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Abstract. “Non Local Means” is an innovative noise reduction algorithm for 
images presented by Buades and Morel in 2004. It performs remarkably better 
than older generation algorithms but has a performance penalty that prevents it 
from being used in mainstream consumer application. The objective of this work 
is to find ways of reducing the time-complexity of the algorithm and enabling its 
use in main stream image processing applications such as home photography or 
photo printing centers. 

Keywords: image processing; noise reduction; non-local means.

Resumo. “Non-local means” é um novo algoritmo de redução de ruídos para 
imagens apresentado por Buades e Morel em 2004. Este algoritmo funciona 
consideravelmente melhor do que os algoritmos anteriores, mas sua lenta 
execução causada pela alta complexidade o impede de ser usado em aplicações 
comuns. O objetivo deste trabalho é investigar maneiras de reduzir o tempo de 
execução do algoritmo, possibilitando seu uso em aplicações comuns de
processamento de imagem, tal como fotografia e centros de impressão.

Palavras-chave: processamento de imagens; redução de ruído; médias não locais.
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1
Introduction

Image denoising has long been studied as one of the most fundamental

issues of image processing. This is due to the fact that any natural image contains 

undesirable noise and its removal is essential in vast selection of applications 

ranging from home photography to medical imaging and from seismographic 

analysis to astronomical research. The problem of restoring the original image 

from noisy data remained mainly unsolved, although generations of algorithms 

are making gradual progress in improving the quality of noisy images. A 

remarkable review of both classic and state-of-the-art image denoising methods is 

available at  [1].

Increased interest in image denoising comes from technology advances 

which bring the problem closer to each of us. These days we are in the middle of 

the digital photography revolution. Most cameras sold today are digital. New film 

camera models are no longer designed by Canon, Kodak, and Nikon. Ricoh, 

Sanyo and Kyocera have stopped producing film cameras. This marks the end of 

film cameras in home photography and the completion of the revolution in the 

image-capture end. The revolution continues by transforming the image 

reproduction end as well. Digital printing is gaining territory from traditional 

silver-halide photographic paper development. The ease of use of digital 

technologies, either commercial prints through web access or home digital prints, 

increase the share of those technologies over traditional photographic paper 

development. Whether inkjet stays the technology of choice, or clear the way to 

another digital technology, digital is here to stay for a while.

With the new technology comes a set of new challenges, some of them 

unique to the digital era, and some that were inherited. One of those challenges, 

with have a mixture of old and new, is overcoming noise distortions. As already 

stated, noise is an inherent product of any imaging process. The most common 

noise in photography is of statistical nature and comes mainly from two sources:
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1. Photonic noise – statistics of number of photons entering the image 
detector.

2. Thermal noise – “heat” photons counted by the image detector as “image 
photons”.

In addition to the above noise sources, additional noise categories, which are 

amplified in the digital environment, are:

3. Fixed pattern noise – difference between detector cells or “hot pixels” that 
appear mostly in low luminance environment which require long exposure.

4. Banding noise – caused by inaccuracies in detector cell positions. Highly 
camera dependant.

Reducing this noise at the image detector proves to be a very expensive 

task. For example, cooling the image detector is a common solution in night 

vision systems, but can hardly be afforded in the home (and even professional) 

photography market. The sensitivity of the detector cost (and therefore the 

equipment cost) to noise reduction characteristics creates high motivation for 

maintaining a considerable level of noise to be added to the image by the detector, 

and for the usage of image processing techniques to remove as much as possible 

of this noise along the imaging path.

Noise problem is not unique to the digital era or to natural images. The 

emphasis on digital photography of natural images in this work comes from the 

writer’s special interest in that field and from the opportunity to optimize 

parameters to this specific environment.

1.1.
The problem

Non Local Means (NLM) is an innovative noise reduction algorithm for 

images presented by Buades, Coll and Morel in 2004 in  [1]. It is inspired by Efros 

and Leung  [2] use of weighted Euclidean distance for “texture synthesis by 

example”, a well known publication in the texture synthesis area. The basic idea 

of the algorithm is very simple: the denoised value of a pixel is a weighted 

average of all pixels in the image which have “similar neighborhood” to that 

pixel. The weight of each similar pixel in the average is set according to the level 

of “similarity” between the two pixels.
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In their work, Buades, Coll and Morell conducted a very thorough 

presentation and analysis of image denoising techniques, and compare them to the 

NLM algorithm presented at the same paper  [1]. It is proved to perform much 

better than any other known image denoising algorithm. This was confirmed in 

other (independent) studies provoked by the NLM publications  [5]  [6]  [7] and by 

further work by the original authors  [3] [4].

Although the algorithm performs remarkably better than older generation 

algorithms in restoring the original image, it is inferior in terms of execution run-

time. This prevents NLM from being used in mainstream consumer application. 

Actually, the time-complexity of the algorithm is so high that it is impractical to 

use in a digital photography environment where color images of 3-5Mpixels are a

standard.

The challenge is therefore in enabling the use of concepts from NLM in 

mainstream applications by accelerating it to acceptable run-time levels.

1.2.
Obtained results

Acceleration by factor of 4 to 25 was achieved depending on the noise level 

and image properties, normally with no degradation in image quality or with 

degradation lower than 10% in the MSE. Most of the proposed methods were 

proven to contribute to the acceleration, but the proposed clustering approach was 

found to be much less efficient than expected and could not deliver the expected 

benefits. 

1.3.
Thesis organization

The work is organized in the following way. Chapter  2 explains the basic 

concepts of noise and performance evaluation. The NLM algorithm is explained in 

details in Chapter  3, which also establishes the mathematical terms used 

throughout this work and analyzes the time-complexity of the algorithm. Chapter 

 4 presents an approach for optimizing the NLM execution-time based on various 

techniques. Some of the techniques are based on previous work on NLM and from 

other fields of image processing and some are based of properties of natural 
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images and of the human vision system. The results obtained from various 

experiments of methods from chapter  4 are presented in chapter  5, which also 

presents the final algorithm proposal. In chapter  6 we discuss related work done in 

the area of NLM acceleration. Chapter  7 contains the conclusions learned during

this work.

1.3.1.
About viewing images

Please note that the images presented in this document are much better 

viewed on a computer screen than on a printed paper. The loss of resolution and 

the addition of half-toning, dot-gain and other artifacts, may cause loss of fine 

image details which are demonstrated in those examples. This is especially true in 

this work since most of those artifacts mask the noise that is added to most of the 

images. The reader is also encouraged to use the “zoom in” option of the viewing 

software to see fine image details that may escape the eye when viewed at the 

normal reading resolution.
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2
Basic concepts

2.1.
Noise

Any image ( ){ }Iiivv ∈= | can be described as a composition of two images 

– the original image ( )iu and the noise image ( )in . The reduction of the noise 

component in that composition increases the image quality. Most image de-

noising algorithms depend on a filtering parameter h which usually is a function 

of the noise standard deviation. The image can be described as a combination of 

two components, the smoothed image component and the noise component:

( )vDnvDv hh ,+=

hD is the de-noising method, ( )vDn h , is the noise “guessed” by the method, 

and ideally vDh is smoother than v. Figure 1 is an example of the image and its 

noisy and filtered components.

Figure 1 Image with additive white noise

left-Original image v; center-noise image n(Dh,v); right-filtered image Dhv

A good measure for image quality in respective to noise is the signal to 

noise ratio (SNR) defined as the ratio between the signal and noise standard 

deviations.

( )
( )n
vSNR

σ
σ

= where ( ) ( )( )∑
∈

−=
Ii

viv
I

v 21
σ .
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A good quality image has standard deviation of 60 or more (in images with 

pixel values of 0 to 255), and noise levels with standard deviation of up to 3 are 

usually unnoticeable by the average viewer. This makes 20
3

60
=≈SNR a good 

evaluator of image quality in terms of noise. In modeling noise, the noise values 

( )in and ( )jn of two different pixels are assumed to be independent random 

variables. This noise is called “white noise”, a term used to describe noise with 

flat power spectral density. The use of the word “white” is compatible with the 

concept of white light which contains all the frequencies. Figure 2 has the original 

image on the left with standard deviation of about 50, the image in the middle has 

additive white noise with SNR=20, and the image on the right with SNR=2.

Figure 2 SNR as a quality measurement

left-original image; center-SNR=20; right-SNR=2

The noise in the middle image is unnoticeable as expected from SNR=20. In 

the right image, although distorted by heavy noise (SNR=2), all the original image 

details are noticeable. This unexpected fact hold the hope for finding successful 

denoising algorithms that can remove the noise but keep the original image details 

without distortion. The problem is that differentiating between noise and small 

image details is a difficult task. Denoising algorithms therefore tend to remove 

some image details together with the noise, causing distortions and artifacts.

2.2.
Performance evaluation

Our success criterion is to achieve a better price/performance ratio for the 

NLM algorithm. This means getting faster execution while minimizing perceived 

quality loss.
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The execution acceleration can be measured easily comparing to the original 

algorithm execution time. Perceived image quality loss is a more problematic 

parameter to measure. The proposed measures for this parameter are:

1. Mathematical, based on mean square error (MSE).

2. Comparative images, based on the “method noise” presented by NLM

writers in  [1].

The method noise measure may be understood from the following example

shown in Figure 3. The original image (top left) is added white noise with •n=10 

(top right), and then filtered by Gaussian smoothing (middle left) and by NLM

(middle right). 

Figure 3 Method noise example

The absolute difference between the noisy image and the filtered image is 

the method noise image – bottom left for Gaussian smoothing method and bottom 

right for the NLM filter method. If only noise has been filtered out of the image, 

we expect the method noise to look like white noise, which is more or less the 

case for the NLM filter, but in the Gaussian filtering method noise image we can 

clearly see strong image features. This can only mean the filter has damaged the 

image details. This is also obvious from looking at the results of the two filters. 
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The Gaussian smoothing blurred the image completely by smoothing all the fast 

transitions in the image.

For high quality filtering, we require the method noise image to look as 

similar as possible to white noise image and to have as less as possible image 

structure in it. As can be understood, this measure is not quantified by a number. 

The only tool for evaluation is the human eye that can identify image structure in 

the presented method noise image.

