

ISSN 0103-9741

Monografias em Ciência da Computação

n

01/08

Developing and Evolving
Multi-Agent System Product Lines

Camila Patrícia Bazílio Nunes

Ingrid Oliveira de Nunes

Uirá Kulesza

Carlos José Pereira de Lucena

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monogra�as em Ciência da Computação, No. 01/08 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena Janeiro, 2008

Developing and Evolving Multi-Agent System
Product Lines 1

Camila Patrícia Bazílio Nunes1, Ingrid Oliveira de Nunes1, Uirá Kulesza2,3,
Carlos José Pereira de Lucena1

1 PUC-Rio, Computer Science Department, LES - Rio de Janeiro - Brazil
2 Recife Center for Advanced Studies and Systems - Recife - Brazil

3 New University of Lisbon - Lisboa - Portugal

camilan@inf.puc-rio.br, ioliveira@inf.puc-rio.br, uira@cesar.org.br, lucena@inf.puc-rio.br

Abstract. Software Product Line (SPL) approaches motivate the development and im-
plementation of a �exible and adaptable architecture to enable software reuse in organiza-
tions. The SPL architecture addresses a set of common and variable features of a family
of products. Based on this architecture, products can be derived in a systematic way. A
multi-agent system product line (MAS-PL) de�nes an SPL architecture that is modular-
ized, also using software agents to model, design and implement its common and variable
features. This paper presents the development of an MAS-PL for the web domain, describ-
ing its architecture, the agents that compose the system and details of the object-oriented
implementation and design. This MAS-PL consists of the evolutionary development of the
ExpertCommittee (EC) web-based system. Furthermore, this paper presents an analysis
of this MAS-PL, reporting some lessons learned based on our experience in the develop-
ment of the MAS-PL as: features types, crosscutting features where the aspect-oriented
programming is relevant to improve the separation of concerns, and some problems with
SPL methodologies.

Keywords: Product line, multi-agent systems, object-oriented, aspect-oriented.

1This work has been sponsored by Ministério de Ciência e Tecnologia da Presidência da República
Federativa do Brasil.

In charge of publications:
Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

ii

Contents
1 Introduction 1

2 Multi-Agent Systems and Product Lines 2

3 MAS-PL: Case Study 2
3.1 The ExpertCommittee Web-based System 3
3.2 Evolving the EC system to an MAS-PL . 6
3.3 The EC MAS-PL Architecture . 7
3.4 Evolving the EC MAS-PL Architecture . 11

4 MAS-PL Analysis 13
4.1 MAS-PL Features Types . 13
4.2 SPL Methodologies . 14
4.3 AO Refactoring . 15
4.4 Comparing our Experience to Other MAS-PL Initiatives 17

5 Conclusion 17

6 Future Works 17
6.1 The automatic instantiation using GenArch 17
6.2 Development Methodology . 18
6.3 The Metrics . 18

iii

1 Introduction
Software engineering aims to produce methods, techniques and tools to develop software
systems with high levels of quality and productivity. Software reuse (Griss 1997) is one of
the main strategies proposed to address these software engineering aims. Software reuse
techniques provide many bene�ts, such as reduction of development costs and time to
market, and quality enhancement. Over the last years many reuse techniques have been
proposed and re�ned by the software engineering community. Examples of these techniques
are: component-based development (Szyperski 2002), object-oriented (OO) application
frameworks (Fayad et al. 1999) and libraries, software architectures (Shaw & Garlan 1996)
and patterns (Buschmann et al. 1996, Gamma et al. 1995). One of the latest trends in
software reuse is the product line approach.

Software product lines (Pohl et al. 2005, Clements & Northrop 2002) (SPLs) refer to
engineering techniques for creating similar software systems from a shared set of software
assets using a systematic method in order to build applications. Clements & Northrop
(2002) de�ne a software product line (SPL) as �a set of software intensive systems that
share a common, managed set of features satisfying the speci�c needs of a particular market
segment or mission and that are developed from a common set of core assets in a prescribed
way �. The core idea of SPL engineering is to develop a reusable infrastructure that supports
the software development of a family of products. A family of products is a set of systems
that has some commonalities, but also variable features. According to Czarnecki & Helsen
(2006), a feature is a system property that is relevant to some stakeholder and is used to
capture commonalities or discriminate among products in a product line.

Over the last years, agent-oriented software engineering (AOSE) has also emerged as
a new software engineering paradigm to allow the development of distributed complex
applications which are characterized by a system composed of many interrelated sub-
systems (Jennings 2001). Most of the current AOSE methodologies are dedicated to de-
veloping single multi-agent systems (Pena et al. 2006). New approaches (Pena et al. 2007,
Dehlinger & Lutz 2005) have started to explore the adoption of SPL techniques to the con-
text of multi-agent systems (MAS) development. The aim of these new approaches is to
integrate SPL and AOSE techniques by incorporating their respective bene�ts and helping
the industrial exploitation of agent technology. Nevertheless, there are still many chal-
lenges to be overcome in the development of multi-agent systems product lines (MAS-PLs)
(Pena et al. 2006).

