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Abstract. Let G = (V,E) be a directed acyclic graph representing a web site, where
nodes correspond to pages and arcs to hyperlinks. In this context, hotlinks are defined as
shortcuts (new arcs) added to web pages of G in order to reduce the time spent by users
to reach their desired information.

In this paper, we consider the problem where G is a rooted directed tree and the goal is
minimizing the expected time spent by users by assigning at most k hotlinks to each node.
For the most studied version of this problem where at most one hotlink can be assigned
from each node, we prove the existence of an FPTAS, improving upon the constant factor
algorithm recently obtained in [Jacobs, WADS 2007]. In addition, we develop the first
constant factor approximation algorithm for the most general version where k hotlinks can
be assigned from each node. Finally, we give an evidence that the technique developed
to obtain this last result can be of independent interest since, based on it, we develop a
linear time algorithm that provides the first constant approximation for the average case
version of the problem of binary searching in trees, a natural generalization of the classical
problem of searching in lists with different access probabilities.

Keywords: Approximation Algorithms, trees, searching.

Resumo. Seja G = (V,E) um d́ıgrafo aćıclico representando um web site, onde nós
correspondem a páginas e arcos a hiperlinks. Nesse contexto, hotlinks são definidos como
atalhos (novos arcos) adicionados à páginas da internet para reduzir o tempo gasto por
usuários para alcançar a informação desejada.

Nesse artigo nós consideramnos o problema onde G é uma árvore direcionada enraizada
e o objetivo é minimizar o tempo esperado gasto por usuários atribuindo no máximo
k hotlinks a cada nó. Para a versão mais estudada desse problema onde no máximo
um hotlink pode ser adicionado a cada nó, nós provamos a existência de um FPTAS,
melhorando sobre o algoritmo com garantia constante obtido recentemente em [Jacobs,
WADS 2007]. Além disso, desenvolvemos o primeiro algoritmo com aproximação constante
para a versão mais geral onde k hotlinks podem ser adicionados a cada nó. Por fim,



apresentamos uma evidência que a técnica desenvolvida para obter este último resultado
pode ser de interesse independente, pois baseado nela desenvolvemos um algoritmo em
tempo linear que obtém a primeira aproximação de fator constante para a versão de caso
médio do problema de busca binária em árvores, uma generalização natural do clássico
problema de busca em listas com diferentes probabilidades de acesso.

Palavras-chave: Algoritmos Aproximativos, árvores, busca.
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1 Introduction

The huge growth of WWW has brought many new and interesting challenges to computer
scientists. The investigation of several algorithmic problems related to search, classification
and organization of information that could not be well motivated before WWW age are,
nowadays, central to its good behavior. Among these problems, one that has attracted the
attention of some people in the TCS community is the problem of optimizing user access
in Web Sites. This problem can be addressed in different ways, which includes increasing
the bandwidth of the site, maintaining copies of content in different servers and enhancing
the site’s navigational structure. Here we are interested in the latter approach.

On one hand, the navigational structure of a Web Site (its pages and its links) is
designed in a way to be meaningful and helpful to users. On the other hand, it is not
likely that the structure takes into account the fact that some information are much more
sought than others. In fact, it may happen that a very ‘popular’ information is located
much farther from the home page than a ‘non popular’ one. Then, a reasonable approach
to optimize the access in a Web Site is enhancing its navigational structure through the
addition of a set of shortcuts (hotlinks). This keeps the original structure untouched
and allows reducing the expected length of the path from the home page to the desired
information. In the implementation of this approach, the number of added shortcuts per
page shall be small, otherwise pages may become polluted and disturb the navigation
process. This scenario leads to the following algorithmic problem.

Problem Definition. Let G = (V,E) be a DAG with n nodes and a unique root r, and
let w : V → Q+ be a weight function. The graph G models the site and w(v), for each
v ∈ V , the popularity of a page v. A k-hotlink assignment (k-assignment for short) A for
G is a set of directed arcs that satisfies the following properties: (i) both endpoints of arcs
in A belong to V ; (ii) for each node u ∈ V there can be at most k hotlinks of A leaving u.

The cost of an assignment A is given by EP(G, A,w) =
∑

u∈V d(r, u, G+A)w(u), where
d(r, u, G + A) is the length of the path traversed by a typical user (this will be detailed
soon) from r to u in the enhanced graph G+A = (V,E∪A). An optimal assignment A∗ is
one that minimizes EP(G, A,w) over all possible assignments A. Given a DAG G, with an
unique source r, and a weight function w : V → Q+, the k−Hotlink Assignment Problem
(k−HAP for short) consists of finding an optimal k-hotlink assignment for (G, w).

In this paper, we focus in the case where G is a directed tree T and the desired
information is always on the leaves of T , that is, w(u) = 0 for every node u that is not
a leaf of T (the case with weights on nodes can be modeled creating artificial leaves).
As for the definition of distance d(·), the cost spent by a typical user to find his (her)
target information is directly related to how he (she) navigates in the site. Two models
of navigation have been considered in the literature: the clairvoyant user model and the
greedy user model. The former is somehow unrealistic since it assumes that an user has
a map of the entire site so that he (she) always knows how to follow a shortest path from
the root to the target information. The latter assumes that the user always follows the
link (original link or hotlink) that leads him (her) closest in the original tree T to his (her)
target information (Figure 1)

Like most of the papers in this subject, here we assume the greedy user model. The
greedy assumption, together with the fact that T is a directed tree, implies that only
hotlinks from a node to its descendants can be followed by users. Thus, we can assume
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w.l.o.g. that every hotlink point from a node to one of its descendants in T .

Related Work. The idea of hotlinks was first suggested by Perkowitz and Etzioni [22].
In [5], Czyzowicz et al. present experimental results showing the validity of the hotlink
approach. In addition, they describe a software tool to automatically assign hotlinks to
web sites. Experimental results also appear in [24].

Turning our attention to theoretical results, in [3] Bose et. al. prove that the hotlink
assignment problem is NP-Complete for DAG’s in the clairvoyant user model. In addition,
they use Shannon’s coding theorem to prove that given a tree T and a normalized weight
function w, then EP(T,A, w) ≥ H(w)/(log(∆+1)), for every 1-hotlink assignment A for
T , where ∆ is the maximum degree of the input tree and H(w) = −

∑
u∈T w(u) log w(u)

is the entropy induced by w.
In [16], Kranakis et. al. present a quadratic time algorithm that produces a 1-hotlink

assignment A such that EP(T,A, w) ≤ H(w)∆
log ∆ (for large ∆). In [7] and [8], Douieb and

Langerman present algorithms that construct 1-assignments whose associated costs are
O(H(w)). This upper bound together with the above entropy lower bound guarantee that
these methods provide a O(log n) approximation for the 1-HAP. In [8], it is also presented
a way to construct a k-assignment with cost O(H(w)/ log k). The first algorithm with
constant approximation ratio for the 1-HAP is due to Jacobs [12] – it runs in O(n4) and
achieves 2-approximation. In this same paper, Jacobs mentions that it is not clear how to
extend his method to guarantee a constant approximation for the k-HAP.

Exact algorithms for the 1-HAP were independently discovered by Gerstel at. al. [10]
and Pessoa et. al. [24] (see also [17] for a journal version merging both papers). The
algorithm of [10] is exponential in the height of the input tree. Now notice that the paths
that users take to reach the desired information induce a tree on T + A (see Figure 1.c).
We denote such tree by TA and refer to it as user tree. The algorithm of [24], which can
be viewed as an optimized version of the one proposed in [10], has the following property:
for each integer D, it calculates in O(n2D) the best 1-assignment among the 1-assignments
A such that the height of TA is at most D.

Variants and applications of the hotlink assignment problem have also been consid-
ered [4, 19, 23]. In [4], Bose et. al. discuss the use of hotlink assignments in asymmetric
communication protocols [1] to achieve better performance bounds. The gain of a hotlink
assignment A is defined as the difference between the cost of the empty assignment and
that of assignment A. Matichin and Peleg proposed a polynomial time algorithm that
guarantees a constant approximation w.r.t. the maximum gain for DAG’s [19]. In [12],
Jacobs proposes a PTAS for approximating the maximum gain in trees. It shall be ob-
served, however, that a constant approximation with respect to the gain may represent
a linear approximation gap with respect to the expected path length considered here. In
addition, we feel that the approximation in terms of the gain does not necessarily reflect
the quality of the assignment. As an example, a 0.9 approximation for the gain (which
is supposed to be a good approximation) may correspond to an assignment of cost n/10
when the empty assignment (expected path length of the input tree) has cost n and the
optimal assignment has cost 1.

Statement of the Results. Our first contribution is the first FPTAS for the 1-HAP. In
order to obtain this result, we first prove that for any tree T with n nodes and for any
weight function w, there is an optimal assignment A∗ for (T,w) such that the height of
TA∗

is at most O(log w(T ) + log n). Once this result is proved, a pseudo-polynomial time
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algorithm for the 1-HAP can be obtained by executing the algorithm of [24], mentioned
in the previous section, with D = c(log w(T ) + log n), for a suitable constant c. Then,
we scale the weights w in a reasonably standard way to obtain the FPTAS. The difficult
part in obtaining our FPTAS is proving the bound on the height of TA∗

– it requires the
combination of different kinds of tree decompositions with a non trivial transformation in
the optimal tree. These results are presented in Section 3.

Our second contribution is the first constant approximation algorithm for the k-HAP.
This algorithm recursively decomposes the tree into heavy subtrees of maximum degree k
and it can be implemented in O(n log n) time. It is worth mentioning that our algorithm
coincides with the one proposed by Douieb and Langerman [7] for the particular case
where k = 1. Thus, our analysis here shows that their algorithm provides a constant
approximation for the 1-HAP (this was not known before). Although other algorithms
with constant approximation do exist for the 1-HAP, the one by Douieb and Langerman
has the following advantages: it can be implemented in linear time and it can be dynamized
to handle insertions and deletion in logarithmic time. The key idea to obtain our result is
a novel lower bound on the cost of the optimal assignment which is much stronger than the
entropy-based one given in [3] – roughly speaking, our lower bound is given by a sum of
entropy-like functions associated with the trees obtained due to our decomposition. This
material is presented in Section 4.

Our third contribution is a linear time algorithm that provides the first constant ap-
proximation algorithm for the problem of binary searching in trees when the goal is to
minimize the expected number of queries to find a node. This problem was first considered
in [18] and it generalizes the classical problem of binary searching in lists with different
access probabilities [14, 6]. The current best result for this problem is an O(log n) ap-
proximation [15]. The version of this problem where the goal is to minimize the number
of queries in the worst case has been recently addressed [2, 21, 20]. Our motivation for
including this result relies on the ‘feeling’ that the problem of binary searching in trees and
the Hotlink Assignment Problem have the same flavor. In fact, the technique employed to
analyze the constant approximation algorithm for the k-HAP can be adapted, with some
additional effort, to the binary searching problem. This result, together with a formal
definition of this search problem, are presented in Section 5.

We shall notice that the complexity of both the 1-HAP and the problem of binary
searching in trees remains open. However, our linear time algorithm is interesting for the
latter problem even if it is polynomially solvable because it is possible to prove (simple
reduction from sorting) that any optimal algorithm for it runs in Ω(n log n) time. In
addition, it is worth mentioning that the complexity of our problems contrasts with their
‘worst case’ versions that are polynomially solvable [23, 2, 21]. In fact, the ‘average case’
versions, studied here, are examples of problems related to searching and coding whose
complexities are unknown. Another interesting example is the Huffman coding problem
with unequal cost letters [13, 11].

2 Preliminaries

As stated in the introduction, given a tree T rooted at node r, an assignment A and
a weight function w, the cost of A under the weights w is given by EP(T,A, w) =∑

u∈T d(r, u, T + A)w(u). (We omit the weight function when it is clearly understood
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from the context.) Furthermore, we extend this definition to subtrees of T : for any sub-
tree T ′ of T , EP(T,A)T ′ =

∑
u∈T ′ d(r, u, T +A)w(u) indicates the expected cost of reaching

nodes in T ′. Also, OPTk(T,w) is the cost of the optimal k-assignment for T under the
weights w (henceforth we use OPT(T,w) as a shorthand for OPT1(T,w)). In addition,
for any subset U of nodes of T , w(U) denotes the sum of the weights of the elements of
U , namely w(U) =

∑
u∈U w(u). For each node u of T we define Tu as the subtree of T

composed by all descendants of u. We use r(T ′) to denote the root of a subtree T ′ of T .
A concept that is helpful during the analysis of the results is that of a non-crossing

assignment. Two hotlinks (u, a) and (v, b) for T are crossing if u is an ancestor of v, v
is an ancestor of a and a is an ancestor of b (Figure 1.b). An assignment is said to be
non-crossing if it does not contain crossing hotlinks. Using the definition of the greedy
model, it is not difficult to see that any crossing assignment can be transformed into a
non-crossing one via removal of some hotlinks, and that these removals do not affect the
expected path length.

Now we state two important structural lemmas that allow us to perform transforma-
tions on hotlink assignments without increasing much the expected user path length (proof
in the appendix).

Lemma 1 (Multiple Removal Lemma). Consider a tree T and an assignment A for T ,
where A has g hotlinks leaving r and at most one everywhere else. Then, there is an
assignment A′ with at most one hotlink per node such that EP(T,A′) ≤ EP(T,A) + (g −
1)w(T ).

Lemma 2. Consider the tree T and let T ′ be a subtree of T . If v ∈ T is an ancestor of
r(T ′), then

∑
u∈T ′ d(v, u, T + A)w(u) ≥ OPTg(T ′) for any g-assignment A.

