

ISSN 0103-9741

Monografias em Ciência da Computação

n° 02/08

Nested Context Language 3.0

Part 10 – Imperative Objects in NCL:
The NCLua Scripting Language

Francisco Figueiredo G. Sant’Anna
Luiz Fernando Gomes Soares

Renato Fontoura de Gusmão Cerqueira

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

 2

Monografias em Ciência da Computação, No. 02/08 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena Janeiro/2008

Nested Context Language 3.0

Part 10 – Imperative Objects in NCL: The NCLua Objects

Francisco Figueiredo G. Sant’Anna
Luiz Fernando Gomes Soares

Renato Fontoura de Gusmão Cerqueira

Laboratório TeleMídia DI – PUC-Rio
Rua Marquês de São Vicente, 225, Rio de Janeiro, RJ - 22451-900.

lfgs@inf.puc-rio.br, francisco@telemidia.puc-rio.br, rcerq@inf.puc-rio.br

Abstract. This technical report describes how imperative objects may be related
with other objects in an NCL document and how imperative object players shall
behave. NCL (Nested Context Language) is an XML application language based
on the NCM (Nested Context Model) conceptual model for hypermedia document
specification, with temporal and spatial synchronization among its media objects.
NCLua objects and players are also described as an example. Lua is the main
scripting language of NCL and the standard language for the Brazilian DTV
System.

Keywords: imperative objects, digital TV; middleware; declarative environment;
NCL, Lua.

Resumo. Este relatório técnico descreve como objetos com código imperativo
podem se relacionar com outros objetos em documentos NCL e como exibidores
(engines) para esses objetos devem se comportar. NCL é uma aplicação XML
baseada no modelo conceitual NCM (Nested Context Model) para a especificação
de documentos hipermídia com sincronismo espacial e temporal entre seus
objetos. Objetos e exibidores NCLua são também descritos como exemplo. Lua é
a principal linguagem de script de NCL, e é linguagem padrão do Sistema
Brasileiro de TV Digital.

Palavras chave: objetos imperativos; TV digital; middleware; linguagem
declarativa; NCL, Lua.

 3

Nested Context Language 3.0
Part 10 – Imperative Objects in NCL: The NCLua Scripting

Language

© Laboratório TeleMídia da PUC-Rio – Todos os direitos reservados
Impresso no Brasil

As informações contidas neste documento são de propriedade do Laboratório TeleMídia (PUC-
Rio), sendo proibida a sua divulgação, reprodução ou armazenamento em base de dados ou
sistema de recuperação sem permissão prévia e por escrito do Laboratório TeleMídia (PUC-Rio).
As informações estão sujeitas a alterações sem notificação prévia.
Os nomes de produtos, serviços ou tecnologias eventualmente mencionadas neste documento são
marcas registradas dos respectivos detentores.
Figuras apresentadas, quando obtidas de outros documentos, são sempre referenciadas e são de
propriedade dos respectivos autores ou editoras referenciados.
Fazer cópias de qualquer parte deste documento para qualquer finalidade, além do uso pessoal,
constitui violação das leis internacionais de direitos autorais.

Laboratório TeleMídia
Departamento de Informática
Pontifícia Universidade Católica do Rio de Janeiro
Rua Marquês de São Vicente, 225, Prédio ITS - Gávea
22451-900 – Rio de Janeiro – RJ – Brasil
http://www.telemidia.puc-rio.br

 4

Table of Contents

1. Introduction...6

2. NCL Historical Evolution...7

3. Overview of NCL Elements ...10

4. Imperative Objects..13

5. Expected Behavior of Imperative Players in NCL Applications..............................15

5.1. Imperative-Object Execution Model ..16

5.2. Instructions to Presentation Events...16

5.2.1. start instruction...16

5.2.2. stop instruction..17

5.2.3. abort instruction..18

5.2.4. pause instruction...19

5.2.5. resume instruction...19

5.2.6. Natural end of a code execution...20

5.3. Instructions to Attribution Events...20

5.3.1. set instruction..21

5.3.2. stop, abort, pause and resume instructions ..21

6. Recommended APIs ...22

7. Final Remarks...23

References...24

Appendix A – Lua procedural objects in NCL presentations: The NCLua Scripting
Language...25

1. Lua language - Optional functions in the Lua library...25

2. Additional modules...25

2.1. The canvas module ...26

2.1.1. The canvas object ...26

 5

2.1.2. Constructors..26

2.1.3. Attributes ..27

2.1.4. Primitives..32

2.1.5. Miscellaneous ...35

2.2. The event module ...37

2.2.1. General View ..37

2.2.2. Functions...38

2.2.3. Event classes ...40

2.3. The settings module..51

2.4. The persistent module...52

 6

Nested Context Language 3.0
Part 10 – Imperative Objects in NCL: The NCLua Scripting

Language
Luiz Fernando Gomes Soares

Francisco Figueiredo G. Sant’Anna
Renato Fontoura de Gusmão Cerqueira

Laboratório TeleMídia DI – PUC-Rio
Rua Marquês de São Vicente, 225, Rio de Janeiro, RJ - 22451-900.

lfgs@inf.puc-rio.br, francisco@telemidia.puc-rio.br, rcerq@inf.puc-rio.br

Abstract. This technical report describes how imperative objects may be related
with other objects in NCL documents and how imperative object players shall
behave. NCL (Nested Context Language) is an XML application language based
on the NCM (Nested Context Model) conceptual model for hypermedia document
specification, with temporal and spatial synchronization among its media objects.
NCLua objects and players are also described as an example. Lua is the main
scripting language of NCL and the standard scripting language for the Brazilian
DTV System.

1. Introduction

Imperative objects may be inserted into NCL documents mainly to bring additional
computational capabilities to declarative documents. The way to add an imperative object
into an NCL document is to define a <media> element, whose content (located through the
src attribute) is the imperative code to be executed.