In this work, we relate our experience of development of a MAS-PL in a bottom-up
fashion. Our MAS-PL has been developed and emerged from the evolution of a conference
management web-based system. Each new version of the system includes the design and
implementation of new features that the previous version does not address. Most of the
new features are related to the introduction of new autonomous behavior in the original
system using MAS technology, such as agents, roles and their associate behaviors. All the
three versions of our MAS-PL share a common SPL core architecture. Our case study has
allowed us to analyze and discuss relevant questions related to the integration of SPL and
MAS technologies, such as:

(i) how to modularize agency features in a MAS-PL;

(ii) how to seamlessly incorporate autonomous behavior (agency features) in a traditional
web-based system;

1

(iii) which SPL models are useful and essential to specify and document an MAS-PL, and
how to adapt them to the context of MAS-PL development.

This paper is organized as follows. Some works related to multi-agent systems and
product lines are described in Section 2. In Section 3 is presented our multi-agent system
product line. We make an analysis about our work in Section 4. Finally, the conclusions
are discussed in Section 5 and future works are related in Section 6.

2 Multi-Agent Systems and Product Lines
Only some recent research work has investigated the integration synergy of Multi-Agent
Systems (MASs) and Software Product Lines (SPLs) technologies. Dehlinger & Lutz
(2005) have proposed an extensible agent-oriented requirements speci�cation template for
distributed systems that supports safe reuse. Their proposal adopts a product line to pro-
mote reuse in multi agent systems, which was developed using the Gaia methodology. The
requirements are documented in two schemas: the role schema and the role variation point.
The �rst de�nes a role and the variation points that a role can play during its lifetime.
The second captures the requirements of role variation points capabilities. The proposed
approach allows the reuse of agent con�guration along the system evolution. Each agent
con�guration can be dynamically changed and reused in similar applications.

Pena et al. (2007) describe an approach to describing, understanding, and analyzing
evolving systems. The approach is based on viewing di�erent instances of a system as it
evolves as di�erent "products" in a software product line. Following their approach, an
SPL is developed with an AOSE methodology, and the system is viewed as MAS-PL. Their
approach proposes a set of software engineering techniques based on an agent-oriented
methodology called Methodology for analyzing Complex MultiAgent Systems (MaCMAS)
(Pena 2005), whose main aim is to deal with complex unpredictable systems. The MaC-
MAS allows for the description of the same feature at di�erent levels of abstraction. It
presents a process to building the core architecture of an MAS-PL at the domain engineer-
ing stage, whose activities are: (i) to build an acquaintance organization; (ii) to build a
feature model; and (iii) to analyze commonalities and to compose core features. The main
advantage of the approach resides in the fact that it make it possible to derive a formal
model of the system and each state that it may reach.

Our work also explores the combination of MAS and SPL techniques and technologies
in the context of development and evolution of systems. We focus speci�cally in the web-
based systems domain by proposing the insertion of autonomous behavior features inside
traditional web layered architectures. Our main aim was to investigate and understand
the bene�ts of the agency feature modularization during this process.

3 MAS-PL: Case Study
This section describes our experience in the development of a multi-agent system product
line (MAS-PL) for the web domain. Our experience is presented along the next sections in a
stepwise fashion. We initially present the ExpertCommittee (EC), a web-based conference
management system that supports the paper submission and reviewing processes from a
conference (Section 3.1). After that we describe an evolved version of this system in which

2

we have incorporated new agency optional and alternative features related mainly to the
speci�cation and implementation of user agents (Section 3.2). This new version of the
EC system is characterized as a multi-agent system product line (MAS-PL), because it
addresses a new set of optional and alternative agency features, which allows providing
di�erent customized con�gurations of the system. The EC MAS-PL architecture designed
to address the new agency features is then presented in terms of the components and
agents that compose the system (Section 3.3). Finally, we detail the OO design and
implementation of the EC MAS-PL by describing the mechanisms adopted to implement
its variabilities (Section 3.4).

In this case study, we develop some versions of the application in order to show how an
evolving system can be viewed as a software product line. Each version of the application
will contain new features. Moreover, we want to show the problems found when the features
are added and how we deal with this evolution.

3.1 The ExpertCommittee Web-based System
The ExpertCommittee (EC) Case Study focuses on showing an evolving application. The
EC is a typical web-based application whose aim is to manage the paper submission and
reviewing processes from conferences and workshops. The EC system provides function-
alities to support the complete process of conference management, which are listed in the
Table 1. Each of these functionalities can be executed by an appropriate user type of the
system, such as, conference chair, program committee members, authors and reviewers. In
Figure 3(a), we show the EC feature model (Czarnecki 1998) relating the mandatory and
the optional features present in the �rst version of the system.