The following lemma generalizes the well known fact that every tree U has a node, say
u, such that all trees in the forest U \ u have at most |U |/2 nodes.

Lemma 3. Let U be a tree and consider a constant α. Then, there is a partition of U
into subtrees such that each of these subtrees, except possibly the one containing r(U), has
weight not smaller than α. In addition, for every tree U i in the partition, each of the
subtrees rooted at children of r(U i) have weight smaller than α.

3 An FPTAS for the 1-Hotlink Assignment Problem

Consider a tree T with n nodes and a weight function w. In [24], it is presented a dynamic
programming based algorithm for the hotlink assignment problem that has the following
property: for each integer D, it calculates in O(n2D) the best 1-assignment among the
1-assignments A such that the height of TA is at most D.

In order to achieve a pseudo-polynomial algorithm and then an FPTAS, we have to
argue that for each tree T and weight function w there is an optimal assignment A∗ such
that the height of TA∗

is small, more specifically O(log w(T ) + log n).
The main idea is to prove that if we walk c steps down in TA∗

, we reach trees with
(geometrically) reduced weight. This result is summarized in the following theorem whose
proof is sketched in the end of this section.
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Theorem 1. Consider some tree T rooted at node r and an optimal assignment A∗ for
T . Then, there is a constant c > 2 (independent of T and w) such that for every node u

of T with d(r, u, T + A∗) = c we have w(TA∗
u ) ≤ (c−1)w(T )

c .

It can be shown that A∗ must contain an optimal assignment for each subtree TA∗
u .

Thus, we can use the previous theorem for subtrees of TA∗
to argue that every time we walk

down c steps, the weight of the subtrees are reduced by at least a constant factor of (c−1)/c.
As a consequence, it follows that in O(log w(T )) steps we reach subtrees of TA∗

that have
zero weight. Therefore, if we set D = G · (log w(T ) + log n)1, for a suitable constant G,
the dynamic programming algorithm finds an optimal assignment for the 1-Hotlink Assign-
ment Problem in pseudo-polynomial time, that is,
O(2O(log w(T )+log n)) = poly(n · w(T )) time (a more formal proof is deferred to the ap-
pendix).

Now we show how to reduce the weight of the tree T in order to obtain in polynomial
time an arbitrarily close approximation for the 1-Hotlink Assignment Problem. The argu-
ment is rather standard and is the same one used to obtain the FPTAS for the knapsack
problem.

Let W be the weight of the heaviest node of T under w, namely W = maxu∈T {w(u)}.
Define K = ε·W

n2 and the weight function w′ such that w′(u) = dw(u)/Ke for every node
u ∈ T . Analogously, let W ′ = maxu∈T {w′(u)}; notice that W ′ = dW/Ke ≤ (n2)/ε + 1.
Thus, w′(T ) is less than nW ′ ≤ (n3)/ε + n. As a consequence, the dynamic programming
algorithm runs in polynomial on n and 1/ε over the instance (T,w′). Finally, through stan-
dard arguments one can prove that EP(T,A, w) ≤ K ·EP(T,A, w′) ≤ (1 + ε) ·OPT(T,w),
assuring the existence of an FPTAS for the 1-hotlink assignment problem (for the full
proof we refer to the appendix).

Theorem 2. There exists an FPTAS for 1-HAP.

Proof sketch for Theorem 1. We define Tu as the subtree of Tu left after some parts
of it have been ‘adopted’ by proper ancestors of u due to the assignment A∗ (Figure 2).
In other words, a node v belongs to Tu iff the user path from the root of T to v in T +A∗

contains u. In order to prove Theorem 1, we assume, by means of contradiction, that A∗

satisfies the following hypothesis:

Hypothesis 1. For the constant c > 2, given by Theorem 1, there is a node h ∈ T such
that d(r, h, T + A∗) = c and w(Th) > (c− 1)w(T )/c.

Notice that because set of nodes of TA∗
u equals the set of nodes of Tu, the hypothesis

uses w(Th) instead of w(TA∗
h ), employed in Theorem 1. In the sequel, we transform A∗

into an assignment A such that EP(T,A) < EP(T,A∗), which contradicts the optimality
of A∗. Thus, all optimal assignments must satisfy Theorem 1, proving the desired result.
Without loss of generality we assume A∗ to be non-crossing.

‘
Let h be a node of T satisfying Hypothesis 1 and let Q = (q1 → . . . → q|Q| = h) be the

user path from r to h in T + A∗. We note that Q cannot have two consecutive hotlinks
in A∗, otherwise one could obtain an assignment better than A∗ through a fairly simple

1the additive log n is a minor technical detail that we avoid explaining for the sake of a better presen-
tation

5



transformation (formal proof in the appendix). This property of Q will be useful at the
end of our analysis. The key idea behind the construction of A is to bring some subtrees
of Th, with similar weights, closer to the root of T through the addition of hotlinks from
nodes in Q to nodes in Th. In this process, paths that reach nodes outside Th may be
lengthened, but because Th has most of the weight of T (Hypothesis 1) the expected path
length is shortened.

For each node qi ∈ Q \ h and for each child j of qi, with j 6= qi+1, we define T j
i =

Tj − Tqi+1 (Figure 3). Now we show the first step of the construction of A. We start with
A = ∅ and add to A the hotlinks of A∗ that have both starting and ending points in Q.
Then, for each T j

i we add to A an optimal hotlink assignment Aj
i for T j

i (Figure 4). Note
that some nodes in Q do not have hotlinks anymore – this will be useful later to adopt
subtrees from Th.

Now, we show that the difference between the contribution of T − Th to EP(T,A) and
to EP(T,A∗) is at most w(T ). Note that the trees {T j

i } define a partition of the leaves in
T − Th. Fix a tree T j

i . In order to reach a node u ∈ T j
i in T + A, users needs to reach the

root j of T j
i , spending at most c hops, and follow the path from j to u in T j

i + Aj
i . By

adding this cost over all nodes in T j
i we conclude that the contribution of T j

i to EP(T,A)
is at most c ·w(T j

i )+OPT(T j
i ). On the other hand, Lemma 2 assures that the contribution

of T j
i to EP(T,A∗) is not smaller than OPT(T j

i ). Therefore, the total increase in the cost
of reaching nodes of T −Th is at most c ·w(

⋃
i,j T j

i ) = c ·w(T −Th), which from Hypothesis
1 is at most w(T ). Although we have not completed the construction of assignment A,
the next steps will not alter the contribution of T − Th to EP(T,A).

Now, we define the second step of the construction of A. This step is responsible for
bringing nodes of Th closer to the root of T . Let D be the nodes of Q that are not starting
points of hotlinks in A and define di as the i-th node of D (the ith closest to the root of T ).
Let {H1, . . . ,Hk} be the partition of Th obtained by applying Lemma 3 with U = Th and
α = (w(T ) + 1)/|D|. We can assume that the trees of our partition are labeled such that
for all i < j, r(Hi) is not an ancestor of r(Hj) in Th. The second step of the construction
consists of adding the hotlinks

⋃k
i=1(di, r(Hi)) to A. (Figure 5).

The third and last step of our construction is designed to control the expansion of paths
that reach nodes of Th −Th in T + A. We define S as the set of nodes in Th \ h that are
endpoints of hotlinks in A∗ that depart from nodes in Q. Note that Th −Th = {Ts}s∈S .
For each meaningful pair i, j, we use Hj

i to denote the subtree rooted at the child j of Hi.
A key property for our construction states that for every s ∈ S, the tree Ts is a subtree
of some Hj

i (proof in the appendix). Define H
j
i as the tree obtained by removing from Hj

i

its subtrees rooted at nodes in S, that is, H
j
i = Hj

i − (
⋃

s∈S∩Hj
i
Ts) (Figure 6.a).

The third step consists of: (i) adding to A an optimal assignment for each of the trees
{Ts}s∈S and {Hj

i}; (ii) for each meaningful pair i, j, we add hotlinks from r(Hj
i ) to all

nodes of S that belong to Hj
i (Figure 6.b). Notice that there may exist more than one

hotlink leaving the root of some tree {Hj
i } – we handle with this situation later. We

remark that this transformation does not change the paths reaching nodes outside Th.
In order to understand the gain of this new assignment A we compare the contribution

of the nodes of Th to EP(T,A) with that to EP(T,A∗). Since Th can be partitioned in Th

and {Ts}s∈S we can analyze the contribution of each of these trees separately.
The trees {Ts}s∈S may provide a loss of O(w(T )). In fact, consider some s ∈ S; by
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Lemma 2, the contribution of nodes in Ts to EP(T,A∗) is at least OPT(Ts). On the other
hand, in order to reach the nodes of Ts in T +A, users need to reach node di, spending at
most c hops, follow the path (di ; s) in three hops and then walk optimally in Ts. Thus,
we can upper bound this cost by (c + 3) ·w(Ts) + OPT(Ts). Hence, the loss provided by
the trees {Ts}s∈S can be upper bounded by (c+3) ·(

∑
s∈S w(Ts)), which from Hypothesis

1 is O(w(T )).
Now, we argue that Th provides a gain of approximately c ·w(Th)/2−O(w(T )). First,

we note that Th = {Hj
i} ∪ {r(Hi)}. To reach the nodes in H

j
i in T + A users need to

reach the node di, follow the path (di → r(Hi) → j) and then walk optimally in H
j
i . It

follows that the contribution of these nodes to EP(T,A) is at most d(r, di, T +A)w(Hj
i )+

2 ·w(Hj
i )+OPT(Hj

i ). Similar arguments show that the contribution of r(Hi) to EP(T,A)
is d(r, di, T + A)w(r(Hi)) + w(r(Hi)). Thus, by adding the contributions from all trees
{Hj

i} and all roots {r(Hi)} we conclude that EP(T,A)Th
is at most∑

i

d(r, di, T+A)w(Hi)+2w(Th)+
∑
i,j

OPT(Hj
i ) ≤

∑
i

d(r, di, T+A)w(Hi)+2w(Th)+OPT(Th),

where the last inequality follow from multiple applications of Lemma 2. On the other
hand, it is clear that Th contributes with c · w(Th) + OPT(Th) to EP(T,A∗). Hence,

EP(T,A∗)Th
− EP(T,A)Th

≥ c · w(Th)−
∑

i

d(r, di, T + A)w(Hi)− 2w(Th).

The gain of c · w(Th)/2 − O(w(T )), claimed at the beginning of this paragraph, follows
from the fact that

∑
i d(r, di, T + A)w(Hi) is approximately c · w(Th)/2. This holds

because: (i) the weights of the trees Hi are roughly alike (consequence of Lemma 3);
(ii)

∑
i w(Hi) = w(Th) is just slightly bigger than w(Th) (consequence of Hypothesis 1)

and (iii) nodes of D can be reached in roughly c/2 hops on average. This last fact is a
simple consequence of both the definition of D and the property that Q does not contain
consecutive hotlinks in A∗.

By accounting the contribution of both Th = Th ∪ {Ts}s∈S and T − Th to EP(T,A∗)
and then to EP(T,A), we conclude that A provides a gain of approximately (c/2)·w(Th)−
O(w(T )).

However, A may not be an 1-assignment since the roots of some trees {Hj
i } (and

only them) can have more than one hotlink in A. We can apply Lemma 1 to replace the
assignment of each tree {Hj

i } by one with at most one hotlink per node, increasing the
cost of the final assignment by at most

∑
i,j |S ∩ Hj

i |w(Hj
i ). Because the weight of Hj

i

is not greater than (w(T ) + 1)/|D| (definition of partition {Hi}) and because |D| ≥ |S|,
it follows that this increase is at most w(T ). Consequently, the total reduction on the
cost from A∗ to this new valid assignment is at least (c/2) · w(Th)−O(w(T )). Since the
weight of Th is at least (c − 1)w(T )/c, the reduction can be made positive by choosing
a sufficiently large constant c, which implies that the new assignment is better than the
optimal one A∗, raising a contradiction and completing the proof.

7



4 An O(1) approximation for the k-Hotlink Assignment Prob-
lem

The algorithm presented in this section is motivated by the observation that entropy
provides a good lower bound on the cost of optimal k-assignments for trees of ‘low’ degree
(maximum degree ≈ k), and that there is an algorithm that works well for these bounded
degree trees [8]. Based on these facts, our algorithm greedily decomposes T into subtrees of
low degree and then it determines a good assignment for these subtrees using the algorithm
of [8]. Since we manage to devise a lower bound on OPTk(T ) that is given by the sum of
the entropies associated with the subtrees obtained through our decomposition, we obtain
a constant approximation. We shall note that the same approach is used in the next
section for the problem of binary searching in trees.

Consider an input tree T rooted at node r. For every node u ∈ T , we define the
cumulative weight of u as the sum of the weights of its descendants, namely w(Tu). A
heavy k-tree Q of T is defined recursively as follows: r belong to Q; for every node u in
Q, the k non-leaf children of u with greatest cumulative weight also belong to Q (if there
are less than k non-leaf children then all of them belong to Q).

For q ∈ Q, if j is a child of q that does not belong to Q, then we define T j
q as the

subtree Tj . Also define T q as the union of T j
q over all j’s (Figure 7.a). In order to simplify

the notation during the analysis, we often omit the range of variables indexing the trees
T j

q ’s.
The algorithm proceeds as follows: (i) It finds a k−heavy tree Q for T and for each

q ∈ Q it defines w′(q) = w(T q); (ii) Calculate a non-crossing k-assignment AQ for the input
(Q,w′), using the approximation algorithm proposed in [8]; (iii) Calculate recursively a
k-assignment Aj

q for each input (T j
q , w) (iv) Output the assignment A = AQ ∪

⋃
q,j Aj

q.
It should be clear from the definition of the algorithm that it outputs a k-assignment

for T . The recursive structure of the algorithm provides the following inequality:

EP(T,A) ≤ w(T ) +
∑
q∈Q

d(r, q, Q + AQ)w(T q) +
∑
q∈Q

∑
j

EP(T j
q , Aj

q) (1)

For any multiset W we define the entropy of W as H(W ) = −
∑

w∈W w log wP
w′∈W w′ .