As examples, both EDTV and BDTV profiles of NCL 3.0 allows two media types to be
associated with the <media> element: application/x-ncl-NCLua, for Lua procedural codes1
(file extension .lua); and application/x-ginga-NCLet, for Java (Xlet) codes (file extension
.class or .jar).

This technical report describes how to use imperative objects to add additional
computational capabilities to the NCL declarative language. The report is organized as
follows. Section 2 gives an historical evolution of the NCL versions. Section 3 presents a
brief overview of the NCL 3.0 elements. Section 4 describes how an imperative object may
be defined together with its content anchors and properties. Section 5 discusses the
expected behavior of imperative object players, and how imperative objects may be related
with other objects in an NCL document. Section 6 points out some APIs that shall be
offered by an imperative language used as the content of an imperative object. Section 7
presents the final remarks. Appendix A discusses, as an example of imperative objects,
NCLua code objects as adopted in Ginga, the middleware of the Brazilian Digital TV
System (SBTVD).

1 Indeed, Lua is a multi-paradigm programming language (an imperative and functional language).

 7

2. NCL Historical Evolution

The first version of NCL [Anto00, AMRS00] was specified through an XML DTD –
Document Type Definition [XML98].

The second version of NCL, named NCL 2.0, was specified using XML Schema
[SCHE01]. Following recent trends, from version 2.0 on, NCL has been specified in a
modular way, allowing the combination of its modules in language profiles.

Besides the modular structure, NCL 2.0 introduced new facilities to the previous version
1.0, among others:
• definition of hypermedia connectors and connector bases;
• use of hypermedia connectors for link authoring;
• definition of ports and maps for composite nodes, satisfying the document

compositionality property;
• definition of hypermedia composite-node templates, allowing the specification of

constraints on documents;
• definition of composite-node template bases;
• use of composite-node templates for authoring composite nodes;
• refinement of document specifications with content alternatives, through the <switch>

element, grouping a set of alternative nodes;
• refinement of document specifications with presentation alternatives, through the

<descriptorSwitch> element, grouping a set of alternative descriptors;
• use of a new spatial layout model.

NCL 2.1 brought some refinements to the previous version: a module for defining cost
functions associated with media object duration was introduced; a module aiming at
describing the selection rules of <switch> and <descriptorSwitch> elements was defined;
and refinements in some NCL modules were made, mainly in the XTemplate module.

NCL 2.2 made minor refinements in some NCL 2.1 modules, concerning their element
definitions, and introduced a different approach in defining NCL modules and profiles.

NCL 2.3 introduced two new modules for supporting base and entity reuse, and refined the
definition of some elements in order to support the new features.

NCL 2.4 reviewed and refined the reuse support introduced in version 2.3, and the
specification of the switch and descriptor switch elements. This version also split the
Timing module introduced by NCL 2.1, creating a new module to encapsulate issues
related with time-scaling operations (elastic time computation using temporal cost
functions) in hypermedia documents.

The NCL 3.0 edition revised some functionalities contained in NCL 2.4. NCL 3.0 is more
specific regarding some attribute values. This new version introduced two new
functionalities, as well: Key Navigation and Animation functionalities. In addition, NCL
3.0 made depth modifications on the Composite-Node Template functionality and
introduces some SMIL based modules to NCL profiles for transition effects in media
presentation and for metadata definition. NCL 3.0 also reviewed the hypermedia connector
specification in order to have a more concise notation. Relationships among imperative and

 8

declarative objects and other objects are also refined in NCL 3.0, as well as the behavior of
imperative e declarative object players. Finally, NCL 3.0 also refined the support to
multiple exhibition devices and introduced the support to NCL live editing commands.

NCM is the model underlying NCL. However, in its present version 3.0, NCL does not
reflect all NCM 3.0 facilities yet. In order to understand NCL facilities in depth, it is
necessary to understand the NCM concepts. With the aim of offering a scalable hypermedia
model, with characteristics that may be progressively incorporated in hypermedia system
implementations, the NCM and NCL family was divided in several parts.

The Nested Context Model is composed of Parts 1, 2, 3, and 4 of the collection:

• Part 1 – NCM Core
concerned with the main model entities, which should be present in all NCM
implementations2.

• Part 2 – NCM Virtual Entities
concerned mainly with the definition of virtual anchors, nodes and links.

• Part 3 – NCM Version Control
concerned with model entities and attributes to support versioning.

• Part 4 – NCM Cooperative Work
concerned with model entities and attributes to support cooperative document handling.

The NCL (Nested Context Language) specification is composed of Parts 5 to 12 of the
collection:

• Part 5 – NCL (Nested Context Language) Full Profile
concerned with the definition of an XML application language for authoring and
exchanging NCM-based documents, using all NCL modules, including those for the
definition and use of templates, and also the definition of constraint connectors,
composite-connectors, temporal cost functions, transition effects and metainformation
characterization.

• Part 6 – NCL (Nested Context Language) XConnector Profile Family
concerned with the definition of an XML application language for authoring connector
bases. One profile is defined for authoring causal connectors, another one for authoring
causal and constraint connectors, and a third one for authoring both simple and
composite connectors.

• Part 7 – Composite Node Templates
concerned with the definition of the NCL Composite-Node Template functionality, and
with the definition of an XML application language (XTemplate) for authoring template
bases.

• Part 8 – NCL (Nested Context Language) Digital TV Profiles
concerned with the definition of an XML application language for authoring documents

2 It is also possible to have NCM implementations that ignore some of the basic entities, but this is not
relevant so as to deserve a minimum-core definition.

 9

aiming at the digital TV domain. Two profiles are defined: the Enhanced Digital TV
(EDTV) profile and the Basic Digital TV (BDTV) profile.

• Part 9 – NCL Live Editing Commands
concerned with editing commands used for live authoring applications based on NCL.