The main classes of the system are the classes Conference, User and AssignedRole.
The domain classes are presented in Figure 1. A conference has several important roles,
as the coordinator, chair and committee members. This roles are played by users. An user
can submit papers to the conference and it will be reviewed by committee members or
reviewers according to the conference's review template.

The EC web-based system was structured according to the Layer architectural pattern
(Fowler 2002). Figure 2 illustrates the base architecture of the EC web-based system,
which is composed of the following components/layers:

(i) GUI - this layer is responsible to process the web requests submitted by the system
users. It was implemented using the Struts2 framework;

(ii) Business - is responsible to structure and organize the business services provided
by the EC system. The transaction management of the business services was imple-
mented using the mechanisms provided by the Spring3 framework; and

(iii) Data - aggregates the classes of database access of the system, which was imple-
mented using the Data Access Object (DAO) design pattern. The Hibernate4 frame-
work was used to persist the objects in a MySQL5 database.

2http://struts.apache.org/
3http://www.springframework.org/
4http://www.hibernate.org/
5http://www.mysql.org/

3

Table 1: Expert Committee Functionalities.
Role Functionality Description

Coordinator Create Conference Create new conferences and assign a chair for
it.

View Conference Show all details of the conference, including
its papers

Chair De�ne Basic Data De�ne the basic data of the conference, as its
name, its start and end dates and its review
template.

De�ne Areas of Interest De�nes the areas of interest of the conference.
De�ne Committee Members De�ne the committee members of the confer-

ence.
De�ne Deadlines De�ne all the deadlines of the conference.
Assign Papers Assign the papers to be reviewed by commit-

tee members.
Notify Authors Publish the review of the selected papers to

their authors.
View Conference Show all details of the conference, including

its papers. Here, the chair can accept or reject
the paper.

Committee Choose Areas of Interest The areas of interest of the conference are
displayed and the committee member should
choose some of them.

Accept / Reject Paper Accept or reject to review a paper.
Assign Paper to Reviewer Assign the paper to be reviewed by reviewer.
Review Paper Review the paper.

Reviewer Accept / Reject Paper Accept or reject to review a paper.
Review Paper Review the paper.

Author Subscribe Paper Subscribe a paper to the conference, only
some information about the paper is needed,
the paper �le should be uploaded later.

Edit Paper Allow the authors to edit the paper data,
submit the paper �le and submit the camera
ready if the paper was accepted.

View Review Show the review of the paper not showing who
review the paper.

4

Figure 1: Domain Classes.

5

Figure 2: EC Base Architecture.

The �rst implemented version of our EC system is a common web application that has
the features mentioned above. In the following versions, software agents were introduced
on the EC system, adding autonomous behavior. This helps researchers and the event
organization committee on the tasks that can be automated and make part of the review
process and submission. Examples of features provided by the agents are the deadline
monitoring and tasks management. Next sections detail these new versions and respective
features present in their implementations.

3.2 Evolving the EC system to an MAS-PL
An evolving system can be viewed as a software product line, because the features that are
common to all versions of the system comprise the core architecture of the product line.
In our case study, we have evolved the original version of the EC System (Section 3.1) to
incorporate new agency features. The main aim of these new features was to help the tasks
assigned to all the system actors by giving them a user agent that addresses the following
features:

(i) deadline and pending tasks monitoring; and

(ii) automation of user activities.

After producing this new version of the EC system, we have evolved it to improved
the modularization of these optional and alternative agency features in order to enable the
automatic (un)plugging of them from the original web system.

6

Table 2 summarizes the three di�erent versions of our EC system. The �rst version
was built without any autonomous behavior, in other words, without software agents.
It was detailed in Section 3.1. The second version of the EC system contains features
that are related to autonomous behavior and it has also some new features that add new
functionalities to the system as well. The software agent abstraction was used to model and
implement the autonomous behavior added to the original EC system. A software agent
is an abstraction that enjoys mainly the following properties (Jennings 2001): autonomy,
reactivity, pro-activeness and social ability. Thus, in this second version, we have used
the agent abstraction and AOSE techniques to allow the introduction of new optional and
alternative agency features in the system. Figure 3(b) illustrates the feature model of the
second version of the EC system with new agency optional and alternative features.

Table 2: The three versions of ExpertCommittee.
V ersion Description

Version 1 Typical web-based application. It has the mandatory and
some optional features to support the conference management
process. These features are listed in Section 3.1

Version 2 Addition of autonomous behavior (agents) features, such as,
automatic paper distribution, task management, deadline
monitoring, and email noti�cations.

Version 3 Refactoring of Version 2 to improve the modularization of
some agency features in order to make possible the automatic
product derivation..