The second term of the righthand side of the above inequality is exactly the cost of the
assignment constructed at Step (ii) for the input (Q,w′). The analysis of [8] shows that
this term is at most 2H({w(T q)})/ log(k + 1). Therefore, substituting this bound on
inequality (1), we have:

EP(T,A) ≤ w(T ) + 2H({w(T q)})/ log(k + 1) +
∑
q∈Q

∑
j

EP(T j
q , Aj

q) (2)

Lower bound. Consider a non-crossing optimal k-assignment A∗ for T . We say that a
node q ∈ Q captures a forest T u if it satisfies the following conditions simultaneously: (i)
q has either a hotlink or an arc pointing to a node in T u; (ii) no proper ancestor of q in Q
satisfies (i). Then, we use cu to denote the node of Q that captures the forest T u (Figure
7.b).

A crucial observation is that every user path in T + A∗ that goes to nodes in T q must
contain cq – otherwise, users would have to use a hotlink to ‘jump’ over cq and there would
be a crossing between this hotlink and the one from cq pointing to T q, which contradicts
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the fact that A∗ is non-crossing (formal proof in the appendix). As a consequence, for
every q ∈ Q, the cost of reaching all nodes of T j

q is:

EP(T,A∗)
T j

q
= d(r, cq, T + A∗)w(T j

q ) +
∑
u∈T j

q

d(cq, u, T + A∗)w(u)

Using Lemma 2 with T ′ = T j
q and v = cq to lower bound the last term of the expression,

we have EP(T,A∗)
T j

q
≥ d(r, cq, T + A∗)w(T j

q ) + OPTk(T
j
q ).

Because we have not included any leaf in Q, each leaf of T is in some subtree {T j
q }.

Therefore,

OPTk(T ) =
∑
q∈Q

∑
j

EP(T,A∗)
T j

q
≥

∑
q∈Q

d(r, cq, T + A∗)w(T q) +
∑
q∈Q

∑
j

OPTk(T j
q ) (3)

Now we use the fact that the first summation of the right hand side of inequality (3)
can be seen as the weighted path length of the tree Q where the weight of a node u ∈ Q is
given by the sum of the weights of all forests T q captured by u. This observation together
with the fact that every node of Q can capture at most k + 1 forests, allow us to use
Shannon’s coding theorem [9] to prove that the first summation of the right hand side of
inequality (3) is lower bounded by H({w(T q)})

2·log(k+1) −w(T ) (proof in the appendix). Combining
this bound with inequality (3) we have

OPTk(T ) ≥ H({w(T q)})/2 log(k + 1)− w(T ) +
∑
q∈Q

∑
j

OPTk(T j
q ) (4)

When the value of the entropy H({w(T q)}) is large enough, it dominates the term
w(T ) in inequality (4) and leads to a sufficiently strong lower bound. However, when this
entropy assumes a small value we need to adopt a different strategy to devise an effective
bound. Using properties of the heavy k-tree, we can strengthen inequality (3) to obtain
the following lower bound, whose proof can be found in the appendix.

OPTk(T ) ≥ w(T )/2 +
∑
q,j

OPTk(T j
q ) (5)

Approximation guarantee. The proof goes by induction on the number of nodes of
the tree. From the inductive hypothesis EP(T j

q , Aj
i ) ≤ αOPTk(T

j
q ), for some constant α.

When H({w(T q)})/ log(k + 1) > 3w(T ), we can compare the upper bound of (2) with
the lower bound provided by inequality (4). In the other case, we compare the same
upper bound with the lower bound from (5). Straightforward manipulations shows that
the inductive step holds for α ≥ 16 (we refer to the appendix for a full proof). Since the
algorithm employed in Step (ii) runs in O(n log n) time, it is not difficult to argue that
our algorithm can be implemented in O(n log n).

Theorem 3. There exists an O(n log n) time algorithm that provides constant factor ap-
proximation for the k-Hotlink Assignment Problem.
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5 Approximation for binary search on trees

Given a tree T , we want to find a node x ∈ T by querying its arcs. (Henceforth when
referring to an arc (i, j) the node i is the father of j in T .) A query at arc (i, j) has two
possible answers: x belongs to the tree Tj or x does not belong to Tj . An instance of
this problem is a tree T and a weight function w on the nodes of T that indicates the
frequency of searching each node. The goal is to find a query strategy that minimizes
the weighted average (with respect to w) number of queries needed to find nodes of T .
Every query strategy can be represented by a decision tree D as follows: each internal
node of D corresponds to a query for an arc of T and each leaf of D corresponds to a node
of T . For any decision tree D, we use u(i,j) to denote the node of D which corresponds
to a query for the arc (i, j) of T . In addition, the leaf uv ∈ D corresponds to the node
v of T . Furthermore, each node u(i,j) has exactly two children satisfying the following
property: if uv is the right child of u(i,j) then v ∈ Tj , if uv is the left child of u(i,j) then
v ∈ T − Tj − (i, j) (Figure 8).

Given a decision tree D, the number of queries needed to find a node v ∈ T is exactly
the distance, in number of arcs, from the root of D to uv. Let d(u, v,D) be the distance
between nodes u and v in D. (When the decision tree is clear from the context we omit
the last parameter of this function.) We say that a decision tree D is valid for T if it
corresponds to a query strategy for T . Therefore, the cost of a valid decision tree is

cost(D,w) =
∑

v∈Nodes(T )

d(r(D), uv, D)w(v) (6)

Let Q = (q1 → . . . → q|Q|) be a heavy 1-tree (path) of T as defined in the previous
section. We define T qi = Tqi − Tqi+1 , for i < |Q| and T q|Q| = Tq|Q| . Note that this last
definition is slightly different from the one presented in the previous section since T qi

includes qi. Also, we define T j
qi as the jth heaviest maximal subtree rooted at a child of

qi different from qi+1 (Figure 9).
Our algorithm has five steps. The first three steps resemble the algorithm of the

previous section: (i) find a heavy 1-tree Q of T and for every qi ∈ Q define w′(qi) =
w(T qi); (ii) compute a decision tree D′ for (Q,w′) using the algorithm of [6]; (iii) calculate
recursively a decision tree Dj

i for each subtree T j
qi .

Let ej
i be the arc of T joining qi to T j

qi and let ni be the number of children of qi

different from qi+1. The fourth step consists of building a decision tree Di for each T qi as
follows. The leftmost path of Di consists of the nodes corresponding to the arcs e1

i , . . . , e
ni
i ,

with uqi appended at the end. In addition, for every j, Dj
i is the right child of the node

corresponding to ej
i in Di (Figure 10). (Notice this constitutes a strategy that starts

testing arcs from the heavier trees {T j
i } first.) Finally, in the fifth step, for every qi ∈ Q,

we replace the leaf uqi in D′ by Di. (Figure 11)
It is not difficult to verify that the construction of the algorithm implies that

cost(D,w) = cost(D′, w′) +
∑
i,j

j · w(T j
qi

) +
∑
i,j

cost(Dj
i , w) +

∑
qi

niw(qi) (7)

Lower bound. Let D∗ be a minimum cost decision tree for (T,w), rooted at r∗. In
addition, let OPT(T,w) be its cost. The following property is crucial for our analysis:
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every subtree T ′ of T contains a representative in D∗, that is, a node in D∗ that corresponds
to either an arc or node of T ′ and it is an ancestor in D∗ of all other nodes corresponding
to arcs and nodes of T ′. We use u(T ′) to denote the representative of T ′ in D∗

Consider a node v ∈ T j
qi . Employing the above property with T ′ = T j

qi and then with
T ′ = T qi , we have that the path from r∗ to uv is in fact (r∗ ; u(T qi) ; u(T j

qi) ; uv).
Now consider a node qi ∈ Q; again using the above property, the path from r∗ to uqi is
(r∗ ; u(T qi) ; uqi). Because all nodes of T are in {T j

qi} or in Q, we can write the cost
of D∗ as:

cost(D∗, w) = OPT(T,w) =
∑
qi

d(r∗, u(T qi))w(T qi) +
∑
qi,j

d(u(T qi), u(T j
qi

))w(T j
qi

)

+
∑
qi,j

∑
v∈Nodes(T j

qi
)

d(u(T j
qi

), uv)w(v) +
∑
qi

d(u(T qi), uqi)w(qi)(8)

The first term of (8) can be seen as the cost of D∗ under a cost function where the
representative of T qi , for every i, has weight w(T qi) and all other nodes have weight 0.
Since D∗ is a binary tree, we can use Shannon coding theorem to guarantee that the first
term of (8) is lower bounded by H({w(T qi)})/c− w(T ), for a suitable constant c.

Now we bound the second term of (8). Fix qi; we can prove (appendix) that for any
level ` of D∗ there are at most two representatives of the trees T j

qi located at `. This
together with the fact that T j

qi is the jth heaviest tree rooted at a child of qi guarantee
that ∑

j

b(j − 1)/2cw(T j
qi

) ≤
∑

j

d(u(T qi), u(T j
qi

))w(T j
qi

)

Thus, the second term of (8) can be lower bounded by
∑

qi,j
b(j − 1)/2cw(T j

qi)
For the third term of (8) we fix a tree T j

qi and then we construct a tree S associated
with T j

qi as follows: the nodes of S correspond to the arcs and nodes of T j
qi ; there is an

arc from u to v in S iff u is the closest ancestor of v in D∗, among the nodes of S (Figure
12). By construction the distance between two nodes u and v in S is not larger than that
distance in D∗. Thus,

cost(S, w) =
∑

v∈Nodes(T j
qi

)

d(u(T j
qi

), uv, S)w(v) ≤
∑

v∈Nodes(T j
qi

)

d(u(T j
qi

), uv, D
∗)w(v)

In addition, it possible to prove that S is a valid decision tree for T j
qi which im-

plies that OPT(T j
qi , w) ≤ cost(S, w). It follows that the third term of (8) is at least∑

qi,j
OPT(T j

qi , w).
Finally, for the fourth term we fix qi and note that the path in D∗ connecting u(T qi)

to uqi must contain the nodes corresponding to arcs e1
i , . . . , e

ni
i . Applying this reasoning

for each qi, we conclude that last term of (8) is lower bounded by
∑

qi
ni · w(qi).

Therefore, applying the previous discussion to lower bound the terms of (8) we obtain
that

OPT(T,w) ≥ H({w(T qi)})
c

− w(T ) +
∑
qi,j

b(j − 1)/2cw(T j
qi

) +
∑
qi,j

OPT(T j
qi

, w) +
∑
qi

niw(qi) (9)

As in the previous section, a different lower bound on OPT(T,w) is required when the
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value of the entropy is small. Again using properties guaranteed by the construction of the
heavy path, we can prove the following bound: OPT(T,w) ≥ w(T )/2+

∑
qi,j

OPT(T j
qi , w)

Approximation. Using the analysis provided in [6], we can upper bound first term of
inequality (7) by H{w(T qi)}+ 2w(T ). The proof of the constant approximation is similar
to the one given in the previous section. It goes by induction on the subtrees of T and
uses the different lower bounds depending on the value of the entropy H({w(T qi)}). For
the running time, we note that the decomposition into heavy 1-trees can be done in linear
time. Thus, the bottleneck of the algorithm is sorting the subtrees rooted at children of
qi at Step (iv). However, it is possible to implement an approximate sorting (scaling the
weight function w) in linear time and still guarantee a constant factor approximation.

Theorem 4. There is a linear time algorithm which provides a constant factor approxi-
mation for the problem of binary searching in trees.

Acknowledgments We would like to thank Jose Correa and Marcos Kiwi for helpful
discussions during this research.
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Figure 1: (a) Original tree. (b) Enhanced tree, with greedy paths in bold. Hotlinks h1

and h2 are crossing. (c) Tree induced by user paths.
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Figure 2: (a) Tree Tu. (b) Illustration of tree Tu
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Figure 3: Construction of trees T j
i . The path Q is depictured in bold.

