforts in an efficient way to build a debuggable software; 

• The section “Technologies that support the development of debuggable 
software” discusses technologies that can be used to generate debuggable 
software; 

• The section “Observations from Real Complex Application Development” 
describes the real development achieved, as well as its results; 

• The section “Conclusions” shows some conclusions of this work, as well as some 
future and ongoing work 
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2  Debuggable Software 
According to Basili and Boehm [Basili and Boehm, 2001] more than 50% of the software 
in use nowadays contains non-trivial faults, in other words faults that are hard to re-
move or that might cause considerable damage. Such faults consume most part of the 
resources spent in corrective maintenance. 

One of the consequences of the development of debuggable software is the 
reduction of the number of non-trivial faults that are identified during the lifetime of 
the software. In order to understand the reason for this statement, it is necessary to 
analyze what makes a fault non-trivial. We start by considering the fault removal effort 
(FRE), whether the faults are trivial or not. We split FRE into two parts: 

2.1  Fault diagnose effort (FDE): 

During the debugging process, we do not observe faults but rather their symptoms, i.e. 
failures. Using fault diagnosis applied to a given failure we search and determine its 
corresponding fault. 

2.2  Fault Correction Effort (FCE): 

After a failure has been diagnosed, the corresponding fault must be fixed or encapsula-
ted. In addition, we must demonstrate that it has been correctly and completely dealt 
with and that the new deployable version of the software contains the full correction. It 
is important to state that not every fault can be removed. For example, external faults 
such as data transmission faults occur due to unpredictable and inevitable causes. Ho-
wever, sometimes it is possible to add redundancy, allowing identification of the pro-
blem and, subsequently, to control its possible damage. This is what we call fault en-
capsulation. 

One of the major problems with fault removal is to estimate, a priori, the FDE. Even 
though the FCE might be considerable, once the fault has been diagnosed, removing it 
corresponds to conventional software development or maintenance activities. Hence 
there is already a large amount of knowledge and experience regarding FCE. 
According to [Satpathy et al, 2004], FCE can be reduced using best development 
practices.  

Very little effort is being spent, though, developing techniques designed to reduce 
the FDE, which is still very dependent on programmer skills and on sophisticated 
debugging environments. One way of reducing the FDE could be achieved by reducing 
or ideally eliminating non-trivial failures. However, as mentioned before, this seems to 
be an utopian proposal. Hence, an alternative would be to transform non-trivial into 
trivial failures. This leads to our definition of debuggable software: 

Debuggable software is that in which the chances of observing a non-trival failure is 
very low.  

In other words, debuggable software is explicitly developed to reduce the number 
of non-trivial failures and, consequently, contributes to reduce the Fault Diagnose 
Effort as well. Debuggable software fits the principles of recovery oriented software – 
the more it is debuggable, the more it is recovery oriented. One problem that could be 
stated is how one could assure that non-trivial faults do not exist. A less ambitious goal 
could be similar to fault-based testing [Morell, 1990], where the absence of a set of 
known classes of faults is verified by means of specific tests. Hence a less ambitious 
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definition would be: Debuggable software is that in which the chances of observing a 
non-trivial failure of a given category is very low. The problem with this approach is 
that we are bound to a set of known failure categories, which, although possibly 
increasing as time passes, does not assure the absence of non-trivial failures. This 
approach is quite similar to fault-based testing [Morell, 1990]. It is beyond the scope of 
this paper to detail this issue. 