The third and last version of the EC system was implemented by applying a series of
refactorings in Version 2. The system was restructured to make the (un)plugging of optional
features possible. Each optional feature was modularized by using a combination of OO
design patterns and techniques with Spring con�guration �les that allows the injecting
of dependencies inside the variable points of the EC SPL architecture. It improves the
capacity to produce and compose di�erent con�gurations (products) of the SPL, and it also
enables the automatic product derivation by means of model-based tools: software factories
(Green�eld et al. 2004), generative programming (Czarnecki 1998), GenArch (Cirilo et al.
2007), pure::variants6. Product derivation is the process of constructing a product from
the set of assets speci�ed or implemented for a SPL (Deelstra et al. 2005). Each product is
composed of the core features and a valid combination of optional and alternative features,
according to the feature model. In an automatic product derivation process, the application
engineer can generate a con�guration (product) of the SPL by only selecting and choosing
the features that are going to compose your product.

3.3 The EC MAS-PL Architecture
The EC Version 2 was implemented as an SPL architecture, which is illustrated in Figure 4.
New features associated with the autonomous behavior of the system were added as a set
of optional features. Di�erent software agents and agent roles were speci�ed to modularize

6http://www.pure-systems.com/

7

(a) First Version of the EC. (b) Second Version of the EC.

Figure 3: Expert Committee Feature Model

8

these features. The JADE7 framework was used as the base platform to implement our
agents. These agents are responsible for monitoring the execution of di�erent functionalities
of the EC in order to provide their respective functionalities. The integration between the
web architecture and the agents was accomplished by means of another implementation of
the CoreFacade interface - the CoreFacadeProxyImpl. The CoreFacade interface delimits
the Business layer, working as a Facade (Gamma et al. 1995). The CoreFacadeProxyImpl
class acts like an interceptor of the requests to the CoreFacadeImpl class to notify the
EnvironmentAgent about changes in the system. Details about each agent that comprises
the system are listed below:

Figure 4: MAS-PL Architecture.

Environment Agent: this agent represents the environment of the system. Other agents
perceive changes in the environment and make actions according to them. The envi-
ronment agent was implemented using the Observer and the Proxy design patterns
(Gamma et al. 1995) as depicted in Figure 5. When it is initialized, it registers it-
self as an observer of the CoreFacadeProxyImpl class. This is the implementation
of the CoreFacade interface that allows the observation of its actions. That means
that, for each call of the system business methods, the CoreFacadeProxyImpl class
not only delegates the request to the original implementation of the CoreFacade,

7http://jade.tilab.com/

9

the CoreFacadeImpl class, to guarantee the execution of the business methods, but
it also noti�es the observers of the CoreFacadeProxyImpl class. The only observer
in our implementation is the EnvironmentAgent, whose aim is to notify the other
agents of the MAS-PL about the system changes;

User Data Agent: this agent receives noti�cations when new users are created in the
database. When it happens, it creates a new user agent that will be the representation
of the user in the system. The initial execution of the user data agent demands the
creation of a user agent for each user already stored in the database;

User Agent: each user stored in the system has an agent that represents it in the system.
This is the autonomous behavior, agents performing actions that the users should
do. An example is when the paper submission deadline expires and the user agent
in the chair role will automatically distribute the papers to the committee members.
Besides this example, most of the user agents are responsible: (i) for analyzing and
discovering pending tasks for user agents based on the roles the users play in the
system; and (ii) for sending email noti�cations;

Deadline Agent: this agent is responsible for monitoring the conference deadlines. This
monitoring serves two purposes: (i) to notify the user agents when a deadline is nearly
expiring; and (ii) to notify the user agents when a deadline has already expired;

Task Agent: this agent is responsible for managing the user tasks. It receives requests for
creating, removing and setting the execution date of tasks. The requests are made
by the user agents;

Noti�er Agent: this agent receives requests from other agents to send messages to the
system users. In the current implementation, it sends these messages through email.

Figure 5: Observer and Proxy Patterns.

10

In this MAS-PL we use the Role Object Pattern (Bäumer et al. 1997) helped to separate
better the agents features. The Role Object pattern models context-speci�c views of an
object as separate role objects which are dynamically attached to and removed from the
core object. in Figure 6 is depicted the pattern structure in our MAS-PL.

Figure 6: Role Pattern.

3.4 Evolving the EC MAS-PL Architecture
In versions 2 and 3 of the EC system, the MAS PL architecture was developed to provide
the minimum impact when the new optional and alternative features must be added. In
this way, di�erent architectural and design decisions were accomplished to facilitate the
creation of di�erent con�gurations (products) of the MAS PL.

In the EC Version 2 of our MAS-PL, we adopt traditional design patterns to implement
its variabilities (variable features). First, as we mentioned before, the integration between
the web system and the environment agent was implemented using the Observer and
Proxy design patterns Gamma et al. (1995). The Proxy pattern was used to allow the
(un)plugability of the agency features and maintain the alternative to have all the agency
feature as optional. Second, we use the Role Object pattern (Bäumer et al. 1997) to better
modularize the implementation of each of our agents (Section 3.3). The Role Object pattern
models context-speci�c views of an object as separate role objects, which are dynamically
attached to and removed from the core object. This pattern was mainly used to provide a
base implementation of the user agents whose behavior can be incremented by attaching
new roles (such as chair, author, committee, reviewer) to be played by these agents.