(a)

h

(b)

h

Figure 4: (a) Illustration of assignment A∗. (b) Illustration of the first part of the con-
struction of A. The shaded nodes and shaded subtrees may contain hotlinks, but not the
blank ones.
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d1

d2
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Figure 5: (a) Enhanced tree T + A after the first step of the construction, with the path
Q in gray. (b) Addition of hotlinks (di, r(Hi)), shortening the paths to nodes of Th.
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Figure 6: Illustration of the third part of the construction of A. (a) Tree H1 and its
subtrees {Hj

i }, {H
j
i} and {Ts}s∈S . (b) Addition of hotlinks (r(Hj

1), s) for s ∈ S ∩Hj
1 and

optimal assignments for the subtrees H
1
1, H

2
1, Ts1 , Ts2 , Ts3 and Ts4 .
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(b)

Figure 7: (a) Illustration of structures T j
i and T i, with the nodes of the heavy 1-tree in

gray. (b) Node q1 captures T q3 , hence c3 = q1. Also, q1 and q5 capture their own forests
T q1 and T q5 .
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Figure 8: (a) Tree T . (b) Example of a decision tree for T ; Internal nodes correspond to
arcs of T and leaves to nodes of T
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Figure 9: Example of structures T q and T j
q .
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Figure 10: Illustration of Step (iv). (a) Tree T with the heavy path in bold. (b) Decision
tree Di for T i.
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Figure 11: Illustration of Step (v). (a) Decision tree D′ built at Step (i). (b) Decision tree
D constructed by replacing the nodes {uqi} by the decision trees {Di}.
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Figure 12: Construction of tree S. (a) Tree T with heavy path in black. (b) Decision D
tree for T , with nodes corresponding to nodes and arcs of T 1

1 = T2 in gray. (c) Decision
tree S for T 1

1 constructed by connecting the nodes of D corresponding to nodes and arcs
of T 1

1 .
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[7] K. Doüıeb and S. Langerman. Dynamic hotlinks. In Proceedings of the 9th Workshop
on Algorithms and Data Structures (WADS 2005), volume 3608 of LNCS, pages 182–
194. Springer-Verlag, 2005.
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Appendix

A Preliminary lemmas

In order to simplify the notation of the proofs, for any tree T and assignment A, we define
A|T as the subset of hotlinks of A with both endpoints in T . Before starting to present
proofs for the preliminary lemmas, we need to define more formally the trees Tu(A):

Definition 1. Consider a tree T and a non-crossing assignment A for it. Let u be a node
in T . Then we have the following equivalent definitions:

(i) Let U = {v ∈ T : user path from r to v in T + A traverses node u}. Then Tu(A) is
the subgraph of T induced by U .

(ii) Let U = {v : (w, v) ∈ A and v is a proper descendant of u and w is a proper ancestor of u}.
Then Tu(A) = Tu −

(⋃
v∈U Tv

)
.

The next proposition is a direct implication of th definition of a valid hotlink assign-
ment.

Proposition 1. Consider a tree T and an assignment A for it. Let u and v be nodes in
T such that v ∈ Tu. Let T ′ be a subtree of T that contains both u and v. Then, the user
path from u to v in T + A equals to the user path from u to v in T ′ + A, and consequently
in T ′ + A|T ′.

Lemma 4 (Local Change Lemma). Consider some tree T rooted at r and a non-crossing
assignment A for it. Let U be a subsets of nodes of T such that the trees {Tu(A)}u∈U are
pairwise disjoint. For each u ∈ U let Au be the hotlinks of A with both endpoints in Tu(A)
and let A′

u another assignment whose hotlinks have both endpoints in Tu(A). Finally
define A′ = A − (

⋃
u∈U Au) ∪ (

⋃
u∈U A′

u). Then the following holds: (i) Tu(A′) = Tu(A)
(ii) if v does not belong to any {Tu(A)}u∈U , then d(r, v, T + A) = d(r, v, T + A′); (iii) if
u ∈ U and v ∈ Tu(A), then d(r, v, T + A′) = d(r, u, T + A) + d(u, v,Tu(A) + A′

u).

Proof. (i) Consider some u ∈ U . Let (x, y) be a hotlink in such that x is a proper ancestor
of u and y is a proper descendant of y. Clearly both x and y cannot belong to a single
subtree of T −Tu(A). Because the trees {Tu(A)}u∈U are disjoint, this means that (x, y)
does not belong to any tree {Tu(A)}u∈U and consequently such hotlink is present in A′ iff
it is also present in A. The result follows by the definition of the trees Tu(A) and Tu(A′).

(ii) Notice that the path from r to a node v /∈
⋃

u∈U Tu(A) in T + A cannot contain
a node x ∈

⋃
u∈U Tu(A), otherwise the path would be (r ; u ; x) for some u ∈ U plus

(x ; v), implying v ∈
⋃

u∈U Tu(A) (remember that user paths are unique). Then for all
nodes in the path r to v in T + A the hotlinks in A′ are the same as in A. As the users
have the same options of arcs and hotnlinks in T + A and T + A′ when going from r to a
node outside

⋃
u∈U Tu(A), the path they chose must be the same in T + A and T + A′.

(Notice that this argument also holds for the paths from v to the nodes of U .)
(iii) Consider a node u ∈ U and let v be a node in Tu(A). From (i) we have that

d(r, v, T + A′) = d(r, u, T + A′) + d(u, v, T + A′). From (ii) we have d(r, u, T + A′) =
d(r, u, T + A). Because the tree Tu(A) contains all nodes in the path of T from u to v,
the definition of a valid hotlink assignment implies that only nodes in Tu(A) can be used
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when going from u to v. Therefore d(u, v, T + A′) = d(u, v,Tu(A) + A′
u) and the result

holds.

Corollary 1. Consider some tree T rooted at r and a non-crossing assignment A for it.
Let U be a subsets of nodes of T such that the trees {Tu(A)}u∈U are pairwise disjoint.
For each u ∈ U let Au be the hotlinks of A with both endpoints in Tu(A) and let A′

u

another assignment whose hotlinks have both endpoints in Tu(A). Finally define A′ =
A− (

⋃
u∈U Au) ∪ (

⋃
u∈U A′

u). Then:

EP(T,A′) = EP(T,A) +
∑
u∈U

(EP(Tu(A), A′)− EP(Tu(A), A)) (10)

Proof. From Lemma 4, for all u ∈ U Tu(A′) = Tu(A) , and thus the trees {Tu(A′)} are
pairwise disjoint. Therefore we can write the cost of A′ as:

EP(T,A′) =
∑
u∈U

EP(T,A′)Tu(A′) + EP(T,A′)T−
S

u∈U Tu(A′)

=
∑
u∈U

(
d(r, u, T + A′)w(Tu(A′)) + EP(Tu(A′), A′)

)
+ EP(T,A′)T−

S
u∈U Tu(A′)

=
∑
u∈U

(
d(r, u, T + A)w(Tu(A)) + EP(Tu(A), A′

u)
)

+ EP(T,A)T−Tu(A)

where the third equality follows from properties of Lemma 4.
By similar derivation, we have that:

EP(T,A) =
∑
u∈U

(d(r, u, T + A)w(Tu(A)) + EP(Tu(A), Au)) + EP(T,A)T−Tu(A)

Comparing the expressions for EP(T,A) and EP(T,A′) it is easy to see that the result
holds.

Lemma 5 (Multiple pushdown). Consider a tree T rooted at node r and a k-hotlink
assignment A for T . There is a k-hotlink assignment A′ for T such that r does not have
any hotlink in A′ and that EP(T,A′) ≤ EP(T,A) + w(T ).

Proof. Without loss of generality, assume that A is non-crossing and that it does not
contain proper hotlinks.

The proof goes by induction on the number of nodes of T , with the trivial base case
when the tree is just a node. Suppose that the result holds for any tree T ′ with fewer
nodes than T . Let δ(r) be the children of r in T , and for each node i ∈ δ(r) let σi = {j ∈
Ti : (r, j) ∈ A}. Because there are only proper hotlinks in A, each j ∈ σi must be a proper
descendant of i, and it follows that the trees Ti(A) and {Tj(A)}j∈σi form a partition of
nodes of Ti. For any node i ∈ δ(r), the path to reach a node u in Ti(A) is (r → i ; u), and
weighting for all u ∈ Ti(A) we have EP(T,A)Ti(A) = w(Ti(A)) + EP(Ti(A), Ai), where
Ai = A|Ti(A). Also, for any node j ∈ σi, the path from r to u ∈ Tj(A) is (r → j ; u).
Thus EP(T,A)Tj(A) = w(Tj(A)) + EP(Tj(A), Aj), where Aj = A|Tj(A). Because the
weight of the root of T is zero, the total cost of reaching nodes in T is then given by the
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sum of the cost of reaching nodes in {Ti}i∈δ(r):

EP(T,A) =
∑

i∈δ(r)

EP(T,A)Ti =
∑

i∈δ(r)

EP(T,A)Ti(A) +
∑

i∈δ(r)

∑
j∈σi

EP(T,A)Tj(A)

= w(T ) +
∑

i∈δ(r)

EP(Ti(A), Ai) +
∑

i∈δ(r)

∑
j∈σi

EP(Tj(A), Aj)

By the inductive hypothesis, for each i ∈ δ(r) we can find an assignment A′
i for Ti(A)

with no hotlinks in i which satisfies EP(Ti(A), A′
i) ≤ EP(Ti(A), Ai)+w(Ti(A)). Then we

define the assignment A′ =
⋃

i∈δ(r)(A
′
i ∪

⋃
j∈σi

(Aj ∪ (i, j))). Notice that because A′
i does

not have hotlinks in i, there are at most |σi| hotlinks in i in A′, which is less than k. Also,
from the fact that Ti(A) and {Tj(A)}j∈σi are disjoint it follows that there are at most k
hotlinks on every other nodes of T in A′. Again, the cost of reaching nodes of Ti(A) for
i ∈ δ(r) is w(Ti(A))+EP(Ti(A), A′

j). Now the path from r to a node u ∈ Tj(A) for j ∈ σi

is (r → i → j ; u). Thus, EP(T,A′)Tj(A) = 2w(Tj(A)) + EP(Tj(A), Aj). Consequently:

EP(T,A′) =
∑

i∈δ(r)

(w(Ti(A)) + EP(Ti(A), A′
i)) +

∑
i∈δ(r)

∑
j∈σi

(2w(Tj(A)) + EP(Tj(A), Aj))

≤
∑

i∈δ(r)

(2w(Ti(A)) + EP(Ti(A), Ai)) +
∑

i∈δ(r)

∑
j∈σi

(2w(Tj(A)) + EP(Tj(A), Aj))

= EP(T,A) + w(T )

Lemma 1 (Multiple Removal Lemma). Consider a tree T and an assignment A for T ,
where A has g hotlinks leaving r and at most one everywhere else. Then, there is an
assignment A′ with at most one hotlink per node such that EP(T,A′) ≤ EP(T,A) + (g −
1)w(T ).

Proof. The proof goes by induction on g. Suppose it holds for g′ < g. Let v be the
node further away from r (namely with greatest d(r, v, T )) such that (r, v) ∈ A. Let
A2 = A|(T − Tv). Notice A2 has g − 1 hotlinks in r, because (r, v) does not belong to it.
It is easy to see that EP(T,A) = EP(T −Tv, A2)+w(Tv)+EP(Tv, Av), where Av = A|Tv.
By induction find an assignment A′

2 for T −Tv with at most one hotlink per node and such
that EP(T − Tv, A

′
2) ≤ EP(T − Tv, A2) + (g − 2) · w(T ). Now apply Lemma 5 to find an

assignment A′′
2 with no hotlink in r such that EP(T −Tv, A

′′
2) ≤ EP(T −Tv, A

′
2)+w(T ) ≤

EP(T − Tv, A2) + (g− 1) ·w(T ). Define A′ = A′′
2 ∪Av ∪ (r, v). Clearly A′ has at most one

hotlink in r. Again we have that EP(T,A′) = EP(T − Tv, A
′′
2) + w(Tv) + EP(Tv, Av), and

the result follows.

Lemma 2. Consider the tree T and let T ′ be a subtree of T . If v ∈ T is an ancestor of
r(T ′), then

∑
u∈T ′ d(v, u, T + A)w(u) ≥ OPTg(T ′) for any g-assignment A.

Proof. Let U = {u1 → . . . → u|U |} be the path from v to r′ in T . Define the tree
T+ = U ∪ T ′ and let A+ = A|T+. Notice that the definition of a valid hotlink assignment
implies that only arcs and hotlinks in T+ + A+ can be used when going from v to nodes
in T ′ in T +A. Therefore, EP(T,A)T ′ = EP(T+, A+). We sequentially apply Lemma 5 to
nodes ui, starting at node u1, then at u2, and so forth. At the end, we have a g-assignment
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A′ for T ′ such that EP(T+, A′) ≤ EP(T,A)T ′ + |U | · w(T ′). But also notice that because
there are no hotlinks in the path from v to r′ in T+ + A+, the path from v to a node
u ∈ T ′ in T+ + A+ is (u1 → . . . u|U | ; u). Therefore, the cost of reaching nodes of T+

(which is exactly the same cost of reaching nodes of T ′, as only nodes of T ′ have non-zero
weights) is EP(T+, A′) = |U | ·w(T ′)+EP(T ′, A′). Because the cost EP(T,A)T ′ equals the
cost EP(T+, A+), we have EP(T,A)T ′ ≥ EP(T ′, A′), which is also not less than OPTg(T ′)
and the result follows.

Lemma 6. Let U be a tree and consider a constant α. Then, there is a partition of U
into subtrees such that each of these subtrees, except possibly the one containing r(U), has
weight not smaller than α. In addition, for every tree U i in the partition, each of the
subtrees rooted at children of r(U i) have weight smaller than α.

Proof. The proof goes by induction on the subtrees of U . Notice that when U is just a
single leaf, setting U1 = U satisfies the desired properties.

Assume that for every proper subtree of U the result holds. First, if w(U) < α then
setting U1 = U again completes the proof. Thus, assume that w(U) ≥ α. Then we can
traverse the tree U starting at r(U) and going to its leaves in the following way: if we are
currently at node u, we go to the child of u with greatest weight. We stop the traversal
when all children of u have weight less then α. We argue that the node u at the end of
the traversal has one of the two properties:

(i) u is a leaf of U . Because u is the heaviest of its siblings (and the traversal has not
ended at its father), it follows that w(u) ≥ α.

(ii) w(u) ≥ α and all children of u have weight less than α.
If these are not the cases, then there is at least one child of u with weight ≥ α,

contradicting the stop of the traversal.
In any case we can use the inductive hypothesis on U−Uu to find a partition {U1, . . . Uk}

for U − Uu. It can be readily verified that {U1, . . . , Uk, Uu} is a partition of U with the
desired properties.