• Part 10 – Imperative Objects in NCL: The NCLua Scripting Language (this document)
concerned with the definition of objects that contain imperative code and how these
objects may be related with other objects in NCL applications.

• Part 11 – Declarative Hypermedia Objects in NCL: Nesting Objects with NCL Code in
NCL Documents
concerned with the definition of hypermedia objects that contain declarative code
(including nested objects with NCL code) and how these objects may be related with
other objects in an NCL application.

• Part 12 – Support to Multiple Exhibition Devices
concerned with the use of multiple devices for simultaneously presenting an NCL
document.

 In order to understand NCL, the reading of Part 1: NCM Core is recommended.

 10

3. Overview of NCL Elements

NCL is an XML application that follows the modularization approach. The modularization
approach has been used in several W3C language recommendations. A module is a
collection of semantically-related XML elements, attributes, and attribute’s values that
represents a unit of functionality. Modules are defined in coherent sets. A language profile
is a combination of modules. Several NCL profiles have been defined, among them those
defined by Parts 5, 6, 7, and 8 of the NCL collection presented in Section 2. Of special
interest are the profiles defined for Digital TV, the EDTVProfile (Enhanced Digital TV
Profile) and the BDTVProfile (Basic Digital TV Profile). This section briefly describes the
elements that compose these profiles. The complete definition of the NCL 3.0 modules for
these profiles, using XML Schemas, is presented in [SoRo06]. Any ambiguity found in this
text can be clarified by consulting the XML Schemas.

The basic NCL structure module defines the root element, called <ncl>, and its children
elements, the <head> element and the <body> element, following the terminology adopted
by other W3C standards.

The <head> element may have <importedDocumentBase>, <ruleBase>, <transitionBase>
<regionBase>, <descriptorBase>, <connectorBase>, <meta>, and <metadata> elements as
its children.

The <body> element may have <port>, <property>, <media>, <context>, <switch>, and
<link> elements as its children. The <body> element is treated as an NCM context node. In
NCM [SoRo05], the conceptual data model of NCL, a node may be a context, a switch or a
media object. Context nodes may contain other NCM nodes and links. Switch nodes
contain other NCM nodes. NCM nodes are represented by corresponding NCL elements.

The <media> element defines a media object specifying its type and its content location.
NCL only defines how media objects are structured and related, in time and space. As a
glue language, it does not restrict or prescribe the media-object content types. However,
some types are defined by the language. For example: the “application/x-ncl-settings” type,
specifying an object whose properties are global variables defined by the document author
or are reserved environment variables that may be manipulated by the NCL document
processing; and the “application/x-ncl-time” type, specifying a special <media> element
whose content is the Greenwich Mean Time (GMT).

The <context> element is responsible for the definition of context nodes. An NCM context
node is a particular type of NCM composite node and is defined as containing a set of
nodes and a set of links [SoRo05]. Like the <body> element, a <context> element may
have <port>, <property>, <media>, <context>, <switch>, and <link> elements as its
children.

The <switch> element allows the definition of alternative document nodes (represented by
<media>, <context>, and <switch> elements) to be chosen during presentation time. Test
rules used in choosing the switch component to be presented are defined by <rule> or
<compositeRule> elements that are grouped by the <ruleBase> element, defined as a child
element of the <head> element.

 11

The NCL Interfaces functionality allows the definition of node interfaces that are used in
relationships with other node interfaces. The <area> element allows the definition of
content anchors representing spatial portions, temporal portions, or temporal and spatial
portions of a media object (<media> element) content. The <port> element specifies a
composite node (<context>, <body> or <switch> element) port with its respective mapping
to an interface of one of its child components. The <property> element is used for defining
a node property or a group of node properties as one of the node’s interfaces. The
<switchPort> element allows the creation of <switch> element interfaces that are mapped
to a set of alternative interfaces of the switch’s internal nodes.

The <descriptor> element specifies temporal and spatial information needed to present each
document component. The element may refer a <region> element to define the initial
position of the <media> element (that is associated with the <descriptor> element)
presentation in some output device. The definition of <descriptor> elements shall be
included in the document head, inside the <descriptorBase> element, which specifies the
set of descriptors of a document. Also inside the document <head> element, the
<regionBase> element defines a set of <region> elements, each of which may contain
another set of nested <region> elements, and so on, recursively; regions define device areas
(e.g. screen windows) and are referenced by <descriptor> elements, as previously
mentioned.

A <causalConnector> element represents a relation that may be used for creating <link>
elements in documents. In a causal relation, a condition shall be satisfied in order to trigger
an action. A <link> element binds (through its <bind> elements) a node interface with
connector roles, defining a spatio-temporal relationship among objects (represented by
<media>, <context>, <body> or <switch> elements).

The <descriptorSwitch> element contains a set of alternative descriptors to be associated
with an object. Analogous to the <switch> element, the <descriptorSwitch> choice is done
during the document presentation, using test rules defined by <rule> or <compositeRule>
elements.

In order to allow an entity base to incorporate another already-defined base, the
<importBase> element may be used. Additionally, an NCL document may be imported
through the <importNCL> element. The <importedDocumentBase> element specifies a set
of imported NCL documents, and shall also be defined as a child element of the <head>
element.

Some important NCL element’s attributes are defined in other NCL modules. The
EntityReuse module allows an NCL element to be reused. This module defines the refer
attribute, which refers to an element URI that will be reused. Only <media>, <context>,
<body> and <switch> may be reused. The KeyNavigation module provides the extensions
necessary to describe focus movement operations using a control device like a remote
control. Basically, the module defines attributes that may be incorporated by <descriptor>
elements. The Animation module provides the extensions necessary to describe what
happens when a property value is changed. The change may be instantaneous, but it may
also be carried out during an explicitly declared duration, either linearly or step by step.
Basically, the Animation module defines attributes that may be incorporated by actions,
defined as child elements of <causalConnector> elements.