2.3.
Tools used for evaluation

Evaluation program with C-language library of NLM functions and PERL

scripts was used to process the selected test images with the original and proposed 

algorithms. The scripts make use of the popular “ImageMagick®” 

(www.imagemagick.org) software suite for some image manipulation and analysis 

functions such as MSE calculation, histogram creation and image difference 

comparison.

www.imagemagick.org
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3
Noise reduction

3.1.
NLM algorithm

As most noise reduction algorithms, the NLM algorithm uses averaging as a 

mean of getting rid of the random noise. The difference is that while most 

algorithms make use of the fact that close-by features of natural images tend to 

have similar values and therefore may be used to average, the NLM algorithm 

makes another assumption: natural images have repeating features and these may 

be found not only locally but globally. In order to remove the noise from pixel p, 

the algorithm looks for features similar to those surrounding p all over the image,

and assigns a weight to each pixel according to the “similarity” of its 

neighborhood to the neighborhood of p. The filtering of p is therefore done by a 

weighted average of all the pixels in the image. Similarity can be explained using 

Figure 4:

lena.gray.tiff

p2

p3

p1 p4

Figure 4 similarity
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Similar pixel neighborhoods like those of p1, p2 and p3 give high weight 

values ( )21, ppw and ( )31, ppw while very different neighborhoods like those of 

p1 and p4 produce low weight value ( )41, ppw . The values of pixels p2 and p3 will 

have much higher weight in the averaging of p1 than the value of p4.

Similarity is computed using weighted Euclidean distance of pixel 

neighborhoods. This metric was found effective by  [2], and found to be consistent 

in a noisy environment since it increases the distance between two originally 

identical pixels by a constant. This will be demonstrated after the following 

definitions.

Given a noisy image ( ){ }Iiivv ∈= | , the estimated value ( )( )ivNL is 

computed as weighted average of all pixels in the image:

Equation 1. ( )( ) ( ) ( )∑
∈

=
Ij

jvjiwivNL ,

where naturally, a weight is between 0 and 1 and the sum of all weights is 1

( ) 1,0 ≤≤ jiw and ( )∑
∈

=
Ij

jiw 1, .

A neighborhood system on I is a family { } IiiNN ∈= of subsets of I such that 

for all Ii ∈ :

1. iNi ∈
2. ji NiNj ∈⇒∈

The subset iN is called the neighborhood or the similarity window of i .

Similarity windows may have different sizes and shapes, but for simplicity, a 

rectangular window is used. Similarity between two pixels i and j depends on 

the similarity of the intensity gray level vectors )( iNv and )( jNv . In Figure 4, the 

neighborhoods of pixels p1, p2, and p3 are the collection of all gray level values of 

pixels in the surrounding squares. See Figure 5 for example.

Figure 5 similarity neighborhood
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Pixels with gray-level neighborhoods similar to )( iNv , will have larger 

weights in the average of pixel i . Similarity is computed using a weighted version 

of the Euclidean distance. If Square Euclidean Distance (L2) between two vectors

( )kxxxx ,...,, 21= , ( )kyyyy ,...,, 21=

is defined as:

Equation 2. ( ) ( )∑
=

−=
k

j
jj yxyxd

1

22 ,

the weighted square Euclidean distance (weighted L2) is defined as:

Equation 3. ( ) ( ) 0,
1

22 ≥−= ∑
=

j

k

j
jjja aandyxayxd

where the contribution of each axis j distance to the total distance is weighted by 

the coefficient aj.

In the NLM algorithm, the weights kja j ,...,1, = are assigned using a two-

dimensional Gaussian kernel. The kernel function is a two dimensional version of 

the normal distribution function and it is described by the following equation:

( ) 2

22

4
24

1, σ

πσ
−

+

=
ji

ejiG

The general form of the two dimensional Gaussian kernel is demonstrated 

on the right side of Figure 6, and a 5x5 kernel is plotted on the left. When 

applying the kernel to a neighborhood centered on pixel p, the center pixel (p) gets 

the heaviest weight and the other neighborhood pixels are weighted exponentially

inversed to their distance from p.

Gaussian kernel shape

1 2 3 4 5
S1

S4
0

0.02

0.04

0.06

0.08

0.1

weight

5x5 Gaussian kernel

0.08-0.1
0.06-0.08
0.04-0.06
0.02-0.04
0-0.02

Figure 6 Gaussian kernel
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In the above example, a 5x5 pixel neighborhood and Gaussian kernel are 

defined; 2
ad is computed between two vectors of length 25. The 5x5 kernel is 

coefficient values are computed from the two dimensional Gaussian function with 

standard deviation a: ( ) 2

22

4
24

1, a
ji

a e
a

jiG −

+

=
π

for values of ;2,1,0,1,2, −−=ji The 

coefficients are normalized so that ∑
=

=
k

j
ja

1
1 by 

( )
( )∑

−=

+ =

)2,...,2(,

5* ,
,

ji
a

a
ji jiG

jiGa

The corresponding 25R kernel vector in this case is described in Figure 7:

2 7 12 7 2

7 31 52 31 7

12 52 127 52 12

7 31 52 31 7

577
1 x

2 7 12 7 2

Figure 7 5x5 Gaussian kernel

Note the sum of all 25 vector components (after normalizing by
577

1 ) is 1, 

and the weight of each pixel in the kernel is inversely proportional to its distance 

from the center.

After understanding the weighting policy, we can go back to the distance 

definition. Ni and Nj are similarity windows centered at pixels i and j

correspondently and therefore

( ) ( ) ( ) ( )( )kNivNivNivNiv ,...,, 21= and ( ) ( ) ( ) ( )( )kNjvNjvNjvNjv ,...,, 21=

are both intensity gray-level vectors with same cardinality of the Gaussian kernel.

The weighted L2 distance, 2
ad may be written like this:

( ) ( ) ( ) ( )( )∑
=

−=−
k

l
llla NjvNivaNjvNiv

1

22
,2||||
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Having defined the distance metric, we are ready to define the way weights 

are assigned to each pixel according to Equation 1. The weights associated with 

the distance are defined by:

Equation 4. ( ) ( )
( ) ( ) ( )

2

2
,2||||

11, h

NjvNiv a

e
iZ

jiw
−

−
= ,

where Z(i) is the normalized factor:

Equation 5. ( )
( ) ( ) ( )

∑
∈

−
−

=
Ij

h

NjvNiv a

eiZ 2

2
,2||||

1
,

and the decay factor h controls the decay of the exponential function and therefore 

the decay of the weights as a function of the Euclidean distance. Note that h is a 

“filtering factor” in a way that it is responsible for setting the right weight 

assigned according to the distance computed. For small h values, a very small 

distance must be computed in order to have any contribution, and for high h

values, even considerable distance may influence a pixel value. This means that if 

we choose h to be too high, we may distort the image, and if we choose h too low, 

we may not remove enough noise. Figure 8 demonstrates the fast decay of the 

weight function at low h values as a function of the distance. The upper curve, 

202 =h , is slowly decaying with distance growth while the lower curve of 

22 =h falls sharply and produces very low weights for distances above .52 =ad

Weight vs. Distance and filtering factor

0
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15
20

Figure 8 Weight as a function of the distance and decay factor
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Figure 9 demonstrates the effect of the decay factor value on the filtered 

image. On the top left, a noisy image with •n=20. The three other images are NLM

filtered with different decay factor values. The top right image is filtered with 

2002 =h , bottom left 1002 =h and bottom right with 20002 =h .

Figure 9 Effect of decay factor on the filtered image

The bottom left image is “under filtered” and a considerable level of noise 

still exists. The bottom right image is “over smoothed” and many of the image 

fine details have disappeared together with the noise. The top right image, filtered 

according to the original recommendations of nh σ102 = , presents a good tradeoff 

between detail loss and noise residues.

Note that for “white noise” with standard deviation nσ and zero mean, the 

expected weighted L2 distance value between two neighborhoods is given by:
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( ) ( ) ( ) ( ) 22

,2

2

,2
2 najiaji NuNuNvNvE σ+−=− .

The weighted L2 distance of two noisy image neighborhoods has a fixed 

distance of 22 nσ from the distance of the same neighborhoods in the original

image before the addition of white noise. If two originally similar neighborhoods 

are compared ( ) ( )( )0=− ji NuNu , the noisy neighborhoods are expected to have 

a weighted L2 distance of 22 nσ . This shows that the weighted L2 distance is 

actually consistent between the original and noisy image, adding twice the noise 

variance to the computed distance.

3.2.
A bit on NLM for video

Now that NLM principle is understood, this is the time to mention that NLM

is not specific to still images. NLM may operate in a similar way on frames of a 

film, using for averaging pixels from various other frames. This is logical since 

the probability of a series of consecutive frames to share a great amount of similar

pixels is very high. Previous methods that were trying to use inter-frame 

averaging usually run into the “motion estimation” problem: the need to assess the 

relative movement between each two frames so that the filtered pixel could be 

tracked through the frames. NLM however, is free of motion estimation since the 

search for similar neighborhoods can be done on all the pixels in a given subset of 

frames, or in a search window fashion limiting the search in three dimensions 

instead of two. This algorithm has the same time complexity of the original 

algorithm multiplied by the number of frames that participate in averaging. The 

high complexity of this algorithm prevents it from being used in main stream 

video applications.

3.3.
NLM time-complexity

The time-complexity of NLM can be written as ( )wnO 2 where n is the 

number of pixels in the image and w is the size of the neighborhood window. 

When considering use of NLM for a standard 3Mpixel color image, with three 

color planes and a small neighborhood window of size 25, the required number of 
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operations reaches ( ) 14220 1042.725233 ∗=∗∗∗ . This is clearly impractical to 

achieve in reasonable time. For this reason, NLM defines a search window in 

which the search for similar neighborhoods will be conducted. This relies on the 

assumption that in natural images close by features tend to be similar. This allows 

us to reduce the time-complexity to ( )nswO , when s is the size of the search 

window. Repeating the example above with search window of size 400, results in

( ) 1020 1044.925400233 ∗=∗∗∗∗ operations. This is still in the neighborhood of 

100Giga operations.

Note that by using the search window instead of searching similarity over 

the whole image, the modified algorithm is giving up on the possibility to filter 

similar image features, which are at a bigger distance than the search window size. 

In Figure 10, while filtering p1, we can use the value of p2 for filtering but not of 

p3 since it is out of the search window range (marked as a white square around p1).

lena.gray.tiff

p2

p3

p1

Figure 10 similarity

To conclude, even while sacrificing some of the original algorithm abilities, 

the modified algorithm does not succeed in reducing the time-complexity to an 

acceptable level.

Another straightforward way to reduce complexity is by reducing the 

similarity (neighborhood) window size. This may cause image distortions due to 
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insufficient similarity information. The authors of  [1] recommend a 9x9 or 7x7 

similarity window for gray level images and 5x5 or even 3x3 similarity windows 

for low noise color images. We may deduce there isn’t much room for 

acceleration by sacrificing this important feature.