B Proof of Theorem 1

By means of contradiction, suppose that Hypothesis 1 holds for a node h. We then find
an assignment A′ better than the optimal assignment A∗, reaching the contradiction. We
argue that without loss of generality we can assume that w(T ) ≥ 1. If w(T ) is less then
one, then we multiply each of the weights by a constant and find a weight function w′(T )
such that w(T ). Notice that from the linearity of the objective function A∗ is an optimal
assignment for (T,w′) and that Hypothesis 1 holds for it. Moreover, the linearity implies
that the assignment A′ constructed during the proof is better than A∗ for both instances
(T,w′) and (T,w), which then proves the result for the original instance. Also without
loss of generality we assume that A∗ is a non-crossing assignment and that it only contains
proper hotlinks, that is hotlinks of the form (u, v) where v 6= u and v is not a child of u.

During this section we use Tu as a shorthand for Tu(A∗), for any node u, and OPT(T ′)
as the shorthand for OPT1(T ′), for any tree T ′.

Define Q = (q1 → . . . → q|Q|) as the user path from r to h in T + A∗. Consider some
node qi 6= h in the path Q. For each child j of qi that does not belong to Q, we define
the tree T j

i as Tj − Tqi+1 (Figure 3). Let D be the subset of nodes of the path Q whose
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hotlinks in A∗ are not pointing to nodes in Q. The set D also includes the nodes of Q
that do not have hotlinks in A. Let S be the set of nodes in Th which are endpoints of
hotlinks from nodes in D, namely S = {s ∈ Th : (d, s) ∈ A for some d ∈ D}. Notice that
because h ∈ Q, this definition implies that h /∈ S.

Let {H1, . . . ,Hk} be a partition of Th given by Lemma 3 with U = Th and α =
(w(T ) + 1)/|D|. Notice that from the choice of α, k must be at most |D|. Henceforth, we
assume that the trees {Hi} are labeled such that for all i < j, r(Hi) is not an ancestor of
r(Hj). Lastly, define σj = S ∩Hj

i and H
j
i = Hj

i − (
⋃

s∈σj
Ts).

We now are finally able to construct the assignment A. Let Aq be the subset of hotlinks
of A∗ with both endpoint in Q. Let Aj

i be an optimal assignment for T j
i , A

j
i and optimal

assignment for H
j
i and As an optimal assignment for s ∈ S (we assume that each of these

assignments are non-crossing). Let di be the ith node of D closest to r (where ‘closest’
is taken with respect to T ). The assignment A is defined in three parts: the assignment
for T − (Th − h) given by Aout = Aq ∪ (

⋃
i,j Aj

i ), the assignments for each of the trees Hj
i

given by A
Hj

i
= A

j
i ∪ (

⋃
s∈σj

(As∪ (j, s)) and the ‘coupling’ assignment Ad =
⋃

i(di, r(Hi)).
Then A is defined as A = Aout ∪ (

⋃
i,j A

Hj
i
)∪Ad. It follows from the ordering we imposed

on the trees {Hi} that A is a non-crossing assignment.
The next lemmas present important properties of the structures defined above as well

as bounds for the cost of the assignment A. In order to simplify the notation, we define
li = d(r, di, T + A∗).

Lemma 7. If there is a hotlink (v, u) ∈ A∗ such that v is a proper ancestor of h and u is
a proper descendant of h, then u ∈ S.

Proof. By means of contradiction, suppose that v does not belong to the path Q. If that is
the case, then there must be a hotlink (h1, h2) ∈ A∗ in Q such that h1 is a proper ancestor
of v and h2 a proper descendant of v. Thus, there is a crossing between (v, u) and (h1, h2),
which contradicts the assumption that A∗ is a non-crossing assignment. Consequently
v ∈ Q and by the definition of S the node u must belong to S.

The next lemmas are consequence of Lemma 7 and can be easily verified:

Lemma 8. For s ∈ S, all nodes of Ts belong to (
⋃

s′∈S Ts).

Lemma 9. The trees Th and {Ts}s∈S define a partition of nodes of Th.

Lemma 10. Consider some s ∈ S. Then Ts is a subtree of some Hj
i .

Proof. By means of contradiction suppose that Ts is not a subtree of some Hj
i . By

definition h /∈ Ts. Suppose that s ∈ Hj
i ; then because Ts is not a subtree of Hj

i , it must
contain a node u /∈ Hj

i . Because the trees {Hi} contain all nodes of Th, u must belong
to some tree Hi′ . Furthermore, it is clear that r(Hi′) must be a proper descendant of
s. Therefore, there is a path (s ; r(Hi′) ; u) in T , and because Ts is a subtree of T
containing both s and u, it must also contain r(Hi′).

In any of the cases where s ∈ {r(Hi)} or s ∈ {Hj
i }, the tree Ts contains a node

r(Hi) 6= h. Therefore Hi ⊆ Ts, so w(Hi) ≤ w(Ts). But from Lemma 8 w(Ts) ≤∑
s′∈S w(Ts′). Clearly the trees {Ts} are disjoint to Th, and therefore Hypothesis 1

implies that
∑

s′∈S w(Ts′) ≤ w(T )/c ≤ w(T )/|D|. Consequently w(Hi) ≤ w(T )/|D|,
which contradicts its construction.
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The following lemma is a consequence of Lemmas 7 and 10:

Lemma 11. H
j
i is a tree. Furthermore, either H

j
i does not contain any nodes or it is

rooted at node j.

Lemma 12. d(r, h, T + A) = d(r, h, T + A∗)

Proof. Recall that the path from r to h in T + A∗ is Q and define Q′ = (q′1 → . . . → q′|Q′|)
as the path from r to h in T + A. By induction assume that q′i = qi (clearly this holds
for the base case r = q′1 = q1). By the construction of A, qi has the same set of arcs and
hotlinks in T + A and in T + A∗. Consequently, a user in qi that is going to h on the
enhanced tree T + A must chose qi+1 as his next node, and thus q′i+1 = qi+1.

Lemma 13. All nodes of Th are contained in (
⋃

i,j H
j
i ) ∪ (

⋃
i r(Hi)).

The next lemmas come from the discussion presented in section 3:

Lemma 14. EP(T,A)
T j

i
≤ EP(T,A∗)

T j
i

+ c · w(T j
i )

Lemma 15. Consider u ∈ Hi. Then di belongs to the user path from r to u in T + A.

Lemma 16. Consider any tree Hj
i . For any node s ∈ σj, EP(T,A)Ts ≤ EP(T,A∗)Ts +

(li + 3)w(Ts).

Lemma 17. EP(T,A)
H

j
i
≤ EP(T,A∗)

H
j
i
+ (li + 2− c) · w(Hj

i )

Lemma 18. EP(T,A)r(Hi) ≤ EP(T,A∗)r(Hi) + (li + 1− c) · w(r(Hi))

Lemma 19. Consider a tree Hj
i . Then Tj(A) = Hj

i

Proof. Because Hj
i is a tree, it must be the subtree of T induced by its nodes. As Tj(A)

is also the subtree of T induced by its nodes, it suffices to show that both Tj(A) and Hj
i

contain the same nodes.
(⊇) Using Lemma 15, it is easy to see that the path from r to a node u ∈ Hi is

(r ; di → r(Hi) → j ; u). Therefore all nodes of Hj
i belong to Tj(A).

(⊆) Clearly only nodes of Th can belong to Tj(A). So consider a node u which belongs
to both Th and Tj(A). By means of contradiction assume that u /∈ Hj

i . Because u needs
to be a descendant of j in order to be in Tj(A), it is easy to see that u cannot belong
to Hj′

i for j 6= j′. As the trees {Hi} define a partition of Th, u must be in some tree Hi′

different than Hi. Moreover, r(Hi′) must be a descendant of j. Again using Lemma 15,
the path from r to u must be (r ; di′ → r(Hi′) ; u). But if r(Hi′) is a descendant of
r(Hi), then j cannot belong to this path from r to u. This contradicts our choice of u and
completes the proof.

Lemma 20. There cannot be two consecutive hotlinks in Q

Proof. By means of contradiction suppose there are two hotlinks (u1, u2) and (u2, u3) in
A∗, such that u1, u2 and u3 are consecutive nodes in Q in this order.

Define G = Tu1(A
∗) and let AG be the hotlinks of A∗ with both endpoints in G. Notice

that G is rooted at u1 and that (because A∗ was assumed to be non-crossing) AG contain
the hotlinks (u1, u2) and (u2, u3).
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Let u′1 be the child of u1 that belongs to the path from u1 to u2 in T (because we have
assumed that A∗ does not contain proper hotlinks u′1 is an ancestor of u2). Now define a
new assignment A′

G for G in the following way: A′
G = AG − (u1, u2) ∪ (u′1, u2) ∪ (u1, u3).

Let us analyze the paths in G + AG and in G + A′
G.

Consider a node u ∈ Gu3 . It is easy to see that the path from u1 to u in G + AG is
(u1 → u2 → u3 ; u). On the other hand the path from u1 to u in G+A′

G is (u1 → u3 ; u).
Because we have not added or removed hotlinks from nodes in Gu3 , the path (u3 ; u) is
the same in G + AG and G + A′

G. Therefore d(u1, u,G + A′
G) = d(u1, u,G + AG)− 1, and

weighting over all u ∈ Gu3 we have EP(G, A′
G)Gu3

= EP(G, AG)Gu3
− w(Gu3).

Now consider a node u ∈ Gu2 − Gu3 . Similarly, the path from u1 to u in G + AG is
(u1 → u2 ; u) and in G + A′

G is (u1 → u′1 → u2 ; u). Again, because we have not
added or removed hotlinks to nodes in Gu2 the path (u2 ; u) is the same in G + AG

and G + A′
G. Therefore weighting over all u ∈ Gu2 − Gu3 we have EP(G, A′

G)Gu2−Gu3
=

EP(G, AG)Gu2−Gu3
+ w(Gu2 −Gu3).

Now consider a node u ∈ G − Gu2 . Because we have not added or removed hotlinks
with both endpoints in G − Gu2 , the path form u1 to u is the same in G + AG and
G + A′

G. Consequently EP(G, A′
G)G−Gu2

= EP(G, AG)G−Gu2
. Because he above analysis

contemplates all nodes of G, we have that EP(G, A′
G) = EP(G, AG)− w(Gu3) + w(Gu2 −

Gu3).
By definition, in order for users to reach the nodes of Th(A∗) they have to tra-

verse Q, and consequently u3. Therefore Th(A∗) ⊆ G. Furthermore this implies that
Th(A∗) ⊆ Gu3 , and consequently w(Gu3) ≥ Th(A∗). Using Hypothesis 1 it follows that
w(Gu3) ≥ w(T )(c − 1)/c and w(Gu2 − Gu3) ≤ w(T )/c. Using the above relationship
between EP(G, A′

G) and EP(G, AG) we have that EP(G, A′
G) < EP(G, AG).

Now we can use Corollary 1 to replace the assignment AG by A′
G in A∗. However, this

leads to an improved assignment for T which contradicts the optimality of A∗.

Lemma 21.
∑k

i=1 liw(Hi) ≤ 3.1c·w(Th)+25w(Th)
4

Proof. The rough idea of the proof is the following. Superimpose the path Q over the
nonnegative part of the real line, where a node i goes to the number li. Because there are
no two consecutive hotlinks in Q (Lemma 20), nodes of D cannot be very concentrated
close to c. Also, because almost all weights w(Hi) need to be ‘balanced’, we have that
w(Hi) ≈ w(Th)/k for all i. The expression then reduces to w(Th)

∑k
i=1 li/k. Viewing

the expression
∑k

i=1 liw(Hi) as the ‘center of mass’ of the nodes in D, and because they
are not very concentrated close to c, it follows that

∑
i=1 kliw(Hi) ≤ αw(Th), being α a

constant less than one.
First notice that l1 < l2 < . . . < lk. We will try to maximize the function f({w(Hi)}, {li}) =∑k

i=1 liw(Hi) by choosing the values of the li’s and w(Hi)’s, and then show that for even
the best choice the desired upper bound holds. Let us find the values of the w(Hi)’s that
maximize f .

As the li’s are monotonically increasing, it should be clear that the best strategy is
to put w(Hk) as large as possible. But there are two constraints limiting this value,
namely the fact that the sum of the w(Hi)’s equals w(Th) and the fact that all but one
of the w(Hi)’s are lower bounded by (w(T ) + 1)/|D|. The first decision is then to chose
which of the Hi’s will be the light one, that is the only one that p(Hi) can be lower than
(w(T ) + 1)/|D|. Using the ordering on the li’s, it is easy to see that in order to maximize
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f we have to choose H1 as the light subtree. For choosing the other w(Hi)’s we try to
maximize the following (fractional) mathematical program:

max{f : w(Hi) ≥ (w(T ) + 1)/|D|, for i > 1;
k∑

i=1

w(Hi) = w(Th)}

or even better, the relaxed version

max{f : w(Hi) ≥ w(T )/|D|, for i > 1;
k∑

i=2

w(Hi) ≤ w(T )}

Again, it follows from the ordering on li that the optimal solution is w(Hi)∗ =
w(T )/|D|, for i = 2 . . . k−1 and w(Hk)∗ = (|D|−k+2)w(T )/|D|. Thus, f({w(Hi)∗}, {li}) ≥
f({w(Hi)}, {li}) for any other choice of the w(Hi)’s.

Now we need an upper bound on the li’s. Notice that because there cannot be two
consecutive hotlinks in Q, it follows that l1 ≤ 1, l2 ≤ 3, . . . , li ≤ 2i−1 ≤ 2i. Furthermore,
no li can be greater than c, thus li ≤ min{2i, c}. Let l∗i be the values where f attains its
maximum value, which implies that f({w(Hi)∗}, {l∗i }) is an upper bound for

∑k
i=1 liw(Hi).