 12

Some SMIL functionalities are also incorporated by NCL. The <transition> element and
some transition attributes have the same semantics of homonym element and attributes
defined in the SMIL BasicTransitions module and the SMIL TransitionModifiers module.
The NCL <transitionBase> element specifies a set of transition effects, defined by
<transition> elements, and shall be defined as a child element of the <head> element.

Finally, the MetaInformation module is also incorporated, inheriting the same semantics of
SMIL MetaInformation module. Meta-information does not contain content information
that is used or display during a presentation. Instead, it contains information about content
that is used or displayed. The Metainformation module contains two elements that allow
describing NCL documents. The <meta> element specifies a single property/value pair. The
<metadata> element contains information that is also related to meta-information of the
document. It acts as the root element of an RDF tree: RDF element and its sub-elements
(for more details, refer to W3C metadata recommendations [RDF99]).

 13

4. Imperative Objects

A <media> element of an imperative type (application/x-???) shall be used to specify an
imperative object. In this case, the object’s content (located through the src attribute) shall
be imperative codes to be executed. As an example, the DTV profiles of NCL 3.0 allow the
application/x-ncl-NCLua type, for Lua procedural codes (file extension .lua); and the
application/x-ginga-NCLet type, for Java (Xlet) codes (file extension .class or .jar).

Like for any media object, a <media> element containing imperative code may define
content anchors (through <area> elements) and properties (through <property> elements).
As usual, the descriptor attribute of the <media> element may refer to a <descriptor>
element that is responsible for initializing several of the corresponding imperative object’s
properties necessary for its presentation.

In an imperative object, imperative-code span may be associated with an <area> element
using the label attribute. In this case the label value shall identify the code span (a function,
a method, etc.). An <area> element may also be used just as an interface to be used as
conditions of NCL links to trigger actions on other objects, as discussed in Section 5.

As usual in NCL, an imperative object shall have a content anchor called the whole content
anchor and it is declared by default in NCL documents. This content anchor, however, has
a special meaning. It represents the execution of any code span inside the imperative-code
object. Another content anchor is also defined by default, called main content anchor.
Every time an imperative object is started without specifying one of its content anchors or
properties, the main content anchor is assumed and, as a consequence, the code span
associated to it. In all other references to the imperative object without specifying one of its
content anchors or properties, the whole content anchor shall be assumed.

Analogous to conventional media content players, imperative-code players shall control
event state machines associated with the imperative object’s content anchors (see Figure 1).
However, different from other media objects, neither the imperative-code player, nor the
NCL formatter has the knowledge, by itself, to trigger the event state machine transitions,
as discussed in Section 5. Sometimes, the object’s imperative code has the responsibility to
command the imperative player in the execution of this task.

occurringprepared

paused

start

abort

start |
resume

pausestop |
abort

stop | natural end occurringprepared

paused

start

abort

start |
resume

pausestop |
abort

stop | natural end occurringprepared

paused

start

abort

start |
resume

pausestop |
abort

stop | natural end occurringsleeping

paused

start

abort

start |
resume

pausestop |
abort

stop | natural end occurringprepared

paused

start

abort

start |
resume

pausestop |
abort

stop | natural end occurringprepared

paused

start

abort

start |
resume

pausestop |
abort

stop | natural end occurringprepared

paused

start

abort

start |
resume

pausestop |
abort

stop | natural end occurringsleeping

paused

start

abort

start |
resume

pausestop |
abort

stop | natural end

Figure 1 – Event state machine associate with a content anchor or a property

A <property> element defined as a child of a <media> element representing an imperative
code may be mapped to a code span (function, method, etc.), to a code attribute or to an
object property (as in any media object, in this last case). The name attribute of the

 14

<property> element shall be used to identify the imperative-code span, the code attribute, or
the object property, respectively.

Again, when a <property> element is associated with a code span, neither the imperative-
code player, nor the NCL formatter has the knowledge, by itself, to trigger transitions of the
corresponding attribution-event state machine (see Figure 1). As discussed in Section 5, the
object’s imperative code has also in this case the responsibility to command the imperative-
code player in the execution of this task.

As usual, <area> and <property> elements may be used as interface points of <link>
elements as well as the two default content anchors, which establishes a two-way bridge
between the declarative and imperative environment controlled by the NCL formatter, as
discussed in the next section.

 15

5. Expected Behavior of Imperative Players in NCL Applications

Document authors may define NCL links to start, stop, pause, resume or abort the
execution of an imperative code. An imperative player (the language engine) shall interface
the imperative execution environment with the NCL formatter.

Analogous to conventional media content players, imperative-code players shall control
event state machines associated with the imperative object. As an example, if the code
finishes its execution, the player shall generate the stops transition in the event presentation
state machine corresponding to the code execution. However, different from media content
players, an imperative-code player has not sufficient information to control by itself all
event state machines, and shall rely on the imperative application content to command these
controls.

NCL links may be bound to imperative object interfaces (<area> and <property> elements,
and the default content anchors).

If an external link starts, stops, pauses, resumes or aborts the presentation of an anchor
representing an <area> element or the main content anchor, callbacks in the imperative
code shall be triggered. The way these callbacks are defined is responsibility of each
imperative code associated with the imperative object.

On the other hand, an imperative code may also command the start, stop, pause or resume
of its associated content anchors through an API offered by the language. These transitions
may be used as conditions of NCL links to trigger actions on other objects of the same NCL
document. Thus, a two-way synchronization can be established between the imperative
code and the remainder of the NCL document.

An imperative code may also be synchronized with other objects through <property>
elements. When the <property> element is mapped to a code span (function, method, etc.)
through its name attribute, a link action “set” applied to the property shall cause the code
execution, with the set values interpreted as parameters passed to the code span. When the
<property> element is mapped to an imperative-code attribute the action “set” shall assign
the value to the attribute. As usual, the event state machine associated with the property
shall be controlled by the imperative-object player, but sometimes, commanded by the
imperative application.