 4.Optimizing NLM 28

4
Optimizing NLM

This section details a proposal to optimize NLM using not only 

mathematical algorithmic approach, but also considering various image properties 

and characteristics of the human vision system (HVS) that were left out from the 

original NLM proposal. The following reviews the different approaches.

4.1.
Predicting Similarity Results

The high time-complexity of NLM comes from the need to perform the 

weighted L2 distance computation on all pairs of pixels, or at least between each 

pixel and all the pixels in its search window. If we could have prior knowledge of 

comparisons that will provide a similarity so low that it’s contribution to the 

weighted average of a pixel will be negligible, we could omit all computations of 

this pair of pixels. What we need is a simple test that can predict the results of the 

weighted L2 distance computation.

A scheme similar to that is already in use in other image processing 

algorithms. This work tries to make use of the knowledge accumulated in those 

areas in the acceleration of NLM. Image coding by vector quantization (VQ) is 

dealing with the need to match similar pixel vectors, which can also be looked at 

as neighborhoods, and do it fast enough to enable video compression. The 

following is a review of some VQ acceleration methods and their adaptation to the 

NLM environment.

4.1.1.
Vector Quantization

VQ is an image compression scheme in which the image is coded by a 

limited number of vectors. This way we can have a compact description of the 

image based on a dictionary of vectors of pixels and an image pointing to the 

codebook instead of preserving the full image at original resolution. This is 
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possible mainly because a natural image is build of features predominantly 

containing smooth gradients. Adjacent pixels of those features have similar values 

and quantizing those values to a codeword produces a very small error, which in 

most cases (depending on the quantization level) is invisible to the human eye. VQ

is asymmetric in its nature. Compression is highly computational intensive mainly 

in building the codebook and partially in finding the best match for each vector. 

Decompression however, uses a single look up table access per vector and is 

therefore very fast. The following is a mathematical background review of VQ

mapping of vectors and code-words:

We can define VQ as mapping Q of the k-dimensional Euclidean space kR

to a finite subset of codewords C of kR . Thus: CRQ k →: where

{ }NiCC i ,...,2,1: == is the set of reproduction vectors called codebook of size N. 

Each k-dimensional image vector ( )kxxxx ,...,, 21= is compared with all 

codewords in the codebook according to the distortion measure of square 

Euclidean distance (L2) as we have already defined in Equation 2, only this time 

the distance is measured between a pixel vector X and a codeword iC

( ) ( )∑
=

−=
k

j
ijii cxCXd

1

22 , .

The Q mapping will match X with the best matching codeword bmC that 

will satisfy the condition:

( ) ( )iNibm CXdCXd ,min, 2

,..,1

2

=
= .

Our interest in VQ comes from the second stage of compression – finding 

the best matching codeword for an input vector. As can be seen, VQ encoding 

requires a full search algorithm for finding the best matching codeword for each 

vector, while VQ decoding can be implemented as a simple lookup table. In order 

to speed up the encoding process, several algorithms have been proposed for the 

acceleration of the codeword matching process. All methods investigated in this 

work implement full search with a preliminary evaluation stage before starting the 

L2 computations. The evaluation stage uses “selection parameters” that can rapidly 

predict the lower bounds of the L2 computations. By evaluating the selection 

parameters, we are able to select appropriate codewords to be compared to each 
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vector, and reject inappropriate codewords without performing the L2 distance 

computations. 

4.1.1.1.
Equal-average Nearest Neighbor Search – ENNS

This method was proposed by Ra and Kim  [8] and is common in VQ coding. 

It uses the fact that the square Euclidean distance between two vectors is usually 

in the neighborhood of the square means distance of these vectors. In simple 

words, if two vectors have a small distance then their means have similar values. 

The technique uses the average value of a vector as a selection parameter to reject 

code vectors not similar to the input vector and that way reduces similarity 

computation considerably.

When k is the dimension of the vectors, X is the input pixel vector and C is 

the collection of code vectors, we can write the following inequality from  [8]:

Equation 6. 22 )(),( ii CXkCXd −≥

The L2 distance will be greater or equal to the vector dimension multiplied 

by the average difference square. The search for the codeword will work by 

calculating the distance of the first codeword, setting it as a minimum and 

calculating L2 distance only for those codewords that may provide a lower 

distance according to the average inequality.

Experimental results ( [11],  [12]) show reduction of 81-95% in number of 

computations due to the high rejection rate in the selection process. This leads to 

reducing the compression time by a factor of 4 to 15.

4.1.1.2.
Equal-average Equal-variance Nearest Neighbor Search – EENNS

This method was proposed by Lee and Chen  [9] and is also very common in 

VQ coding. Two vectors with the same mean can still have a big distance from 

each other. By taking into account the variance difference between two vectors as 

a secondary selection parameter, we can reject many of those codewords with 

similar mean and big distance. In conjunction with ENNS criterion, we use the 
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following criterion from  [9] to reject some of the candidates that passed through 

the first filter.

Equation 7. ( ) ( )22 ,
iCxi VVkCXd −≥

where 2
xV represent the variance of the vectors, defined as:

( )
2

1

2 1 ∑
=

−=
k

j
jx xx

k
V

The L2 distance will be greater or equal to the vector dimension multiplied 

by the standard deviation difference square. The search for the codeword will 

work by calculating the distance of the first codeword, setting it as a minimum 

and calculating L2 distance only for those codewords that may provide a lower 

distance according to ENNS and EENNS inequalities.

Note that while all ENNS and VQ operations are relatively simple, EENNS

requires also square root computation. Even so, the additional computation is 

worthwhile since higher rejection rate can be achieved and much smaller number 

of codewords needs to be computed for L2 distance.

Experimental results  [11],  [12]) show reduction of 89-98% in number of 

computations due to the high rejection rate in the selection process. This leads to 

reducing the compression time by a factor of 6 to 25.

4.1.1.3.
Improved Equal-average Equal-variance Nearest Neighbor Search –
IEENNS

In addition to the two inequalities presented by ENNS and EENNS, a third 

one was presented by Baek, Jeon and Sung  [10]:

Equation 8. ( ) ( ) ( )222 ,
iCxii VVkCXkCXd −+−≥

Notations are similar to ENNS and EENNS, using average and standard 

deviation measures as selection parameters to rapidly compute the lower bound 

for the 2L distance. This improvement uses the same information as EENNS

without any additional memory, and manages to combine the two statistical 

measures of average and standard deviation presented in Equation 6 and Equation 

7 into a single elegant inequality. The sum distance limit is of course higher than 



 4.Optimizing NLM 32

each of the distances set by previous methods and thus higher rejection rate is 

achieved.

Experimental results  [11],  [12]) show reduction of 92-98% in number of 

computations due to the high rejection rate in the selection process. This leads to 

reducing the compression time by a factor of 8 to 29.

4.1.1.4.
Additional VQ methods and the noisy environment

Additional VQ acceleration techniques have been considered for the purpose 

of NLM acceleration. Among them the algorithms suggested by Pan Lu and Sun 

 [11] and Wang and Tang  [12]. Those algorithms are based on increasing the 

rejection rate by dividing the vector into sub-vectors and using the previously 

explained methods (IENNS etc.) on the sub-vector.

The use of these techniques in NLM acceleration may be further investigated 

but is left out of the scope of this work.

4.1.2.
Use of IEENNS for NLM acceleration

The resemblance between VQ and NLM similarity measures makes VQ

acceleration methods obvious candidates for NLM acceleration. It may be possible 

to reduce the number of weighted L2 distance computations by rejecting vectors 

with low limit on the weight contribution to a specific pixel. The main differences 

between the VQ and NLM algorithms are:

1. VQ uses L2 distance metrics while NLM uses weighted L2 distance

metrics.

2. VQ compares a vector to a set of code-words from a codebook, while 

NLM compares all combinations of two vectors within a set or sub-set.

In order to take advantage of the acceleration algorithm developed for VQ in 

the NLM environment, we need to develop new inequalities to match the weighted

L2 metrics, and new selection parameters for this metrics. Following is a 

mathematical adaptation of L2 metrics used in IEENNS to the weighted L2 metrics 

used in NLM.
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4.1.2.1.
Metrics Definitions

When ( )kxxxx ,...,, 21= and ( )kyyyy ,...,, 21= are vectors in kR the L2 distance is 

given by previously defined Equation 2. ( ) ( )∑
=

−=
k

j
jj yxyxd

1

22 , .

The mean and variance are defined by Equation 9 and Equation 10:

Equation 9. ∑
=

=
k

j
jx

k
x

1

1

Equation 10. ( )∑
=

−=
k

j
jx xx

k
V

1

22 1

and the weighted L2 distance was already defined in Equation 3.

( ) ( ) 0,
1

22 ≥−= ∑
=

j

k

j
jjja aandyxayxd .

Recall the NLM algorithm restricts the sum of the coefficients to be 1 

(∑
=

=
k

j
ja

1
1), this restriction however, is not relevant for this metrics.

4.1.2.2.
Adaptation of IEENNS to the weighted L2 distance metrics

In this section we shall look for selection process parameters similar to the 

mean and standard deviation parameters used by IEENNS. Those parameters will 

provide us with fast evaluation of the prospects of the L2 distance computation to 

provide us with any significant weight for the averaging process.

From the weighted L2 distance definition (Equation 3) we can easily get 

back to the L2 distance (Equation 2).

( ) ( ) ( ) ( )aa

k

j
jjjj

k

j
jjja yxdyaxayxayxd ,, 2

1

2

1

22 ≡−=−≡ ∑∑
==

by defining ( )kka xaxaxax ,...,, 2211= and ( )kka yayayay ,...,, 2211= as

the “root weighted vectors”.

We have found that the weighted L2 distance between two vectors is equal 

to the non-weighted L2 distance between the root weighted vectors. Now we can 
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use the VQ acceleration inequalities for the weighted L2 metrics. All we need is to 

find the corresponding selection parameters (mean and standard deviation) 

definition for the root weighted vectors. In this space the ”root weighted mean”, 

according to Equation 9 will be:

Equation 11. ∑∑
==

==
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j
jj

k

j
aja xa

k
x

k
x

11

11

and the ”root weighted variance”, according to Equation 10, will be:

Equation 12. ( ) ( )∑∑
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and the IEENNS inequality (Equation 8) for the weighted metrics will be:

( ) ( ) ( ) ( )2222 ,,
aa yxaaaaa VVkyxkyxdyxd −+−≥=

therefore, the weighted L2 distance between two vectors cannot be smaller than:

Equation 13. ( ) ( ) ( )22
min

2 ,
aa yxaaa VVkyxkyxd −+−=

From Equation 11, Equation 12 and Equation 13 we can write:

Equation 14. ( ) ( ) ( )22
min

2 , yxa VVyxyxd ′−′+′−′=

defining the selection process parameters as:

Equation 15. ∑
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The minimum weighted L2 distance is therefore given by the L2 distance

between the two corresponding points in the ( )xVx ′′, selection parameters space.