We can then proceed to the analysis, which is carried on two separate cases depending on
a constant 0 ≤ β < 1 that is defined later.

Case 1: lk > βc. Because lk ≤ 2k, the hypothesis implies that k > βc/2, and consequently
|D| > βc/2. Upper bounding f({w(Hi)∗}, {l∗i }) we have:

f({w(Hi)∗}, {l∗i }) ≤
βc/2∑
i=1

2i · w(Hi)∗ +
k∑

i=βc/2+1

c · w(Hi)∗

Using the bound on |D|, the first term can be upper bounded by:

βc/2∑
i=1

2i · w(Hi)∗ = 2 · 1
2
· βc

2

(
βc

2
+ 1

)
w(Th)
|D|

=
β2c2w(Th)

4|D|
+

βcw(Th)
2|D|

≤ β2c2w(Th)
4|D|

+ w(Th)

The second term can be upper bounded by:

k∑
i=βc

2
+1

c · w(Hi)∗ ≤
k∑

i=βc
2

+1

(
c · w(Th)
|D|

)
+

c(|D| − k + 2)w(Th)
|D|

=
(

k − βc

2

)
c · w(Th)
|D|

+
(|D| − k + 2)c · w(Th)

|D|
=

(
|D|+ 2− βc

2

)
c · w(Th)
|D|

= c · w(Th) +
2c · w(Th)

|D|
− βc2w(Th)

2|D|
≤ c · w(Th) +

4w(Th)
β

− βc2w(Th)
2|D|

Combining these bounds we have:

f({w(Hi)∗}, {l∗i }) ≤ (β2 − 2β)c2w(Th)
4|D|

+ c · w(Th) + w(Th) +
4w(Th)

β
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Noticing that (β2 − 2β) is negative, we upper bound this term by taking the largest
possible |D|, which is c:

f({w(Hi)∗}, {l∗i }) ≤ (β2 − 2β)c · w(Th)
4

+ c · w(Th) + w(Th) +
4w(Th)

β

=
(β2 − 2β + 4)c · w(Th)

4
+ w(Th) +

4w(Th)
β

Case 2: lk ≤ βc. Upper bounding the li’s by βc, it follows that f({w(Hi)∗}, {l∗i }) ≤
βc · w(Th).

In order to asymptotically (in terms of c) match the bounds on both cases, we can
choose β such that β = β2−2β+4

4 , which gives β = 3 −
√

5. It is easy to verify that this
guarantees the that f({w(Hi)∗}, {l∗i }) ≤

3.1c·w(Th)+25w(Th)
4 .

Conclusion of the proof of Theorem 1. By definition, {Ts}s∈σj and H
j
i form a

partition of nodes of Hj
i . From the definition of {Hi} it follows that {Hj

i } and {r(Hi)}
form a partition of Th. From Lemma 10 S =

⋃
j σj . All these facts imply that {Ts}s∈S ,

{Hj
i} and {r(Hi)} form a partition of Th. Thus, employing the bounds from Lemmas

16-18 we have:

EP(T,A)Th
=

∑
s∈S

EP(T,A)Ts +
∑
i,j

EP(T,A)
H

j
i
+

∑
i

EP(T,A)r(Hi)

≤ EP(T,A∗)Th
+

∑
i

liw(Hi) + 3w(T )− c

∑
i,j

w(Hj
i ) +

∑
i

w(r(Hi))

(11)

Lemma 13 implies that
∑

i,j w(Hj
i ) +

∑
i w(r(Hi)) ≥ w(Th), which from Hypothesis

1 is at least (c−1)w(T )
c . Using this fact and Lemma 21 to bound, respectively, the last and

the second term of inequality (11) we have:

EP(T,A)Th
≤ EP(T,A∗)Th

+
(41− 0.9c) · w(T )

4
(12)

Now we bound the cost of reaching the leaves of {T j
i }. It is easy to see that {T j

i } form
a partition of T − (Q ∪ Th). Adding Lemma 14 for each {T j

i } leads to:

EP(T,A)T−(Q∪Th) =
∑
i,j

EP(T,A)
T j

i
≤ EP(T,A∗)T−(Q∪Th) + c · w(T − (Q ∪ Th)) (13)

Notice that Q − h cannot contain any leaves, and therefore all of its nodes have zero
weight. Thus w(T − (Q∪ Th)) can be bounded by w(T − Th), which from Hypothesis 1 is
at most w(T )/c. Substituting this bound on (13) we have:

EP(T,A)T−(Q∪Th) =
∑
i,j

EP(T,A)
T j

i
≤ EP(T,A∗)T−(Q∪Th) + w(T ) (14)
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Again because Q− h has only nodes with zero weight, the cost of reaching nodes of T
is the same as reaching nodes in T − (Q∪ Th) and in Th, which from inequalities (12) and
(13) can be bounded by:

EP(T,A)T = EP(T,A)T−(Q∪Th) + EP(T,A)Th
≤ EP(T,A∗) +

(45− 0.9c)w(T )
4

(15)

However, recall that A has multiple hotlinks in roots of the trees {Hj
i }. Let Aj

i be the
hotlinks of A with both endpoints in Hj

i . From the construction of A, it follows that Aj
i has

at most |σj | hotlinks in j and at most one hotlink in every other node. From Lemma 1 there
is an assignment A′j

i for Hj
i with at most one hotlink per node such that EP(Hi, A

′j
i ) ≤

EP(Hi, A
j
i ) + |σj |w(Hj

i ). In addition from Lemma 19 Hj
i = Tj(A), and therefore we can

employ Corollary 1 to ‘replace’ the assignments {Aj
i} by the assignments {A′j

i }, building
the final assignment A′. Using the relationship of the costs of the assignments Aj

i and A′j
i ,

Corollary 1 guarantees that:

EP(T,A′) ≤ EP(T,A) +
∑
i,j

|σj |w(Hj
i ) ≤ EP(T,A) +

w(T ) + 1
|D|

·
∑
i,j

|σj |

= EP(T,A) +
(w(T ) + 1)|S|

|D|
≤ EP(T,A) + w(T ) + 1 (16)

where the second inequality holds because by construction w(Hj
i ) ≤ (w(T ) + 1)/|D|, the

next equality follows from Lemma 10 and the last inequality follows because the definition
of S implies that |S| ≤ |D|.

Therefore A′ is a valid assignment for T and combining inequalities (15) and (16) we
have:

EP(T,A′) ≤ EP(T,A∗) +
(49− 0.9c)w(T )

4
+ 1

Recall that we have assumed w(T ) ≥ 1. For c > 59 we have EP(T,A′) < EP(T,A∗),
which contradicts the optimality of A∗. Therefore, Hypothesis 1 does not hold and the
theorem is true.

C Proof of Theorem 2

In order to prove the theorem, it suffices to show that for every instance (T,w) of the
Hotlink Assignment Problem there is an optimal assignment A∗ such that the height of
TA∗

is bounded from above by K(log w(T ) + log n), for some constant K. As stated in
section 3 we can then use the algorithm from [24] with D = K(log w(T ) + log n) to find
an optimal assignment for (T,w) in time poly(n · w(T )).

First, we define height(T + A) as the longest user path in T + A. Notice that this is
the same as the height of the tree TA.

Lemma 22. Consider a tree T , an assignment A and a node u ∈ T . Let G = Tu(A).
Then for any v ∈ G, Gv(A) = Tv(A).
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Proof. In order to prove the result it suffices to show that both Gv(A) and Tv(A) contain
the same nodes, as both trees are defined as the subgraph of T induces by their nodes.

The first observation is that Proposition 1 guarantees that the path from u to a node
v ∈ G is the same in G + A and T + A.

We start proving that Gv(A) ⊆ Tv(A). Consider a node y ∈ Gv(A). By definition the
path from u to y in G + A (and consequently in T + A) contains v. But by definition of
G the path from r to y must contain u, and therefore the path form r to y in T + A is
(r ; u ; v ; y) and v ∈ Tv(A).

Now we prove that Gv(A) ⊇ Tv(A). Consider a node y ∈ Tv(A). By definition, the
path from r to y in T + A contains v. But because v ∈ Tu(A), the path from r to v
contains u and therefore the path from r to y in T + A is (r ; u ; v ; y). Clearly v
belongs to G and because the path (u ; y) is the same in T +A and G+A, y also belongs
Gv(A).

Lemma 23. Consider a tree T and an optimal non-crossing assignment A∗ for it. For
every node v ∈ T such that d(r, v, T +A∗) ≥ k · c, for an integer k, the following inequality
holds: w(Tv(A∗)) ≤

(
c−1

c

)k
w(T )

Proof. The proof goes by induction on k. Assume that for every k′ < k the following
holds: for every node v ∈ T such that k′ · c ≤ d(r, v, T + A∗) < (k′ + 1)c, we have
w(Tv(A∗)) ≤

(
c−1

c

)k′
w(T ). Notice that result holds for the trivial base case k′ = 0.

Now consider a node v such that k · c ≤ d(r, v, T + A∗) < (k + 1)c. Let u the node
that belongs to the user path from r to v in T + A∗ such that d(u, v, T + A∗) = c (such
node exists because k > k′ ≥ 0). Clearly the distance from r to u in T + A∗ satisfies the
inductive hypothesis and we have that w(Tu(A∗)) ≤

(
c−1

c

)k−1
w(T )

Let G = Tu(A∗) and define A′ as the hotlinks of A∗ with both endpoints in G. As
v belongs to G, Proposition 1 guarantees that d(u, v,G + A′) = d(u, v, T + A∗) = c. In
addition, because A′ is a subset of A∗, it is also clearly a non-crossing assignment. Hence
Corollary 1 implies that A′ is an optimal assignment for G. Therefore, recalling that GA′

v

has the same nodes as Gv(A′) (and consequently the same weight) we can apply Theorem
1 to G and have that:

w(Gv(A′)) ≤ w(G)
(

c− 1
c

)
≤ w(T )

(
c− 1

c

)k

(17)

where the last inequality follows from the previous bound on w(Tu(A∗)). By definition
we have that Gv(A′) = Gv(A∗), which from Lemma 22 equals to Tv(A∗). Employing this
last observation on inequality (17) we complete the proof.

Using the previous lemma we can complete the proof of Theorem 2. Define U = {u ∈
T : d(r, u, T + A∗) = K log w(T )}. Notice that for a sufficiently large value of K, more
specifically K ≥ 1/ log(c/(c − 1)), Lemma 23 guarantees that for every u ∈ U we have
w(Tu(A∗)) = 0.

It was proved in [23] that for any tree T ′ with n′ nodes, there is an assignment A such
that height(T ′ + A) is upper bounded by O(log n′). Then for each u ∈ U , we can find an
assignment A′

u such that height(Tu(A∗) + A′
u) ≤ K log n. For each u ∈ U let Au be the

hotlinks of A∗ with both endpoints in Tu(A∗). Define A′ = A∗− (
⋃

u∈U Au)∪ (
⋃

u∈U A′
u).
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Because for every node u ∈ U we have w(Tu(A∗)) = 0, Corollary 1 implies that A′ is
also an optimal assignment for T . Now we analyze the height of T + A′. Let (r ; v) be
the longest path in T + A′. If v /∈

⋃
u∈U Tu(A∗), then d(r, v, T + A∗) must be less than

log w(T ). Because Lemma 4 guarantees that d(r, v, T + A′) = d(r, v, T + A∗), we have
that d(r, v, T + A′) (and consequently the height of T + A′) is less than log w(T ). Now
suppose that v ∈ Tu(A∗), for some u ∈ U . By Lemma 4 d(r, v, T + A′) = d(r, u, T +
A∗) + d(u, v,Tu(A∗) + A′

u). Recall that d(r, u, T + A∗) = K log w(T ) and the height
of Tu(A∗) + A′

u implies that d(u, v,Tu(A∗) + A′
u) ≤ K log n. Therefore, we have that

d(r, v, T +A′) (and consequently the height of T +A′) is at most than K(log w(T )+log n).
In conclusion, we have found an optimal assignment A′ for T such that height(T + A′) ≤
K(log w(T ) + log n), which implies that the dynamic programming algorithm solves the
1-HAP in poly(n · w(T )) time.

To complete the proof of Theorem 2 that started in section 3, we need to argue that the
solution for (T,w′) is an (1 + ε)-approximation for (T,w). Let A∗ be an optimal solution
for (T,w) and A be the solution returned by the algorithm. Clearly for each node u we
have K · w′(u) ≥ w(u). Therefore:

K · EP(T,A, w′) =
∑
u∈T

d(r, u, T + A)K · w′(u) ≥
∑
u∈T

d(r, u, T + A)w(u) = EP(T,A, w)(18)

Analogously, K · w′(u) ≤ w(u) + K and hence K · EP(T,A∗, w′) ≤ EP(T,A∗, w) +∑
u d(r, u, T + A∗) · K. Clearly the distance between any pairs of nodes in T + A∗ is at

most n, thus K · EP(T,A∗, w′) ≤ EP(T,A∗, w) + n2 · K ≤ EP(T,A∗, w) + ε · W . From
the optimality of A∗ it follows that K · EP(T,A, w′) ≤ EP(T,A∗, w) + ε ·W . Because the
optimal solution for (T,w) is at least W we have:

K · EP(T,A, w′) ≤ EP(T,A∗, w) + ε · EP(T,A∗, w) = (1 + ε) ·OPT(T,w) (19)

By chaining inequalities (18) and (19) we complete the proof:

EP(T,A, w) ≤ K · EP(T,A, w′) ≤ (1 + ε) ·OPT(T,w) (20)

D Proofs for constant factor approximation

Lemma 24. Consider a node u in T q. Then, the user path from r to u in T +A∗ contains
cq.

