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Abstract. This work presents a deterministic approximation algorithm for Permutation
Flowshop Scheduling Problem (PFS) with performance ratio 2

√
2n + m and time comple-

xity Θ(nm + n log n), where n is the number of jobs and m is the number of machines of
an instance. This result consists in the �rst known deterministic approximation algorithm
for PFS in which performance ratio is not a linear factor of n or m. In the case that
n = O(m) this is the best approximation algorithm already obtained for PFS. A novel
technique for performance guarantee analysis of PFS solutions is developed, exploring its
correlation with Weighted Monotone Subsequence Problems.

Keywords: Approximation Algorithms, Permutation Flowshop Scheduling, Monotone
Subsequences, Erdös-Szekeres Theorem.

Resumo. Este trabalho apresenta um algoritmo aproximativo para o problema Permu-
tation Flowshop Scheduling (PFS) com razão de performance 2

√
2n + m e complexidade

de tempo Θ(nm + n log n), onde n é o número de tarefas e m o número de máquinas de
uma instância. Este resultado consiste no primeiro algoritmo aproximativo determinístico
para o PFS cuja razão de performance não é um fator linear de n ou m. No caso em
que n = O(m) este é o melhor algoritmo aproximativo já obtido para o PFS. Uma nova
técnica para análises de garantia de performance de soluções para o PFS é desenvolvida,
explorando sua relação com problemas de Subseqüências Monótonas Ponderadas.

Palavras-chave: Algoritmos Aproximativos, Permutation Flowshop Scheduling, Subse-
qüências Monótonas, Teorema de Erdös-Szekeres.
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1 Introduction

A Permutation Flowshop Scheduling is a production planing process consisting of a set
J = {J1, J2, ..., Jn} of n jobs to be executed in a set M = {M1,M2, ...,Mm} of m machines.
In this process every job Jj is composed by m stages O1,j , O2,j , ..., Om,j named operations.
Every operation Oi,j has a non-negative processing time tij composing the matrix T ∈
<+
M×J . The Job operation Oi,j must be only executed on machine i. A machine cannot

execute more than one operation per time. Operation Oi,j can be executed only after
operation Oi−1,j have �nished. Preemption is not allowed, i.e. once an operation is started,
it must be completed without interruption. All jobs must be executed in the same order by
every machine, de�ned by a permutation π : {1, . . . , n} 7→ J , with π(i) indicating the i-th
job to be executed. The completion time of an operation Oi,j , denoted by Ci,j is de�ned
by the recurrence:

Ci,π(j) =


tiπ(j) if i = 1 and j = 1
Ci,π(j−1) + tiπ(j) if i = 1 and j > 1
Ci−1,π(j) + tiπ(j) if i > 1 and j = 1
max(Ci,π(j−1), Ci−1,π(j)) + tiπ(j) if i > 1 and j > 1

The completion time of a job Jj is Cm,j . The makespan of a permutation is the
maximum completion time of a job. The objective of Permutation Flowshop Scheduling
Problem (PFS) is to �nd a permutation π that minimizes the makespan.

PFS was proved Strongly NP-Hard by Garey, Johnson e Sehti [4] for instances with
three or more machines. In a seminal paper, Johnson [7] presented a polynomial time
algorithm for instances with two machines. Gonzalez e Sahni [5] showed that every busy
scheduling for PFS has an approximation factor of m times the optimal solution. Potts,
Shmoys e Williamson [11] proved the existence of some instances for which non-permutation
based solutions are Ω(

√
m) less costly than permutation based. Williamson et al [15] proved

an inapproximability result of 5/4 to PFS. Hall [6] presented a PTAS for PFS when the
number of machines m is �xed.

To the best of our knowledge, the best known up to date deterministic approximation
algorithm for PFS has performance guarantee of dm/2e [12, 8, 9, 10]. Approximation ratios
for a large number of PFS heuristics were surveyed by Gupta, Koulamas and Kyparisis[3].
Sviridenko [14] proposed a randomized algorithm for PFS with O(

√
m log m) expected

approximation factor.
The purpose of this work is to present a deterministic approximation algorithm for

PFS with performance ratio 2
√

n + m and time complexity Θ(nṁ + n log n). This re-
sult consists in the �rst known deterministic approximation algorithm for PFS in which
performance ratio is not a linear factor of n or m. In the case that n = O(m) this is
the best approximation algorithm already obtained for PFS. A novel technique for perfor-
mance guarantee analysis of PFS solutions is developed, exploring the correlation between
Weighted Monotone Subsequence Problems and PFS.

