

PUC

ISSN 0103-9741

Monografias em Ciência da Computação
n° 34/07

Treating Literary Genres as Application Domains

Angelo E. M. Ciarlini, Marco A. Casanova, Antonio L. Furtado,
Paulo. A.S. Veloso

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 34/07 ISSN 0103-9741
Editor: Prof. Carlos José Pereira de Lucena December 2007

Treating Literary Genres as Application Domains∗∗∗∗

Angelo E. M. Ciarlini1, Marco A. Casanova2, Antonio L. Furtado2, Paulo. A.S. Veloso3

1UniRio – Departamento de Informática Aplicada

2Pontifícia Universidade Católica do Rio de Janeiro – Departamento de Informática
3UFRJ – COPPE Sistemas

Rio de Janeiro - Brasil

Abstract: Literary genres, of prime relevance to storytelling, can be regarded as a
particular kind of application domain. As such, they can be usefully characterized by
combining notions drawn from literary theory with well-known models developed for
information systems. Once a genre is specified with some rigor in a constructive way, it
becomes possible to determine whether a given plot is a legitimate representative of the
genre, as well as to generate such plots. This paper presents a conceptual modeling method
with this purpose, based on a plan recognition / plan generation paradigm. The method
leads to the formulation of static, dynamic and behavioral schemas, expressed in temporal
logic, and allows multi-stage interactive plot generation. The paper also describes a
prototype tool, developed to support the method, and includes a case study, involving a
simple Swords and Dragons genre.

Keywords: Storytelling, Literary Genres, Application Domains, Conceptual Modeling,
Simulation, Logic Programming.

Resumo: Gêneros literários, de extrema relevância no campo de narração de estórias,
podem ser encarados como espécie particular de domínio de aplicação. Por conseguinte, é
útil caracterizá-los através de uma combinação de noções extraídas da teoria literária com
modelos originariamente criados para sistemas de informação. Após especificar um gênero,
com suficiente rigor e de forma construtiva, torna-se possível determinar se um dado
enredo é representante legítimo do gênero, bem como gerar tais enredos. Este trabalho
apresenta um método de modelagem conceitual com este propósito, baseado em um
paradigma de reconhecimento / geração de planos. O método conduz à formulação de
esquemas estáticos, dinâmicos e comportamentais, expressos em lógica temporal, e permite
a geração interativa de enredos através de estágios múltiplos. O trabalho também descreve
um protótipo de ferramenta de suporte ao método, e inclui um estudo de caso envolvendo
um gênero simples de Espadas e Dragões.

Palavras-chave: Narração de Estórias, Gêneros Literários, Domínios de Aplicação,
Modelagem Conceitual, Simulação, Programação em Lógica.

∗ This work has been partly sponsored by the Ministério de Ciências e Tecnologia da Presidência da
 República Federativa do Brasil.

In charge of publications

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br

 1

1. Introduction

In this paper, we address the question: What is a literary genre? Although it seems obvious
that, in its full generality, the question will always remain outside the reach of a complete
formal treatment, we claim that a useful approximation is attainable and proceed to
introduce a specification method that captures aspects of an intended genre. In addition, we
describe a prototype tool that generates story plots belonging to a (formalized) genre and
determines whether a story plot can be classified as belonging to the genre.
 Studies in narratology [3] suggest that the composition of stories is a three-layered
process and that each layer can be analyzed separately: fabula, story and text. Informally
speaking, a fabula is a series of events happening in a real or fictional world. A story
corresponds to how a fabula is reported by the author. Finally, a text is a materialization of
a story in some medium, such as text, motion picture, or animation.
 To give an example, the mythical career of Ulysses, with the events in strict chronologic
order, is the fabula that Homer had in mind when composing the Odyssey. Homer's story
concentrates on the hero's homecoming and is organized in twenty-four books, in some of
which the poet allows Ulysses to tell his own exploits in a long "flash-back" (technically, a
case of anachrony). Finally, the epic text produced by Homer is a poem in dactylic
hexameter verses composed in classic Greek. Clearly, a prose translation of the Odyssey in
a modern language would be a different text, but, if it is a faithful rendering, it should
preserve the story as narrated by Homer, and consequently the original fabula as well. A
more radical change may occur when someone retells the story, cutting or summarizing a
number of episodes, linearizing what remains so as to eliminate the anachronies, etc.,
which, of course, results in a different story. Extreme cases of change would even modify
the fabula, for example, by eliminating as allegedly incompatible with modern taste the
interventions of the goddess Athena, and combining in one character (a conflation) two or
more of Penelope's suitors.
 In our work, we shall deal exclusively with the fabula layer. Accordingly, we shall view
a genre as a set of plots, taking the word plot in the sense of a partially ordered sequence of
events. In addition, the types of events allowed in the genre being defined will be restricted
to a fixed repertoire, as proposed by the Russian literary theoretician Vladimir Propp in his
seminal work on the fairy-tales genre [31]. This decision classifies our approach as
primarily plot-based, in the terminology of storytelling research [22, 36], as opposed to a
character-based orientation [8]. However, it will become clear, in the course of the paper,
that we also contemplate some character-based aspects.
 The method we propose in this paper comprises three levels of conceptual modeling that
provide: (a) a description of the mini-world wherein the narrative takes place; (b) what
events can be enacted by the participants; and (c) what motives guide their behavior.
 We combine several modeling notions, borrowed from literary theory [1,3,4,14,31,35]
and from information systems. Plots belonging to a genre are, to a certain extent,
comparable to sentences belonging to a language, which suggests the use of some Chomsky
grammar, such as Rumelhart's story grammar [33], as a mechanism to accomplish purposes
(a) and (b) above. However, we opted for a plan-recognition / plan-generation paradigm
[21], which is fully compatible with the nature of the schemas and is particularly apt to
cope with semantic and pragmatic aspects. The formalism is based on temporal logic [11]

 2

and the notation adopts the clausal format required by the Prolog logic programming
language, in which the planning algorithms were written.

In [19], we argued that temporal databases are, in general, repositories of narratives
about the agents and objects involved. In [21], we showed that plan-generation (and plan-
recognition) algorithms can be used in the context of database narratives for decision
support. An operational description of the modeling issues of this scenario can be found in
[20], while a characterization of the machinery involved in the process is given in [10,11].
Our formal framework can be compared to the event calculus [28], especially to one of its
variants, the event calculus with preconditions [9]. The description of narratives with
situation calculus [29] enables us to better reason about the hypothetical situations that
result from hypothetical actions. The difference in our approach is that we focus on the
creation of coherent narratives: we reason about the situations that hold or may hold along a
narrative in order to infer goals that will bring about new actions, which will in turn
conduct the narrative.

We exemplify the proposed method by modeling an elementary Swords and Dragons
genre. In the example, princesses, knights, dragons and magicians play the roles of victims,
heroes and villains. They perform actions such as attack, kidnap, fight, kill and marry. Our
prototype tool was able to generate (and recognize) dozens of quite different plots, all of
them fully compatible with the formal model. This simple example demonstrated that the
method provides a solid background for interactive storytelling, since it guarantees the
coherence of the stories. In addition, the generation of unexpected stories was useful to
point out that we were implicitly assuming constraints that had not been formalized. In this
way, the specification of a formal model proved to be useful to help us understand a genre.
We refer the reader to [10] for the thesis of the first author, which initiated this project..
 The paper1 is organized as follows. Sections 2, 3 and 4 introduce the three levels of
conceptual modeling we propose. Section 5 describes the application of the method and the
use of the prototype for our elementary Swords and Dragons genre. Section 6 concludes the
paper. The appendices contains the full Prolog code for the example.

2. Static schema

2.1 Informal description of the static schema

The efficacy of the entity-relationship model (ER model), with a number of extensions, has
long been amply recognized in the realm of the application domains of business
information systems [15]. We argue in what follows that it can be equally helpful for
modeling the static aspects of literary genres.
 Briefly, an entity is anything of interest by itself, material or abstract, animate or not.
Entities form classes, whose instances are distinguished by the values of an identifier,
which we assume to be a single attribute. In addition to the identifier, other attributes may
characterize the entity instances. Attributes have values of some type (alphabetic,
numerical, etc.). Attributes of type Boolean (with values true or false) and composite
attributes (with sub-divisions) are special cases. Entity classes may be associated through
relationships, which we assume to be binary.

1 A version of the present text [12] has been submitted for publication.

 3

 The original ER model is typically extended to include the concept of class
generalization / specialization, expressed through the (transitive) is-a relation [27,30,37].
Given two classes C and C’, if one indicates that C is-a C’, then we say that C specializes
C’ and that C’ is more general than C. In this case, C inherits all attributes defined for C’
and each instance of C is also an instance of C’.
 One more addition to the ER model is convenient to help bridge the dynamic and
behavioral levels, addressed in Sections 3 and 4. Whereas the other qualifying notions refer
to what the entities are, in order to indicate how they are expected to act, we need to assign
roles to certain entities (in the theatrical sense, and in the sense of the agent concept, used
in Artificial Intelligence and Software Engineering).
 We call a fact an assertion about the existence of an entity instance, the value of an
attribute of an entity instance, the existence of a relationship instance, the value of an
attribute of a relationship instance or the assignment of a role to an entity instance. The set
of facts holding at a given point in time constitutes a database state.
 The static specification of a genre, exactly as for a business application domain, requires
that only valid states be admitted. A valid state must conform to certain static integrity
constraints. Some constraints are native to the ER model: relationship instances can only
involve existing entity instances, attributes are in general single-valued (even though they
may change along time), attribute values must be of the specified type, etc. Other integrity
constraints are imposed by conventions of the genre or by regulations of the application
domain. They are expressed in some appropriate notation, outside the basic ER model.

Section 5.2 contains the complete static schema for our Swords and Dragons genre.

2.2 Formalization of the static schema

In this section, we introduce a formal framework to express static schemas in the ER
model. The formalization follows Ciarlini and Furtado [11] and is based on the standard
syntax and semantics of first-order languages. Therefore, we detail only the concepts that
directly matter to our discussion.

A plot language is a first-order language, with equality, whose alphabet contains a set of
database symbols partitioned into:

entity class names: unary predicate symbols to denote entity class names

Boolean entity attribute names: unary predicate symbols to denote Boolean entity
attribute names

simple entity attribute names: binary predicate symbols to denote simple entity attribute
names

composite entity attribute names: n-ary predicate symbols to denote composite entity
attribute names

relationship names: binary predicate symbols to denote relationship class names (only
binary relationships are considered)

Boolean relationship attribute names: binary predicate symbols to denote Boolean
relationship attribute names

simple relationship attribute names: binary predicate symbols to denote simple
relationship attribute names

 4

composite relationship attribute names: n-ary predicate symbols to denote composite
relationship attribute names

role names: unary predicate symbols to denote roles

database constants: constants to denote data values

Besides the database symbols, the alphabet of a plot language contains constraint

predicate symbols, corresponding to constraint predicates over concrete domains (such as
equalities and inequalities over the real numbers), and constraint function symbols,
corresponding to functions over concrete domains (such as addition and subtraction over
the real numbers).