Although the EC Version 2 already provides an improved modularization of the MAS
PL optional and alternative features with the adoption of design patterns, when trying

11

to produce di�erent con�gurations of our PL, we noticed the need to accomplish new
adaptations in MAS-PL architecture, such as:

(i) to split the agent plans in small units to address only speci�c MAS features, because
in the Version 2, the plans were implemented incorporating di�erent features; and

(ii) to de�ne a mechanism to provide an easier way to con�gure the di�erent features,
including �ne-grained properties.

The EC Version 3 incorporated the implementation of these adaptations by providing:

(i) a feature-oriented modularization of the agent plans; and

(ii) a Spring-based mechanism to con�gure the main MAS-PL components.

Both implementation decisions enable the automatic instantiation of our MAS PL
architecture using product derivation tools, such as: pure::variants, GenArch.

The customization of the MAS PL components using the Spring framework was accom-
plished by specifying a con�guration �le that aggregates di�erent options of con�guration
of the MAS-PL, such as:

(i) di�erent functional features of the conference management base system (edituser,
paperdistribution) and respective properties;

(ii) the di�erent agents and the respective plans; and

(iii) the di�erent agent roles and respective plans.

These important elements of the system were modeled using the bean abstraction of
the Spring framework. The bean abstraction is used to implement con�gurable component
of systems. The code 1 illustrates a speci�c customization of our MAS PL con�guration
�le that refers to a product that will contain all the optional features, except the task
management.

Listing 1: XML Con�guration File.
<bean id="ExpertCommittee"
c l a s s="br . puc . maspl . c on f i g . ExpertCommittee">

<property name=" opt i ona lRo l e s ">
< l i s t>

<value>Reviewer</ value>
</ l i s t>

</property>
<property name=" p r op e r t i e s ">

<value>
edit_user=true
view_conference=true
con fe rence_sugges t ion=true
paper_d i s t r ibut i on=automatic

</ value>
</property>
<property name=" agents ">

12

<l i s t>
<r e f bean="DeadlineAgent " />
<r e f bean="Not i f i erAgentAgent " />

</ l i s t>
</property>

</bean>
<bean id="DeadlineAgent " c l a s s="br . puc . maspl . c on f i g . Agent">

<property name=" present " value=" true " />
<property name=" opt iona lBehav io r s ">

< l i s t>
<value>
br . puc . maspl . agent . dead l ine . Deadl ineMonitorBehaviour
</ value>
<value>
br . puc . maspl . agent . dead l ine . DeadlineReminderBehaviour
</ value>

</ l i s t>
</property>

</bean>
<bean id="Not i f i erAgentAgent "
c l a s s="br . puc . maspl . c on f i g . Agent">

<property name=" present " value=" true " />
<property name=" agentPrope r t i e s ">

<value>
message_sender=br . puc . maspl . core . message . EmailMessageSender
message_factory . show_sql=br . puc . maspl . agent . message .

impl . MessageFactoryImpl
</ value>

</property>
</bean>

4 MAS-PL Analysis
In this section we analyze and discuss several lessons learned from our experience of devel-
opment and evolution of the EC MAS-PL. Our lessons learned are related to the following
main points: features types, AO refactoring, and adaptation of SPL methodologies.

4.1 MAS-PL Features Types
SPL architectures address the implementation of di�erent types of variable features, such
as optional, alternative and OR features (Czarnecki & Helsen 2006). In our development
experience, we have found that in a MAS-PL, the occurrence of variable features varies
not only in term of its functional features, but it also depends and is structured based on
the agency features that the MAS-PL needs to address. Since one of the main aims of the
implementation of SPL architectures is to improve the modularization and management of
their features, in a MAS-PL is essential to consider the agency features and evaluates how
the existing technologies can help to address them.

In this particular study, we have identi�ed three types of optional/extra features. We
believe these three types can be considered in most of the MAS-PL, because they are really
useful to improve the feature management of the MAS-PL. Next we brie�y describe these
three types:

13

• New conference management features: these features add new functionalities
to the system, as creating new interfaces that users can access. This is the typical
kind of feature addressed in SPL;

• New autonomous behavior: we had to introduce agents in the architecture when
we added autonomous behavior in the system. The modularization of the autonomous
behavior features using the agent abstraction enables us to (un)plug the features by
only including or removing a set of agents;

• New Behaviors and Roles for an Agent: some optional features have impact
inside of agents. They allow de�ning agent internal variabilities by de�ning speci�c
new behaviors of agents. These features can be modularized as: (i) speci�c plans to
be executed by the agent under speci�c conditions; and (ii) speci�c roles to be played
by the agent in a speci�c context.