This works is organized as follows. In section 2, extensions of Erdös-Szekeres Theorem
[2] are obtained for weighted sequences. Section 3 presents a technique to obtain upper
bounds on approximation guarantee of a PFS solution via its reduction to Minimum Double
Weighted Sequence Problem. In section 4, the approximation algorithm Greedy Avoided
Path is presented and analyzed. Final conclusions are drawn in section 5.
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2 Weighted Subsequences

2.1 Weighted Monotone Sequences

De�nition 1 Let S = 〈s1, s2, . . . , sn〉 be a sequence of distinct real elements. A monotone
subsequence of S is a sequence T = 〈sϕ1 , sϕ2 , . . . , sϕm〉 such that 1 ≤ ϕ1 < ϕ2 < . . . <
ϕm ≤ n and sϕ1 < sϕ2 < . . . < sϕm or sϕ1 > sϕ2 > . . . > sϕm.

De�nition 2 A set T1, T2, . . . , Tk of monotone subsequences of a sequence S is said a

S-monotone partition of size k if
k⋃
i=1

Ti = S and
k⋂
i=1

Ti = ∅.

The classic theorem of Erdös and Szekeres [2] enunciates that from a sequence of n2 +1
distinct real elements is always possible extract a monotone subsequence of cardinality at
least n + 1. The maximum cardinality monotone subsequence problem can be solved in
polynomial time. However, �nding a minimum size monotone partition is a NP-Hard prob-
lem [16]. Bar-Yehuda and Fogel [1] presented an approximation algorithm for minimum
size monotone partition based on the following Lemma:

Lemma 1 [1] Let S = 〈s1, s2, . . . , sn〉 be a sequence. There is a S-monotone partition of
size at most 2

√
n.

Lemma 1 can be proved directly by successive remotion of maximum cardinality mono-
tone subsequences of S. Consider now a generalization of monotone subsequence concept.
Let us de�ne a weight function w : S 7→ <+ over a sequence S. The weight of a monotone
subsequence T = 〈sϕ1 , sϕ2 , . . . , sϕl

〉 of S is
l∑

i=1
w (sϕi). Let Tmax be the maximum weight

on a monotone subsequence of S. The following result is valid:

Corollary 1 w(Tmax) ≥ w(S)
2
√
n
.

Proof: From Lemma 1, there is a S-monotone partition in at most 2
√

n monotone subse-
quences. Let T1, T2, . . . , Tk be such subsequences and T ? that of maximum weight. By the
concept of monotone partition of a sequence,

k∑
i=1

w(Ti) = w(S). So, w(T ?) ≥ w(S)
k . Once

k ≤ 2
√

n follows that w(T ?) ≥ w(S)
2
√
n
. Once T ? ≤ Tmax the result is proved.

A survey on Erdös-Szekeres theorem and its variations was presented by Steele [13].
From the best we know, weighted monotone subsequence concept hasn't been explored so
far.

2.2 Double Weighted Sequences

De�nition 3 A double weighted set, denoted by (Γ, α, β) is composed by a set Γ = {γ1, γ2, . . . , γn} ⊂
< of distinct elements and two weight functions α : Γ 7→ <+ and β : Γ 7→ <+.

De�nition 4 Let (Γ, α, β) a double weighted set. A permutation π : {1, 2, . . . , n} 7→ Γ de-

�nes a sequence S =
〈
γπ(1), γπ(2), . . . , γπ(n)

〉
named a double weighted sequence of (Γ, α, β).
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TheMinimum Double Weighted Sequence Problem: Let Sα be a maximum weighted
increasing subsequence of S considering α as weight function and C (Sα) its cost. Similarly,
let Sβ be a maximum weighted decreasing subsequence of S considering β as weight function
and C (Sβ) its cost. The cost of S, denoted by C (S), is de�ned as max{C (Sα) , C (Sβ)}.
The Minimum Double Weighted Sequence Problem (MDWS) consists of, given a double
weighted set (Γ, α, β), construct a double weighted sequence S? such that C (S?) is mini-
mum.

De�nition 5 Let D1 = (Γ1, α1, β1) and D2 = (Γ2, α2, β2) be double weighted sets. As-
sume, w.l.o.g , that Γ1 = {γ1, γ2, ..., γn} elements are given in increasing order. Consider
that D2 was constructed from D1 by remotion of an element γi ∈ Γ1 and insertion of two
new elements γ′j and γ′j+1 in S2 such that: γi = γ′j < γ′j+1, γ′j+1 < γi+1 if γi+1 exists,

α1 (γi) = α2

(
γ′j

)
+ α2

(
γ′j+1

)
and β1 (γi) = β2

(
γ′j

)
= β2

(
γ′j+1

)
. It's said that D2 is a

split of D1 and that element γi was split into γ′j and γ′j+1.