How could one reduce the number of non-trivial faults (internal or external) 
without prior knowledge of the faults? The key idea is to prepare the software for the 
failure instant. The failure instant is the very instant when an error occurs. When an 
internal fault is exercised, or when an external fault occurs, an error may be generated. 
When this error is observed, we have a failure. As long as it is not observed, it is still an 
error, not a failure. The longer the time passed from the instant the error is generated 
to the instant of its observation, the harder will be the failure analysis and, 
consequently, the greater will be the FDE. Furthermore, the damage provoked by the 
malfunction might increase considerably. The failure instant is thus one of the most 
important, if not the most important, event considering the fault removal effort. It is 
the ideal instant to collect information that will help to identify the related faults. When 
debuggable software fails, it must be able to provide precise information about itself: 

• Information about internal state of execution: for example, allocated memory, 
variables, objects, threads, allocated resources, etc; 

• Information about the environment state of execution: for example, database 
state, established socket connections, execution logs, etc; 

• Information about how to reproduce the failure: for example, method invocations 
stack, user interactions with the interface, etc. In non-deterministic software (e.g., 
multi-threading or distributed systems), exact failure reproduction may be very 
hard or even impossible to be achieved. Debuggable software should help the 
developer to identify and isolate the causing thread, providing means to 
reproduce exactly the failure 

3  Debuggable software development process 

The debuggable software development process must concentrate efforts in the follo-
wing areas:  

3.1  Fault prevention effort:  

This is the effort spent during development time to avoid the presence of faults in a 
system. This effort concentrates mainly on specification, architecture, design, coding, 
test and verification and validation. Essentially, it corresponds to the conventional de-
velopment effort, as well as to the maintenance or evolution effort once the cause of a 
problem has been identified. Obviously, this effort can be reduced by means of the use 
of best practices aiming at correctness by construction, maintainability and evolveabi-
lity. 

3.2  Potential failure detection effort  

It is important to distinguish between two distinct types of faults: the ones that are un-
der the control of the developer and that we wish to minimize by means of prevention, 
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and the ones that are not under the developer’s control, whose causes are usually ex-
ternal to the system, such as hardware failure or interference from another system. 
These latter failures require a specific design effort, enabling the corresponding errors 
to be observed and properly handled.  

The potential failure detection effort is the effort spent during development time to 
identify failures that might happen at runtime. Such failures can be caused by 
inaccurate coding, but may also be caused externally to the software. The major 
characteristic of potential failures is that they are not known beforehand. This effort 
includes not only the design overhead, but also operational costs, i.e. the 
computational effort spent in control actions that do not directly contribute to software 
functionalities. It is represented by artifacts like dedicated hardware and software, use 
of redundancy or even software clones [Staa, 2000] as well as replicas in order to detect 
inconsistencies by comparing different outputs from a single input [Pullum, 2001]. As 
examples of software dedicated to failure detection, we can mention: 

• Self-checkable data structures: these are data-structures containing redundancy 
that allows verifying their structural consistency (e.g. conformance with 
structural invariant assertions) without requiring knowledge of the system state 
[Taylor, 1986];  

• Data-structure verifiers: code designed to verify self-checkable data structures; 

• Self-test functions: created to run self-consistence tests in a system. 

It is possible to conclude two things: 

• A debuggable software has components dedicated exclusively to failure 
detection, besides having an internal organization suitable to allow for data 
verification during runtime; and 

• Software must be designed to be debuggable. Debuggability cannot be added to 
already developed software. 

3.3  Failure handling effort  

This is the effort spent during development and maintenance time (architecture, de-
sign, implementation and test) to add ways to handle failures detected during runtime 
(see item above). By failure handling we mean “recover as gracefully as possible”, i.e.: 

• minimizing the need of manual intervention; 

• reducing the loss of work; 

• giving precise information to the user about what happened, using his/her 
viewpoint, and how to continue working in the best possible way. 

For example, a failure detected in a sensor or in the software that controls the sensor 
can be handled automatically, removing the defective sensor from operation. Although 
the system will operate in a degraded way, the reliability of other operations will not 
be affected. In other cases, the best thing to do is to roll back to a previous safe state 
and terminate the program in order to minimize damage propagation. 

Besides handling failures as they are detected, it is also necessary to remove, or, in 
case of external failures, encapsulate them. Considerable effort is then spent in order to 
provide means to either encapsulate or eliminate the causes of a failure. 
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Different than conventional fault tolerance, failure recovery may require some user 
intervention. The user can provide valuable information to minimize loss of data or 
may even require that no recovery be made – in such cases the user will attempt to 
recover the data himself. For example, if the system detects an invalid record in a 
database, it is important to ask the user before simply erasing it. In such cases, the 
system must decide if the failure is severe enough to require its termination, or if a 
degraded operation is acceptable [Bentley, 2005]. Essentially, the goal is to keep the 
system operating, even if degraded, while the defective component is being repaired. 