4.2 SPL Methodologies
Over the last years, many SPL methodologies have been proposed (Pohl et al. 2005, Gomaa
2004, Atkinson et al. 2000). Many of them (Clements & Northrop 2002, Pohl et al. 2005,
Gomaa 2004) focus mainly on the requirement analysis, architecture and design modeling,
and management processes. Some of them incorporate concepts and techniques from the
object-oriented or component-based paradigms. However, these SPL methodologies don't
detail or barely detail the modeling and documentation of agents or role features.

There is some recent research work that addresses initial proposals to de�ne an MAS-
PL development methodology (Pena et al. 2007, Dehlinger & Lutz 2005). These proposals
consider MAS methodology as a base and adapt it to document features of a product line.
Pena et al (Pena et al. 2006) identify current challenges to integrate the MAS and SPL
software engineering approaches, such as management of evolving systems, necessity of new
adapted techniques to cover distributed systems and the fact that agent-oriented software
engineering does not cover some of the activities of SPL.

In our work, we have developed and evolved a web-based system by introducing the
implementation of new variable agency features on its original architecture. We focused
mainly on the use of OO techniques to modularize the implementation of the new agency
features. The feature model was used to organize the SPL variabilities and guide us dur-
ing the maintenance and refactoring of the di�erent EC versions. The idea to introduce
agency features in a web system was guided by the growing need of this kind of systems to
incorporate recommendations and alerts of pendent tasks to their users. We believe that
the architectural style adopted to structure and evolve the EC web-based system can be
also used to increment the functionality of web-based system to other domains in order to
introduce agency features related to recommendations and alerts to the system users. We
intend to apply it to a di�erent web-based system in order to validate our hypothesis. We
are currently exploring two additional research directions related to MAS-PL methodolo-
gies: (i) documentation of MAS-PL architectures considering the integration of SPL and
MAS proposed methodologies; and (ii) de�nition of a MAS-PL agile methodology to model
their requirements and features.

14

4.3 AO Refactoring
Recent research presents the bene�ts of adopting aspect-oriented programming (AOP)
techniques to improve the modularization of features in SPL (Alves et al. 2006) (Alves et al.
2005), framework-based (Kulesza et al. 2006) or multi-agent systems (Garcia et al. 2003)
(Garcia et al. 2004) architectures. The increasing complexity of agent-based applications
motivates the use of AOP. AOP has been proposed to allow well-modularized crosscut-
ting concerns and it supports improved reusability and maintenance (Kiczales et al. 1997).
Among the problems of crosscutting variable features we can enumerate:

(i) tangled code - the code of variable features is tangled with the base code (core
architecture) of SPL;

(ii) spread code - the code of variable features is spread over several classes;

(iii) replicated code - the code of variable features is replicated over many places.

All these problems can cause di�culties regarding the management, maintenance and
reuse of variable features in SPL. In order to promote improved separation of concerns, some
crosscutting features that present the problems mentioned above are natural candidates to
be designed and implemented using AOP. In our MAS-PL exploratory case study, we have
found the following interesting situations to adopt AOP techniques:

(i) modularization of the glue-code that integrates the web-based system (base code) with
the agent features (new variable agency features) - in our current implementation,
this is addressed by the Observer design pattern (Hannemann & Kiczales 2002) that
is used to observe/intercept the execution of business methods of the CoreFacade-
ProxyImpl class. The Figure 7 depicts the implementation of the observer pattern
with AOP. AOP can be used to modularize the intercepted code that allows the
agents monitor the execution of the web-based system, it facilitates the (un)plug of
the agency features in the system. In our case study, 17 methods of the CoreFacade-
ProxyImpl class are intercepted to collect information for the agents; and

(ii) modularization of the agent roles - in the EC case study, we have used the Role OO
design pattern to modularize the agent roles. We have noticed that the use of this
pattern cannot provide an improved isolation of the agent role features, which is
essential to SPL variability management. The implementation of the agent classes
(e.g. UserAgentCore class) requires, for example, the activation and deactivation
of the agent roles over di�erent points of the execution of the agent behavior, such
as agent initialization, execution of speci�c plans, etc. The adoption of AOP to
modularize agent roles (Garcia et al. 2005) is thus a better option to improve the
modularization and evolution of the agent roles features. This can seen in Figure 8,
where the roles are created and associated to user agent object in UserAgentCore
class. Thus, we separate the role codes in �ve aspects that crosscuts the addRole
method in UserAgentCore class. With the aspect-oriented implementation gets easy
to add, remove, or modify roles.

15

Figure 7: Observer Pattern Aspect-Oriented Implementation

Figure 8: Roles Aspect-Oriented implementation.