To illustrate splitting process, consider the following example:
Γ1 = {2, 4, 7, 12}, α1 = (α1(2), α1(4), α1(7), α1(12)) = (12, 7, 4, 8),
β1 = (β1(2), β1(4), β1(7), β1(12)) = (7, 10, 9, 11). Element γ3 = 7 can be split into two
elements γ′3 = 7 and γ′4 = 10 with weights α2 (γ′3) = 3, α2 (γ′4) = 1 and β1 (γ3) =
β2 (γ′3) = β2 (γ′4) = 9, giving origin to double weighted set (Γ2 = {2, 4, 7, 10, 12}, α2 =
(12, 7, 3, 1, 8), β2 = (7, 10, 9, 9, 11)).

Theorem 1 Let D1 = (Γ, α, β) be a double weighted set, D2 a split of D1, Φ1 and Φ2

optimal double weighted sequences for D1 and D2 respectively. Then, C (Φ2) ≤ C (Φ1).

Proof: Consider that Φ1 =
〈
γφ1(1), γφ1(2), . . . , γφ1(n)

〉
. Construct a solution Ψ to D2 from

Φ1 as follows: let γi = γφ1(k) the element from D1 split into γ′j and γ′j+1 in D2. For all
k′ < k do γψ(k′) = γφ1(k′). Let γψ(k) = γ′j and γψ(k+1) = γ′j+1. For k′ = k + 2 to n + 1 do
γψ(k′) = γφ1(k′−1). Once, by split de�nition, α (γi) = α

(
γ′j

)
+ α

(
γ′j+1

)
, every increasing

subsequence of Ψ can be transformed into an increasing subsequence of Φ1, with not smaller
cost. When elements γ′j and γ′j+1 belong to such increasing sequence they can be both
substituted by γi. All other elements are identical. An equivalent transformation is valid
for decreasing subsequences of Ψ, in which only one of γ′j or γ′j+1 can be present, and, by
split de�nition, β (γi) = β

(
γ′j

)
= β

(
γ′j+1

)
. Hence, C(Ψ) ≤ C(Φ1). Once C (Φ2) ≤ C (Ψ),

the result follows.

The use of split concept in conjunction with Corollary 1 permits obtaining a lower
bound on optimal solutions of a MDWS instance.

Theorem 2 Let Φ1 be an optimal solution of a MDWS instance
D1 = (Γ1, α1, β1), |Γ1| = n.

Then, C(Φ1) ≥

n∑
i=1

α1(i)√
4

(
n+

n∑
i=1

dα1(i)/β1(i)e
) .
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Proof: Consider a succession of splits that converts D1 into a double weighted set D2 =

(Γ2, α2, β2) such that, α2(i) ≤ β2(i), for all i ∈ {1, . . . , |Γ2|}. Clearly,
n∑
i=1
dα1(i)/β1(i)e

splits are su�cient, what implies that |Γ2| ≤ n +
n∑
i=1
dα1(i)/β1(i)e. Let Φ2 be an optimal

sequence for D2. By Theorem 1, C(Φ1) ≥ C(Φ2). Consider now a double weighted set
D3 = (Γ3, α3, β3) such that Γ3 = Γ2 and α3 = β3 = α2.
Let Φ3 be an optimal sequence for D3. Once Γ2 = Γ3, α3(i) ≤ α2(i) and β3(i) ≤ β2(i) for
all i ∈ {1, . . . , |Γ3|}, is true that C(Φ2) ≥ C(Φ3). Once α3 = β3, α3 and β3 can be viewed
as a unique weight function.
Then, by Corollary 1:

C(Φ3) ≥
|Γ3|∑
i=1

α3(i)/(2
√
|Γ3|) =

n∑
i=1

α1(i) /

√
4

(
n +

n∑
i=1
dα1(i)/β1(i)e

)
.

Hence, C(Φ1) ≥ C(Φ2) ≥ C(Φ3) and the result follows.

3 Lower Bounds for a Matrix Game

This section introduces the Matrix Min-Max Path Problem, which is exactly PFS viewed
by a game perspective. A technique to construct lower bounds on Matrix Min-Max Path
Problem optimal solutions based on its transformation into Minimum Double Weighted
Sequence Problem is presented.

3.1 Paths and Anti-Paths

Let T ∈ <+
m×n be a matrix and T1, T2, . . . , Tn its columns. A permutation π : {1, 2, . . . , n} 7→

{T1, T2, . . . , Tn} over T de�nes a new matrix T π, named permutated matrix.