A <property> element defined as a child of a <media> element representing an imperative
object may also be associated with an NCL link assessment role. In this case, the NCL
formatter shall query the property value in order to evaluate the link expression. If the
<property> element is mapped to a code attribute, the code attribute value shall be returned
by the imperative-object player to the NCL formatter. If the <property> element is mapped
to a code span, the code shall be executed and its output value shall be returned by the
imperative-object player to the NCL formatter.

 16

5.1. Imperative-Object Execution Model

The lifecycle of an imperative object is controlled by the NCL formatter. The formatter is
responsible for triggering the execution of an imperative object and for mediating the
communication among this object and other nodes in an NCL document.

As with all media object players, once instantiated, the imperative-object player shall
execute an initialization procedure. However, different from other media players, this
initialization code is specified by the author of the imperative code. This initialization
procedure is executed only once, for each instance, and creates all code spans and data that
may be used during the imperative-object execution and, in particular, registers one (or
more) event handler for communication with the NCL formatter. Note that at least the code
span associated with the main content anchor shall be created during the initialization
procedure.

After the initialization, the execution of the imperative object becomes event oriented in
both directions. That is, any action commanded by the NCL formatter reaches the
registered event handlers, and any NCL event state change notification is sent as an event to
the NCL formatter (as for example, the natural end of a code span execution). The
imperative-object player is then ready to perform any instruction as discussed in the next
sections.

5.2. Instructions to Presentation Events

NCL formatters may control imperative-object players issuing instructions that may cause
changes on state machines of presentation events (code span executions). On the other
hand, any state changes on these presentation event state machines are notified to the NCL
formatter.

5.2.1. start instruction

The start instruction issued by a formatter shall inform the following parameters to the
imperative-object player: the imperative object to be controlled, its associated descriptor, a
list of events (defined by the <media> element’s <area> and <property> child elements,
and by the default content anchors) that need to be monitored by the imperative-object
player, the content-anchor label, or by default the main content anchor, identifying the
associated imperative code to be started, and an optional delay-time. From the src attribute,
the imperative-object player tries to locate the imperative code and start its execution. If the
content cannot be located, the player shall finish the starting operation, without performing
any action.

The descriptor shall be chosen by the formatter following the directives specified in the
NCL document. If the start instruction results from a link action that has a descriptor
explicitly declared in its <bind> element (descriptor attribute of the <link> element’s
children <bind> element), the resulting descriptor informed by the formatter shall merge
the attributes of the bind descriptor with the attributes of the descriptor specified in the
corresponding <media> element, if this attribute was specified. For the common attributes,
the <bind> descriptor information shall superpose the <media> descriptor data. If the
<bind> element does not contain an explicit descriptor, the descriptor informed by the

 17

formatter shall be the <media> descriptor, if this attribute was specified. Otherwise, a
default descriptor for that imperative-object type of <media> shall be chosen by the
formatter.

The list of events to be monitored by an imperative-object player should also be computed
by the formatter, taking into account the NCL document specification. The formatter shall
check all links where the imperative object and the resulting descriptor participate. When
computing the events to be monitored, the formatter shall take into account the media-
object perspective, i.e., the path of <body> and <context> elements to reach the <media>
element. Only links contained in these <body> and <context> elements should be
considered to compute the monitored events.

As with any other <media> element, the delay-time is an optional parameter and its default
value is “zero”. If greater than zero, this parameter contains a time to be waited by the
imperative-object player before starting the code execution.

Different from what is performed on other <media> elements, if an imperative-object
player receives a start instruction for an event associated with a content anchor and this
event is in the sleeping state, it shall start the execution of the imperative code associated
with the element, even though other portion of the object’s imperative code is being in
execution (paused or not). However, if the event associated with the target content anchor is
in the occurring or paused state, the start instruction shall be ignored by the imperative-
code player that keeps on controlling the ongoing execution. As a consequence, different
from what happens for other <media> elements, a <simpleAction> element with an
actionType attribute equal to “stop”, “pause”, “resume” or ”abort” shall be bound through a
link to a NCLua node interface, which shall not be ignored when the action is applied.

Since neither the formatter nor the imperative-code player has any other knowledge about
the imperative-object’s content anchors, except their id, and label attributes, they do not
know which other content anchors shall have their associated event put in the occurring
state, when a content anchor is started or is being in execution. Therefore, except for the
event associated with the whole content anchor, it is responsibility of the imperative-code
span, as soon as it is started, to command the imperative-code player to change the state of
any other event state machine that is related with the event state machine associated to the
started code and to inform if a transition associated with a change shall be notified.
Similarly, it is responsibility of the imperative-code span to command any event state
change, and to inform if the associated transition shall be notified, if the code-span
execution starts another code span associated with a content anchor.

Different from other <media> elements, if any content anchor is started and the event
associated with the whole content anchor is in sleeping or paused state, it shall be put in the
occurring state and the corresponding transition shall be notified.

5.2.2. stop instruction

The stop instruction needs to identify an imperative code span already being controlled. To
identify the imperative code span means to identify the corresponding <media> element,
the corresponding descriptor, a <media> element’s interface and the imperative-object
perspective.

 18

The stop instruction issued by an NCL formatter shall be ignored by an imperative-object
player if the imperative code span associated with the specified interface is not being
executed (if the corresponding event is not is in the occurring or paused state) and the
imperative-object player is not waiting due to a delayed start instruction. If the imperative-
object interface is being executed, its corresponding presentation event shall transit to the
sleeping state, and their stops transitions shall be notified. The imperative code associated
with the interface shall be stopped. If the repetitions event attribute is greater than zero, it
shall be decremented by one and the imperative code associated with the interface shall
restart after the repeat delay time (the repeat delay shall have been passed to the media
player as the start delay parameter). If the imperative object is waiting to be presented after
a delayed start instruction and a stop instruction is issued, the previous start instruction
shall be removed.