The equations for the minimum weighted L2 distance and the selection parameters 

(Equation 14, Equation 15 and Equation 16) will accompany us through this work 

as the basis for the “Minimum distance filter” ( 4.1.2.3) and for the suggested 

“Clustering scheme” ( 4.2.1).
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4.1.2.3.
Minimum distance filter

We now have a metric that can be used to set a lower bound on the weighted

L2 distance of two neighborhoods. This of course sets an upper bound on the 

weight contribution of the pixels in their mutual filtering.

By calculating and saving the ( )xaa Vx , parameters for each of the pixels in 

the image, we can determine the lower bound on the distance between the pixels. 

From Equation 6, we can find the maximum weight contribution expected from 

this comparison:

( )
( )
2

2
min ,)1(

max , h
yxda

eyxw
−

=

Or in short

2

2
min

max
h

da

ew
−

=

We can now set a threshold value for comparisons. If THw is the lowest 

acceptable weight we are willing to invest a weighted L2 computation for, we shall

compute weighted L2 distance only if:

Equation 17. ( ) ( ) ( )THyxa whVVyxd ln2222
min −<′−′+′−′=

Remember that the expected square distance between two identical non-

noisy neighborhoods is 22 nσ . Following that logic, we shall search for a limiter 

proportional to 2
nσ . We need to remember that the expected weighted L2 distance

may be much larger than the lower bound we have found with Equation 17, so 

setting a low enough threshold can eliminate most cases of non-contributing 

computations, without blocking computations that will yield in some contribution 

even if somewhat higher than the threshold we are setting.

4.1.3.
Gradient filter

Let us first understand the meaning of the gradient function in the context of 

images. If ( )yxI , is a two dimensional image intensity level function, then the 

gradient of ( )yxI , , marked ( )yxI ,∇ , provides us with information about the 
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steepness of the ( )yxI , function at any point ( )yx, . The direction of the steepest 

slope at each point of ( )yxI , is given by the gradient angle, while the gradient 

magnitude tells us how steep the slope is. The gradient is calculated using 

horizontal and vertical high-pass filter masks. For example, the horizontal and 

vertical kernels used for a 5x5 gradient computation are:
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The gradient magnitude is computed by the derivations in both horizontal 

and vertical directions using convolution operation with the above kernels. If the 

result of the convolutions are ( )
x

yxIyxV
∂

∂
=

,),( and ( )
y

yxIyxH
∂

∂
=

,),( then the 

gradient magnitude is 

( ) ( ) ( )22 ,,, yxVyxHyxI +=∇

and the orientation is given by:

),(
),(arctan

yxV
yxHI =∠∇

Figure 11 is an example of image gradient. The left is the original image, 

the center is a representation of the image gradient magnitude, and the right shows 

the image gradient orientation. Low image gradients are darker than the steep 

slopes, and image angle is quantized into four gray levels showing gradients 

pointing left, right, up and down. Note that flat areas have a very low (dark) 

gradient magnitude and an unstable orientation, while steep gradients are defined 

by white lines in the magnitude image and well defined orientation.

Figure 11 Image gradient example
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Now that gradient is explained, let us understand how we can use the 

gradients of pixel neighborhoods to reject unnecessary weighted L2 distance 

computations. Although no exact lower bound equation can be presented in this 

case (as in the case of the minimum distance filter), it is intuitive that two 

neighborhoods of significant gradient magnitudes are not likely to produce 

significant weight if the angle between their gradient orientations is too big. A 

filter based on this observation was used by Mahmoudi and Sapiro  [5], which 

calculated the average gradient magnitude and average gradient orientation for 

each pixel neighborhood. When ∇σ is a threshold on gradients magnitude and θσ

is a threshold on the angle between gradients orientations, the actual filter they 

used to reject comparisons of pixels i and j is given by:

If ( ) ( ) ( ) θσθσσ >>∇>∇ ∇∇ jiandjvandiv , then reject comparison

between the neighborhoods of i and j.

The gradient filter used in this work uses local gradient values instead of the 

average values used in  [5]. We have found the local gradient to be more relevant 

to the weighted L2 distance result than the average gradient. This is a 

complementary filter to the minimum distance filter which allows filtering away 

weighted L2 computations between neighborhoods of similar root weighted mean 

and variance, but are rotated at a certain angle and are not expected to produce 

any significant weight.

4.2.
Clustering techniques

Another way to eliminate redundant computations is by clustering the pixel 

neighborhood into groups of already similar pixels. The clustering scheme is 

suggested as a preliminary step before computing similarities. Similarities will be 

computed only within a cluster of proximities, saving the vast majority of 

irrelevant computations. This is similar to the scheme suggested by Mahmoudi 

and Sapiro in  [5]. They suggest clustering by the neighborhood mean and gradient 

and testing similarities inside and between adjacent blocks. The proposed method 

here will also use clustering into blocks, but will also provide exact limits to the 

expected contribution of a pixel within a block.
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When using clustering we need to consider the following factors:

1. The clustering process must have lower time-complexity so it will 

not penalize the overall algorithm.

2. The clustering process should create an associated neighborhood for 

each pixel, in which the original NLM algorithm will operate.

3. The clustering neighborhood should have high number of similar 

pixels.

4.2.1.
Clustering scheme

The clustering scheme uses classification of each pixel neighborhood 

according to parameters that can be used to predict the outcome of the weighted

L2 distance computation. The two chosen parameters are the selection process 

parameters defined in “ 4.1.2.2. Adaptation of IEENNS to the weighted L2 distance

metrics” section.

Figure 12 shows classification of “lena” noisy image neighborhoods 

according to the x′ and xV ′ parameters. The horizontal axis represents the root 

weighted mean ( x′ ) while the vertical represents root weighted standard deviation

( xV ′ ). Each white point represents the location of one or more neighborhoods in 

the image. Each rectangle in the grid represents a bucket of neighborhood vectors.

The diagonal line marks the locations of “flat zones”, areas where the local 

intensity level variance (not weighted variance) within the neighborhood is low. 

Since “lena” is a natural image with many flat zones, we can see that most of the 

neighborhoods in the image are along this line, and the bucket density drops as the 

distance from the line grows.
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Figure 12 Classification by root weighted mean and root weighted standard deviation

We can now compute the lower bound of the weighted L2 distance between 

any two pixel neighborhoods in the “lena” image by finding the L2 distance 

between the two corresponding points in Figure 12. To do that effectively, we 

need to sort the image vectors into buckets. Each bucket containing only pixels 

with similar root weighted mean ( x′ ) and root weighted standard deviation ( xV ′ ). 

The proposed organization is in the form of a two dimensional table pointing to 

linked lists of similar pixels. The entries to the table are the quantized x′ and xV ′

values. Given a list of pixels with same ( )xVx ′′, values, access to lists with pixels 

within a known distance bound can be done in ( )1O time-complexity. Populating 

the table can be done as a preliminary stage and the time-complexity of this stage 

is linear to the number of pixels in the image.

A search for similar neighborhoods can now be done in the clustering table 

instead of the original image. This reduces the original time-complexity from 

quadratic on the number of pixels in the image to quadratic on the number of 

pixels in related lists. This of course, might have worst case time-complexity 

equal to the original one (in case of a totally flat image for example), but in typical 

case of natural images the reduced complexity model is much more probable. 

Linear time-complexity can be forced by fixing a maximum size search window 

in the clustering table domain, the same way it was done in the NLM search 

window approach.
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Note that searching in the clustering table domain brings us much closer to 

the original idea of searching for matching features in the whole image. This 

principle was sacrificed in the search window version of the original NLM to 

ensure acceptable time-complexity. Clustering may fit many high detailed image 

features into the same or near-by buckets, even if geographic distance between 

those features is bigger than the original search window size.

4.3.
Properties of Natural Images

Natural images tend to have large flat zones. These are areas with small 

image gradient and small variance between neighboring pixels. In the proposed 

classification scheme, pixels in these areas are likely to produce similar x′ and 

xV ′ values. Since those are typically large zones, we expect the distribution of the 

classification table to be of much higher density in the flat zones than in the high 

contrast areas. This can be seen as both a problem and an opportunity. On one 

hand we have many pixels to participate in averaging a noisy area, on the other for 

faster execution we prefer smaller image sets.

As for the flat zones, a search for similar neighborhoods in a small 

geographical distance may yield in most cases better results than a search through 

the pre-classified table. In this case, the original NLM search window approach 

may really have an advantage. In the scarce high contrast areas, the clustering 

scheme should have an advantage over the geographical search. This is also a 

conclusion that can be obtained from  [5], which reports an advantage to the 

original NLM algorithm in flat areas and an advantage to gradient/mean clustering 

in the high contrast areas. For this reason, the proposal is to keep the geographic 

search for the flat zones, and use cluster based search for the high contrast zones.

There are other ways to make use of the reviewed properties, but in order to 

make use of these properties in the proposed algorithm; this information needs to 

be considered in relation to some of the human vision system characteristics. 

Combining the two issues with NLM parameters have a potential of improving 

both NLM execution time and perceived output quality.
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4.4.
Human Vision System considerations

Two major factors dominate the quality perception of a natural image by the 

human eye: blur and noise. The two of them need to be taken into consideration in 

any attempt of improving image quality through image processing. In many cases 

the two factors are inter-related and improving one of them may degrade the 

other. For example, in many noise reduction techniques, the averaging of adjacent 

pixels is a great tool for noise reduction, but it is accompanied by a strong blurring 

effect that degrades image quality. On the other hand, a convolution high-pass 

filter that is meant to increase image sharpness (reduce blur), gives a great boost 

to any noise in the image.

Following is a review of issues concerning HVS sensitivity to noise and 

blur, that need to be attended, and may open up opportunities in approaching NLM

acceleration.

4.4.1.
HVS noise sensitivity

The Human Vision System (HVS) sensitivity to noise is highly dependent on 

the background image activity. A smooth image is much more sensitive to noise 

than an image with many details. Winkler and Süsstrunk  [13] showed linear 

relationship between the noise standard deviation and the minimal image standard 

deviation needed for the standard viewer to notice that noise. In simple words, the

same level of noise which is noticeable on a flat image may be “masked” by the 

details of a high contrast image.
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Figure 13 Noise in flat and high contrast areas. Left - original images, Right – added 

noise with 20=nσ

In this example (Figure 13) our vision attention is drawn to the noisy face 

but the same level of noise that exist in the stripy head cover needs much more of 

our attention to be noticed.