De�nition 6 A path, de�ned over a permutated matrix T π, is a sequence P = 〈p1, p2, . . . , pn+m−1〉
of distinct cells in T π, such that, p1 = tπ1,1, pn+m−1 = tπm,n and pk = tπik,jk is the successor
of pk−1 = tπik−1,jk−1

on P if an only if one of the two relations below is valid:

1. ik = ik−1 and jk = jk−1 + 1

2. ik = ik−1 + 1 and jk = jk−1.

The weight of P, W (P ), is de�ned as
n+m−1∑
i=1

pi. P is said a maximum weight path if

W (P ) ≥W (P ′) for every path P ′ over T π.

De�nition 7 An anti-path, de�ned over a permutated matrix T π, is a sequence A =
〈a1, a2, . . . , an+m−1〉 of distinct cells in T π, such that, a1 = tπm,1, an+m−1 = tπ1,n and
ak = tπik,jk is the successor of ak−1 = tπik−1,jk−1

on A if an only if one of the two relations
below is valid:

1. ik = ik−1 and jk = jk−1 − 1

2. ik = ik−1 − 1 and jk = jk−1.

The weight of A, W (A), is de�ned as
n+m−1∑
i=1

ai.
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3.2 PFS and Matrix Games

The PFS problem can be viewed as a two-person matrix game. Given a matrix T ∈ <m×n
with positive elements, player 1 acts �rst, selecting a permutation π over the columns
of T that switches the order between them, giving origin to a new matrix T π. Then,
player 2 selects a path P on matrix T π, that is, a sequence of cells on T π, starting from
tπ1,1 such that, the cell after tπi,j on P can only be tπi+1,j or tπi,j+1 respecting the matrix
limits, i.e., i + 1 ≤ n and j + 1 ≤ m. At the end of game, player 1 pays to player 2
the sum of cells on P . Let us name this game Matrix Minimum Maximum Path Game,
denoting it by MMP. The equivalence between PFS and MMP is clear. A schedule on PFS
corresponds to a permutation on MMP and the makespan of such schedule is exactly the
cost of a maximum path chose by player 2 given player's 1 permutation. Therefore, player's
2 objective of maximize such sum can be accomplished by a well-known O(nm) dynamic-
programming algorithm based on the recursive makespan de�nition presented in Section 1
which computes a maximum path over T π, i.e, the makespan of a selected schedule. The
cost of a solution π for MMP is denoted by W (T π). From this point, PFS problem is
analyzed as MMP problem considering that our objective is act as player 1. Furthermore,
due to the polynomial time algorithm that calculates the maximum path on a permutated
matrix, player 1 always knows, after selecting a permutation, the maximum path that will
be chose by player 2.

3.3 Approximation guarantees of PFS solutions

A technique to obtain upper bounds on approximation guarantees of PFS solutions us-
ing double weighted sequences is exposed at this point. Consider that player 1 chose a
permutation π over original matrix T , giving origin to matrix T π. Assume w.l.o.g that
π = 〈1, 2, . . . , n〉. Let TOPT be the optimal permuted matrix of T and OPT its correspond-
ing optimal permutation, P π and POPT maximum paths over T π and TOPT , respectively,
and Aπ an anti-path of T π. Construct a double weighted set (Γ, α, β) as follows: make
Γ = {π(1), π(2), . . . , π(n)} = {1, 2, . . . , n}. Let α(i) be the sum of all P π cells over column
T π
i and β(i) be the sum of all Aπ cells over the same column. From here to the end of this

section, consider that (Γ, α, β) was constructed from permutation π, chosen by player 1.

Lemma 2 C(Sπ) = W (T π)

Proof: Once Sπ = 〈1, 2, . . . , n〉, the maximum weigth monotone subsequence of Sπ is
exactly the increasing subsequence Sπ. Hence, C(Sπ) =

n∑
i=1

α(i) = W (T π).

Theorem 3 Let σ be an arbitrary permutation, T σ the permutated matrix obtained apply-
ing σ to T and Sσ the sequence constructed applying σ to (Γ, α, β). Then C(Sσ) ≤W (T σ)

Proof: Every weighted increasing subsequence of Sσ, taking α as weight function, is
equivalent to a subsequence of a path in T σ whose cells belong only to P π. Similary, every
weighted decreasing subsequence of Sσ, taking β as weight function, is equivalent to a
subsequence of a path in T σ whose cells belong only to Aπ. Consequently, the maximum
weight monotone subsequence of Sσ is equivalent to a subsequence of a path in T σ whose
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cells belong exclusively to P π or Aπ. Consider now a maximum path P σ in T σ. P σ can
be composed by cells in P π, Aπ and T σ − (P π ∪ Aπ). Then, W (P σ) = W (T σ) ≥ C(Sσ)
and the result follows.