To formalize the static schema of our Swords and Dragons genre, we introduce the
following database symbols:

entity class names: creature, person, knight, princess, magician, dragon,
place

Boolean entity attribute names: alive

simple entity attribute names: name, nature, strength, place_name

composite entity attribute name: protection (a ternary predicate symbol, indicating
the kind and level of protection of a place)

relationship names: home, current_place, acquaintance, married, kidnapped

simple relationship attribute names: affection

role name: hero, victim, villain, donor

database constants: 'Marian', 'White_Palace', 'Hoel'

Sample database facts are:

princess('Marian') ('Marian' is an instance of entity class princess)

strength('Marian',10) (the value of attribute strength for 'Marian' is 10)

alive('Marian') (the value of attribute alive for 'Marian' is True)
acquaintance('Marian','Hoel')

('Marian' and 'Hoel' are instances related by the relationship acquaintance)
affection('Marian','Hoel',0)

(the value of attribute affection for 'Marian' and 'Hoel' is 0)

place('White_Palace') ('White_Palace' is instance of entity class place)
protection('White_Palace',1,70)

(the value of the composite attribute protection for 'White_Palace' is 1 and 70,
respectively indicating the kind and level of protection)

victim('Marian') ('Marian' plays the role of victim)

 5

In what follows, let L be a plot language. The syntax and semantics of L follow as for
first-order languages, so that we will concentrate just on the details that matter to our
discussion.

A substitution is a function i mapping each variable of L into a term and a ground
substitution is a substitution mapping each variable into a variable-free term. An expression
is a formula or a term. Given an expression e, we use e[i] to denote the substituted version
of e, obtained by replacing each free variable in e in accordance with i.

A database literal is an atomic formula with a database predicate symbol. A ground
database literal is a database literal without variables. A database fact is a positive ground
database literal. A ground instance of a database literal L is a ground database literal
obtained by applying a ground substitution i to L. Analogously, a constraint literal C is an
atomic formula with a constraint predicate symbol and ground instances of C are obtained
by applying ground substitutions. A literal is either a database literal or a constraint literal.

A safe conjunction is a conjunction of constraint literals, positive database literals or
possibly universally quantified negative database literals such that any variable occurring in
the conjunction is either governed by a universal quantifier or occurs in a positive database
literal. For example, the conjunction place(P)∧∀K∀L(¬protection(P,K,L)) is safe, but
not the conjunction place(P)∧¬protection(P,K,L). The possibility of quantifying
variables in negative database literals is useful when defining operations and goal-inference
rules (see Sections 3.2 and 4.2); in the Prolog implementation, their evaluation is based on
the closed world assumption [32]. The quantification of positive literals is more
complicated to implement and is therefore not allowed.

In what follows, we use the notation]),[(yxLx ¬∀ to indicate that ¬L is a negative literal
with variables partitioned into two lists, x and y , such that the variables in x are
universally quantified. Likewise,]),[(bxLx ¬∀ denotes the result of substituting the
variables in y by the constants in the list b .

A structure M for L assigns to each symbol s of L a meaning sM as usual. We assume
that M assigns the usual meaning to constraint predicate symbols and constraint function
symbols (such as the meaning assigned by arithmetic to numeric constraints). Given a

formula σ and a set of formulae Σ of L, we use �M σ to denote that M satisfies σ, or that σ

holds in M, ��and Σ �σ to denote that σ is a logical consequence of Σ.
A possible fact of M is a database fact of L that holds in M. A possible database state of

M is a set of possible facts of M.
We define the notion of a safe conjunction holding at a possible database state s as

follows:

• a ground positive database literal L holds in s for M, denoted s �M L, iff L ∈ s

• a ground constraint literal C holds in s for M, denoted s �M C, iff C is true in the
usual interpretation

• a ground negative database literal ¬L holds in s for M, denoted s �M ¬L, iff L ∉ s
• a formula of the form]),[(bxLx ¬∀ holds in s for M, denoted s �M]),[(bxLx ¬∀ ,

iff, for all ground substitutions i,],[baL¬ ∉s, where a are the constants that i assigns
to x

 6

• a safe conjunction of the form L1∧...∧ Ln holds in s for M, denoted s �M L1∧...∧ Ln,

iff, for all ground substitutions i, for each k∈[1,n], s �M Lk[i]

The previous definitions outline the basic syntax and semantics of plot languages, but

they do not capture the semantics of identifiers, attributes, relationships and the is-a
relation. We therefore define a plot static schema as a first-order theory whose language is
a plot language and whose axioms include the following:

• ER model constraints:
• for each identifier defined for an entity class, an identifier axiom that captures the

uniqueness property of the identifier
• for each attribute defined for an entity or relationship class (including the Boolean

and composite attributes), an attribute axiom that captures the domain and range of
the attribute

• for each relationship, a relationship axiom that captures which entity classes the
relationship involves

• is-a axioms indicating which classes are specializations of other classes
• role axioms that constrain roles to denote sets of entity instances in the union of

collections of entity sets (that play the role in the ER schema)
• application domain constraints that capture other properties of the application domain

The formal definition of axioms similar to the ER model constraints, framed in

Description Logic, can be found in [5,6]. Furthermore, we note that the Prolog tool
discussed throughout the paper was implemented to automatically take into account the ER
model constraints.

Finally, a model of a plot static schema is a structure for the language of the schema that
satisfies all axioms of the schema.

2.3 Prolog concrete notation for the static schema

In this section, we briefly explain the Prolog notation we adopt to express static schemas
and database facts. The syntax and semantics follow that of standard Prolog. In particular,
we use square brackets for conjunctive lists (with "," as separator) and regular parentheses
for disjunctions (with ";" as separator).

An ER (static) schema is specified using Prolog clauses of the following patterns:

entity(<entity-class>,<identifier>).

 relationship(<relationship-class>,[<entity-class>,...,entity-class>]).

 attribute(<entity-class>,<attribute>).

 attribute(<relationship-class>,<attribute>).

 boolean(<attribute>).

 composite(<attribute>,[<attribute-part>,...,<attribute-part>]).

 is_a(<more-specialized-entity-class>,<more-general-entity-class>).

 role(<role-name>,(<entity-class>;...;<entity-class>)).

 7

A set of Prolog clauses of the above patterns has the double purpose of defining the
alphabet of the plot language and indicating which ER axioms apply.

A database fact L is written as a Prolog clause of the form db(L), where db is a special
unary predicate symbol, and L is rewritten as a term with the help of above Prolog notation
for lists. In more detail, we have:

Schema clause: entity(<entity class>,<identifying attribute name>).

Database fact: db(<entity class>(<identifier>)).

Schema clause: attribute(<entity class>,<attribute name>).

Database fact: db(<attribute name>(<identifier>,<attribute value>)).

Schema clause: relationship(<relationship name>,
 [<entity class>,<entity class>]).

Database fact: db(<relationship name>([<identifier>,<identifier>])).

Schema clause: attribute(<relationship name>,<attribute name>).

Database fact: db(<attribute name>([<identifier>,<identifier>],
 <attribute value>)).

Schema clause: role(<role name>,<entity class>).

Database fact: db(<role name>(<identifier>)).

 8

The static schema of our Swords and Dragons genre, in Prolog notation, becomes:

/* Static Schema */

1. entity(creature,name).
2. entity(person,name).
3. entity(knight,name).
4. entity(princess,name).
5. entity(magician,name).
6. entity(dragon,name).
7. entity(place,place_name).
8. is_a(person,creature).
9. is_a(knight,person).
10. is_a(princess,person).
11. is_a(magician,person).
12. is_a(dragon,creature).
13. attribute(creature,nature).
14. attribute(creature,strength).
15. attribute(creature,alive).
16. attribute(place,protection).
17. boolean(alive).
18. composite(protection,[kind,level]).
19. relationship(home,[creature,place]).
20. relationship(current_place,[creature,place]).
21. relationship(acquaintance,[creature,creature]).
22. relationship(married,[person,person]).
23. relationship(kidnapped,[person,creature]).
24. attribute(acquaintance,affection).
25. role(hero,knight).
26. role(victim,(princess;knight)).
27. role(villain,(dragon;knight)).
28. role(donor,magician).

/* Sample Database Facts */

29. db(princess('Marian')).
30. db(strength('Marian',10)).
31. db(alive('Marian')).
32. db(protection('White_Palace',[1,70])).
33. db(acquaintance(['Marian','Hoel'])).
34. db(affection(['Marian','Hoel'],0)).
35. db(victim('Marian')).

 Note that, according to the clause in line 14, strength is an attribute of creature and,

in view of the clauses in lines 8 and 10, also an attribute of person and of princess.
Hence, the database fact in line 30 is acceptable. Also note the special notation for the
database facts in lines 31 and 32, in view of the declaration in line 17 of alive as a
Boolean attribute and the declaration in line 18 of protection as a composite attribute. We
stress that the Prolog tool interprets the clauses in lines 1 to 29 to automatically generate the
ER model constraints for the static schema.

 9

3. Dynamic schema

3.1 Informal description of the dynamic schema

The dynamic level of specification takes us from descriptions of states, which the static
schemas cover, to narratives. While states are sets of facts, narratives are composed of
events. An event is a transition between valid states, i.e., conforming to the established
static integrity constraints. In addition, we require that the transition itself be valid, which
means that it must obey a further set of restrictions, called dynamic integrity constraints.
 We enforce both types of constraints by restricting state changes to what can be
accomplished by applying a limited repertoire of pre-defined domain-oriented operations,
as advocated in the abstract data types [23] and in the object-oriented [16] approaches. The
operations must be consistent in such a way that, if they start on any valid initial state, their
execution will always preserve all constraints. However, it is usually much harder to prove
that the repertoire of operations is complete, that is, enough to allow that all intended valid
states be reachable (from some initial state).
 An analogous and entirely compatible notion has been proposed a long time ago in
literary theory by the Russian researcher Vladimir Propp [31]. In order to specify the genre
of fairy-tales, he described a set of 31 functions, comparable to what we are calling
domain-oriented, or more appropriately here, genre-oriented operations, which he claimed
to be enough to account for a large sample extracted from an anthology of fairy-tales
compiled by Alekxandr Afanas'ev [2].
 We equate the notion of event with the state change brought about by the execution of an
operation. This understanding, which is in agreement with Propp's theory, has proved
adequate for our purposes.
 In order to formally specify operations, the STRIPS – Stanford Research Institute
Problem Solver [17] method is very convenient, both for real-life domains and for fictional
genres. Each operation is defined in terms of its pre- and post-conditions. Pre-conditions
are conjunctions of positive or negative database facts, which must hold at the state in
which the operation is to be executed. Post-conditions, or effects, consist of two sets of
facts: those to be asserted and those to be retracted as a consequence of executing the
operation. Such effects can be understood as the semantics of the operation. Furthermore,
integrity preservation depends on a careful adjustment of the interplay among pre- and
post-conditions over the entire repertoire of operations.
 This interplay has an even more important consequence, which is to establish a partial
order for the execution of the operations. Indeed, if the pre-conditions of an operation O1
may only be satisfied by the post-conditions of another operation O2, then O2 should be
executed before O1. This leads, in turn, to a backward chaining strategy for plan generation.
At this point, two comments are in order: (a) logic programming, as offered by Prolog, is
appropriate for developing such planning algorithms; (b) constraint programming
algorithms (as offered by the version of Prolog that we use [7]) provide a very powerful
complement to logic inference for handling goals involving numerical attributes.
 The notation for declaring the signature of operations should be extended in order to
associate pragmatic information, especially concerning agency, with the parameters. For
this purpose, Fillmore's case grammar proposal [18] is applicable. Out of the various
choices of cases listed by different authors, we employ here: agent, coagent, recipient,
patient, object, and destination. In the parameter list of an operation, each parameter is

 10

characterized by a case, paired with either the entity class or role involved. Indicating a
role, instead of an (entire) entity class, limits the participation in a case to those instances of
one or more entity classes to which the role has been explicitly assigned. Notice that the
case agent (and also coagent) introduces an agent-oriented [24] modeling view.