The effort spent in this item corresponds typically to designing, implementing and 
testing recovery code, whose purpose is:  

• when detecting a failure, to restore the system to a valid state; or 

• perform a “house cleaning” (for example, code that terminates the system in 
order to preserve or even restore data integrity of persistent data; or code to roll-
back the system to a previous safe state); or 

• develop redundant hardware or software in order to guarantee service 
availability. 

3.4  Fault removal effort (FRE) 

This is the effort spent to either identify and eliminate faults, i.e., the causes responsible 
for the failures, or to encapsulate failures in such a way that potential damages are kept 
below an acceptable level. The problem here is that faults are not identified when tes-
ting or using software. What is observed are failures and, according to the symptoms, 
one tries to find the fault. As mentioned before, failures may be due to faults in the co-
de, but may also be due to external factors. In the latter case, it is necessary to include 
code that detects malfunction. For example, in case of data entry, it is always recom-
mended to add data verification. In the case of gathering data from sensors, each da-
tum could be compared to a valid range or to the current mean of the read values, in 
order to detect potential outliers. Once identified and isolated, faults can be removed 
or failures could be encapsulated. 

As mentioned before, according to Basili and Boehm [Basili and Boehm, 2001], more 
than 50% of software systems contain non-trivial faults. For these faults, the failure 
analysis effort may be very hard or impossible to estimate. One way to reduce this 
effort is to invest resources in failure detection (item 2), as early detection not only 
contributes to avoiding inconsistent states and data from spreading throughout the 
system, potentially increasing damage, but allied to a debugging data policy may also 
help to identify and isolate the corresponding fault. Another important issue is that, 
the faster one detects a failure, the closer the detecting code will be to the point where 
the error occurred, thus reducing the FDE. 

Once the responsible fault is detected, it is necessary to decide if it will be removed – 
in some cases the fault removal may be too costly compared to the impact caused on 
the system. For example this would be the case when the FRE is too expensive. 

Even though a great part of the FRE takes place in production time, it is during the 
development time that instruments must be developed so that the mean time to 
identify and recover from a failure is assuredly kept below a given level. Such 
instruments are mainly pieces of code that gather as much relevant information about 
the system state as possible, thus facilitating fault identification. 
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4  Technologies and tools that support the development of 
debuggable software 

There are many technologies, tools and best practices that enable the development of 
debuggable software. Some of them are listed as follows: 

4.1  Software Components 

Structuring a system in small loosely coupled modules promotes: 

• Increase of control over the development complexity because it is considered to 
be easier to control quality and manage smaller modules; 

• Increase of control over fault detection, as they will tend be in isolated points and 
due to a limited number of factors;  

• Increase the chance of complete recovery in case of failures, due to the possibility 
(in many cases) of substitution of the defective modules for new instances; 

• Increase of software reuse, which promotes the maturity of many modules 
reducing the failure rates. 

• It is important to notice that the concept of module, in many cases, may be 
confused with the software component concept – often, software components can 
be understood as super-modules composed of modules or other components. 

4.2  Design by contract and Design for Testability 

According to [Payne et all, 1997], early adoption of some activities in the development 
lifecycle of a system is able to increase its testability. This practice is known as design-
for-testability (or DFT), and it is well-known by the hardware development community 
[Payne et all, 1997]. It is based on the creation of embedded tests and measurement of 
pre-established parameters in order to facilitate the fault identification and correction 
in development time. DFT is usually used in the development of complex hardware 
components in order to guarantee their correct operation before the serial production 
phase, as the cost of a fault correction in this phase would be prohibitive. 