Proof. Consider a node u ∈ T q. By means of contradiction, assume that u /∈ Tcq(A∗).
This implies there is a node s ∈ T with the following properties: s is an ancestor of u,
s is a proper descendant of cq and (s′, s) ∈ A∗, where s′ is a proper ancestor of cq. Let
(cq, x) be the hotlink or arc from cq in A∗ such that x ∈ T q (which must exist because cq

captures T q). If s is a descendant of x, then s ∈ T q, which contradicts the definition of cq.
On the other hand, if s is an proper ancestor of x we have a crossing in A∗ between (s′, s)
and (cq, x), which contradicts the assumption that A∗ is a non-crossing assignment.

Proof of inequality (4). The first observation is that a node q ∈ Q can capture at most
k + 1 different T u’s, because all of its arcs are arriving at the same T u. Therefore, a node
q can appear at most k + 1 times as the second parameter of the distance function on the
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summation on the left hand side. Let wi
q be the weight w(T q′) on the ith term that q

appears (we zero some of these weights accordingly if q appears in less than k + 1 of the
terms). Then, we have that:∑

q∈Q

d(r, cq, T + A∗)w(T q) =
∑
q∈Q

d(r, q, T + A∗) ·
∑

i

wi
q (21)

Now we need to ‘propagate’ the weights wi
q to leaves. For each node q ∈ Q, add k + 1

new leaves qi; this new tree is denoted by Q′. Define the following weight function w′: for
each new leaf qi, let w′(qi) = wi

q and let w′(u) = 0 for every other node of Q′ . Notice
that {w′(u)}u∈Q′ = {wi

q}q∈Q,i = {w(T q)}q∈Q. Also notice that the path from r to qi in
Q′ + A∗ is exactly the path from r to q in Q + A∗ plus one hop from q to qi. Therefore:

EP(Q′, A∗, w′) =
∑

qi∈Q′

(d(r, q, T + A∗) + 1)w′(qi) =
∑
q∈Q

(d(r, q, T + A∗) + 1) ·
∑

i

w′(qi)

=
∑
q∈Q

d(r, q, T + A∗) ·
∑

i

wi
q + w(T ) (22)

Define the normalized weight function w̃(q) = w′(q)/w′(Q′) for each q ∈ Q′. Notice
that (Q′, w′) and (Q′, w̃) are instances of the k-Hotlink Assignment Problem, and by
linearity of the objective function EP(Q′, A∗, w′) = EP(Q′, A∗, w̃) · w′(Q′). Moreover,
because Q has degree at most k, even with the addition of the new leaves the tree Q′ has
degree at most 2k + 1.

As discussed previously, the assignment A∗ defines a tree QA∗
and EP(Q′, A∗, w̃) equals

to the cost of reaching the leaves of QA∗
(when nodes are endowed with probabilities w̃).

Also, the degree of this tree is at most 2k + 1 + k = 3k + 1. Hence we can use Shannon’s
coding theorem to lower bound the cost of EP(Q′, A∗, w̃):

EP(Q′, A∗, w̃) ≥ OPTk(Q′, w̃) ≥ H({w̃(q)}q)
log(3k + 1)

=
H({w′(q)}q)

w′(Q′) log(3k + 1)

Because k ≥ 1, it follows that k2 ≥ k ⇒ k2 + 2k + 1 ≥ 3k + 1 ⇒ (k + 1)2 ≥ 3k + 1.
Therefore, log(3k + 1)) ≤ 2 log(k + 1). Using the relationship between EP(Q′, A∗, w′) and
EP(Q′, A∗, w̃), we have:

EP(Q′, A∗, w′) ≥ H({w′(q)}q)
2 log(k + 1)

=
H({T q})

2 log(k + 1)
(23)

The result follows by chaining inequalities (21), (22) and (23) and applying the result
on inequality (3).

Proof of inequality (5). Let L be the set of trees T j
q which are only single leaves and

are adopted by r in A∗, namely L = {T j
q : T j

q is a leaf and (r, j) ∈ A∗}. Let NL be
the set of tree T j

q which are not single leaves and contain a node adopted by r, namely
NL = {T j

q : T j
q is not a leaf and (r, u) ∈ A∗ for u ∈ T j

q }. Also, define C as the set of trees
T j

q that do not belong to L or NL.
Consider a tree T j

r ∈ C (notice that j is a child of r in T ). That user path in T + A∗

to reach a node u ∈ T j
r is (r → j ; u) and thus d(r, u, T + A∗) = 1 + d(j, u, T + A∗).
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Adding this equality for all u ∈ T j
r and applying Lemma 2, we have that EP(T,A∗)

T j
r
≥

w(T j
r ) + OPTk(T

j
r ).

Now for q 6= r, consider a tree T j
q ∈ C. By assumption there cannot be an arc or

hotlink in T + A∗ from r to a node in T j
q . Therefore, cq 6= r and from Lemma 24 the path

from r to a node u ∈ T j
q is (r ; cq ; u). These properties imply that d(r, u, T + A∗) ≥

1+d(cq, u, T +A∗). Again adding this inequality for all u ∈ T j
q and then applying Lemma

2, we have that EP(T,A∗)
T j

q
≥ w(T j

q ) + OPTk(T
j
q ).

Let T j
q be a tree in L. Because T j

q contains only one node, it is easy to see that
EP(T,A∗)

T j
q

= w(T j
q ) = w(T j

q ) + OPTk(T
j
q ). Finally, for a tree T j

q ∈ NL we can use

Lemma 2 to derive the lower bound of EP(T,A∗)
T j

q
≥ OPTk(T

j
q ).

Noticing that all leaves of T are in some tree T j
q , we can combine the previous lower

bounds to attain the following bound for EP(T,A∗):

EP(T,A∗) ≥
∑

T j
q /∈NL

w(T j
q ) +

∑
T j

q

OPTk(T j
q ) (24)

Consider a node q such that some T j
q belongs to NL. Notice that if there is a tree

T j
q ∈ NL, them q must have k children in Q. Let {q1, . . . , qk} be the children of q that

also belong to Q. Also, let kq be the number of trees {T j
q }j that belong to NL. Notice

that r has ‘spent’ at least kq hotlinks pointing to these trees {T j
q }j , and thus can use at

most k− kq hotlinks to point to nodes in the tress {Tqi}k
i=1. As a consequence, at least kq

of the trees {Tqi}k
i=1 do not have a node pointed by a hotlink from r. Let NHLq be the

trees {Tqi}k
i=1 that do not have a node pointed by hotlinks from r in the assignment A∗.

Because each qi belongs to the heavy path Q, each tree in NHLq is at least as heavy as
the trees {T j

q }. As there are at least the same number of trees in NHLq than trees {T j
q }

in NL: ∑
T ′∈NHLq

w(T ′) ≥
∑

j:T j
q ∈NL

w(T j
q ) ⇒

∑
q:T j

q ∈NL

∑
T ′∈HNLq

w(T ′) ≥
∑

T j
q ∈NL

w(T j
q ) (25)

Now consider another node q′ 6= q such that there is a tree T j
q′ in NL. Notice that a

tree in NHLq′ cannot be contained in a tree Tqi ∈ NHLq, otherwise Tqi would have to
contain Tq′ and consequently a node of T j

q′ pointed by a hotlink form r, which contradicts
the definition of NHLq. Because each tree in {NHLq}q is maximal, for two trees in
{NHLq}q either one is contained in the other or they are disjoint. Combining these last
two properties we have that the trees in {NHLq}q must be pairwise disjoint. Moreover,
this argument also implies that trees in {NHLq}q ∪NL are pairwise disjoint.

As a consequence, the sum of the weights of the trees in {NHLq}q∪NL is at most w(T ),
namely

∑
q:T j

q ∈NL

∑
T ′∈NHLq

w(T ′) +
∑

T j
q ∈NL

w(T j
q ) ≤ w(T ). This fact combined with

inequality (25) gives
∑

T j
q ∈NL

w(T j
q ) ≤ w(T )/2, or alternatively

∑
T j

q /∈NL
w(T j

q ) ≥ w(T )/2

(recall that the trees {T j
q } contain all nodes of T with non-zero weights). Applying this

bound on inequality (24) completes the proof.

Proof of Theorem 3. Consider an instance (T,w) of the k-Hotlink Assignment Problem.
The proof goes by induction on the number of nodes of the input tree. Assume that for
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any tree T ′ with fewer nodes than T the algorithm outputs an α-approximate hotlink
assignment for T ′, for some constant α that we make explicit later. For the base case of
the induction, it should be clear that if T ′ is just a leaf the hypothesis holds.

Now we argue that the result also holds for T . As each tree T j
i is properly contained

in T , we can employ the inductive hypothesis in the upper bound given by (2):

EP(T,A) ≤ 2H({w(T q)})
log(k + 1)

+
∑
q∈Q

∑
j

αOPTk(T j
q ) + w(T ) (26)

There are two cases that should be considered separately depending whether the value
of H({w(T i)})/ log(k+1) dominates w(T ) or not. For simplicity of notation, we henceforth
refer to H({w(T i)}) as just H.

High entropy case: H/ log(k + 1) > 3w(T ). From this hypothesis on the entropy, it
follows that −w(T ) > −H/3 log(k +1). Substituting this inequality in the lower bound of
equation (4), we have:

OPTk(T ) >
H

6 log(k + 1)
+

∑
q∈Q

∑
j

OPTk(T
j
i ) (27)

Also from the entropy hypothesis w(T ) < H/3 log(k+1), and substituting in the upper
bound (26) we have:

EP(T,A) <
7H

3 log(k + 1)
+

∑
q∈Q

∑
j

αOPTk(T j
q ) (28)

By choosing α ≥ 15, inequalities (27) and (28) guarantee that EP(T,A) ≤ 15 ·
OPTk(T ), thus concluding that inductive step for this case.

Low entropy case: H/ log(k+1) ≤ 3w(T ). Combining this entropy hypothesis with the
upper bound given by inequality (26), we have:

EP(T,A) ≤ 7w(T ) +
∑
q∈Q

∑
j

αOPTk(T j
q ) (29)

Again by choosing α ≥ 15, inequalities (5) and (29) guarantee that EP(T,A) ≤
15OPTk(T ). This completes the proof of the theorem.

E Proofs for binary search

Given any tree T ′ and two nodes u, v ∈ T ′, a lowest common ancestor (LCA) of u and v is
a node x such that: (i) x is an ancestor of both u and v (ii) there is no proper descendant
of x which is an ancestor of both u and v. The following proposition is easily verified:

Proposition 2. Consider a tree T ′ and two nodes of it u and v such that u is neither
an ancestor of v nor a descendant of it. Then the lowest common ancestor x of u and v
is a proper ancestor of both of them. Furthermore, if u′ (v′) is the child of x which is an
ancestor of u (v), then u′ 6= v′.
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Lemma 4. For every node or arc v ∈ T ′, the node uv ∈ D∗ is a descendant of u(T ′).

Proof. By means of contradiction suppose uv is not a descendant of u(T ′). Let v′ be the arc
or node of T ′ corresponding to u(T ′). The node uv cannot be a proper ancestor of u(T ′),
or that would contradict the choice of u(T ′). Thus, from Proposition 2 u(T ′) and uv are
on different sides of their lowest common ancestor u(i,j). Without loss of generality assume
that uv is a descendant of the right child of u(i,j) and that u(T ′) is a descendant of the
left child of u(i,j). By definition, v belongs to Tj and v′ belongs to in T −Tj − (i, j). Thus,
the root of T ′ must be a proper ancestor of j in order to include both v and v′. But this
implies that (i, j) ∈ T ′. Because u(i,j) is a proper ancestor of u(T ′), it is closer to the root
of D∗ and contradicts the choice of u(T ′). This completes the proof by contradiction.

Lemma 25. Consider two different trees T j
qi and T j′

qi . If d(u(T qi), u(T j
qi), D∗) = d(u(T qi), u(T j′

qi ), D∗),
then u(T j

qi) and u(T j′
qi ) are siblings.

Proof. In order to simplify the notation, let h1 = u(T j
qi) and h2 = u(T j′

qi ). Because the trees
T j

qi and T j′
qi are disjoint, h1 must be different than h2. As both of them must be descendants

of u(T qi) (Lemma E), h1 cannot be an ancestor or a descendant of h2, otherwise their
distances to u(T qi) would be different. Therefore, Proposition 2 guarantees that h1 and
h2 are on different sides of their lowest common ancestor u(x,z). Without loss of generality
assume that h1 is a descendant of the right child of u(x,z) and h2 is a descendant of the
left child of u(x,z).

By definition, the element corresponding to h1 (which is an element in T j
qi) must be a

descendant of z. However, z cannot be an ancestor of qi, otherwise both h1 and h2 would
be at the right side of u(x,z). Therefore, z belongs to T j

qi .
But the arc (x, z) cannot belong to T j

qi , otherwise the fact that u(x,z) is a proper
ancestor of h1 would imply that u(x,z) is closer to D∗ and contradict the choice of h1. As
a consequence z must be equal to the root of T j

qi , namely qj
i . Then, the right child of

u(x,z) must correspond to an arc of T j′
qi . This child must be h1, otherwise this would again

contradict the choice of h1.
Because both h1 and h2 are descendants of u(T qi), so is u(x,z). Then the paths from

u(T qi) to h1 and h2 are, respectively, (u(T qi) ; u(x,z) → h1) and (u(T qi) ; u(x,z) ; h2).
In order to have d(u(T qi), h1) = d(u(T qi), h2) the node h2 must the the left child of u(z,x)

and consequently h1 and h2 are siblings.