Section 5.3 elaborates on the dynamic schema for our Swords and Dragons genre.

3.2 Formalization of the dynamic schema

We first extend the notion of alphabet of a plot language to also contain the following sets
of symbols, disjoint from the other symbols:

operation names n-ary function symbols to denote operations
case names constant symbols to denote cases

We then extend the syntax and semantics of plot languages to capture the properties of

operations.
Let L be a plot language whose alphabet includes operation and case names. We first

discuss the semantics of operations and then address case names. Given an operation name
o of L, a structure M for L assigns to o a set oM of pairs of database states.

An operation specification for an n-ary operation name o is an expression σ of the form
{P}o(t1,…,tn){Q}, where

• o(t1,…,tn) is the input declaration of σ, where t1,…,tn is a list of terms
• P is the pre-condition of σ, defined as a safe conjunction
• Q is the post-condition of σ, defined as a conjunction of positive or negative database

literals

The pre-condition defines when the operation can execute, whereas the post-condition

indicates the facts (the positive literals) that must be asserted, and those that must be
retracted (the negative literals) as a consequence of executing the operation.

Given a substitution i, we use σ[i] to denote the substituted version of σ, obtained by
uniformly applying i to the input declaration and to the pre- and post-conditions of σ. We
say that σ is ground iff the input declaration, the pre- and the post-conditions of σ have no
free variables.

Assume that σ is ground in this and the next definition. We say that a pair (s,t) of
possible database states in oM satisfies σ for M, or that σ holds in (s,t) for M, iff we have that

• s �M P (i.e., the pre-conditions are satisfied in s for M)

• t �M Q (i.e., the post-conditions are satisfied in t for M)
• for every possible database fact f of M, if neither f nor ¬f occur in Q (which is ground

by assumption), then t ��f iff s ��f (which is the frame requirement: preservation of
satisfaction from s to t for ground database literals that are neither established nor
negated by the post-condition Q)

We say that M satisfies σ, or that σ holds in M, iff σ holds in (s,t) for M, for every pair (s,t)

of possible database states in oM.

 11

Assume now that σ is not necessarily ground. We say that M satisfies σ, or that σ holds
in M, iff M satisfies σ[i], for every ground substitution i of L (and likewise σ holds in pairs
of database states). Note that, substitutions do not affect universally quantified variables
that may appear in negative pre-conditions.

An operation is associated with an operation frame, which further constrains the
semantics of the operation. A case declaration is an expression of the form c:(e1,...,em)
where c is a case name and (e1,...,em) is a list of entity or role names. Given an n-ary
operation name o, an operation frame for o is an expression of the form o(c1,...,cn) where
c1,...,cn is a list of case declarations.

If an operation name o is associated with an operation frame of the form
o(c1:(e11,...,e1m1),...,cn:(en1,...,enmn)) and an operation specification σ of the form
{P}o(t1,…,tn){Q} then we redefine the notion that M satisfies σ, or that σ holds in M, iff M
satisfies σ[i], for every ground substitution i of L such that tk[i]M∈ ek1

M ∪...∪ ekmk
M.

An example of an operation frame and an operation specification from our running
example would be the expressions f and {P}o(t1,t2){Q}, where:

f = reduce_protection(agent:(victim),destination:(place))

o(t1,t2) = reduce_protection(V,P) /* V is a victim and P is a place */

P = { current_place(V,P)∧ /* V is currently at P */

protection(P,K,L)∧ /* P has protection of kind K and level L */

nature(V,K)∧ /* the nature of V is K */

L>0.0} /* the level of protection is positive */

Q = {¬protection(P,K,L))∧ /* P no longer has protection K and L */

protection(P,K,L-10.0))}/* P now has protection K and L-10.0 */

Finally, we define a plot dynamic schema as a plot static schema augmented with

operation and role names and with dynamic axioms, that is, operation specifications and
operation frames. A model of a plot dynamic schema is again defined as a structure for the
language of the schema that satisfies all axioms of the schema.

3.3 Prolog concrete notation for the dynamic schema

An operation is defined by two complementary Prolog clauses of the form:

operator_frame(<operator-id>,

 <operator-name>,
 [<case>: (<entity class or role>;...;<entity class or role>),...,
 <case>: (<entity class or role>;...;entity class or role>]).

operator(<operator-id>,
 <operator-name>(<parameter list>),
 <pre-conditions>,
 <post-conditions>,
 <estimated cost of operation>,
 <main effects>,
 [],[]).

 12

The notion of main effects is new, conveys pragmatic information to the planner, and
does not affect the semantics of the operation. The pre-conditions, post-conditions and main
effects are expressed as conjunctive lists, using square brackets and "," as separator. The
purpose of the last two parameters, shown above as empty lists, will be explained at the end
of Section 4.3.

The sample operation specification introduced in Section 3.2, in Prolog notation,
becomes:

operator_frame(2,reduce_protection,[agent:victim,object:place]).

operator(2,
 reduce_protection(V,P), /* V is a victim and P is a place */
 [
 current_place(V,P), /* V is currently at P */

protection(P,[K,L]), /* P has protection of kind K and level L */
 nature(V,K), /* the nature of V is K */

L>0.0 /* the level of protection is positive */
],
 [
 not(protection(P,[K,L])), /* P no longer has protection K and L */
 protection(P,[K,L-10.0]) /* P now has protection K and L-10.0 */

],
 10, /* (estimated cost of operation) */
 [protection(P,[K,L-10.0])], /*(main effect of the operation) */

 [],[]).

4. Behavioural schema

4.1 Informal description of the behavioural schema

The behavioural schema, as the name implies, defines the behaviour of animated agents,
also represented as entity instances. It consists of a set of goal-inference rules that capture
the goals that motivate the agents’ actions when certain situations occur during a narrative.
The behavioural schema may also contain a library of predefined plans, also called complex
operations.
 The plot composition algorithm uses the goal-inference rules as follows. At a given
initial state, it first applies goal-inference rules to determine goals for the various agents.
Then, it creates one or more plots to achieve the goals of each agent, whose combined
effect may involve mutual interferences. The occurrence of events, caused by the simulated
execution of the planned operations, will result in a new state wherein, again, the plot
composition algorithm applies the goal-inference rules, until a state is reached where no
new goal is inferred (or the user arbitrarily decides to end the process).
 Willensky [39] has done a comprehensive study of positive and negative interferences
between goals and plans, both of the same agent and of different agents. Negative
interferences result in contradictions to be resolved, and positive interferences offer
optimization opportunities. In both cases, different strategies can be employed to find how
to alter goals and partial plots in order to obtain a consistent plot, in which even failed
individual subplots may occur.

 13

Finally, we remark that an alternative way to obtain plans to achieve the goals of an
agent is to select, from an adequately structured library, a pre-existing typical plan,
adapting it if necessary to specific circumstances. We consider the plan library to be part of
the behavioural schema.

Taking typical plans as building blocks corresponds, in Artificial Intelligence
terminology, to start from commonly used scripts, rather than constructing new plans from
scratch with the primitive operations [34]. In literary terminology, there is a notion
analogous to scripts, namely types and motifs, as in the monumental index compiled by
Aarne and Thompson [1].

Section 5.4 elaborates on the goal-inference rules and typical plans for our Swords and
Dragons genre.

4.2 Formalization of the behavioural schema

Let T be a plot dynamic theory with language L. Let M be a model of T. Recall that, to each
operation name o of L, the model M assigns a set oM of pairs of database states. Given a
substitution i of L and an operation specification σ, also recall that σ[i] denotes the
substituted version of σ, obtained by uniformly applying i to the input declaration, the pre-
and the post-conditions of σ. In particular, i may be a ground substitution of L.

A temporal database of a model M of T is a pair T=(S,O) consisting of a sequence
S=(s0,s1,…) of possible database states of M and a possibly empty sequence O=(o1,o2,…) of
ground substituted versions of operation specifications of T such that (S starts on s0 and O
starts on o1, by convention; if O is empty, then T reduces to just one database state):

• |S| = |O| + 1 (the length of S is the length of O plus one)
• for each i∈[1,|O|], oi holds in (si-1,si) for M (non-initial states are caused by ground

substituted versions of operation specifications of T)
Given a temporal database T=(S,O) of M, and k∈[0,|S|], the kth continuation of T is the

temporal database Tk=(Sk,Ok) such that Sk and Ok are the suffixes of S and O starting on the
kth element of S and O, respectively. Note that a continuation Tk=(Sk,Ok) of T is indeed a
temporal database, and that the temporal database consisting of just the last state of T and
the empty sequence of operations is the nth continuation of T, where n=|S|.

Temporal formulae are expressions recursively defined as for first-order languages, with
one additional syntactic rule:

• if α and β are temporal formula, then so are the expressions:

����α α eventually holds

����α�� � � α always holds

����α α holds next
α U β α holds until β

We define the notion of holding at a temporal database T=(S,O) of M, as follows:

• a first-order formula α holds in T for M, denoted T �M α, iff s0 �M α (that is, α holds
in the first state s0 of T)

• a formula of the form ����α holds in T for M, denoted T �M ����α, iff for some k∈[0,|S|],

Tk
�M α (that is, α holds in some continuation Tk of T)

 14

• a formula of the form ����α holds in T for M, denoted T �M ����α, iff for all k∈[0,|S|],

Tk
�M α (that is, α holds in all continuations Tk of T)

• a formula of the form ����α holds in T for M, denoted T �M ����α, iff T1
�M α (that is, α

holds in T1, the continuation starting on the second state of T)

• a formula of the form αUβ holds in T for M, denoted T �M (αUβ), iff there is p∈[0,|S|]

such that Tp
�M β and, for all q∈[0,p), Tq

�M α (that is, α holds in all continuations
until reaching, but excluding, a continuation where β holds)

We extend the notion of holding at a temporal database to complex temporal formulae as

usual.
A goal-inference rule is recursively defined as follows:
• a temporal formula of the form ����L is a goal-inference rule, where L is a safe

conjunction

• a temporal formula of the form (L � Γ) or of the form ����(L � Γ) is a goal-inference
rule, where L is a safe conjunction and Γ is a goal-inference rule

The quantification of variables in goal-inference rules obeys the following rules:
• the variables occurring only within the scope of a temporal operator �������� are locally

existentially quantified; and
• all other variables are globally universally quantified.