A direct application of the DFT concept is the Design by Contract (DBC) [Meyer, 
1992]. A contract is a formal specification of an abstract behavior – like a class, a 
module, a function or a method. Its application in object-oriented systems is at the class 
level through three main elements: 

• Invariants that define consistency conditions for a state of one or more 
interdependent objects;  

• Pre-conditions, that define conditions to be satisfied before activating a method; 
and 

• Post-conditions, that precisely define what a method is supposed to do, i.e., the 
conditions to be satisfied at the end of a method execution, taking into 
consideration the different ways of terminating or suspending it. 

The use of contracts and executable assertions may increase the effort spent in mode-
ling and coding phases, but also reduces significantly the test and acceptance phases as 
it promotes a kind of “self-evaluation and test in runtime” [Staa, 2000; Gotlieb and Bo-
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tella, 2003] in the components in which they are applied. There is also a huge potential 
to reduce the effort spent in development due to incorrect, incomplete or inconsistent 
specifications. Another positive aspect when using Design by Contract is the increase 
of the efficiency in failure detection and fault removal in production time as well as in 
beta versions of the software. This is due to: 

• The possible location of the fault is limited to the lines of code executed from the 
point where the contracts were checked last and to the point where a contract is 
found to be broken (i.e. the failure is observed); 

• The early detection of a failure by means of an assertion allows gathering useful 
information to help finding the fault. 

• During production time, faults are prevented from being introduced due to the 
more formal approach inherent to design by contract. Thus, the software will 
contain fewer faults to start with. 

When developing a system using DBC, it is up to the client (client programmer, calling 
method, etc.) to assure that all pre-conditions are satisfied. It is up to the developer of 
the method to assure that all invariants and post-conditions will be satisfied. However, 
when designing for testability, one must assume that developers may not have assured 
such conditions, so it is necessary to add code to verify the contract even in parts where 
it could be assumed that the contract is valid. Usually, instead of assuming that all con-
tracts are obeyed, it is assumed that they might not have been obeyed. This implies ad-
ding verification code at the beginning and immediately after the execution of a me-
thod or a function. This could be achieved with an instrumentation wrapper as shown 
in Figure 1. Since verifying an invariant of a large data structure might prove to be to 
costly, verifying the invariant just at the local context of the call might be sufficient in 
most cases. For example, instead of verifying a whole list, one might verify just the no-
de of the list that will be handled by the specific call. 

 

Non-instrumented
function

Instrumentation
wrapper

Client function / method

Call to instrumented
function

Call to corresponding
production function

Returned data

Returned data

Return control flow
Call control flow

Legend

Verify pre-conditions and
local invariant

Verify post-conditions and
local invariant

 
Figure 1. An instrumentation wrapper encapsulating the verification 
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4.3  Mock Components 

Mock objects are a test pattern proposed in [Mackinnon et al, 2001] and [Hunt and 
Thomas, 2003] where an object is replaced by an imitation (the mock object) that simu-
lates the behavior of the object during a test. In our work, we extended this concept to 
what we call mock components. These are groups of modules and classes that can be 
replaced by imitations in order to ease the test of other parts of a system. A mock com-
ponent can be an entire subsystem, a component, a software agent or, in the simpler 
case, a single class. A mock component must have the same interface of the replaced 
element. 

Mock components could be used when:  

• The real element has a non-deterministic behavior; 

• The real element is hard to configure; 

• The real element may have abnormal behavior that is hard to reproduce (for 
example, a connection error);  

• The real element is too slow;  

• The real element does not yet exist; 

• The test needs to perform measurements such as to gather information about the 
frequency of use of the real element (for example, how many times a service is 
being used).  

The most frequent use is to obtain information about how the element is being used, 
measuring:  

• Which services were executed during the test;  

• How may times a service has been called;  

• In which order a set of services has been executed;  

• What values were returned or passed as arguments. 

In this work the mock components were used to simulate parts of the system that were 
being developed by different teams, or parts that would be developed in the future. 
Besides this, mocks were heavily used to simulate abnormal conditions, in order to 
check if the system was really robust enough to recover from them. This is a possible 
strategy to use the fault based test technique proposed in [Morell, 1990], as one can 
prove that a set of possible failures is effectively under control. 