Let S? represent an optimal solution of Minimum Double Weighted Sequence Problem
for (Γ, α, β).

Corollary 2 C(S?) ≤W (TOPT )

Proof: By Theorem 2, C(SOPT ) ≤ W (TOPT ). By optimal solution de�nition, C(S?) ≤
C(SOPT ). Consequently, C(S?) ≤W (TOPT ).

By previous results we have,

Theorem 4 W (Tπ)
W (TOPT )

≤ C(Sπ)
C(S?)

Proof: W (Tπ)
W (TOPT )

≤ W (Tπ)
C(SOPT )

≤ W (Tπ)
C(S∗) = C(Sπ)

C(S∗) .

As consequence of last theorem it is possible to obtain an upper bound on the approx-
imation guarantee of a PFS speci�c solution π by construction of an equivalent MDWS
instance (Γ, α, β), as described in this section, and analysis of the approximation factor of
any permutation π applied as solution to such instance.

4 The Greedy Avoided Path Algorithm

This section presents a polynomial time deterministic algorithm that construct a solution
for PFS based on weigthed monotone subsequences properties previously explored. Time
complexity and approximation guarantee of algorithm are also analyzed.

Theorem 5 Greedy Avoided Path is an 2
√

2n + m-approximation algorithm for PFS.

Proof: Let π be the solution returned by Greedy Avoided Path algorithm, T π the permu-
tated matrix of T and P π a maximum path in T π. Consider that Aπ is an anti-path in T π

with the following property: all cells on positions (MaxMachinej , j) in T belong to Aπ.
Once π was obtained by application of Greedy Avoided Path algorithm the construction
of such anti-path in T π is possible. Let TOPT be an optimal permutated matrix of T . The
approximation factor of solution π is, by de�nition, W (T π)/W (TOPT ). By the technique
presented in section 3.3 is possible, from T π, P π and Aπ, to construct a solution Sπ for an
instance (Γ, α, β) of MDWS problem such that C(Sπ) = W (T π). Consider that (Γ, α, β)
was constructed following such technique.
Let C(S?) be an optimal solution for (Γ, α, β).

By Theorem 2: C(S?) ≥
n∑
i=1

α(i)/

√
4

(
n +

n∑
i=1
dα(i)/β(i)e

)
.

By Aπ property,
n∑
i=1
dα(i)/β(i)e ≤ n + m− 1.

6



Consequently, C(S?) ≥
n∑
i=1

α(i)/2
√

2n + m) = C(Sπ)/2
√

2n + m.

By Theorem 4, C(S?)/C(Sπ) ≥W (T π)/W (TOPT ).

Hence, W (T π)/W (TOPT ) ≤ 2
√

2n + m.

Algorithm 1: Greedy Avoided Path
Input : A set J = {J1, J2, ..., Jn} of jobs, a set M = {M1,M2, ...,Mm} of machines

and a processing times matrix P ∈ <+
J×M . A cell tij ∈ T represents the

processing time of operation Oi,j .
Output: A permutation function π : {1, . . . , n} 7→ J .
for j ← 1 to n do1

MaxTimej ← t1j ;2

MaxMachinej ← 1;3

for i← 2 to m do4

if MaxTimej < tij then5

MaxTimej ← tij ;6

MaxMachinej ← i ;7

Construct a permutation π : {1, . . . , n} 7→ J such that: ∀a, b ∈ J ,8

π−1(a) ≤ π−1(b)⇐⇒MaxMachinea ≥MaxMachineb;
Return permutation π;9

Time complexity analysis of Greedy Avoided Path algorithm can be done directly.
Lines 1 to 8 can be executed in Θ(nm) time. Permutation construction on line 9 can
be achieved sorting jobs in Θ(n log n) time using MaxMachine variables as key. Line 9
costs Θ(n) steps. In resume, Greedy Avoided Path is a polynomial time Θ(nm + n log n)
algorithm.

5 Conclusion

This work presented a deterministic approximation algorithm for PFS with performance
ratio 2

√
2n + m and time complexity Θ(nm + n log n). In the case that n = O(m) this is

the best approximation algorithm already obtained for PFS. The Erdös-Szekeres Theorem
was extended, considering a weighted version in which elements of monotone subsequences
can have di�erent weights. As consequence, a novel technique to obtain upper bounds
on approximation guarantees of PFS solutions using double weighted sequences was intro-
duced, exploring the correlation between Weighted Monotone Subsequence Problems and
PFS.
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