Using these rules, quantifiers can be left implicit in the goal-inference rules. For

example, the formula ����(C1 � ����(C2 � ����(C3 � ����G))) is a goal-inference rule. Due to the
implications used, the formula holds at a temporal database T=(S,O) of M iff, whenever
there are three states Sc1, Sc2, Sc3, with c1 ≤ c2 ≤ c3, such that Ci holds in Sci, for i=1,2,3,
then there must be a state Sg with c3 ≤ g, such that G holds in Sg. Intuitively, C1, C2, C3
define a sequence of conditions that, if satisfied, implies that the goal G must be satisfied in
a future state (with respect to the state where C3 is satisfied).

Examples of goal-inference rules would be:

/* A hero wants to become stronger than the villain */

 (villain(VIL)∧ strength(VIL,Lv) ∧
 hero(HERO) ∧ strength(HERO,Lh) ∧
 � ����(strength(HERO,LS) ∧ LS > Lv)

/* If victim is kidnapped, hero will want to rescue her */

����(kidnapped(VIC,VIL)� ����¬kidnapped(VIC,VIL))

 15

A plot is a triple P=(L,O,p) where
• L is a safe conjunction
• O is a set of operation specifications
• p is a partial order on O

A plot P is ground iff all operation specifications of P are ground. The meaning of a

ground plot P=(L,O,p) in M is the set PM consisting of all temporal databases T=(S,O) of M
such that

• s0 �M L (the initial state s0 of S satisfies the constraints of P)
• O is a sequence consisting exactly of the operation specifications in O in an order

consistent with the partial order p

The meaning of a non-ground plot P=(L,O,p) in M is the set PM is the set of all temporal

databases T such that i is a substitution of L and T∈ P[i]M.
We note that Ciarlini et al. [11] describe a computational method for checking the

satisfaction of goal-inference rules with respect to a plot without constructing the
corresponding temporal databases. We also refer the reader to [10,11] for the formalization
of complex operations, which is outside the scope of this paper.

Finally, we define a plot behavioural schema as a plot dynamic schema augmented with
goal-inference rules and a set of complex operations. A model of a plot behavioural schema
is again defined as a structure for the language of the schema that satisfies all axioms of the
schema.

4.3 Prolog concrete notation for the behavioural schema

The Prolog concrete notation for condition-goal rules uses timestamp variables to capture
the semantics of the temporal operators introduced in Section 4.2. The translation from our
formal notation to the Prolog concrete notation is however straightforward.

As an example of a goal-inference rule in Prolog notation, we have:

/* If victim is kidnapped, hero will want to rescue her */

 rule([e(T1,kidnapped(VIC,VIL))],
 ([T2],[h(T2,not(kidnapped(VIC,VIL))),h(T2>T1)],true)).

Note that this Prolog clause corresponds to the following rule, introduced in Section 4.2:

����(kidnapped(VIC,VIL) � ����¬kidnapped(VIC,VIL))

 Complex operations have the same syntax as basic operations, introduced in Section 3.3.
If a complex operation results from a composition of other possibly complex or basic
operations, the two last parameters (shown as empty lists in the operator clause pattern of
section 3.3) will contain, respectively, the list of component operations, each with a
different fi tag, and a list of tag pairs (fi , fj) declaring any order requirements holding
between the operations.

 16

5. Example: a Swords and Dragons genre

5.1 Example Scenario

The example scenario consists of an ample field, on which certain landmarks can be
distinguished. These are the White Palace, the Gray Castle, the Red Castle, the Church and
the Green Forest. The White Palace is the home of Princess Marian and also houses a
temporary visitor, a knight called Hoel. The Gray Castle is the home of Hoel and of Brian,
an even worthier knight. The Red Castle is occupied by Draco, a flying dragon. In the
Green Forest lives the magician Turjan. The White Palace and the Red Castle are protected
by armed guardians, and the Green Forest by magical trees; the other places, including the
Gray Castle, have no such defenses.
 These creatures, both the persons and the dragon, can be described in terms of their good
or evil nature and of their strength. As to nature, the princess and the knights are reputed to
be on the side of goodness, whereas the dragon is evil; contrasting with all others, the
magician is neutral. In the beginning, unsurprisingly, all creatures are alive, and no one is
stronger than the dragon. Differently from these leading characters, the protecting
guardians figure as mere extras, individually undistinguishable. Relevant only in groups,
they are a feature of the places they are charged to protect, and the protection afforded is
characterized by the size of the group and by kind (which reflects the nature of the place-
owners).
 The inter-personal relations are simple. All creatures are acquainted with each other, but
demonstrate no mutual feelings initially, except for the two knights, who have a strong
positive affection for the princess. At a later time, one of the heroes and the princess may
eventually get married. On the negative side, the dragon may subsequently kidnap the
princess, and keep her under custody. The creatures are all in their homes at the beginning
(with the single exception of Hoel), and the princess, the knights and the dragon are
normally free to be at different places in other occasions; the magician, however, is
confined to his sylvan refuge.
 In our limited Swords and Dragons genre, actions are mostly physical. Heroes, villains
and even victims are able to fight and take measures to raise their chance of victory. Before
engaging in personal battle, the attacker often has to penetrate through the group of
guardians surrounding the prospective victim’s present location; this may be quite hard,
unless the victim foolishly dismisses a number of guardians. And the combat proper will
consume the energies of a fighter. Is the attacker's strength enough to defeat and kill the
adversary? If not, he should seek a powerful magician to obtain a surplus of fighting power.
 But, as donors tend to be in folktales, a magician is a capricious being, easily ill-
disposed when approached without due courtesy. He may then pretend to yield to the hero’s
request but will in fact reduce his strength to the bare minimum necessary to start a combat
– just to be inevitably defeated in the sequel.
 Heroic knights are destined to love damsels, who in turn may not respond to their
entreaties at the beginning. But, if a villain kidnaps a princess and a hero successfully frees
her, then gratitude and admiration should change her inclination.
 Many actions are closely associated with places. So, to say that a villain kidnaps a victim
means that he brings her to his lair, and marriage can only be celebrated at a church. All
characters, except donors, continually move across the scene to accomplish their missions.

 17

 The various characters are motivated to act by their inner drives. Typically, a knight like
Brian is anxious to be invested with superior heroic force, so that some day he can become
a dragon-slayer. By contrast, Princess Marian does not even imagine that there may be any
possibility of violence, and she finds no use for the presence of so many guards around her
palace.
 Draco is continually in the alert for signs of a weakening in her protection, awaiting a
chance to come and achieve the maiden's abduction. Attempts to kidnap may meet
resistance, with considerable risk to the victim. On purpose or by accident, the dragon may
end up killing his fragile prey.
 Depending on the outcome of the villainy − abduction or death of the princess − one
hero, or both, are impelled to either rescue or, in the worst case, avenge her. If released
alive from captivity, the princess will be full of tender feelings for her saviour. Both would
love each other and would thus be anxious to have their marriage celebrated.
 If the two knights participate of a heroic quest on behalf of the princess, they may or
may not collaborate. They both love her, and are bound to compete, loyally or not, to win
her hand.
 Finally, the magician Turjan does not seem to wish anything. He stands still in the
forest, where people sometimes seek him. The heroes come to demand a gift of fighting
energy and his reaction depends on how he is disposed toward the newcomer. Desiring
nothing, he never initiates any plans. But, when one least expects, he can with a gesture
transmute a kind person into a powerful evil creature.

5.2 Description of the mini-world – static schema

Figure 1 displays the static schema. Briefly, we have:

• creature, an entity class, identified by name, with attributes nature, strength,
gender and alive (of Boolean type)

• person and dragon, specializations of creature
• princess, knight, and magician, specializations of person
• place, an entity class, identified by place_name with a composite attribute

protection, composed of kind and level
• home and current_place, two n-1 relationships between creatures and places
• acquaintance, a relationship involving creature twice, with attribute affection
• married, a 1-1 relationship involving person twice
• kidnapped, a n-1 relationship between persons and creatures (more than one

person can be simultaneously held by one kidnapper)
• hero, victim, villain and donor, the roles adopted

For our purposes, we did not specialize place, but this is largely a matter of taste; one

might readily come up with a variety of distinguishing criteria applicable to our scenario.
 The choice of a convenient type for attribute values is crucial. For example, one could at
first consider good and evil as possible values for nature, as well as for kind of
protection. We preferred instead 1 and -1, which permits their use in various arithmetic
comparison formulas, involving strength and level of protection (as will be seen in
Section 5.3). An even more important choice was for the type of affection. Again, the

 18

intuitive preference might be some word indicating, for a pair of creatures A and B, in this
order, the current feeling of A for B. Here, our choice was motivated by what is practically
a consensus in affective computing [38] research: drives and emotions are better expressed
as points in numerical scales within a given range (typically from 0 to 100). This makes it
easier to describe gradual increases and decreases in emotional intensity. Also, we decided
to allow zero and negative values to denote, respectively, neutral and adverse feelings.
Finally, in order to take advantage of the real-number constraint programming package of
the Prolog version used, we write all numbers as reals, although we are only concerned
with integer values.

Figure 1: Entity-Relationship diagram

hero victim donor

Creature

name

alive

gender

Dragon Person

Knight Magician Princess

current
place

kidnapped

affection

level

protectn

place
name home

acquaintance

married

villain

nature

strength

kind

Place

 19

Our choice of roles − hero, victim, villain and donor − is a subset of the seven
dramatis personae proposed by Vladimir Propp [31] for Russian fairy-tales. Roles hero
and donor are here assigned only to knights and magicians, respectively. On the other
hand, although it is more natural to assign the role of victim to a princess, and that of
villain to a dragon, we also allow in our specified genre that knights may figure as
victims or villains. Any entity instance to which one or more roles have been assigned
is a character (one of the dramatis personae) in the story.

A number of static integrity constraints are assumed. The most obvious is that whatever
attribute a creature may have should only retain any significance while it is alive. All
attributes here are single-valued. If a creature is playing the role of villain, his nature
must be -1, whereas heroes and victims, who act as "good" characters, are rated 1. Thus,
in view of the single-valuedness of attributes, a knight can be at the same time hero and
victim, but not hero and villain. A donor does not take sides, his neutrality being
marked by an intermediate 0 value. Reflecting the inclination of the owners, the kind of
protection of the several places coincides with the nature of the characters who
make them their home.
 As the diagram in Figure 1 shows, but not our Prolog clauses, only relationship
acquaintance is unrestricted; the others are either 1-1 or 1-n, which constitutes an obvious
static constraint. For a magician, here playing the role of donor, the current_place must
coincide with his home at every state, a restriction that does not affect the other creatures.
Moreover, married can only hold between persons of opposite gender.
 A genre is of course compatible with an ample choice of (valid) initial states. Different
initial states lead to the creation of possibly very different narratives, all of which are
constrained to remain within the limits of the defined genre. In our sample scenario, we
assume that, in the initial database, the villainous Draco is stronger than the two knights,
of whom Brian is the most vigorous, and that the potential victim, Princess Marian, is
indifferent to both knights, despite their perfect love (100 in affection) for her. True to
his role as donor, Turjan the Archmage is neither good nor evil (0 for nature).
 The closed world assumption [32], familiar to database practioners, justifies the
conclusion that no one is married or kidnapped at the initial state, simply because no such
facts are explicitly recorded in the database.
 Appendices I and II contain, respectively, the full Prolog code for the static schema and
for one of the initial states used in our experiments.