16

4.4 Comparing our Experience to Other MAS-PL Initiatives
The multi-agent system product line presented in the paper focuses in the development of
a web system. The works mentioned in Section 2, show stand-alone applications, usually
applications related to NASA. We tried to expose a situation that could happen in software
factories, where there is an web application that, in further versions, autonomous behavior
is added. With the use design patterns, we showed that agents can be introduced on
existing applications with a low impact. A commonality between Pena's and our work is
viewing an evolutionary system as being a software product line.

The way that we adopted to construct the product line is also di�erent from the others
work. They were worried about the speci�cation of the MAS-PL in order to make a formal
speci�cation of the system viable. In our case study we developed the system in a bottom-
up fashion. This helped as to see the problems that are not present in the development of
a SPL implemented only with object and that not have autonomous behavior. The related
works also do not present how the derivation of products is done.

Our contributions are the development of an evolving system, viewed as a product
line, on which was added autonomous behavior (agents). Besides that, crosscutting fea-
tures were identi�ed indicating aspect-oriented programming should be used in order to
improve the separation of concerns and facilitate the product instantiation. Furthermore,
we pointed out some de�ciencies in the current SPL methodologies to develop a MAS-PL,
bringing up the necessity of extending them.

5 Conclusion
This work presented an exploratory study of development and evolution of an MAS-PL.
We initially developed a traditional web-based system to support the process of conference
management. After that, we evolved this system to incorporate a series of new agency
features, which addresses autonomous behavior associated with recommendations to their
system users. Di�erent user agents and roles were implemented to modularize these fea-
tures. The feature model was also adopted to drive the incorporation of the new features.
As a result of our study, we presented an SPL architecture to integrate agency features in
traditional web-based system, and we discussed some lessons learned regarding the feature
types encountered in our MAS-PL, the need of using AOP techniques to improve the mod-
ularization of features in our architecture and directions of adapting SPL methodology
to allow the speci�cation of SPLs that present autonomous behavior implemented with
software agents.

6 Future Works
6.1 The automatic instantiation using GenArch
In order to allow the automatic instantiation, we will use a model-based tool named
GenArch (Cirilo et al. 2007). GenArch is centered on the de�nition of three models (fea-
ture, architecture and con�guration models) which enable the automatic instantiation of
software product lines (SPLs) or frameworks. In order to use the GenArch tool, it is
necessary to annotate the existing code of MAS-PL. These annotations indicate the imple-

17

mentation of features and variabilities in the code of artifacts from the SPL. After that,
we will be able to make an automatic product derivation.

6.2 Development Methodology
The Expert Committee Case Study was developed in a bottom-up fashion. There are a
lot of software product lines methodologies, but they usually are based on object-oriented
software design. Moreover, there are also methodologies for agent oriented software design,
but they are focused on the development of single applications. Thus, the idea is to propose
a new development methodology for multi-agent systems product lines. It will be based
on the SPL methodologies, and MAS techniques will be introduced on it, as the Figure 9
shows.

Figure 9: Development of a MAS-PL Methodology.

6.3 The Metrics
After refactoring the MAS-PL using aspect-oriented programming, there will be two ver-
sions of the product line: one implemented only with objects, another with aspects used
in convenient points. This will allow an empirical study comparing the implementations
object-oriented (OO) and aspect-oriented (OA). In other words, we will analyze quantita-
tively and qualitatively the impact of using OO and OA in MAS-PL maintenance scenarios.
Then, we can check what are the impacts of adding new functional features, autonomous
behavior features (Agents and its Roles) and behavior for speci�c Agents and Roles. Ini-
tially, we will use the metrics suite de�ned in (Sant'anna et al. 2003).

References
Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P. & Lucena, C. (2006), Refac-
toring product lines, in `GPCE '06: Proceedings of the 5th international conference
on Generative programming and component engineering', ACM, New York, NY, USA,
pp. 201�210.

Alves, V., Matos, P., Cole, L., Borba, P. & Ramalho, G. (2005), Extracting and evolv-
ing mobile games product lines, in `Proceedings of the 9th International Conference of
Software Product Lines', Springer, pp. 70�81.

18

Atkinson, C., Bayer, J. & Muthig, D. (2000), Component-based product line development:
The kobrA approach, in P. Donohoe, ed., `Proceedings of theFirstSoftware Product Line
Conference', pp. 289�309.

Bäumer, D., Riehle, D., Siberski, W. & Wulf, M. (1997), `The Role Object Pattern', cite-
seer.ist.psu.edu/baumer97role.html. submitted for Pattern Languages of Programming
(PLoP) 97.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., Sommerlad, P. & Stal,
M. (1996), Pattern-Oriented Software Architecture: A System of Patterns, John Wiley
Sons.

Cirilo, E., Kulesza, U. & Lucena, C. (2007), GenArch: A Model-Based Product Derivation
Tool, in `Proceedings of the 1o. Simpósio Brasileiro de Componentes, Arquiteturas e
Reutilização de Software (SBCARS 2007)', Campinas, Brazil, pp. 17�24.