For the same reason discussed in the start instruction, except for the event associated with
the whole content anchor, it is responsibility of the stopped-code span, before it stops, to
command the imperative-code player to change the state of any other event state machine
that is related with the event state machine associated to the stopped code, and to inform if
a transition associated with a change shall be notified.

Different from other <media> elements, if any content anchor is stopped and all other
presentation events are in the sleeping state the whole content anchor shall be put in the
sleeping state. If a content anchor is stopped and at least one other presentation event is in
the occurring state the whole content anchor shall remain in the occurring state. In all other
cases, if a content anchor is stopped the whole content anchor shall be put in the paused
state. If the stop instruction is applied to an imperative object without specifying the node’s
interface, the whole content anchor is assumed. In this case, stop instructions shall be
issued for all other content anchors.

5.2.3. abort instruction

The abort instruction needs to identify an imperative code span already being controlled.
To identify the imperative code span means to identify the corresponding <media> element,
the corresponding descriptor, a <media> element’s interface and the imperative-object
perspective.

If the imperative code associated with the object’s interface is not being executed and is not
waiting to be executed after a delayed start instruction, the abort instruction shall be
ignored. If the imperative code associated with the object’s interface is being executed, its
associated event, in the occurring or in the paused state, shall transit to the sleeping state,
and their aborts transitions shall be notified. If the repetitions event attribute is greater than
zero, it shall be set to zero and the imperative-code execution shall not restart. If the
imperative code associated with the object’s interface is waiting to be executed after a
delayed start instruction and an abort instruction is issued, the previous start instruction
shall be removed.

For the same reason discussed in the start instruction, except for the event associated with
the whole content anchor, it is responsibility of the aborted-code span, before it aborts, to
command the imperative-code player to change the state of any other event state machine
that is related with the event state machine associated to the aborted code, and to inform if a
transition associated with a change shall be notified.

 19

Different from other <media> elements, if any content anchor is aborted and all other
presentation events are in the sleeping state the whole content anchor shall be put in the
sleeping state. If a content anchor is aborted and at least one other presentation event is in
the occurring state the whole content anchor shall remain in the occurring state. In all other
cases, if a content anchor is aborted the whole content anchor shall be put in the paused
state. If the abort instruction is applied to an imperative object without specifying the
node’s interface, the whole content anchor is assumed. In this case, abort instructions shall
be issued for all other content anchors.

5.2.4. pause instruction

The pause instruction needs to identify an imperative code span already being controlled.
To identify the imperative code span means to identify the corresponding <media> element,
the corresponding descriptor, a <media> element’s interface and the imperative-object
perspective.

If the imperative code associated with the object’s interface is not being executed (and not
in the pausing state) and is not waiting to be executed after a delayed start instruction, the
instruction shall be ignored. If the imperative code associated with the object’s interface is
being executed, its associated event in the occurring shall transit to the paused state, and
the pause elapsed time shall not be considered as part of the object duration. If the
imperative code associated with the object’s interface is waiting to be executed after a
delayed start instruction, the imperative-object’s interface shall wait for a resume
instruction to continue waiting for the remaining start delay.

For the same reason discussed in the start instruction, except for the event associated with
the whole content anchor, it is responsibility of the paused-code span, before it pauses, to
command the imperative-code player to change the state of any other event state machine
that is related with the event state machine associated to the paused code, and to inform if a
transition associated with a change shall be notified.

Different from other <media> elements, if any content anchor is paused and all other
presentation events are in the sleeping state or paused state the whole content anchor shall
be put in the paused state. If a content anchor is paused and at least one other presentation
event is in the occurring state the whole content anchor shall remain in the occurring state.
If the pause instruction is applied to an imperative object without specifying the node’s
interface, the whole content anchor is assumed. In this case, pause instructions shall be
issued for all other content anchors that are in the occurring state.

5.2.5. resume instruction

The resume instruction needs to identify an imperative code span already being controlled.
To identify the imperative code span means to identify the corresponding <media> element,
the corresponding descriptor, a <media> element’s interface and the imperative-object
perspective.

If the imperative code associated with the object’s interface is not paused or the imperative-
object player is not paused (waiting for the start delay), the instruction shall be ignored. If
the imperative-object player is paused waiting for the start delay, it shall resume the wait
from the instant it was paused. If the imperative code associated with the object’s interface

 20

is paused, its associated event shall transit to the occurring state, and their resumes
transitions shall be notified.

For the same reason discussed in the start instruction, except for the event associated with
the whole content anchor, it is responsibility of the paused-code span, before it pauses, to
command the imperative-code player to change the state of any other event state machine
that is related with the event state machine associated to the paused code, and to inform if a
transition associated with a change shall be notified.

Different from other <media> elements, if any content anchor is resumed, the whole
content anchor shall be set to the occurring state. If the resume instruction is applied to an
imperative object without specifying the node’s interface, the whole content anchor is
assumed. If the whole content anchor is not in the paused state due to a previous receive of
a pause instruction, the resume instruction is ignored. Otherwise, resume instructions shall
be issued for all other content anchors that are in the paused state, except those that were
already paused before the whole content anchor received the paused instruction.

5.2.6. Natural end of a code execution

Events of an imperative object normally end their execution naturally, without needing
external instructions. In this case, immediately before ending, the code span shall command
the imperative-code player to change the state of any other event state machine that is
related with the event state machine associated to the ending code, and to inform if a
transition associated with a change shall be notified. The ending presentation event shall
transit to the sleeping state, and their stops transitions shall be notified. If the repetitions
event attribute is greater than zero, it shall be decremented by one and the imperative code
associated with the interface shall restart after the repeat delay time (the repeat delay shall
having been passed to the media player as the start delay parameter).