5.3 Events that change the mini-world – dynamic schema

Our Swords and Dragons genre has ten event-producing operations:

1. go(CH,PL)
2. reduce_protection(CH,PL)
3. kidnap(CH1,CH2)
4. attack(CH,PL)
5. fight(CH1,CH2)
6. kill(CH1,CH2)
7. free(CH1,CH2)
8. marry(CH1,CH2)
9. donate(CH1,CH2)
10. bewitch(CH1,CH2)

 20

All operations share one evident pre-condition: the agent must be alive. Most

operations also require that the agent must not be in a kidnapped status, wherein his
freedom to act would be necessarily limited. For operations involving two characters,
both must be in the same current_place. Operations involving a physical confrontation
are only admitted between characters of opposite nature. A mandatory post-condition is
that, when an attribute is modified to receive a new value, the list of effects always
prescribes the exclusion of the old value, since all attributes are single-valued in our
example. Specific characteristics for each operation are reviewed below:

• The agent of operation go(CH,PL) can be any character, except a donor; the
destination is of course a place. A pre-condition is that the character CH should
neither be currently kidnapped (a general requirement, as said above) nor be keeping
someone kidnapped. Presumably the kidnapper must be constantly vigilant, to
counter any attempt towards the victim's liberation. The effect of the operation is to
make PL the current_place where CH is.

• Only the potential victim can imprudently dismiss some of the guardians of the
place where she currently is, as agent of the reduce_protection(CH,PL)
operation, whose object is a place. The current number of guardians serving as
sentinels must be positive, and each execution of the operation reduces it by a factor
of 10 (written as 10.0, in the required real-number format). The exact decrement will
be determined at the dramatization stage.

• Villain and victim are the roles assigned to CH1 and CH2, the agent and the
patient, respectively, of operation kidnap(CH1,CH2). A vital pre-condition is that
the strength of the villain be enough to break into the place where the victim is.
The formula for the comparison says that his strength should be greater than that of
his victim, added to the level of protection of the place. But the kind of
protection is also taken into consideration, being multiplied by the level
(remember that kind is a number, 1 or -1, to indicate whether the guardians are either
on the side of goodness or of evil). As a result, if the victim is currently in a place
dominated by evil, the level of protection will actually be subtracted from her
strength. Kidnapping results in the victim being imprisoned in the home of the
kidnapper.

• A hero, not currently kidnapped (recall that the same individual who plays the role
of hero can simultaneously be a victim), or a villain can be the agent of
attack(CH,PL) intent on decimating the group of guardians protecting PL, which
stands as the object of the action. The nature of the agent must be the contrary of
the kind of protection of the attacked place. The current level of protection
(associated with the number of guardians), which must be positive, is reduced by a
factor of 30. The operation has the side-effect of displeasing those who have their
home in PL: their affection for the attacker now becomes strongly negative (-100).

• Two characters of opposite nature, but never a donor, currently having strength
of at least 10, can play the agent and coagent of fight(CH1,CH2). The level of
protection of the place where the combat happens must be null or negative; so the
troop protecting such locations must first suffer an attack, before the leading

 21

characters can face each other. The confrontation is extenuating for both
participants, which is indicated by the mutual subtraction of their strengths as a
result.

• Agent and coagent of kill(CH1,CH2) are as in the preceding operation. The killer's
strength must be strictly greater than 10; and the character killed must either no
longer be able to fight or have the bare minimum necessary for that, which is
expressed by requiring that his strength be at most equal to 10. The obvious effect
is that CH2 is no longer alive.

• Operation free(CH1,CH2)can be performed by a hero, to the benefit of a kidnapped
victim, only after the kidnapper is dead. Besides the effect that CH2 is no longer
kidnapped, the operation has the virtue to raise to the maximum value (100) the
affection of the grateful victim for her liberator.

• In our version of marry(CH1,CH2), the agent CH1 must be a hero and the coagent,
CH2, a victim, usually representing the proverbial motif of the “maiden in distress
rescued by a loving knight”. Their mutual affection has to be greater than 80 (note
this might already be true at the initial state, but then there would be no need for
heroic action). They must be originally single. To acquire the married status, their
presence at the Church is required.

• The first operation whose agent must exclusively be a donor, a role that is reserved
to magicians in our genre, is donate(CH1,CH2), whereby the recipient, always a
hero, is given an amount of fighting power. The measure of the new strength of
CH2 depends on how he approaches the donor CH1. A courteous attitude is rewarded
with an increase of 80 above his current strength, whereas rudeness, demonstrated
by a previous attack against the defenses of the magician's home, is punished by
having his strength set to the minimum required for fighting (10), regardless of
what the previous value was.

• The second operation having a donor as agent, namely bewitch(CH1,CH2), has as
patient either hero or victim, which are the two classes of characters normally
endowed with a good nature. The dreadful double effect of the operation is to instill
an evil nature into CH2 who, at the same time, is made very strong (a strength of
100).

 It is worksome but not too hard to check how the combined interplay of pre-conditions
and post-conditions in this repertoire contributes to the preservation of the static and
dynamic integrity constraints, once the validity of the postulated initial state has been
verified. As a trivial example with a static constraint, one can readily see that, at every state
reachable from the initial state through the operations, the current place of the donor is
invariably his home, provided that this was true at the initial state.
 Killing an enemy is a task requiring wise tactics, in view of the dynamic constraints
involved. If CH1 intends to kill CH2, he may or may not have to fight beforehand, so as to
reduce the strength of the adversary. Value 10 is especially critical in this regard: it is not
sufficient for CH1 as prospective killer, whereas CH2 can be killed if he has this value (or
less). So, there is no need to fight if CH2 already has strength no greater than 10. On the
other hand, 10 is the minimum required to start fighting, which may induce an ill-advised

 22

character to challenge another with no chance to win (recall how the discourteous
recipient is treated in the donate operation described above).
 Now let us examine what happens when fighting takes place. Clearly only the situation
wherein CH1 is stronger than CH2 needs to be considered. Suppose CH1 has strength 30
and CH2 has 20. As indicated as an effect of the energy-consuming fight operation, the
strengths of the two opponents are subtracted from each other, so CH1 ends up with 10
and CH2 with -10. As a consequence, CH2 can now be killed – but not by CH1, who became
too weak for that. (Notice that the same happens with strengths of 20 and 10 respectively,
which is ironical, since in this case CH1 could have dispatched the enemy directly without
fighting).
 As an even subtler dynamic constraint, observe that, once kidnapped, a victim has no
way to escape from custody by her own action, inevitably needing the initiative of one or
more heroes. When dealing with fiction, one is allowed to make certain assumptions that
may seem unrealistic. One of the general principles governing the genesis of fictional
stories is that functional events [3,14] should be included, plausible or not entirely so, as a
prompt to adventurous deployments. For instance, this "maiden in distress" situation works
as an inducement for heroic quest.
 In our example specification, if one starts from a valid initial state and only the nine first
operations above are used, the generated plots should conform to all constraints and be
recognizable as legitimate representatives of the intended genre. The pre- and post-
conditions of these operations were carefully balanced for that. However, if the tenth
operation – bewitch – happens to be utilized, this may no longer be true. The introduction
of a disturbing element serves a purpose here: to create the possibility of transgressing
some of the conventions of the genre, such as the understanding that all participants retain
their nature throughout their lives. Again, fiction has a latitude that one would hardly
admit in business application domains.
 Appendix III contains the full Prolog code for the dynamis schema.

5.4 Motivation of the dramatis personae – behavioural schema

In this section, we first introduce the goal-inference rules and then address the repertoires
of pre-existing plans for our Swords and Dragons genre. The definition of each rule, in the
notation of Section 4.2, is followed by a brief discussion.

• The first two in our example are activated right at the initial state. The first rule refers
to the heroes. At least one hero should be prepared for future missions and so, if
there exists some villain stronger than him, he will try to acquire an even superior
strength.

/* (1) The strongest hero wants to become stronger than the villain
*/

 (villain(VIL)∧ strength(VIL,Lv) ∧
 hero(HERO) ∧ strength(HERO,Lh)
 � ����(strength(HERO,LS) ∧ LS > Lv)

 23

• The second rule applies to the victim. It is very common in folktales that a victim
can be blamed as partly responsible for the villainy that she will suffer. As Propp
observed, her complicity is revealed as she, for example, exposes herself by
weakening the defenses surrounding her. Accordingly, the rule assesses the initial
level of protection of the place where she is, and sets its reduction as a goal. As
already seen in the pre- and post-conditions of the operations, the nature of the
victim and the type of protection of the place appear as coefficients, affecting
the sign of the terms in the inequality. A different variable, PLACE2, denotes the
location of the victim at future time; this allows two possibilities for achieving less
protection: the planner can either apply (one or more times) the
reduce_protection operation to the original PLACE1 – in which case the two
variables will be treated as identical – or can cause the imprudent maiden to go to
some different location already offering an inferior protection.

/* (2) Victim reduces protection of her current location
*/
 (victim(VIC) ∧ nature(VIC,KIND0) ∧
 current_place(VIC,PLACE1) ∧
 protection(PLACE1,KIND1,PROT1))

 � ����(current_place(VIC,PLACE2) ∧
 protection(PLACE2,KIND2,PROT2) ∧

KIND2*KIND0*PROT2 < KIND1*KIND0*PROT1)

• If the goal of the second rule is reached, the third rule is triggered, producing in the
villain a desire to take advantage of the weaker condition of the victim, by having
her kidnapped. Although this is the type of villainy that determines the normal
continuation of the plot, it may happen instead that the villain perpetrates a
different villainy, by murdering the victim. To cover this circumstance, it became
necessary to add to the situation part of the rule the seemingly redundant requirement
that the victim needs to be still alive if the villain proposes to have her
kidnapped. Without this additional requirement, we would have a goal conflict with
the fifth rule (described later).

/* (3) If victim's protection is reduced, villain will want to

kidnap her */

 (victim(VIC) ∧ nature(VIC,KIND0) ∧
 current_place(VIC,PLACE1) ∧
 protection(PLACE1,KIND1,PROT1))

 � ����(current_place(VIC,PLACE2) ∧
 protection(PLACE2,KIND2,PROT2) ∧
 KIND2*KIND0*PROT2 < KIND1*KIND0*PROT1

 � ����(alive(VIC) ∧
 kidnapped(VIC,VIL)))

• The fourth rule says that, if kidnapping has occurred, the goal of reverting this
situation will arise. The rule does not explicitly refer to the heroes as the necessary

 24

agents who can accomplish the deed, but the overall specification of the genre calls
for their participation, effectively excluding any other character.