The concept of “noticeable noise” is used in digital image watermarking, a 

technology to add visible or invisible data on top of images. An example of digital 

watermarking is given in Figure 14. 

Figure 14 Digital watermarking

Figure 14 shows an example of a visible watermark. In this kind of 

watermarks it is essential to ensure their visibility on changing background. Other 
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watermarks are invisible. In those applications it is important to keep the 

watermark image “masked” by the image.

In watermarking it is common to use a parameter called the Noise Visibility 

Function (NVF) which uses Gaussian model to estimate how much texture there is 

on any area of the image. This function, suggested by Voloshynovskiy et al. in 

 [14] is defined

( )iiNVF
x
21

1)(
θσ+

=

where ( )ix
2σ is the local variance of the image around pixel i, andθ is a tuning 

parameter defined as 
2

maxx

D
σ

θ = where 2
maxxσ is the maximum image variance 

( )ixIix
22

max maxσσ
∈

= and D is an experimental parameter between 50 and 100. For 

high contrast image sections, which are characterized by high variance, the NVF is 

close to 0, while for flat zones, NVF is close to 1.

4.4.2.
HVS blur sensitivity

HVS contrast sensitivity depends on the spatial frequency. Figure 15, by 

Izumi Ohzawa  [15] is an image of lines alternating at spatial frequency increasing 

from left to right, and contrast increasing from top to bottom.
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Figure 15 HVS contrast sensitivity

It can be seen that lines are easier to see through the whole height of the 

image in the middle section. This brought Campbell and Robson  [16] to present 

the contrast sensitivity function which may change from viewer to viewer but has 

the general form showed in Figure 16.
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Figure 16 Contrast Sensitivity Function
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A side effect of average pixels in the process of noise reduction is decrease 

of contrast. As seen from the contrast sensitivity function, at certain spatial 

frequencies this can cause the loss of details.

Johnson and Fairchild  [17] conducted a large scale psycho-physical 

experiment to study HVS perception of sharpness. Sharpness is part of the 

subjective image quality criteria. They have found that image resolution is the 

main factor in sharpness perception. An interesting finding is that low levels of 

additive noise increase image sharpness perception.

It is important that during the noise filtering process, the image sharpness 

perception will not be damaged too much. It is also important to keep small image 

details intact. This is actually one of the main reasons for NLM, the ability to filter 

similar pixels makes sure averaging keeps the values close to the original, but 

using a high filtering factor on high resolution areas may degrade the sharpness 

perception.

4.4.3.
A few words about color

When dealing with color images, all above discussion about noise and blur 

sensitivity still holds, but with varying levels in different image channels 

depending on the color scheme used. The luminance channel of CIELab space is 

much more sensitive to noise and blur than the chromatic channels. The Green 

channel of RGB is more sensitive than Red and Blue channels; The Yellow 

channel of CMYK is the less sensitive than the Black Magenta and Cyan channels.

With that information in mind, it is clear that if operating NLM on single 

color dimension we need to take into account the specific sensitivity of each color 

channel. Possible optimizations in color images filtering may be achieved by 

adopting techniques from other color processing algorithms such as JPEG 

compression. Analyzing similarity in the luminance channel for example and 

applying results to all other channels may be the way to go.

This work will not try to achieve additional advances in the area of color, 

based on the assumption that what is achieved for gray images should function 

just as well, if not better in color images.



 4.Optimizing NLM 46

4.5.
Tuning NLM parameters

Some of the suggestions made in this work for improving NLM are related 

to controlling NLM parameters. The first one is the decay factor, already defined 

by NLM. The others parameters are introduced in the following sub-sections.

4.5.1.
Decay factor

The important role of the decay factor (h) can now be better understood 

after reviewing the HVS sensitivity to noise and sharpness. As seen in section  3.1, 

the weights are assigned according to Equation 4 which can be written as:

( ) ( )
( )

( )
2

2 ,
11, h

NNd jia

e
iZ

jiw
−

=

For a fixed weighted L2 distance between two neighborhoods, 2h will 

determine the weight of pixel j in averaging of pixel i. A high 2h value will cause 

high filtering level through high weights in the average, and low 2h value will 

better preserve image details through low weights in the averages. A good tradeoff 

should be achieved to have just the right filtering level. A lower level will not 

remove enough noise and a higher level will blur details away. The authors of  [1]

recommend on using a filtering factor of the order of the noise standard deviation. 

In their example, a value of nσ10 is used. The relationship between noise level 

and filtering level is obvious, but there is no compensation for detail loss caused 

by high filtering level. The effect of the decay factor is summarized in Table 1.

h Noise reduction Image blur

Low bad good

High good bad

Table 1 decay factor influence

Table 2 summarizes the sensitivity of the HVS to noise and to blur in flat 

areas and high contrast areas.
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HVS sensitivity Flat area High contrast area

Noise high low

Blur low high

Table 2 HVS sensitivity to noise and blur

The obvious conclusion is that by adapting the decay factor to each pixel’s 

contrast level, we can optimize NLM quality. The first proposal of this work in 

relation to NLM parameters is to use a variable filtering factor instead of the fixed 

one. The variable filtering factor is linear to the standard deviation of the noise as 

suggested in  [1], but should also be a function of the contrast of the neighborhood 

of the filtered pixel. In general: ( )222
Nini fh σσ= when 2

nσ is the noise variance and 

2
Niσ is the neighborhood variance of the filtered pixel.

At this point it is essential to understand that calculating the variance of the 

noisy image, produces the sum of the original image variance and the noise 

variance:

( ) ( ) 222
nii uv σσσ +=

This should be taken into account and adjusted before using 2
Niσ in any 

calculation.

4.5.2.
Weight objective

As explained, when clustering pixels into blocks, we expect the blocks 

containing flat neighborhoods to be highly populated while high contrast 

neighborhood blocks to be poorly populated.

On one hand, this is exactly what we need in terms of noise reduction, a 

high number of averaging pixels for flat area. On the other hand, since the 

algorithm complexity is linear to the number of pixels in a proximity block, the 

execution of each of the pixels in a block could take long time if it will not be 

limited somehow.

The proposed mechanism for stopping the filtering algorithm is to filter each 

pixel to a point that a certain weight is achieved. Going back again to HVS noise 
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sensitivity, this level should also be a function of the filtered pixel neighborhood 

contrast ( )2
NiTHi fw σ= .

Low frequency areas will be filtered to a high weight objective with a low 

decay factor allowing for higher filtering level in an area sensitive to noise and 

less sensitive to detail loss. High frequency areas will be filtered with low weight 

objective and a high decay factor.

4.5.2.1.
Use of weight objective in the image domain

The original NLM algorithm limits the search for similar pixel 

neighborhoods by a fixed search window. There is no importance to the order of 

the search since all pixels within the search window will contribute their weights

to the averaging. If we are using the weight objective as a limiter instead of, or in 

addition to the search window, then we are hoping not to cover all the pixels in the 

window in our search and the search order should start with those pixels which are 

more probable of being similar to the filtered pixel. The suggestion is to conduct 

the search in an increasing radius around the central pixel. This way we look for 

similar pixels first where the change of finding them is higher.
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Figure 17 increasing radius search

The search starts at the center pixel (point A) and advances through the 

pixels by their distance order from the center pixel, spiraling around it until the 

accumulated weight reaches the weight objective (point B). The original search 
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window may be used as a worst case bound in case the desired weight objective is

not reached.

4.5.3.
Minimum weight contribution

When searching for similar pixels in the clustered domain, a third parameter 

is used for computing the valid blocks to participate in the filtering of a given 

pixel. For such a pixel we already know the decay factor, so in order to decide the 

distance of the blocks considered in the filtering, we should asses the maximal 

weight contribution of pixels in those groups. If blocks are divided using

quantized root weighted mean distance of md , and quantized root weighted 

standard deviation of vd then by IEENNS, the minimal distance of a block mn

root weighted means and vn root weighted standard deviation away is given by:

( )( ) ( )( )( )222
max 11 vvmm dndnkd −+−=

and the maximum weight that can be contributed is

( ) ( )
( ) 2

2
max11, ih

d

e
iZ

jiw
−

=

Since ( )iZ is only the normalization constant, a very small value of 
2

2
max

ih
d

e
−

is 

considered insignificant to the filtering process. The minimum weight 

contribution minw will allow the computation of the search radius between adjacent 

blocks

( )min
22

max
2 ln whdr i−==

4.5.4.
Weighted L2 distance of flat areas

It is possible that the IEENNS lower bound measure can replace the exact 

weighted L2 distance computation as a “similarity measure” in very flat areas 

without any visible artifacts. If so, significant acceleration may be achieved.
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4.6.
Symmetry

When calculating the weighted L2 distance between two pixel 

neighborhoods, we may rotate the compared neighborhood around the center pixel 

in an angle that minimizes the weighted L2 distance between the two 

neighborhoods. This is not done in the original NLM algorithm or in  [5]. This way 

a higher “hit-rate” may be achieved in comparisons and the size of the search 

window may be reduced.

Finding the right angle to rotate may be done by computing the local 

gradient of the neighborhood at the central pixel ).(iv∇ and computing its

orientation. This should be done only for neighborhoods with high gradient

magnitude, otherwise the gradient may be the product of noise only and therefore 

unreliable.

4.7.
Additional methods

In a pseudo-code description of the NLM algorithm  [18] posted by Buades, 

of the original authors, reveals a detail that escaped the original NLM publications.

According to the original algorithm, each pixel contributes its own “self-weight” 

to its filtering. The self-weight always produces 1),( =xxw , and may be much 

higher than weights contributed by other pixels, thus reducing the filtering level of 

that pixel leaving it with a considerable amount of noise. The pseudo-code 

prevents “over-weighting” by lowering the self-weight to a level similar to other 

pixel weights. More accurately, instead of assigning 1),( =xxw , the weight of 

each pixel in its own filtering will be the maximum weight value assigned by any 

of the other participating pixels:

)(_,|),(max),( xwindowsearchyxyyxwxxw ∈≠= .

This should be helpful in smoothing rare pixels that cannot find similar 

enough pixels to be filtered with. Although this is not part of our proposition, we 

feel the need to test its influence on the results since no discussion of this feature 

can be found in the original NLM publications.