There are some Java APIs that enable the Mock Objects mechanism like Easy Mock 
[EasyMock, 2007], JMock [JMock, 2007] and Mock Maker [MockMacker, 2007]. 

At first sight, a mock component may look like a simple stub, but there are some 
characteristics that make it more than just a stub [Fowler, 2007]. While a stub is usually 
used to return specific data when a service is invoked with specific arguments or to 
execute small tests, the mock is used to gather information about the execution of an 
element. In spite of this difference, tools used to generate mocks are usually efficient 
for creating stubs. 

It is important to state that the use of mock components is limited to the 
development time only. 
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4.4  Pair programming 

The use of pair programming has proven to be very efficient when writing complex 
code [Cockburn and Williams, 2001]. The fact that two people are thinking simultane-
ously about the same problem tends to reduce the number of faults as well as increases 
the quality of the final code. 

Our experience with pair programming had better results with regard to complex 
code than with simpler code. In our approach, programmers usually worked together 
on the same code, sharing the same machine, with a single keyboard, mouse and 
monitor. However, in some cases, they had two keyboards and two mice, but the 
monitor was still the same. The programmers were free to discuss issues about the 
code that was being written, for example deciding which algorithm was the best, or 
which function decoupling should be adopted.  

Although no statistical data has been collected, it was possible to notice that, when 
complex code was generated with pair programming, the quality increased 
considerably when compared to previous ways of coding. 

Independent of whether pair programming is adopted or not, it is imperative that 
the project team adopt strict coding rules [Sun, 1999; Staa, 2000], in order to promote a 
unique identity allowing that all members are able to easily understand every part of 
the software. 

4.5  Development tools 

Version Control Systems, like CVS [CVS, 2007], Subversion [Subversion, 2007] and, 
more recently, Mercurial [Mercurial, 2007], development environments like [Eclipse, 
2007], and debugging tools like Valgrind [Valgrind, 2007], promote an increase of pro-
ductivity. Moreover, issue tracking tools like Jira [Jira, 2007], and effort measurement 
like myHours [MyHours, 2007], help to observe and control the overall status of a pro-
ject.  

5  Observations from a Real Complex Application Development 

In order to assess the effectiveness of the ideas presented, they have been applied whi-
le developing real-world systems. Below we will present the results obtained while de-
veloping software for pipeline inspection, for which specific hardware was developed 
simultaneously. The quality of the system must be good enough to permit its use in a 
production environment. The developed software proved to be quite successful. The 
first version of the software was used while inspecting oil and gas lines in Brazil, from 
July 2005 to December 2005, and subsequent versions (with new features) have been 
used in Brazil, Argentina and Venezuela. Currently, August 2007, there are two inspec-
tions under execution: one for subsea lines in Brazil – in the Campos Basin – and ano-
ther one in an oil refinery in Venezuela. 

The system architecture is composed of two major components: an embedded 
software that controls the tool (data acquisition, speed, working conditions, etc.) and a 
supervisory system that runs on a PC-station, used by an operator while observing the 
acquisition status and analyzing gathered data. 
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The communication between the tool and the station can be wireless, using 
Bluetooth through USB adapters, or can be through a serial port. Figure 2 illustrates 
this architecture.  

In spite of the recovery oriented system concept having been applied in both 
software systems, this article will focus only on the supervisory system due to space 
limitations. However, the same approach was also used in the embedded system, and 
the results and conclusions presented in this paper were exactly the same. 
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Figure 2 

5.1  The development 

The supervisory system was developed with object-oriented technology using C++, 
and had a very clear goal: the risk of faults in the software should be reduced as much 
as possible and, the possibly remaining faults must have a small impact on the user’s 
work. It is worth noticing that the remaining faults are necessarily unknown to the de-
velopers and quality controllers; otherwise, they could have been removed right away. 
Thus, there has been an extreme concern about the quality of the artifacts in all levels 
of abstraction. Methods, classes and subsystems were developed with one special care: 
failure detection should be as automated as possible, conveying sufficient information 
to allow easy fault diagnosis and removal. This not only increased the final quality of 
the software, but also made it easier to debug, test and perform acceptance testing. The 
whole system was developed in three months by a team of three:, two experienced 
programmers and one senior software engineer. 