Lemma 5. For every subtree T ′ of T ,
∑

v∈T ′ d(u(T ′), uv, D
∗)w(v) ≥ OPT(T ′, w).

Proof. The main idea is to construct a decision tree D′ for T ′ by removing all nodes of
D∗ which do not correspond to elements of T ′. For that we define the recursive function
rec(uv) which receives a node uv of D∗ and outputs a tree in the following way: if v
is a node or an arc of T ′, compute rec(r) and rec(l) for the right and left child of uv

(respectively r and l) and return uv with rec(r) appended as its right child and rec(l)
appended as its left child; if v is not a node or an arc of T ′ then return rec(r) if v is
an ancestor of the root of T ′ or return rec(l) otherwise. The tree D′ is then defined as
D′ = rec(u(T ′)) (Figure 12).

It follows from the construction that the tree D′ is binary. Also, we argue that
rec(u(i,j)) contains all nodes of D∗

u(i,j)
which corresponds to elements of T ′. If (i, j) ∈ T ′
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this follows directly by induction on the subtrees of D∗
u(i,j)

; if (i, j) /∈ T ′ notice that only
nodes in D∗

r can correspond to elements of T ′ (in case j is an ancestor of r(T ′)) or only
nodes in D∗

l can correspond to elements of T ′ (in case j is not an ancestor of r(T ′)); the
result then follows by induction. From Lemma E, D∗

u(T ′) contains all nodes of D∗ corre-
sponding to elements of T ′, and therefore D′ also contains all nodes of D∗ corresponding
to elements of T ′.

Because D′ is basically a contraction of D∗, it is easy to see that for every node
u ∈ D∗

u(T ′) the path (u(T ′) ; u) in D′ is a subpath of the path (u(T ′) ; u) in D∗

(which is also easily proved by induction on the subtrees of D∗). Together with the
previous discussion and the fact that D∗ is a valid decision tree, this implies that D′ is
a valid decision tree for T ′. This also implies that d(u(T ′), u,D′) ≤ d(u(T ′), u,D∗) and
consequently that cost(D′, w) ≤

∑
v∈T ′ d(u(T ′), uv, D

∗)w(v). From the optimality we
have that OPT(T ′, w) ≤ cost(D′, w) and the result follows.

Lemma 6. For some constant c ≥ 1,
∑

qi
d(r∗, u(T qi), D

∗)w(T qi) ≥ H({w(T qi)})/c −
w(T ).

Proof. Construct the tree D′ from D∗ as the following: for each node qi ∈ Q, add a leaf
li to u(T qi) (the relative position of siblings can be ignored in this analysis). Now define
the probability distribution w′ for D′ such that w′(li) = w(T qi)/w(T ), and all other nodes
have zero probability.

Clearly the distance from r(D′) to li in D′ equals to d(r, u(T qi), D
∗) + 1. Then, the

cost of (D′, w′) is:

cost(D′, w′) =
∑
li

d(r(D′), li, D′)w′(li) =
∑
qi

(
d(r∗, u(T qi), D

∗) + 1
) w(T qi)

w(T )

Because the trees {T qi} are pairwise disjoint, for qi 6= qj we have that u(T qi) 6= u(T qj ).
Therefore D′ is at most a ternary tree and Shannon coding theorem [9] implies that
cost(D′, w′) ≥ H({w′(li)})/c for some constant c ≥ 1. Substituting this bound in the
previous inequality and noticing that H({w(T qi)}) = H({w′(li)}) · w(T ), we have:

H({w(T qi)})
c

≤
∑
qi

(
d(r∗, u(T qi), D

∗) + 1
)
w(T qi)

The result follows by reorganizing the previous inequality and noticing that w(T ) =∑
qi

w(T qi) (because {T qi} define a partition of nodes of T ).

Lemma 26. OPT(T,w) ≥ w(T )
2 +

∑
qi,j

OPT(T j
qi , w)

Proof. Consider a node v ∈ T j
qi . Applying Lemma E with T ′ = T j

qi it follows that
d(r∗, uv, D

∗) = d(r∗, u(T j
qi), D∗) + d(u(T j

qi), uv, D
∗). Because {T j

qi} and {qi} form a parti-
tion of nodes of T , the cost OPT(T,w) can be written as:

OPT(T,w) =
∑
qi,j

d(r∗, u(T j
qi

))w(T j
qi

) +
∑
qi

d(r∗, uqi)w(qi) +
∑
qi,j

∑
v∈T j

qi

d(u(T j
qi

), uv)w(v)(30)
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First, notice that as {T j
q|Q|} and {qi} do not contain any arcs, {u(T j

q|Q|)} and {uqi}
cannot be the root of D∗. Therefore, at most one distance d(r∗, u(T j

qi)) (for qi 6= q|Q|) of
the first two summations of inequality (30) can be equal to zero, and all others must have
value of at least one. But the construction of the heavy path guarantees that for qi 6= q|Q|
the weight w(T j

qi) is at most w(T )/2. As a consequence, the first two summations of
inequality (30) can be lower bounded by w(T )/2. Combining this fact with a lower bound
for the last summation provided by Lemma E (with T ′ = T j

qi), inequality (30) leads to the
following bound:

OPT(T,w) ≥ w(T )
2

+
∑
qi,j

OPT(T j
qi

, w)

The following theorem can be readily verified:

Lemma 27. The computed tree D is a valid decision tree for T .

Theorem 4. There is a linear time algorithm which provides a constant factor approxi-
mation for the problem of binary searching in trees.

Proof. Consider a node v ∈ T j
qi . It is easy to see that the path from r(D) to uv in D is

(r(D) ; ue1
i

; r(Dj
i ) ; uv). By construction, the path (r(D) ; ue1

i
) in D is the same as

the path (r(D) ; uqi) in D′. Also, d(ue1
i
, r(Dj

i ), D) = j and the path (r(Dj
i ) ; uv) is the

same in D and in Dj
i . Therefore, d(r(D), uv, D) = d(r(D), uqi , D

′)+j+d(r(Dj
i ), uv, D

j
i ). In

addition, the path from r(D) to a node qi ∈ Q in D can be written as (r(D) ; ue1
i

; uqi),
which has length d(r(D), uqi , D

′)+ni. Therefore, adding the (weighted) distance to reach
nodes in {T j

qi} and in {qi} we can find the cost of D:

cost(D,w) = cost(D′, w′) +
∑

j

(j · w(T j
qi

)) +
∑
i,j

cost(Dj
i , w) +

∑
qi

niw(qi) (31)

Now we upper bound cost(D′, w′). For each node qi ∈ Q, define the weight function
w̃(qi) = w′(qi)/w′(Q). In order to construct a decision tree for (Q,w′) in step (ii) of the
algorithm, we actually construct a decision tree for the normalized instance (Q, w̃). Let D′

be a decision tree for (Q, w̃) given by the procedure of [6]. From their analysis, it follows
that cost(D′, w̃) ≤ H({w̃(qi)}) + 2. By linearity we have that cost(D′, w′) = cost(D′, w̃) ·
w′(Q) ≤ (H({w̃(qi)}) + 2) · w′(Q) = H({w′(qi)}) + 2w′(Q). Noticing that w′(Q) = w(T ),
we can use inequality (31) to provide the following upper bound on cost(D,w):

cost(D,w) ≤ H({w′(qi)}) + 2w(T ) +
∑
qi,j

(
j · w(T j

qi
)
)

+
∑
i,j

cost(Dj
i , w) +

∑
qi

niw(qi) (32)

Now we start analyzing the lower bound for OPT(T,w). Notice that b(j − 1)/2c ≥
(j/2)−(3/2). Thus, recalling that H({w′(qi)}) = H({w(T qi)}) and reorganizing inequality
(9) we have:

OPT(T,w) ≥ H({w′(qi)})
c

− 5w(T )
2

+
∑
qi,j

j · w(T j
qi)

2
+

∑
qi,j

OPT(T j
qi

, w) +
∑
qi

niw(qi)(33)
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We proceed by induction over the number of nodes of T , where the base case is the
trivial one when T has only one node. Notice that because each tree T j

qi is properly
contained in T , the inductive hypothesis implies that Dj

i is an approximate decision tree
for T j

qi , namely cost(Dj
i , w) ≤ αOPT(T j

qi , w) for some constant α. The analysis needs to
be carried in two different cases depending on the value of the entropy.

Case 1: H({w′(qi)})/c ≥ 5w(T ). From the entropy hypothesis it follows that H({w′(qi)})/c−
5w(T )/2 ≥ H({w′(qi)})/2c. Applying this bound to inequality (33) we have:

OPT(T,w) ≥ H({w′(qi)})
2c

+
∑
qi,j

j · w(T j
qi)

2
+

∑
qi,j

OPT(T j
qi

, w) +
∑
qi

niw(qi) (34)

Also from the entropy hypothesis it is easy to see that H({w′(qi)}) + 2w(T ) ≤ (5c +
2)H({w′(qi)})/5c. Because c ≥ 1, we have that H({w′(qi)})+2w(T ) ≤ 2H({w′(qi)}). Em-
ploying this bound on the first terms of inequality (32) and using the inductive hypothesis
we have:

cost(D,w) ≤ 2H({w′(qi)}) +
∑
qi,j

(
j · w(T j

qi
)
)

+
∑
qi,j

αOPT(T j
qi

, w) +
∑
qi

niw(qi) (35)

Setting α ≥ 4c it follows from inequalities (34) and (35) that cost(D,w) ≤ αOPT(T,w).

Case 2: H({w′(qi)})/c ≤ 5w(T ). Applying the entropy hypothesis and the inductive
hypothesis to inequality (32) we have:

cost(D,w) ≤ (5c + 2)w(T ) +
∑
qi,j

(
j · w(T j

qi
)
)

+
∑
qi,j

αOPT(T j
qi

, w) +
∑
qi

niw(qi) (36)

Now we need to find an appropriate lower bound for OPT(T,w). For the first part, we
use almost the same derivation that leads from (8) to (9); however, instead of using the
entropy, the first summation of (8) is simply lower bounded by zero. This gives:

OPT(T,w) ≥
∑
qi,j

b(j − 1)/2cw(T j
qi

) +
∑
qi,j

OPT(T j
qi

, w) +
∑
qi

niw(qi)

≥ −3w(T )
2

+
∑
qi,j

j · w(T j
qi)

2
+

∑
qi,j

OPT(T j
qi

, w) +
∑
qi

niw(qi)

Adding (α− 1) times the inequality of Lemma 26 to the previous bound we have:

αOPT(T,w) ≥ (α− 4)w(T )
2

+
∑
qi,j

j · w(T j
qi)

2
+

∑
qi,j

αOPT(Dj
i , w) +

∑
qi

niw(qi) (37)

Setting α ≥ 10c + 8, inequalities (36) and (37) imply that cost(T,w) ≤ αOPT(T,w).
Therefore, the inductive step holds for both cases when α ≥ 10c + 8, which completes the
proof of the theorem.

As mentioned in section 5, we can compute a heavy path decomposition in linear time
and implement the algorithm in a straight forward way in O(n log n) time, where n is the
number of nodes of T . The bottleneck of the algorithm is sorting the trees {T j

qi} at Step
(iv). Now we present a linear time implementation using an ‘approximate sorting’.
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Implementation in linear time. Let n be the number of nodes of T . Consider a
node qi ∈ Q and let W = maxj{w(T j

qi)}. Define the sequence WQ = (w1, w2, . . . , wni)
as the weights {w(T j

qi)} in non-increasing order. For 0 ≤ i < n, let wsi be the first
element of WQ which is not greater than W/2i. For 0 ≤ i ≤ n we call the subsequence
(wsi , wsi+1, . . . , wsi+1−1) as the i-block of WQ. The n-block is defined as (wsn , . . . , wni).
Notice that WQ is the concatenation of these blocks.

Now we define a permutation WQ′ = (wσ(1), . . . , wσ(ni)) where for i < j, is wσ(i′) ∈
i-block and wσ(j′) ∈ j-block, then i′ < j′. That is WQ′ = (1-block’, 2-block’, . . . , n-block’),
where i-block’ is a permutation of i-block. Notice that such permutation can be found in
a single scan on all elements of WQ.

For every 0 ≤ i < n, it follows from the definition of i-block that:

si+1−1∑
j=si

j · wj ≥
W

2i+1

si+1−1∑
j=si

j (38)

It is easy to see that for every si ≤ j ≤ si+1 − 1, for 0 ≤ i ≤ n, wσ(j) is at most W/2i.
Therefore, for 0 ≤ i < n we have:

si+1−1∑
j=si

j · wσ(j) ≤
W

2i

si+1−1∑
j=si

j (39)

In addition, because there are at most n elements in WQ′, the sum
∑ni

j=sn
j ·wσ(j) can

be upper bounded by n2(W/2n). Therefore, for n > 3 this term can be upper bounded by
W . Clearly

∑ni
j=1 j · wj ≥ W , thus:

ni∑
j=sn

j · wσ(j) ≤
ni∑

j=1

j · wj (40)

Combining inequalities (38) to (40), we have:

ni∑
j=1

j · wσ(j) =
n−1∑
i=0

si+1−1∑
j=si

j · wσ(j) +
ni∑

j=sn

j · wσ(j) ≤ 2
n−1∑
i=0

si+1−1∑
j=si

j · wj +
ni∑

j=1

j · wj ≤ 3
ni∑

j=1

j · wj (41)

Therefore, using the order given by WQ′ instead of the exact sort WQ introduces a
constant factor in second term of (36). It is straight forward to prove that this factor does
not alter the guarantee of the algorithm.
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