 4.Optimizing NLM 51

4.8.
Summary of proposed methods

So far this work has the following propositions with potential to improve 

NLM and accelerate its execution:

1. Pre-classification of pixels neighborhoods according to their root 

weighted mean and root weighted standard deviation to reject pixels 

with high weighted L2 distance from the filtered pixel.

2. Adaptive decay factor as a function of local image variance.

3. Use of weight objective in addition the search window as stop 

conditions to pixel filtering.

4. Rotation of compared neighborhoods to a point where their gradients 

are in the same direction to increase “hit-rate” of similar pixels.

5. Cluster image according the classification parameters and conduct a 

search for similarities in the clustered dimension.

6. Conduct similarity searches of pixels residing in flat areas in the 

image plane, and of pixels residing in high contrast areas in the 

clustered dimension table.

Note that except for the clustering proposition (5,6), all other propositions 

may be used with the original NLM and may bring some benefit both in image 

quality and acceleration as will be demonstrated in the “Experimental results” 

section. In some cases the method cannot be tested to full extent with the original 

NLM. For example, using a very low decay factor for high variance 

neighborhoods is expected to fail with the original NLM since the probability of 

finding similar neighborhoods in the limited search window is small. The 

detachment of the proposed methods from the clustering method, enables testing 

of the various methods independently as modified options on the original NLM

algorithm.

4.9.
Proposed algorithm

First, the image is scanned and each pixel’s neighborhood is preprocessed to 

extract the following parameters:

1. Local variance
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2. Local root weighted mean

3. Local root weighted standard deviation

4. Local gradient

This is the pixel classification process which is demonstrated visually in the 

following section ( 4.10). The image is then segmented into blocks defined by the 

local root weighted mean and local root weighted standard deviation. Each pixel is 

added to a linked list holding pixels with the same quantized weighted mean and 

variance. The table is then processed list by list, pixel by pixel in the following 

way:

1. The filtered pixel i is rotated so that it’s gradient is pointing north.

2. The variance 2
iσ of i is computed and from it the three filtering 

parameters:

a. Decay factor )( 22
ii fh σ=

b. Weight objective )()( 2
iTH fiw σ=

c. Max distance )( 22
max ihfd =

3. According to local image variance, a decision is made if search for 

similar neighborhoods will be conducted in the image plane or the 

clustering table plane.

4. While no stop condition is reached, we keep looking for filtering pixels 

in the neighborhoods of the root weighted mean and root weighted 

standard deviation. If IEENNS condition 222
max )()( ji VVjid ′−′+′−′≥ is 

met for any pixel j then the actual distance ),(2 jida is computed while 

rotating pixel j with its gradient facing north, and the filtered pixel 

weight iw and value ( )iu are incremented according to the 

comparison’s result.

5. After stop condition was met, pixel i is updated with the filtered value 

( )iu .
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4.10.
Pixel classification

The pixel classification scheme calculates a series of parameters for each of 

the pixels in the image that are later used by the algorithm. The calculated 

parameters are:

1. Root weighted mean

2. Root weighted standard deviation

3. Mean

4. Variance

5. Gradient magnitude

6. Gradient orientation (angle)

The following is an example of image pixel classification. The original 

image is “lena” and the added white noise has standard deviation of 20=nσ . The 

kernel used for filtering and for classification in this case is a 7x7 Gaussian kernel. 

Each parameter is presented as an image. In all images, white areas represent high 

values while dark areas represent low values. The images, left to right and top to 

bottom are:

1. Original image.

2. Noisy image ( 20=nσ ).

3. Root weighted mean image.

4. Root weighted standard deviation image.

5. Variance image, after removing the noise variance, and clipping all 

levels above 255 to white.

6. Mean image.

7. Gradient magnitude image. The dark areas represent low gradient 

magnitude and white areas for steep gradients.

8. Gradient orientation image. For demonstration, there are four gray 

levels in this image, referring to the gradient direction up, right, 

down or left. 
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Figure 18 Pixel Classification
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4.11.
Calibrating Expectations

There is an inherent limit to the acceleration that can be achieved by the 

proposed algorithm. Since it uses the same similarity measure as the original 

algorithm, we should expect the same high number of computations per pixel 

comparison. The improvement should come from lowering the number of pixel 

comparisons and not from accelerating each comparison. The results should be 

compared to the “search window” approach and not to the “full image search” 

algorithm since the latter is impractical. 

The original set-up of NLM experiments  [3] will be used as a reference for 

comparison. That is, a search window of 2121∗ pixels, a similarity square of 

77 ∗ pixels and decay factor of nh σ102 = . In this setup, the original search 

window algorithm performs 44012121 =−∗ comparisons per pixel.

In the proposed algorithm, the number of comparisons depends on the 

characteristics of the filtered pixel. For the pixels that reside in flat zones, a 

minimum number of comparisons should take place in order to average each 

pixel. We cannot expect this number to be better than other “simple” filtering 

algorithms. If we take as a reference Gaussian smoothing with 5x5 kernel for 

example, we should expect each pixel to be filtered with at least 25 pixels. Even if 

the search for those pixels is easier in flat zones, the best acceleration that can be 

achieved is about x20.

For the active zones, the number of comparisons may be much smaller than

the original algorithm since the expected number of similar pixels is lower than

the search window size, and the number of required pixels for active zones is 

generally lower than in flat zones taking into account the difficulty of the HVS to 

detect variations in those areas. This shows that the proposed algorithm is 

expected to perform better on highly detailed images, than on relatively flat 

images. Since the majority of natural image pixels tend to be in the flat zones, our 

expectation for acceleration drops sharply. Estimating about 50% pixels in flat 

zones, an acceleration of x30-40 seems to be the upper limit of what can be 

achieved for natural images with this proposal.
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5
Experimental results

The experiments were conducted on a series of test images that were taken 

from the “USC-SIPI image database”  [19] and the “Ohio-state university signal 

analysis and machine perception laboratory”  [20] and can be seen in Figure 19.

For reference, the image names, left to right and top to bottom, are: “barb”, 

“boat”, “bricks”, “f16”, “goldhill”, “herringbone”, “lena”, “mandrill” and “slope”.

Figure 19 Test images
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The images include six natural images with mixtures of flat zones, high 

contrast areas, different levels of detail density and some periodic image features, 

two images (bricks and herringbone), which are aimed at testing periodic features 

at different cycles, and the synthetic “slope” image to test behavior on slow 

changing image vignettes. 

To facilitate testing and the understanding of obtained results, suggested 

improvement methods were tested independently when possible. The following 

independent tests were conducted on the series of the above pre-selected images.

1. Preventing pixel overweighting as described in section “ 4.7”.

2. Minimum distance filtering as described in section “ 4.1.2.3”. 

Rejecting computations of weighted L2 distance for pixels that 

according to the minimum distance test are expected to provide 

negligible weights for the averaging operation.

3. Gradient orientation filtering as described in section “ 4.1.3”. 

Rejecting computations of weighted L2 distance for pixels that 

according to the minimum angle test are expected to provide 

negligible weights for the averaging operation.

4. Neighborhood rotation to closest gradient orientation as described in 

section “ 4.6” in attempt to increase the “hit-rate” of the compared 

neighborhoods.

5. Replacement of the search window with weight objective conducting 

a spiral search in the image plane as described in sections “ 4.5.2 and 

“ 4.5.2.1”.

6. Using an adaptive decay factor as a function of local image variance

in addition to the weight objective method as described in section 

“ 4.5.1”.

7. Clustering pixel neighborhood vectors by pre-classification of pixels 

neighborhoods according to their root weighted mean and root 

weighted standard deviation, and conducting the similarity searches 

in the clustered domain as described in section “ 4.2”.

8. Alternative similarity measure for flat zones as described in section 

 4.5.4”. Replacing the weighted L2 distance measure with another 

similarity measure once previous filters did not reject the 

comparison.
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After conducting the experiments described above, we have combined all 

successful methods into a single final algorithm. This algorithm has been 

tested in two stages:

9. Final algorithm – combining all successful methods from previous 

experiments.

10. Additional experiments with final algorithm while pushing the 

limits. This includes maximizing rejection of comparisons, and 

minimizing the filtering of active areas.

In all above experiments there are two main factors which are measured:

1. Quality

a. Always in terms of MSE compared to original algorithms 

MSE.

b. In some cases the method noise measure was also used.

2. Acceleration.

The acceleration is measured as the number of weighted L2 distance

operations in the original algorithm divided by the number of weighted L2

distance operations in the tested algorithm. This measure is very close to actual 

time measurements but reduces the importance of specific implementation that 

may not be optimized. Section “ 5.1” gives a more detailed explanation about 

result calculation.

5.1.
Understanding the results

Performance measurement of both acceleration and quality are key issues to 

understand when evaluating the experimental results presented in this chapter. The 

following sections explain the way the measurements are taken, and the reasons 

behind it.

5.1.1.
Measuring acceleration

In order to reduce the effects of software implementation on the acceleration 

results, there are no real run-time measurements in this section. Execution may be 

affected more by the actual implementation than by the algorithm. To be able to 
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work freely, with high accuracy and as close as possible to the original algorithm, 

most of the mathematical functions are using double accuracy floating point 

variables and the original mathematical functions such as exp() and arctan() with 

no attempts to optimize code to fixed point mathematics and approximated 

functions. This kind of optimization should be done after the algorithmic results 

are obtained.

Acceleration is measured as the ratio between the number of weighted L2

distance operation performed by the original algorithm and by the accelerated 

algorithm. This is the same criterion use by Pan in  [11] and by Wang in  [12] to 

evaluate the performance of VQ acceleration techniques and we have found it to 

be the best isolator of the algorithmic approach from implementation details.

5.1.2.
Measuring quality

In most cases the quality measure used is MSE. The MSE is calculated on 

the whole image using “ImageMagick®” compare function, which computes MSE

as if each pixel is of 16bit intensity level.

When ( ){ }Iiiuu ∈= : is the original image, ( ){ }Iiivv ∈= : is the noisy 

image, each pixel u(i) is of 16bit ( ) 1620 <≤ iu and N is the number of pixel in the 

image:

( ) ( )( )21),( ∑
∈

−=
Ii

iviu
N

vuMSE

In cases where visual artifacts are produced, even though MSE may be in the 

desired range, the artifacts are described and a reference image is attached.

5.2.
Experiments

Next sections describe the individual experiments done at this stage.