During the development, the use of DBC techniques was enforced. Every method 
with some complexity (i.e., not just a getter or a setter) of all 120 classes contained in 
100 modules (where a module is composed of both an .h and a .cpp files) had their pre-
conditions explicitly coded. The post-conditions also were coded in many of them. The 
pre- and post-conditions were turned into executable assertions by adding code at the 
beginning and at the end of each method. Approximately 13% of the code (measured 
in lines of code, excluding blank lines and comments) is dedicated to identification 
(3.75%), handling (3.75%) and failure recovery (6%). The code contains approximately 
50 kloc and took approximately 12 weeks for the first deployable version to be 
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completed (three man.weeks). It should be mentioned that specifications were very 
stable and the effort spent for developing them has not been accounted in these 
statistics. 

The C/C++ pre-processor was used to allow for conditional compilation of the 
executable assertions – this made it possible to turn them on and off as needed. The 
executable code was implemented to identify failures (failing assertions) and to trigger 
a recovery code. If recovery was not possible, execution should be adequately stopped 
(fail safe mode), and an error message should be issued together with a log containing 
useful debugging information (state of local variables, stack, class members, error 
location, etc.). 

Even though it is impossible to assure beyond doubt, there is sufficient evidence 
that the extra effort spent in development time due to the writing of pre- and post-
conditions, as well as due to the implementation of the executable assertions, was 
responsible not only for the rather small effort spent during tests (two weeks under 
simulated production environment as compared to the usual 50% of the total time 
considering this type of software), and acceptance phases (two days under real 
production environment), but also for the little time spent in debugging the failures 
found. The number of failures identified can also be considered small, as shown in 
Table 1. A possible reason for that is that the requirement of writing pre- and post-
conditions forces the developer to think substantially about the work, which ends up 
increasing the chances of writing a correct code [Sobel and Clarkson, 2002], [Hall, 
1990], [Kemmerer, 1990]. 

 
Number of faults identified from failures detected by assertions, in a 

simulated production environment during the test phase 

22 

Number of failures not detected by any assertion, in a simulated production 

environment during the test phase 

5 

Mean time to remove faults identified by means of assertions (including the 

time spent to identify the fault from the failure observed) 

1h 

Mean time to remove faults identified without using assertions (including the 

time spent to identify the fault from the failure observed) 

6h 

Number of failures identified by assertions during the acceptance test phase 

(controlled production environment)  

2 

Number of failures identified without assertions during the acceptance test 

phase (controlled production environment) 

0 

Number of failures reported while in production (within the first two and a 

half months after the first official release) considered light (i.e., no loss of 

work, recovery limited just to running the system again) 

2 

Number of failures reported while in production considered serious (i.e., loss 

of work, recovery not limited just to running the system again) 

0 

Number of failures reported while in production (three months later) 0 
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considered light  

Number of failures reported while in production considered serious  0 

 

It is important to state that, throughout the five first months under production, the 
software was used daily (even on weekends) for approximately 8h/day, for more than 
1,200 hours of use. Another important aspect is that all five failures detected without 
assertions could have been detected by an assertion that unfortunately had not been 
written. The justification given by the development team was: “the functionality was 
too simple to justify the effort of writing an assertion.” They never thought that a pro-
blem might arise in those “trivial” code fragments. 

5.2  Use of Mock Components 

An interesting aspect to be discussed is that during a great part of the development the 
software development team had no access to the hardware because it was still under 
development. To fill this need, a hardware simulator was developed. This simulator 
gave the development team total control over the data sent to the supervisory system. 
The simulator looked like a mock component, or better, a mock agent, due to its system 
independent nature, extremely configurable and pro-active characteristics. The simula-
tor made it possible to simulate anomalous execution conditions, guaranteeing that the 
software was ready to properly handle those situations. 