Different from other <media> elements, if any content anchor execution ends and all other
presentation events are in the sleeping state the whole content anchor shall be put in the
sleeping state. If a content anchor execution ends and at least one other presentation event
is in the occurring state the whole content anchor shall remain in the occurring state. In all
other cases, if a content anchor execution ends, the whole content anchor shall be set to the
paused state.

5.3. Instructions to Attribution Events

NCL formatters may also send instructions that may cause changes on state machines of
attribution events (code span executions). Similarly to presentation events, any state
changes on attribution event state machines are notified to the NCL formatter.

Although imperative-node properties may be associated with code spans, the execution of
these spans does not change any state machine associated with content anchors of the
imperative object.

 21

5.3.1. start instruction

The start instruction issued by a formatter may be applied to an imperative object’s
property independent from the fact whether the object is being in execution (the whole
content anchor is in the occurring state) or not (in this latter case, although the object is not
being executed, its imperative-object player shall have already been instantiated). In the
first case, the start instruction needs to identify the imperative object, a monitored
attribution event, and, if it is the case, a value to be passed to the imperative code wrapped
by the event. In the second case, the instruction shall also identify the <descriptor> element
that will be used when executing the object (as it is done for the start instruction for
presentation). When setting a value to an attribute, the imperative-object player shall set the
event state machine to the occurring state, and after finishing the attribution, again to the
sleeping state, generating the starts transition and afterwards the stops transition.

Note again that, if a start instruction is applied to a <property> element that calls the
execution of a code span, no content anchor state is affected.

For every monitored attribution event, if an imperative-object’s code span changes by itself
the corresponding attribute value, it shall also command the imperative-code player that
shall proceed as if it had received an external start instruction.

5.3.2. stop, abort, pause and resume instructions

With the exception of the start instruction, discussed in the previous section, all other
instructions has the same effect on the corresponding property attribution as they have on
any property attribution of any type of object.

The stop instruction only stops the property attribution procedure, bringing the attribution
event state machine to the sleeping state.

The abort instruction stops the property attribution procedure, bringing the attribution event
state machine to the sleeping state and the property value to its original one.

The pause instruction only pauses the property attribution procedure, bringing the
attribution event state machine to the paused state.

Finally, the resume instruction only resumes the property attribution procedure, bringing
the attribution event state machine to the occurring state.

 22

6. Recommended APIs

Besides its standard library, some APIs shall be supported by an imperative language to be
used in imperative objects.

The imperative language shall offer an API that allows an imperative code to query any
pre-defined or dynamic properties’ values of the NCL settings node. However, it must be
stressed that it is not allowed to directly set values to these properties. Properties of the
settings node may only be changed trough using NCL links.

The imperative language shall offer an API that provides a set of methods to support NCL
editing commands and commands of the Private Base Manager, as presented in [SRRM06].

 23

7. Final Remarks

In order to offer a scalable hypermedia model, with characteristics that may be
progressively incorporated in hypermedia system implementations, NCM was divided in
several parts, and also its declarative XML application language: NCL. This technical
report deals with how imperative media-objects may be related with other objects in NCL
applications and how imperative-object players shall behave (NCLua objects and players
are also described as an example in Appendix A), which comprises Part 10 – Imperative
Objects in NCL: The NCLua Scripting Language.

Acknowledgements

Many people have contributed to the definition of the imperative objects. Chief among
them are Rogério Ferreira Rodrigues and Marcio Ferreira Moreno.

 24

References
[Anto00] Antonacci M.J. NCL: Uma Linguagem Declarativa para Especificação de

Documentos Hipermídia com Sincronização Temporal e Espacial. Master
Dissertation, Departamento de Informática, PUC-Rio, April 2000.

[AMRS00] Antonacci M.J., Muchaluat-Saade D.C., Rodrigues R.F., Soares L.F.G. NCL:
Uma Linguagem Declarativa para Especificação de Documentos Hipermídia na
Web, VI Simpósio Brasileiro de Sistemas Multimídia e Hipermídia -
SBMídia2000, Natal, Rio Grande do Norte, June 2000.

[IeFC06] Ierusalimschy, R.; Figueiredo, L.H.; Celes, W. Lua 5.1 Reference Manual,
August 2006 (ISBN 85-903798-3-3).

[ISO98] ISO/IEC 13818-6, Information technology - Generic coding of moving pictures
and associated audio information - Part 6: Extensions for DSM-CC. 1998/Cor
2:2002.

[RDF99] Resource Description Framework (RDF) Model and Syntax Specification, Ora
Lassila and Ralph R. Swick. W3C Recommendation, 22 February 1999.
Available at http://www.w3.org/TR/REC-rdf-syntax/

[SCHE01] XML Schema Part 0: Primer, W3C Recommendation, in
http://www.w3.org/TR/xmlschema-0/, May 2001.

[SoRo05] Soares L.F.G; Rodrigues R.F. Nested Context Model 3.0: Part 1 – NCM Core,
Technical Report, Departamento de Informática PUC-Rio, May 2005,
ISSN: 0103-9741.

[SoRo06] Soares L.F.G; Rodrigues R.F. Nested Context Language 3.0: Part 8 – NCL Live
Editing Commands, Technical Report, Departamento de Informática PUC-
Rio, December 2006, ISSN: 0103-9741.

[SRRM06] Soares L.F.G; Rodrigues R.F.; Costa R.R.; Moreno, M.F. Nested Context
Language 3.0: Part 9 – NCL Digital TV Profiles, Technical Report,
Departamento de Informática PUC-Rio, October 2006, ISSN: 0103-9741.

[XML98] Bray T., Paoli J., Sperberg-McQueen C.M., Maler E. Extensible Markup
Language (XML) 1.0 (Second Edition), W3C Recommendation, in
http://www.w3.org/TR/REC-xml, February 1998.