/* (4) If victim is kidnapped, hero will want to rescue her */

��������(kidnapped(VIC,VIL)����� ����¬kidnapped(VIC,VIL))

• The fifth rule applies to a situation in which the villain has performed the action of
killing the victim. All that remains for the heroes (once more not explicitly
mentioned) to do is to vindicate her death, by making the villain lose his life. If
both this rule and third rule were activated at the same occasion, a contradiction
would result: the goal that the villain be not_alive makes it impossible to execute
operation kidnap, required to satisfy the goal of rule three. Evidently the motivating
situations for the two rules are mutually exclusive and so they should never be
simultaneously active, since it does not make sense to kidnap a dead victim – but
we find useful to report this as a problem, to illustrate how crucial a careful analysis
of the specification is. Indeed, at an early design phase, we overlooked the necessity
to spell out in the situation part of rule three that the victim should be alive, and took
some time to realize what was causing trouble to the plan generator.

/* (5) If victim is killed, hero will want to avenge her */

����((victim(VIC) ∧ villain(VIL) ∧ kill(VIL,VIC))� ����¬alive(VIL))

• The sixth and last rule, if ever activated, will lead the plot to a happy ending: if two
persons love each other with perfect love (or almost perfect, since the required
affection is merely 95), and are still single, they will want to get married. That the
married attribute for each person is tested in one direction only should not sound
peculiar: operation marry asserts the attribute in both directions (and, as always, we
must rely on the correctness of the initial state for complete information about already
married people). Note also that the combined effect of the specification clauses
restricts marriage to a hero and a victim, roles that are respectively assigned in the
example initial state to each knight and to the princess, thus enforcing the opposite
gender requirement.

/* (6) If the affection between two persons is high, then they will

want to get married */

���� ((affection(CH1,CH2,L1) ∧ affection(CH2,CH1,L2) ∧
 ¬married(CH1,X) ∧ ¬married(CH2,Y) ∧ L2>95.0 ∧ L1>95.0)
 � ����married(CH1,CH2))

 Appendix IV contains the full Prolog code for the goal-inference rules included in the
behavioural schema.
 At the end of section 4.1, we mentioned, as an alternative or complementary strategy for
goal achievement, the possibility of resorting to repertoires of pre-existing plans, whose
utilization further characterizes the observed behaviour of the various agents. Such typical
plans (or complex operations) are organized in is-a and part-of hierarchies. Figure 2 shows
both hierarchies for our running example, where single arrows denote composition (part-of
link) and double arrows denote generalization (is-a link) (we refer the reader to [25] for a

 25

detailed description of the notation adopted). A sketchy top-down description follows, with
levels numbered from 0 to 4 (the bottom level is occupied by the basic operations
introduced in Section 5.3).

• Level 0 – adventure: Located at the root position, operation adventure has
components: do_villainy, retaliate, accompany and donate. It specializes into:
rescue or avenge.

• Level 1 – rescue, avenge: These are the two specializations of adventure. The

rescue variety has components: abduct, liberate, marry, accompany, donate. The
other variety, avenge, has components: murder, execute, accompany, donate. As
Figure 2 shows, there are connecting edges to only some of the components; such
edges are unnecessary for accompany and donate, which are inherited from
adventure via the is-a link. Note that, for both rescue and avenge, the is-a
inheritance mechanism would also indicate do_villainy and retaliate as
components − but the existence of direct edges to specific forms of villainy and
retaliation (the pair abduct, liberate for rescue, the pair murder and execute
for avenge) in fact overrules the is-a implicit inheritance discipline. In other words,
one can say that the choice of a villainy preempts the choice of the appropriate
retaliation.

• Level 2 – do_villainy, retaliate, accompany: Operation do_villainy specializes

into: abduct or murder; retaliate specializes into: liberate or execute;
accompany specializes into: help or false_help. Names are, as usual, a matter of
personal preference, but we tried our best to select meaningful words; accompany, for
example, evokes the convention, pointed out by folklorists, that certain persons who
aid (or hinder) the hero in his mission march by his side (playing the role of helpers
or of false_heroes), while others (the typical donors) usually stay behind and take
no part in the main action.

• Level 3 – abduct, murder, execute, liberate, help, false_help: Both

villainies have a first component that signals the complicity of the victim. So,
abduct has components: reduce_protection, attack, kidnap; while murder has
components: reduce protection, attack, fight, kill. Both retaliations involve
killing the villain, and include all preparatory actions which may or may not be
needed in view of current circumstances. Variety liberate has components: attack,
fight, kill, free, whereas execute has components: attack, fight, kill. Sincere
helpers can contribute in various ways, not necessarily doing all actions listed here,
and noting that kill should rather be reserved as a prerogative of the main hero. A
clever false_helper is likely to enter the battlefield only when the struggle is over,
and surreptitiously open the doors of the dungeon to the victim, thereby seducing her
with an eye to matrimony. Thus, help has components: attack, fight, free.
Effortless false help has components: free, marry.

 26

We left out two basic operations (level 4) from this hierarchy. Pervasive as it is when
physical events are contemplated, operation go is in fact an ultimate component of
practically all actions, and therefore is assumed to be present even if not indicated
explicitly. On the other hand, bewitch was deliberately excluded. As noted before, plots
including bewitch are to be considered transgressive rather than typical in the context of
our genre. They reveal the magician's inclination to subvert an until then innocent world,
by acting as a trickster.

Figure 2: hierarchy of typical plans

5.5 Example of a plot generated by LOGTELL

We developed a prototype tool, LOGTELL, for interactively generating and dramatizing
stories, through alternating stages of goal inference, planning, user intervention and 3D
visualization [13]. LOGTELL incorporates a plan generator, adapted from Abtweak [40],
and provides two main mechanisms to handle goal abandonment and competitive plan
execution: conditional goals and limited goals [11]. A conditional goal has attached to it a
survival condition, which the planner must check to determine whether the goal should still
be pursued. Limited goals are those that have an associated limit (expressed as a natural
number). The limit restricts the number of events that can be inserted to achieve the goal.
Other strategies are being considered for future inclusion in our method.
 To handle pre-existing typical plans in LOGTELL, we introduced a library structure
that allows plan-recognition by a method proposed by Kautz [26]. The method consists of

end

adventure

avenge rescue

retaliate do_villany donate accomp.

liberate help false_help execute murder abduct

kill free marry fight kidnap reduce
protection

attack

 27

matching a few intended events against the library, trying to find one or more plans of
which the intended events may be part. This additional feature also serves to guide the user
in his manual interventions, since, once a retrieved plan is found and displayed, the user can
determine the insertion of one or more of its events into the plot being composed [13].

An example plot generated by the LOGTELL prototype is shown in Figure 3. The
contents of the boxes indicate the executed operations (and also the goals, in "gen_goal"
clauses) prefixed by numerical tags, used internally to record the partial order requirements.
The connecting edges are manually inserted by the user to choose a fully linearized
sequence compatible with the partial order requirements, which must be done as a
preliminary step to dramatization.
 Upon traversing the plot, a simple-minded template-based facility can "read" it and
produce the coarse text of Figure 4. The resulting animation is illustrated in Figure 5.

Figure 3: Example plot

Figure 4: Template-based text

 28

Figure 5: Draco attacks the White Palace

6. Concluding remarks

Following on Propp's footsteps, we proposed to extend his approach, originally restricted to
fairy-tales, so as to be able to define literary genres in general. Contrasting with grammar-
driven methods [33], predominantly concerned with the syntactical aspects of plots, our
three-schemata conceptual modeling method is based on a plan-recognition / plan
generation paradigm [21], covering the semantic and pragmatic aspects as well, since:

a. By feeding the mini-world factual description, provided by the static schema, into
the definition of operations – expressing their pre-conditions and post-conditions in
terms of such facts – we are able to determine the meaning of an entire plot, by
simulating the successive state changes operated in the mini-world.

b. On the other hand, plots do not emerge by blind chance; they are set in motion by
the goals of the participants. They can be regarded therefore as intentional
sequences of actions, coherent with the different inclinations of the characters
involved.

 Such goals often exhibit a mutual dependence, determined by certain peculiar
conventions of fictional genres. The assigned role largely determines what kind of conduct
is expected from a given character, which in turn can only be deployed if the other
characters also act as they are supposed to, always in accordance to their respective roles.
Without this careful orchestration of goals, as we tried to achieve with the six goal-
inference rules for our simple Swords and Dragons genre, the plots would fail to converge
towards an appropriate outcome. Culler's insightful observation is helpful here [14, page
209]: "The plot is subject to teleological determination: certain things happen in order that
the récit may develop as it does" − and he proceeds quoting Genette's allusion to the

 29

"paradoxical logic of fiction", which requires that every unit of a story be defined by its
functional qualities, among which are correlations with other units.
 Although it seems adequate for characterizing genres where the stories exhibit a high
degree of regularity, our proposal would not cope with the complexities of genres wherein
the degree of variability is high. And, even for a genre that can still be treated, it would be
presumptuous to claim that our specification would correspond exactly to the intuition of
ordinary readers. We can define a genre G* merely as the set of plots P that our plan-based
specification can recognize or generate. Surely we should try, as much as possible, to assess
its closure with respect to the intended scope of the target genre G. Completeness proofs are
in general harder than proofs of correctness.
 An interdisciplinary approach, such as ours, opens promising perspectives. In particular,
in this paper, we explored the combination of structuring constructs of literary origin
(especially Propp's functions) with models familiar to computer scientists (such as the ER
model, STRIPS, object and agent orientation, etc.). All features described here have been
tested through the LOGTELL prototype tool. We are aware, however, that our modeling
method, although minimally sufficient, should still be much enriched by a deeper study of
modern literary theory and by incorporating contributions from other storytelling projects.

References

[1] Aarne, A. (1964) The Types of the Folktale: A Classification and Bibliography.
Translated and enlarged by Thompson, S., FF Communications, 184, Helsinki:
Suomalainen Tiedeakatemia, 1964.

[2] Afanas'ev, A. (1945) Russian Fairy Tales. N. Guterman (trans.), New York: Pantheon
Books, 1945.

[3] Bal, M. (2002) Narratology - Introduction to the Theory of Narrative. University of
Toronto Press, 2002.

[4] Bloom, H. (2003) A Map of Misreading. Oxford University Press, 2003.
[5] Borgida, A., and Brachman, R.J. (2003) “Conceptual Modeling with Description

Logics.” In: Baader, F.; Calvanese, D.; McGuiness, D.L.; Nardi, D.; Patel-Schneider,
P.F. (Eds) The Description Logic Handbook: Theory, Implementation and
Applications. Cambridge University Press, Cambridge, UK.

[6] Calvanese, D.; De Giacomo, G. (2003) “Description Logics for Conceptual Data
Modeling in UML”. In: Proc. 15th European Summer School in Logic Language and
Information, August 2003, Vienna (Austria), pp. 18-29.