5.2.1.
Prevent Pixel Overweighting experiment

This method, proposed in  [18] cannot help with acceleration, but may 

improve image quality. The image below shows the quality improvement of this 

method. It is noticeable that some singular pixels without enough pixels to 
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average with, (zoom-in on the area between the eye and the eyebrow) remains 

noisy in the original method, and smoothed when limiting the weight of the 

original pixel to be the highest weight of all other pixels in the search window. 

Comparison between the MSE of the two filtered images also gives an advantage 

to the smoother image (1.462x106 with overweight prevention vs. 1.532x106 with 

the original algorithm).

Figure 20 Preventing pixel overweighting; top left to bottom right: original, noisy, NLM-

filtered, NLM-filtered when limiting pixel overweight

Actually, this method seems to have been in use in the original NLM

algorithm, since the results demonstrated by the original authors seems to be as 

smooth as the bottom-right image. This method has been tested on the whole 

image test suite and was found to consistently improve image quality. For this 

reason, in all comparisons of image quality between the original algorithm and 
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any proposed acceleration algorithm, the overweight prevention method is used in 

both original and proposed algorithms.

5.2.2.
Minimum distance filtering test

This method is based on the minimum distance formula from section 

“ 4.1.2.3”.

Equation 14. ( ) ( ) ( )22
min

2 , yxa VVyxyxd ′−′+′−′=

The minimum distance is computed from the classification images, and the

weighted L2 distance is computed only if the minimum distance is lower than a 

predefined threshold. The test uses standard experiment setup:

• Images

o “f16”, “bricks”, “herringbone_weave1”, “lena”, “mandrill”, 

“barb” and “slope”.

• Noise standard deviation

o 5, 10, 15, 20, 25, 30

• Search window size 21x21

• Decay Factor: nh σ102 =

The images were filtered using the following test:

If 222 *)()( nyx tVVyx σ≤′−′+′−′ then ( ) ( ) 2

,2
2

axy yvxvd −=

Else 02 =xyd

t ranges from 0.1 to 1000.

Figure 21 contains the quality results of this experiment presenting MSE as 

a function of the t coefficient for all images and noise levels.
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Figure 21 Minimum distance filter results MSE=f(t)

We can see that the filter at t=1 we already have a stable MSE. A lower 

value of t=0.5 causes only a small increase in the MSE. An interesting fact is that 

at the low noise values (•n=5,10), a strong filter actually improves the MSE.

Figure 22 contains the rejection rate results at two chosen points, rejecting 

at 2
nσ and at 25.0 nσ . This is the actual acceleration achieved by the filter for all 

images and noise levels.
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Rejection rate at min distance = 0.1*SDn^2
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Figure 22 Minimum distance filter results, rejection rate, top t=1, middle t=0.5; bottom 

t=0.1;

Rejection rate at min distance = SDn^2
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It can be seen that the efficiency of this method drops sharply 

proportionally to the noise level. At the high noise levels the achieved acceleration 

is negligible (rejection rate below 50%) while in the low noise levels images 

acceleration is by factor of 2-12 (at minimum square distance of •n
2) depending 

on the nature of the image. High detailed images such as Herringbone and 

Mandrill have more to gain from this filter.

In the very low noise images, we see that filtering to minimum square 

distance of 0.1•n
2 both improves MSE and causes acceleration of 4-26. This may 

be very useful for photography applications where the expected noise is at those 

levels.

5.2.3.
Rotation of compared neighborhood experiment

Rotation has proven to be insignificant in a search window approach. It is 

difficult to find similar shapes in a different orientation in a very small window. It 

has a small effect on reducing the MSE in the high frequency areas and in searches 

in the clustered domain, but even this contribution is of no significant value. In 

our selection of test images, which we believe to be a good representation of the 

real world, the best position for distance computation is at the original orientation.

5.2.4.
Adaptive Weight objective

Replacing the search window with an adaptive weight objective was tested 

independently of other methods and yielded very good results for the high contrast 

areas. Trying to force the weight objective down in the flat area to achieve small

number of weighted L2 distance computations resulted in “stains” artifact as can 

be seen in the bottom-left image of Figure 24. In the attached example a “lena”

image with noise of •n=10 was filtered using the following weight objective 

graph:
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Weight objective as function of local variance
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Figure 23 Weight objective as function of local variance

As can be seen, the two graphs differ only in the flat areas. The quality and 

acceleration results are summarized in Table 3:

Image MSE Acceleration

Original 1.41x106 1

Low weight objective 1.44x106 4.6

High weight objective 1.39x106 3.1

Table 3 Weight objective example results

The highest acceleration was achieved of course with the lowest weight 

objective. There is a slight degradation in MSE but there are strong “stains” 

artifacts that are unpleasant to the viewer’s eye1. At the higher weight objective, 

the MSE actually improved (insignificantly) while some acceleration has been 

achieved (x3).

  
1 In order to see the stain better, use a digital version of this work and zoom in (200%) on 

the bottom left image comparing it to the other images. The stains may be masked by the print 

process in a printed version.
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Figure 24 Weight objective example

In Figure 24 there is an example of the weight objective value effect. The 

original noisy (•n=10) image is at the top left, and the top right image is restored 

by the original algorithm. The bottom images are restored with the weight 

objectives from Figure 23, the left with the lower value starting at 5, and the right 

with the higher value starting at 15. The stains artifacts that can be seen at the 

bottom left image are common to Gaussian smoothing, and are the result of 

averaging locally with too few pixels. This means that flat areas need to be filtered 

using a high number of pixels. Since flat areas are common in natural images, this 

may be a problem and limit the acceleration. A solution may be found if those 

areas can be filtered using a different similarity measure that does not require 

weighted L2 distance computation.
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5.2.5.
Adaptive decay factor

Experiments with adaptive decay factor were done in addition to the weight 

objective method. It seems that it is easier to change the weight objective 

parameters than to control the decay factor and get the same results. The main 

problem is again the stains in the flat areas which should be resolved using a 

different similarity measure if any acceleration is to be achieved in those areas.

5.2.6.
Clustering

Experimenting with clustering according to the root weighted mean and root 

weighted standard deviation revealed major deficiencies in our assumptions. The 

fact that two pixels reside in the same bucket, and a priori have chance of having 

100% similar neighborhoods, does not mean that their neighborhoods are similar 

enough to produce any significant weight for averaging. Experiments show that 

the search for similar pixels, even in cases of extremely active images, is better 

conducted in the image domain in the proximity of the filtered image, than in the 

clustered domain.

This does not mean that another clustering scheme, based on other 

classifiers, cannot produce good proximity of similar pixels. The example given 

by Mahmoudi and Sapiro in  [5] gave significant acceleration for highly active 

small images. However, the results were obtained on relatively small images and 

seem to be significantly inferior in quality to the original algorithm (although 

probably superior in quality to other noise reduction algorithms). We also suspect

the efficiency of this approach drops as the size of the image increases, and the 

pixels that are in the same bucket are much distanced from one another in the 

original image. More on this subject can be found in section  6, where we discuss 

related work done in this area.

If buckets cannot be proven to be filled with similar pixels, a large image in 

the neighborhood of 3Mpixels may create a search group much larger than the 

search window proposed in the original algorithm, thus decelerating the execution 

instead of accelerating it.
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The best results are achieved by the clustering scheme for pixels that have a 

singular neighborhood in their close environment. Those pixels find their match 

more easily in the clustered domain than in the image domain limited search 

window. This advantage however loses its edge when taking into account the 

properties of natural images and the HVS:

1. There are very rare cases where a singular pixel can be found in a 

natural image.

2. When such a pixel is found in a natural image it is always in an 

active zone where the human eye is more concentrated on the 

activity than on the actual gray level. A noise at this point is hardly 

visible.

3. Those pixels will be processed fast enough in the proposed 

algorithm even without the clustering scheme since:

a. The distance limit test will disqualify many of the adjacent 

pixels.

b. The high local variance will drive the weight objective down, 

leading to a shorter search.

c. We do not expect to find too many pixels of that kind.

The conclusion we draw from experimenting with clustering is that in the 

case of natural images, nature was able to do a much better job in clustering 

similar pixels in a radius around the filtered pixel, than any of our clustering 

schemes. Therefore, the clustering scheme will not be used in the final algorithm.

5.2.7.
Gradient orientation filtering

Gradient orientation was used by Mahmoudi and Sapiro  [5] as a secondary 

clustering dimension. Since our previous experiments with clustering and with 

neighborhood rotation have failed, we shall try to use the gradient as a secondary 

filter in addition to the minimum distance filter. This should be effective to reject 

comparisons between filters that have a high enough weight expectancy by the 

minimum distance filter, but eventually achieve a negligible weight due to their 

different gradient orientations.
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The filter was set to reject all 6/π comparisons of neighborhoods with 

gradient of magnitude greater than 5 and gradient orientation greater than 6/π .

The filter resulted in acceleration of 2.5-6.5 with some small degradation in MSE

in some images, up to 7% in low noise levels and up to 20% in high noise levels. 

A visual difference between original algorithm and this method is almost 

invisible. Even at the images with the highest MSE degradation, the difference 

between the result of this method and the original method is hardly visible. Figure

25 is an example of filtering a noisy image (•n=20) with the original algorithm 

and with the two filters applied to reject unnecessary computations. The modified 

algorithm yields a MSE 18% higher than the original, and acceleration of 3.5 

times faster. The differences, if any, are hardly noticeable.

Figure 25 Gradient filter in addition to minimum distance filter. Left: image filtered by 

original algorithm; right: the two filters applied

5.2.8.
An alternative similarity measure for flat zones

As learned from previous experiments, flat zones require a high number of 

averaging pixels to avoid the “stains” artifact demonstrated in Figure 24. If a 

simplified similarity measure is found, then we can skip all weighted L2 distance

computations and accelerate the execution of the algorithm. Actually, if such a 

measure can be found for all image areas then the acceleration problem is solved 

but since no such global measure has been found yet, we still have a hope to find 

such a measure for the relatively simple flat zones.
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The idea is that once we have passed the previous filters of minimum 

distance and gradient orientation, we should verify if we are in a flat zone by 

testing the local variance and gradient of the filtered pixel. If those values are 

found to be below a predefined threshold then the weight contribution of the 

compared pixel is a constant. Otherwise, weighted L2 distance is computed.

If this measure works, it should accelerate the execution while maintaining a 

high number of averaging pixels for each of the pixels in the flat zone, thus 

avoiding the stains artifact.

This method is tested as part of the complete final algorithm.

5.3.
Final algorithm – putting it all together

The final algorithm to be tested contains all methods that were proven to 

contribute to acceleration without sacrificing too much image quality. The 

algorithm will be based on the adaptive weight objective as a stop condition to 

pixel averaging, the minimum distance and gradient filters for rejecting non-

weight contributing comparisons, and on special treatment for the expected large 

flat zones.