Clements, P. & Northrop, L. (2002), Software Product Lines: Practices and Patterns,
Addison-Wesley, Boston, MA, USA.

Czarnecki, K. (1998), Generative Programming: Principles and Techniques of Software En-
gineering Based on Automated Con�guration and Fragment-Based Component Models,
PhD thesis, Technical University of Ilmenau.

Czarnecki, K. & Helsen, S. (2006), `Feature-based survey of model transformation ap-
proaches', IBM Systems Journal 45(3), 621�645.

Deelstra, S., Sinnema, M. & Bosch, J. (2005), `Product derivation in software product
families: a case study', Journal of Systems and Software 74(2), 173�194.

Dehlinger, J. & Lutz, R. R. (2005), A Product-Line Requirements Approach to Safe Reuse
in Multi-Agent Systems, in `SELMAS '05: Proceedings of the fourth international work-
shop on Software engineering for large-scale multi-agent systems', ACM Press, New York,
NY, USA, pp. 1�7.

Fayad, M., Schmidt, D. & Johnson, R. (1999), Building application frameworks: object-
oriented foundations of framework design, John Wiley & Sons, Inc., New York, NY,
USA.

Fowler, M. (2002), Patterns of Enterprise Application Architecture, Addison-Wesley Pro-
fessional.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995), Design Patterns: Elements of
Reusable Object-oriented Software, Addison-Wesley.

Garcia, A., Chavez, C., Kulesza, U. & Lucena, C. (2005), The role aspect pattern, in
`10th European Conference on Pattern Languages of Programs (EuroPLoP2005)', Isree,
Germany.

Garcia, A., Lucena, C. & Cowan, D. (2004), `Agents in object-oriented software engineer-
ing', Software Practice Experience 34(5), 489�521.

19

Garcia, A., Sant'anna, C., Chavez, C., Silva, V., Lucena, C. & Staa, A. (2003), Agents
and Objects: An Empirical Study on the Design and Implementation of Multi-Agent
Systems, in `ACM International Conference on Software Engineering, Proceedings on
2nd International Workshop on of Software Engineering for Large-scale Multi-Agent
Systems (SELMAS)', Portland, USA, pp. 11�21.

Gomaa, H. (2004), Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures, Addison Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA.

Green�eld, J., Short, K., Cook, S. & Kent, S. (2004), Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and Tools, John Wiley and Sons.

Griss, M. L. (1997), Software Reuse: Architecture, Process, and Organization for Business
Success, in `ICCSSE '97: Proceedings of the 8th Israeli Conference on Computer-Based
Systems and Software Engineering', IEEE Computer Society, Washington, DC, USA,
p. 86.

Hannemann, J. & Kiczales, G. (2002), Design pattern implementation in Java and as-
pectJ, in `OOPSLA '02: Proceedings of the 17th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications', ACM, New York, NY,
USA, pp. 161�173.

Jennings, N. R. (2001), `An agent-based approach for building complex software systems',
Commun. ACM 44(4), 35�41.

Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M. &
Irwin, J. (1997), Aspect-Oriented Programming, in `Proceedings European Conference
on Object-Oriented Programming', Vol. 1241, Springer-Verlag, Berlin, Heidelberg, and
New York, pp. 220�242.

Kulesza, U., Alves, V., Garcia, A. F., de Lucena, C. J. P. & Borba, P. (2006), Improving
Extensibility of Object-Oriented Frameworks with Aspect-Oriented Programming, in
`ICSR'06', Torino, pp. 231�245.

Pena, J. (2005), On improving the modelling of complex acquaintance organisations of
agents. A method fragment for the analysis phase., PhD thesis, University of Seville.

Pena, J., Hinchey, M. G., Resinas, M., Sterritt, R. & Rash, J. L. (2007), `Designing and
managing evolving systems using a MAS product line approach', Science of Computer
Programming 66(1), 71�86.

Pena, J., Hinchey, M. G. & Ruiz-Cortés, A. (2006), `Multi-agent system product lines:
challenges and bene�ts', Communications of the ACM 49(12), 82�84.

Pohl, K., Böckle, G. & van der Linden, F. J. (2005), Software Product Line Engineering:
Foundations, Principles and Techniques, Springer-Verlag, New York,USA.

Sant'anna, C., Garcia, A., Chavez, C., Lucena, C. & von Staa, A. (2003), On the Reuse and
Maintenance of Aspect-Oriented Software: An Assessment Framework, in `Proceedings
XVII Brazilian Symposium on Software Engineering', Manaus, Brazil, pp. 19�34.

20

Shaw, M. & Garlan, D. (1996), Software Architecture: Perspectives on an Emerging Dis-
cipline, Prentice Hall.

Szyperski, C. (2002), Component Software: Beyond Object-Oriented Programming,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

21