[7] Carlsson, M.; Widen, J. (1995) SICSTUS Prolog Users Manual, Release 3.0. Swedish
Institute of Computer Science, 1995.

[8] Cavazza, M.; Charles, F.; Mead, S. (2002) “Character-based interactive storytelling”.
IEEE Intelligent Systems, special issue on AI in Interactive Entertainment, 17(4):17-
24, July 2002.

[9] Cervesato, I; Franceschet, M.; Montanari, A. (1997) “Modal Event Calculi with
Preconditions”. In Proc. of the 4th. International Workshop on Temporal
Representation and Reasoning, Daytona Beach, FL, USA, pages 38-45, May 1997.

[10] Ciarlini, A.E.M. (1999) Geração Interativa de Enredos. Ph.D thesis, Departamento
de Informática, PUC-Rio, Brazil, 1999. (in Portuguese)

 30

[11] Ciarlini, A.E.M.; Furtado, A.L. (1999) “Simulating the Interaction of Database
Agents”. In Proc. DEXA’99 Database and Expert Systems Applications Conference,
Florence, Italy, Sept. 99.

[11] Ciarlini, A.E.M.; Furtado, A.L. (2002) “Understanding and Simulating Narratives in
the Context of Information Systems”. In Proc. ER'2002 – 21st. International
Conference on Conceptual Modeling, Tampere, Finland, oct. 2002.

[12] Ciarlini, A.E.M.; Casanova, M.A.; Furtado, A.L.; Veloso, P.A.S. (2007) “Treating
Literary Genres as Application Domains”. Submitted for publication.

[13] Ciarlini, A.; Pozzer, C.; Furtado, A.; Feijó, B. (2005) A Logic-Based Tool for
Interactive Generation and Dramatization of Stories, Dept. de Informática, Pontificia
Universidade Católica do Rrio de Janeiro, Technical Report 07/2005.

[14] Culler, J. (1977) Structuralist Poetics: Structuralism Linguistics and the Study of
Literature. London: Routledge & K. Paul, 1977.

[15] Elmasri, R.; Navathe, S. (2003) Fundamentals of Database Systems. Addison
Wesley, 2003.

[16] Embley, D. (1997) Object Database Development: Concepts and Principles.
Addison-Wesley, 1997.

[17] Fikes, R.E.; Nilsson, N.J. (1971) “STRIPS: A new approach to the application of
theorem proving to problem solving”, Artificial Intelligence , 2(3-4), 1971.

[18] Fillmore, C. (1968) “The Case for Case”. In: Bach, E., Harms, R. (eds.), Universals in
Linguistic Theory, Holt, Rinehart and Winston, 1968.

[19] Furtado, A.L. (1999) “Narratives and Temporal Databases: An Interdisciplinary
Perspective”. In: P.P.Chen, J.Akoka, H.Kangassalo, B.Thalheim (eds.), Conceptual
Modeling: Current Issues and Future Directions, Springer-Verlag, 1999.

[20] Furtado, A.L.; Ciarlini, A.E.M. (1999) “Operational Characterization of Genre in
Literary and Real-life Domains”. In: Proc. of the ER’99 Conceptual Modeling
Conference, Paris, France, November 1999.

[21] Furtado, A.L.; Ciarlini, A.E.M. (2000) “The Plan Recognition / Plan Generation
Paradigm”. In: Solvberg, A., Brinkkemper, S., Lindencrona, E. (eds.) Information
Systems Engineering: State of the Art and Research Themes, Springer, 2000.

[22] Glassner, A. (2004) Interactive Storytelling. Natick: A K Peters, 2004.
[23] Goguen, J.A.; Thatcher, J.W.; Wagner, E.G. (1978) “An initial algebra approach to

the specification, correctness and implementation of abstract data types”. In: Yeh, R.
T. (ed.), Current Trends in Programming Technology, Prentice-Hall, 1978.

[24] Huhns, M.; Stephens, L. (2000) “Multiagent Systems and Societies of Agents”, In: G.
Weiis (ed.), Multiagent Systems − a Modern Approach to Distributed Artificial
Intelligence, MIT Press, 2000.

[25] Karlsson, B.; Ciarlini, A.E.M.; Feijó, B.; Furtado, A.L. (2006) “Applying a Plan-
Recognition / Plan-Generation Paradigm to Interactive Storytelling”. In: Proc. of
Workshop on AI Planning for Computer Games and Synthetic Characters, ICAPS06,
English Lake District, 2006.

[26] Kautz, H.A. (1991) “A Formal Theory of Plan Recognition and its Implementation”.
In: Allen, J. F. et al (eds.), Reasoning about Plans, San Mateo: Morgan Kaufmann,
1991.

[27] Koch, P. (1999) "Frame and Contiguity. On the Cognitive Basis of Metonymy and
Certain Types of Word Formation". In: Panther, K. Radden, G. (eds.), Metonymy in
Language and Thought, Amsterdam: John Benjamins, 1999.

 31

[28] Kowalski, R.; Sergot, M. (1986) “A Logic-based Calculus of Events”. New
Generation Computing, 4: 67-95, Ohmsha Ltd and Springer-Verlag, 1986.

[29] Miller, R.; Shanahan, M. (1994) “Narratives in the Situation Calculus”. Journal of
Logic & Computation, Vol. 4, Number 5, 1994.

[30] Ozcan, R.; Aslandogan, Y. (2004) “Concept Based Information Access Using
Ontologies and Latent Semantic Analysis”, Dept. of Computer Science and
Engineering, University of Texas at Arlington, Technical Report 8, 2004.

[31] Propp,V. (1968) Morphology of the Folktale. Laurence, S. (trans.), Austin: University
of Texas Press, 1968.

[32] Reiter, R. (1978) “On Closed World Databases”. In Logic and Databases, H. Gallaire
and J. Minker (eds.), Plenum Press, 1978, pp. 55-76.

[33] Rumelhart, D.E. (1975) “Notes on a schema for stories”. In: Bobrow, D.G. and
Collins, A.M. (eds) Representation and understanding: Studies in cognitive science,
New York: Academic Press, 1975.

[34] Schank, R.C.; Abelson, R.P. (1977) Scripts, Plans, Goals and Understanding.
Hillsdale: Erlbaum, 1977.

[35] Selden, R.; Widdowson, P. (1993) A Reader's Guide to Contemporary Literary
Theories. The University Press of Kentucky, 1993.

[36] Sgouros, N.M. (1999) “Dynamic generation, managing and resolution of interactive
plots”. Artificial Intelligence, 107, January 1999, pp. 29-62.

[37] Staab, S.; Studer, R. (eds.) (2004) Handbook on Ontologies, Springer, 2004.
[38] Velasquez, J.D. (1997) “Modeling emotions and other motivations in synthetic

agents”. In: Proc. of the Fourteenth National Conference on Artificial Intelligence,
Providence, 10-15, 1997.

[39] Willensky, R. (1983) Planning and Understanding - a Computational Approach to
Human Reasoning. Addison-Wesley, 1983.

[40] Yang, Q.; Tenenberg, J.; Woods, S. (1996) “On the Implementation and Evaluation
of Abtweak”. Computational Intelligence Journal, Vol. 12, Number 2, Blackwell
Publishers 295-318, 1996.

 32

Appendix I

/* STATIC SCHEMA */

entity(character,name).
entity(person,name).
entity(knight,name).
entity(princess,name).
entity(magician,name).
entity(dragon,name).
entity(place,place_name).

is_a(person,character).
is_a(knight,person).
is_a(princess,person).
is_a(magician,person).
is_a(dragon,character).

attribute(character,nature).
attribute(character,strength).
attribute(character,alive).
attribute(place,protection).

boolean(alive).
composite(protection,[kind,level]).

relationship(home,[character,place]).
relationship(current_place,[character,place]).
relationship(acquaintance,[character,character]).
relationship(married,[person,person]).
relationship(kidnapped,[person,character]).

attribute(acquaintance,affection).

role(hero,knight).
role(victim,(princess;knight)).
role(villain,(dragon;knight)).
role(donor,magician).

 33

Appendix II

/* INITIAL STATE */

/* entity instances and their attributes */

db(knight('Brian')).
db(knight('Hoel')).
db(princess('Marian')).
db(magician('Turjan')).
db(dragon('Draco')).

db(nature('Brian',1.0)).
db(nature('Hoel',1.0)).
db(nature('Marian',1.0)).
db(nature('Draco',-1.0)).
db(nature('Turjan',0.0)).

db(strength('Brian',20.0)).
db(strength('Hoel',15.0)).
db(strength('Draco',45.0)).
db(strength('Marian',10.0)).
db(strength('Turjan',45.0)).

db(alive('Marian')).
db(alive('Brian')).
db(alive('Draco')).
db(alive('Hoel')).
db(alive('Turjan')).

db(place('White_Palace')).
db(place('Red_Castle')).
db(place('Gray_Castle')).
db(place('Green_Forest')).
db(place('Church')).

db(protection('White_Palace',[1.0,70.0])).
db(protection('Red_Castle',[-1.0,20.0])).
db(protection('Gray_Castle',[1.0,0.0])).
db(protection('Green_Forest',[0.0,20.0])).
db(protection('Church',[1.0,0.0])).

db(acquaintance([CH1,CH2])) :-
 db(character(CH1)), db(character(CH2)), dif(CH1,CH2).

/* relationship instances and their attributes */
/* note: not all values of the affection attribute are given */

db(home('Brian','Gray_Castle')).
db(home('Hoel','Gray_Castle')).
db(home('Marian','White_Palace')).
db(home('Draco','Red_Castle')).
db(home('Turjan','Green_Forest')).

 34

db(current_place('Brian','Gray_Castle')).
db(current_place('Hoel','White_Palace')).
db(current_place('Marian','White_Palace')).
db(current_place('Draco','Red_Castle')).
db(current_place('Turjan','Green_Forest')).

db(affection(['Brian','Marian'],100.0)).
db(affection(['Hoel','Marian'],100.0)).
db(affection(['Marian','Brian'],0.0)).
db(affection(['Marian','Hoel'],0.0)).
db(affection(['Marian','Draco'],0.0)).
db(affection(['Turjan','Brian'],0.0)).
db(affection(['Turjan','Hoel'],0.0)).
db(affection(['Draco','Brian'],0.0)).
db(affection(['Draco','Hoel'],0.0)).
db(affection(['Brian','Draco'],0.0)).
db(affection(['Hoel','Draco'],0.0)).

/* Roles of the agents */

db(hero('Brian')).
db(hero('Hoel')).
db(victim('Marian')).
db(villain('Draco')).
db(donor('Turjan')).

/* a general ER rule */

db(X) :-
 \+ var(X),
 entity(E,_),
 X =.. [E,V],
 is_a(E1,E),
 Y =.. [E1,V],
 db(Y).