5.3.1.
The algorithm

For each pixel extract the local variance and compute the weight objective 

and decay factor to be used. Start looking for averaging pixels in a search window 

with the following stop conditions:

1. Don’t stop before processing a small predefined window around the 

pixel – “minimum search window”.

2. Stop at search window boundaries.

3. Stop when reached the weight objective.

Filter only pixels that pass the two filters:

1. Minimum distance filter.

2. Gradient orientation filter.
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If the filtered pixel is in a flat zone, any pixel that passes the filtering 

process contributes a constant (small) weight. Pixels in an active zone continue to 

be filtered according to the original weighted L2 distance measure.

5.3.2.
Experimenting

The following experiment setup was used:

1. Minimum search window of all immediate neighbors (8).

2. Stop condition – 21x21 search window or Weight objective.

3. Variance dependent parameters were setup according to Figure 26.

Variance dependent parameters
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Figure 26 Variance dependent parameters for final algorithm test

4. The minimum distance filter threshold was set to 0.5•n
2.

5. The gradient angle filter was set up to minimum magnitude of 6 and 

angle difference of 6/π .

6. The Flat zones threshold was fixed for variance lower than 80 and 

gradient magnitude lower than 3. The constant used for flat zone 

weighting was 0.3.

Table 4 summarizes the comparison between the original search window 

algorithm in the original setup (search window of 21x21 and h2=10•n) and the 

modified algorithm in the above setup. The MSE ratio column is the ratio 

between the MSE of the modified and original algorithms.
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Noise SD Image MSE ratio Acceleration
5 lena 99% 22.5
10 lena 98% 12.3
15 lena 94% 7.7
20 lena 87% 5.6
25 lena 82% 4.7
30 lena 79% 4.4
5 boat 98% 25.3
10 boat 98% 13.4
15 boat 96% 8.2
20 boat 90% 6.0
25 boat 85% 5.1
30 boat 81% 4.7
5 f16 94% 25.8
10 f16 96% 13.1
15 f16 92% 8.0
20 f16 86% 5.8
25 f16 81% 5.0
30 f16 77% 4.7
5 goldhill 100% 20.1
10 goldhill 101% 13.1
15 goldhill 99% 8.3
20 goldhill 94% 6.0
25 goldhill 88% 5.0
30 goldhill 84% 4.6
5 barb 107% 16.2
10 barb 108% 10.7
15 barb 102% 7.4
20 barb 95% 5.5
25 barb 89% 4.7
30 barb 85% 4.3
5 mandrill 109% 19.1
10 mandrill 105% 11.9
15 mandrill 101% 8.2
20 mandrill 96% 6.3
25 mandrill 91% 5.4
30 mandrill 87% 4.9
Table 4 Comparison of final and original algorithm results

The first examples are “lena”, “boat” and “f16” images with mostly low 

frequency areas. Algorithm performs on all images with constant improvement in 

MSE and acceleration between 4.4 in high noise images and 25.8 in low noise 

images.

The Barb and Mandrill images, with high portion of high frequency areas, 

perform better in the high noise areas and have a slight (up to 9%) increase in 

MSE comparing to the original algorithm and acceleration range of 4.3 to 19.1.
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Goldhill, with a mixture of both high and low frequency areas is kept 

within the original MSE with acceleration of 4.6 to 20.1.

In Figure 27 there are four examples of both original and final algorithm. 

The Barb and Goldhill images were restored from •n=10, “lena” from •n=15 and 

Mandrill from •n=20. In Figure 28, we are using the method noise as a quality 

measure between the original and accelerated algorithm. Notice the image 

structure appears stronger in the original algorithm than in the accelerated one.

The difference though is insignificant.

Comparing artifacts between the original and accelerated algorithm, we 

can notice higher noise residues in some flat areas, and stronger “shock” artifact 

in smooth vignettes resulting in quantization of the filtered intensity levels in the 

accelerated algorithm. On the other hand, we can find better defined small details 

in the accelerated algorithm.
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Figure 27 Original (left) and final (right) algorithms result examples
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Figure 28 Original (left) and final (right) algorithms method-noise results
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5.3.2.1.
Pushing the limits

Additional tests in the low noise area only (•n=5-15), pushing the filtering to 

higher levels (minimum distance at 0.1 •n
2 and gradient orientation to •/10) 

resulted in accelerations of 11-33 and MSE degradation of less than 10% with 

hardly visible artifacts. Attempts to accelerate the original algorithm in the low 

noise images by using a smaller search window are bounded by a factor of 3-4 

since the very small windows start producing the “stains artifact” in flat areas.

When we are trying to push the limits even more and filter the high contrast 

areas with very few operations we may achieve good visible results according to 

the HVS model even though the MSE in this case may increase significantly, even 

beyond the performance of other inferior noise filters. Figure 29 gives an example 

of minimal filtering in the high contrast areas.

Figure 29 Minimal filtering of high contrast areas
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The top left image is the original noisy (•n=10) image. The bottom images 

are filtered by the original algorithm (left) and accelerated algorithm with only 8 

pixels participating in the filtering of pixels in high frequency areas (above 

•image=80). Noise residues may be seen in the bottom left image especially along 

the long structures (zoom in on the table’s leg for example - Figure 30). The 

method noise image (top right) shows significant image structures that are left 

with high noise residues (black areas). The MSE of this image grew by 32%, yet

the achieved acceleration of x23 may be worth the degradation since for the HVS, 

the degradation is not that significant. 

Figure 30 Minimal filtering of high contrast areas – zoom in

5.3.2.2.
Color examples

Figure 31 demonstrates the effect of the algorithm on color images. In those 

examples we have the following setup, with noisy image on the left and 

accelerated algorithm results on the right:

• “lena”, •n=10 accelerated by 16

• “f16”, •n=15 accelerated by 8.3

• “mandrill”, •n=20 accelerated by 11.7.

In this demonstration, there is equal noise on all channels and the 

accelerated algorithm is performed on individual channels without trying to 

achieve additional acceleration based on any other color conversion technique.
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Figure 31 Accelerated algorithm on color images
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6
Related work

We have found two previously published works with practical suggestions 

aimed at accelerating NLM execution. The first one, already referred to in 

previous sections of this work, is the work done by Mahmoudi and Sapiro  [5]. The 

second one is a Ph. D. Thesis by Buades on NLM  [21] which includes a short 

section on acceleration of the algorithm.

Our work, that started before  [5] was published, gained a certain amount of 

optimism with the publication of  [5] since it seemed to confirm the potential of 

clustering in NLM acceleration. We also considered the classifiers we adopted 

from IEENNS to be at least as suitable for the weighted L2 environment as the 

mean classifier used in  [5]. The results of our clustering scheme however, were 

quite disappointing. While we believe the results obtained by  [5] are an 

improvement over other noise reduction algorithm, we did observe a significant 

degradation in quality between the accelerated and the original algorithm. There 

are no MSE comparisons in  [5] between original and accelerated algorithms and 

our observation is based on visual inspection of the examples provided in  [5] (see 

figures 1 and 3 in  [5]). We also believe that it is hard to achieve same results for

bigger images (in the neighborhood of 3Mpixels or more) without using 

additional techniques to limit the number of pixels in each cluster. The gradient 

filter suggested in  [5] has proven to be a strong tool in rejecting unnecessary 

distance computations.

As for the thesis work, there are two suggestions for NLM acceleration and 

none of them is developed into experimental phase. Both suggestions modify the 

original algorithm in ways that may degrade quality, but there is no information of 

that kind in the cited work. The first suggestion based on sub-sampling the image 

data and has a potential of accelerating the algorithm by x16. The second one uses 

L2 distance instead of the weighted L2 distance and defines an NLM operator for 

vectors. From some experiments we made replacing the weighted L2 distance with 

non-weighted L2 distance we got difficulties in selecting a decay factor such that 
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will eliminate noise without over smoothing the image. It seems that the image 

either stays noisy, or is totally over-smoothed. This shows that the weighted L2

distance is in fact a more robust similarity criterion than the non-weighted 

distance.

We are not aware of additional studies in this area, but as we have seen the 

interest NLM provoked, and taking into account it was published in 2004, it is 

probable that we will see additional publications related to the subject in the near 

future.

.
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7
Conclusions

During this work we have investigated some methods for the acceleration of 

NLM algorithm. We have approached the problem with the objective of finding a 

better price-performance ratio for the algorithm concentrating in the natural 

images environment; price, in terms of quality loss, and performance in terms of 

acceleration gain. The right price-performance tradeoff point is difficult to define 

especially in the area of image quality where mathematical indicators don’t 

always reflect the subjective appreciation of the viewer. For this reason, we have 

tried to keep the results within a close distance to the original algorithm in terms 

of MSE and method noise, and to measure acceleration only in the areas where 

image quality degradation is minimal.

Since our attempts to achieve tight quality results in comparison to the 

original algorithm came in the way of our suggested clustering scheme, we gave 

up clustering, but kept the classifiers to be used as filters in the selection process 

that chooses which comparisons will be computed. Giving up clustering means 

admitting that nature’s clustering scheme is more powerful than the one we have 

suggested. Remembering that the clustering approach was intended to grasp the 

“real spirit” of the original algorithm of filtering similar features all over the 

image, we understand now that we actually narrowed the algorithm to perform 

locally. As is the case for the search window NLM algorithm, the algorithm took 

the form of a “local neighborhood filter” with the weighted L2 distance as a 

similarity measure. We feel that at least in the case of natural images, this is the 

real powerful attribute of the algorithm and not its ability to perform globally on 

the image.

We have demonstrated the power of the selection process, and we have 

shown that we can treat different image areas with different levels of filtering with 

minimal loss of image quality. We have also found out that our methods are less 

effective in high noise levels, but can provide significant acceleration for the low 

and mid noise levels. This should benefit the digital photography applications 
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targeted at the introduction for this work, but the achieved acceleration may not be 

sufficient to be used in mainstream applications.

We feel that a key area for the acceleration of natural images is in the flat 

areas. Those areas are important since usually most of the pixels reside in such 

areas, and our HVS is more sensitive to noise in flat areas than in active areas. On 

top of that, we know that a high number of pixels need to be used for the filtering 

of those areas to avoid artifacts. Most noise reduction algorithms have relatively 

good results in the flat areas while encountering difficulties in the active areas. 

For these reasons we feel there is room for additional work that will try to 

combine other known filtering methods for flat areas, with NLM for active areas.
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