This approach was so successful that, when the system was finally tested with the 
real hardware, only a few failures were observed, where the corresponding faults were 
quickly fixed. It took less than four hours to integrate and achieve a fully operational 
system consisting of hardware and software. 

5.3  Strategy for tests and acceptance tests 

In order to assure quality, a test suite was developed to cover every line of code of the 
system. The tests were executed with the help of the Valgrind [Valgrind, 2007] tool, 
making it possible to identify and fix failures due to memory access violation. 

The first release was compiled with all assertions turned on. This version was used 
in a controlled development environment, to allow for the development of the 
hardware. Some faults were identified and fixed, all of them captured by executable 
assertions (all of them counted in Table 1). Afterwards another version with all 
assertions on was released. The number of failures was very small: in two months the 
software failed only two times, always observed by an assertion. The consequences of 
the failure were very small: no work was lost and recovery was limited to restarting 
the software. 

5.4  Failure report procedure 

The failure report procedure used was to take a printscreen of the message shown by 
the system and add a small description of what the user was doing at the moment of 
the failure. This made the debugging process sufficiently efficient and effective. 

It is important to notice that modern machines are so powerful that we observed 
that the additional operational cost due to leaving assertions on did not significantly 
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affect the overall performance of the production system. Up to the present moment, all 
releases were compiled with the assertions turned on, hence there are no plans turn 
assertions off in future compilations.  

5.5  Evolution phase 

Since the first release, a lot of new features have been added to the system. The asserti-
ons are still helping, as they reduce the impact of faults introduced due to the change 
in component interfaces, or incompatibilities of behavior of components. During the 
nine months that passed since the first release, more than thirteen thousand lines of 
code have been added to the software. 8% of these aim at identifying, handling and 
recovering from failures. This is smaller than the 13% measured before. The major rea-
son for this is that several new parts of the software rely on older parts that already 
contain assertions and recovery code. While adding new functionalities, several times 
it occurred that older assertions were triggered by new code, thus helping in early i-
dentification and solution of problems. 

6  Conclusions 

In this paper, we explored how the systematic and combined use of consolidated tech-
niques might help in the development of debuggable systems. Such systems are deve-
loped with the goal of minimizing the existence of non-trivial faults, consequently re-
ducing the mean time to repair (MTTR) of the software as well as the overall time spent 
repairing it.  

We have discussed techniques to develop debuggable software, and also some 
technologies, procedures and tools that help the development of debuggable systems. 

A practical result has been presented too: the application of the debuggable systems 
concept to a real-world supervisory system. The results were very encouraging: we 
experienced a significant reduction of the effort spent in some of the development 
phases, and the number of non-trivial faults was also kept below a conventionally 
accepted level. The effort spent with fault removal was also reduced, and the first 
results with the software in production fulfilled the users’ expectations.  

In addition to the supervisory software presented this paper, another five systems 
(including the embedded software for this project) have been developed with the 
approach presented, with essentially the same results. Two of these systems were 
developed using Java, one was developed using C++ and the other two were 
developed using C.  

After a brief analysis of what we measured while developing debuggable software, 
our first impression is that it requires about 8 to 14% extra effort to develop. However, 
our experience showed that this is not true: in fact this effort was redistributed in the 
different phases of the development. Even though the modeling and coding phases 
were enlarged, the test and acceptance phases were significantly reduced. 

6.1  Future work 

As of writing this paper, two other real-world systems are being developed using the 
techniques discussed in this paper. The measurements to be gathered will be used to 
validate the concepts stated here. 
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The system studied in this paper is still evolving: new features are constantly being 
added due to users’ experiences. This is a great opportunity to analyze the impact of 
the debuggable software technology in the evolution phase. 

Finally, the success of developing debuggable software encourages proposing 
additions with the goal of establishing an agile process for developing recovery 
oriented software, since the technique has shown being capable of producing 
dependable software at lower cost than conventional techniques, as well as leading to 
evolvable software. 
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