 35

Appendix III

/* DYNAMIC SCHEMA */

operator_frame(1, go, [agent:(hero;victim;villain),destination:place]).
operator_frame(2, reduce_protection, [agent:victim,object:place]).
operator_frame(3, kidnap, [agent:villain,patient:victim]).
operator_frame(4, attack, [agent:(hero;villain;victim),object:place]).
operator_frame(5, fight, [agent:(hero;villain;victim),
 coagent:(hero;villain;victim)]).
operator_frame(6, kill, [agent:(hero;villain;victim),
 patient:(hero;villain;victim)]).
operator_frame(7, free, [agent:hero,patient:victim]).
operator_frame(8, marry, [agent:(hero;victim),coagent:(hero;victim)]).
operator_frame(9, donate, [agent:donor,recipient:hero]).
operator_frame(10, bewitch, [agent:donor,patient:(hero;victim)]).

operator(1,
 go(CH,PL1),
 [
 alive(CH),
 not(kidnapped(_,CH)),
 not(kidnapped(CH,_)),
 current_place(CH,PL0),
 dif(PL0,PL1)
],
 [
 not(current_place(CH,PL0)),
 current_place(CH,PL1)
],
 10,
 [current_place(CH,PL1)],
 [],[]) :-
 db(character(CH)),
 db(nature(CH,KIND)),
 dif(KIND,0.0),
 db(place(PL1)).

operator(2,
 reduce_protection(VIC,PL),
 [
 current_place(VIC,PL),
 protection(PL,[KIND,LPROT]),
 nature(VIC,KIND),
 { LPROT>0.0, LPROT1=LPROT-10.0 }
],
 [
 not(protection(PL,[KIND,LPROT])),
 protection(PL,[KIND,LPROT1])],
 10,
 [protection(PL,[KIND,LPROT1])],
 [],[]):-
 db(victim(VIC)),
 db(place(PL)).

 36

operator(3,
 kidnap(VIL,VIC),
 [
 alive(VIC), alive(VIL),
 nature(VIC,KIND1),
 not(kidnapped(VIC,_)),
 strength(VIC,VIC_S),
 current_place(VIC,PL),
 protection(PL,[KIND2,LP]),
 strength(VIL,VIL_S),
 current_place(VIL,PL),
 dif(PL,PL1),
 {VIL_S>VIC_S+LP*KIND1*KIND2}
],
 [
 kidnapped(VIC,VIL),
 not(current_place(VIC,PL)),
 not(current_place(VIL,PL)),
 current_place(VIC,PL1),
 current_place(VIL,PL1)
],
 10,
 [kidnapped(VIC,VIL)],
 [],[]) :-
 db(victim(VIC)),
 db(villain(VIL)),
 db(home(VIL,PL1)).

operator(4,
 attack(CH,PL),
 [
 alive(CH),
 not(kidnapped(CH,_)),
 current_place(CH,PL),
 protection(PL,[KIND2,L_PROT]),
 dif(KIND1,KIND2),
 {
 L_PROT>0.0,
 L_PROT1 = L_PROT-30.0
 },
 affection([CH1,CH],La)
],
 [
 not(protection(PL,[KIND2,L_PROT])),
 protection(PL,[KIND2,L_PROT1]),
 not(affection([CH1,CH],La)),
 affection([CH1,CH],-100.0)
],
 10,
 [protection(PL,[KIND2,L_PROT1])],
 [],[]):-
 (
 db(hero(CH));
 db(villain(CH))
),
 db(nature(CH,KIND1)),
 db(place(PL)),

 37

 db(home(CH1,PL)).

operator(5,
 fight(CH1,CH2),
 [
 alive(CH1), alive(CH2),
 nature(CH1,KIND1),
 nature(CH2,KIND2),
 dif(KIND1,KIND2),
 dif(KIND1,0.0), dif(KIND2,0.0),
 strength(CH1,LS1), strength(CH2,LS2),
 {
 LS1>=10.0, LS2>=10.0
 },
 current_place(CH2,PL), current_place(CH1,PL),
 protection(PL,[KIND3,L_PROT]),
 {
 L_PROT=<0.0,
 NEW_LS1=LS1-LS2,
 NEW_LS2=LS2-LS1
 }
],
 [
 not(strength(CH1,LS1)), not(strength(CH2,LS2)),
 strength(CH1,NEW_LS1), strength(CH2,NEW_LS2)
],
 10,
 [strength(CH1,NEW_LS1), strength(CH2,NEW_LS2)],
 [],[]):-
 db(character(CH1)),
 db(character(CH2)).

operator(6,
 kill(CH1,CH2),
 [
 alive(CH1), alive(CH2),
 not(kidnapped(CH1,_)),
 nature(CH1, KIND1),
 nature(CH2, KIND2),
 dif(KIND1,KIND2),
 dif(KIND1,0.0), dif(KIND2,0.0),
 strength(CH1,LS1), strength(CH2,LS2),
 current_place(CH1,PL), current_place(CH2,PL),
 protection(PL,[KIND3,L_PROT]),
 {
 L_PROT*KIND3*KIND2=<0.0,
 LS2=<10.0, LS1>10.0
 }
],
 [not(alive(CH2))],
 10,
 [not(alive(CH2))],
 [],[]) :-
 db(character(CH1)),
 db(character(CH2)).

 38

operator(7,
 free(HERO,VIC),
 [
 alive(HERO), alive(VIC),
 kidnapped(VIC,VIL), not(alive(VIL)),
 current_place(VIC,PL), current_place(HERO,PL),
 affection([VIC,HERO],LA)
],
 [
 not(kidnapped(VIC,VIL)), not(affection([VIC,HERO],LA)),
 affection([VIC,HERO],100.0)
],
 10,
 [not(kidnapped(VIC,VIL))],
 [],[]) :-
 db(hero(HERO)),
 db(victim(VIC)).

operator(8,
 marry(CH1,CH2),
 [
 alive(CH1), alive(CH2),
 affection([CH1,CH2],L1),
 {L1>80.0},
 affection([CH2,CH1],L2),
 {L2>80.0},
 current_place(CH1,'Church'),
 current_place(CH2,'Church'),
 not(married(CH1,_)),
 not(married(CH2,_))
],
 [
 married(CH1,CH2), married(CH2,CH1)
],
 10,
 [married(CH1,CH2), married(CH2,CH1)],
 [],[]) :-
 db(hero(CH1)),
 db(victim(CH2)).

operator(9,
 donate(CH1,CH2),
 [
 current_place(CH2,PL),
 alive(CH1),
 alive(CH2),
 affection([CH1,CH2],LA),
 strength(CH2,L1),
 {Alpha = max(0.0,min(1.0,LA+1.0))},
 {L2=Alpha*(L1+80.0)+(1.0-Alpha)*10.0}
],
 [
 not(strength(CH2,L1)),
 strength(CH2,L2)
],
 10,
 [strength(CH2,L2)],

 39

 [],[]) :-
 db(donor(CH1)),
 db(home(CH1,PL)),
 db(hero(CH2)).

operator(10,
 bewitch(CH1,CH2),
 [
 nature(CH2,1.0),
 strength(CH2,LS),
 current_place(CH2,PL),
 alive(CH1),
 alive(CH2)
],
 [
 not(nature(CH2,1.0)),
 nature(CH2,-1.0),
 not(strength(CH2,LS)),
 strength(CH2,100.0)
],
 10,
 [nature(CH2,-1.0)],
 [],[]) :-
 db(donor(CH1)),
 db(home(CH1,PL)),
 db(character(CH2)).

/* templates for preparing legends */

template(go(CH,PL), [CH,' goes to the ',PL]).

template(reduce_protection(VIC,PL), [VIC,' dismisses guards from the
',PL]).

template(kidnap(VIL,VIC), [VIL,' kidnaps ',VIC]).

template(attack(CH,PL), [CH,' attacks the ',PL]).

template(fight(CH1,CH2), [CH1,' fights against ',CH2]).

template(kill(CH1,CH2), [CH1,' kills ',CH2]).

template(free(HERO,VIC), [HERO,' frees ',VIC]).

template(marry(CH1,CH2), [CH1,' and ',CH2,' get married']).

template(donate(CH1,CH2), [CH1,' gives strength to ',CH2]).

template(bewitch(CH1,CH2), [CH1,' bewitches ',CH2]).

 40

Appendix IV

/* BEHAVIOURAL SCHEMA */

/* Goal-inference rules */

/* The strongest hero wants to become stronger
 than the villain */

rule(
 [
 e(i,strength(HERO,Lh)),
 e(i,villain(VIL)),
 e(i,strength(VIL,Lv)),
 h({Lh=<Lv})
],
 (
 [T],
 [
 h(T,strength(HERO,LS)),
 h({LS > Lv}),
 h(T>i)
],
 true
)
)
 :- findall(S,(db(strength(H,S)),db(hero(H))),Ss),
 max_list(Ss,Lh),
 db(hero(HERO)),
 db(strength(HERO,Lh)).

/* Victim spontaneously reduces the protection
 at her current location */

rule(
 [
 e(i,victim(VIC)),
 e(i,nature(VIC,KIND0)),
 e(i,current_place(VIC,PLACE)),
 e(i,protection(PLACE,[KIND1,PROT]))
],
 (
 [T],
 [
 h(T,current_place(VIC,PLACE1)),
 h(T,protection(PLACE1,[KIND2,PROT1])),
 h({(KIND2*KIND0*PROT1)<(KIND1*KIND0*PROT)}),
 h(T>i)
],
 true
)).

 41

/* If victim's protection is reduced, villain will
 want to kidnap her */

rule(
 [
 e(i,victim(VIC)),
 e(i,nature(VIC,KIND0)),
 e(i,current_place(VIC,PLACE1)),
 e(i,protection(PLACE1,[KIND1,PROT1])),
 e(i,villain(VIL)),
 h(g,alive(VIC)),
 h(g,current_place(VIC,PLACE2)),
 h(g,protection(PLACE2,[KIND2,PROT2])),
 h({(KIND2*KIND0*PROT2)<(KIND1*KIND0*PROT1)})
],
 (
 [T3],
 [
 h(T3,kidnapped(VIC,VIL))
],
 true
)
).

/* If victim is kidnapped, hero will want to rescue her */

rule(
 [
 e(T1,kidnapped(VIC,VIL))
],
 (
 [T2],
 [
 h(T2,not(kidnapped(VIC,VIL))),
 h(T2>T1)
],
 true
)
).

/* If victim is killed, hero will want to avenge her */

rule(
 [
 o(T1,kill(VIL,VIC)),
 h(T1,victim(VIC)),
 h(T1,villain(VIL))
],
 (
 [T2],
 [
 h(T2,not(alive(VIL))),
 h(T2>T1)

 42

],
 true
)
).

/* If the affection between two persons is high
 they will want to get married */

rule(
 [
 e(T,affection([CH1,CH2],L1)),
 h(T,affection([CH2,CH1],L2)),
 h(T,not(married(CH1,_))),
 h(T,not(married(CH2,_))),
 h({L2>95.0}), h({L1>95.0})
],
 (
 [T2],
 [
 h(T2,married(CH1,CH2)),
 h(T2>T)
],
 true
)
).