 25

Appendix A – Lua procedural objects in NCL presentations:
The NCLua Scripting Language

1. Lua language - Optional functions in the Lua library

Lua is the scripting language adopted by Ginga-NCL to implement imperative objects in
NCL documents (<media> elements of type application/x-ncl-NCLua). The complete
definition of Lua is presented in [IeFC06].

The following functions are platform dependent and were removed in the specification:

1) in module package: loadlib;

2) in module io: all functions;

3) in module os: clock, execute, exit, getenv, remove, rename, tmpname and setlocale;

4) in module debug: all functions.

2. Additional modules

Besides the Lua standard library, the following modules shall be implemented and
automatically loaded:

1) module canvas: offers an API to draw graphical primitives and manipulate images;

2) module event: allows NCLua applications to communicate with the middleware
through events (NCL and key events);

3) module settings: exports a table with variables defined by the NCL document author
and reserved environment variables contained in an "application/x-ncl-settings"
node;

4) module persistent: exports a table with persistent variables, which may be
manipulated only by imperative objects.

The definition of each function in the above modules use the following naming convention:

funcname (parnameI: partypeI [; optnameI: opttypeI]) -> retname: rettype

 26

2.1. The canvas module

2.1.1. The canvas object

When an NCLua media object is initialized, the corresponding region of the <media>
element (of type application/x-ncl-NCLua) is available as the global canvas variable for the
Lua script. If the <media> element has no associated region defined (left, right, top and
bottom properties), then the value for canvas is set to “nil”.

As an example, assume an NCL document region defined as:

<region id="luaRegion" width="300" height="100" top="200" left="20"/>

The canvas variable in a NCLua media object referring to “luaRegion” is bound to a
canvas object of size 300x100, associated with the specified region at (20,200).

A canvas offers a graphical API to be used in an NCLua application. Using the API, it is
possible to draw lines, rectangles, font, images, etc.

A canvas keep in its state a set of attributes under which the drawing primitives operate.
For instance, if its color attribute is blue, a call to canvas:drawLine() will draw a blue
line on the canvas.

The coordinates are always relative to the top/leftmost point in canvas (0,0).

2.1.2. Constructors

From any canvas object, it is possible to create new canvas and combine them through
composite operations.

canvas:new (image_path: string) -> canvas: object

Arguments

image_path Image path

Return values

canvas Canvas representing the image

Description

Retorns a new canvas whose content is the image received as a parameter.

The new canvas shall keep the transparency aspects of the original image.

canvas:new (width, height: number) -> canvas: object

Arguments

width Canvas width

 27

height Canvas height

Return values

canvas New canvas

Description

Returns a new canvas with the received size.

Initially, all pixels shall be transparent.

2.1.3. Attributes

All attribute methods have the prefix “attr” and are used to get and set attributes (with the
exceptions specified).

When a method is invoked without input parameters, the current attribute value is returned.
On the other hand, when a method is invoked with input parameters, these parameters must
be used as the new attribute values.

canvas:attrSize () -> width, height: number

Arguments

Return values

width Canvas width

height Canvas height

Description

Returns the canvas dimensions.

It is important to note that it is not possible to change the dimensions of an existing canvas.

canvas:attrColor (R, G, B, A: number)

Arguments

R Color red component

G Color green component

B Color blue component

A Color alpha component

Description

Change canvas’ attribute color.

 28

The colors are given in RGBA, where A varies from 0 (full transparency) to 255 (full opacity).

The primitives (see 10.3.3.4) are drawn with the color set to this attribute.

The initial value is ‘0,0,0,255’ (black).

canvas:attrColor (clr_name: string)

Arguments

clr_name Color name

Change canvas’ attribute color.

The colors are given as a string corresponding to one of the 16 pre-defined NCL colors:

 'white', 'aqua', 'lime', 'yellow', 'red', 'fuchsia', 'purple', 'maroon',

 'blue', 'navy', 'teal', 'green', 'olive', 'silver', 'gray', 'black'

The values given have their alpha equal to full opacity (“A = 255”).

The primitives (see 10.3.3.4) are drawn with the color set in this attribute.

The initial value is ‘black’.

canvas:attrColor () -> R, G, B, A: number

Return values

R Color red component

G Color green component

B Color blue component

A Color alpha component

Description

Retorns the canvas’ color.

canvas:attrFont (face: string; size: number; style: string)

Arguments

face Font name

size Font size

style Font style

Description

 29

Changes canvas’ font attribute.

The following fonts shall be available: ‘Tiresias’ and ‘Verdana’.

The size is in pixels, and it represents the maximum height of a line written with the chosen font.

The possible style values are: 'bold', 'italic', 'bold-italic' and ‘nil’. A ‘nil’ value assumes that no style will be
used.

Any invalid input value shall raise an error.

The initial font value is undefined.

canvas:attrFont () -> face: string; size: number; style: string

Return values

face Font name

size Font size

style Font style

Description

Returns the canvas font.

canvas:attrClip (x, y, width, height: number)

Arguments

x Clipping area coordinate

y Clipping area coordinate

width Clipping area width

height Clipping area height

Description

Changes the canvas clipping area.

The drawing primitives (see 10.2.3.4) and the method canvas:compose() only operate inside this
clipping region.

The initial value is the whole canvas.

canvas:attrClip () -> x, y, width, height: number

Return values

x Clipping area coordinate

 30

y Clipping area coordinate

width Clipping area width

height Clipping area height

Description

Returns the canvas clipping area.

canvas:attrCrop (x, y, w, h: number)

Arguments

x Crop region coordinate

y Crop region coordinate

w Crop region width

h Crop region height

Description

Changes the canvas crop region.

Only the set region is affected by operations following graphical compositions.

The initial crop region is the whole canvas.

The main canvas cannot have its crop region changed as it is controlled by the NCL formatter.

canvas:attrCrop () -> x, y, w, h: number

Return values

x Crop region coordinate

y Crop region coordinate

w Crop region width

h Crop region height

Description

Returns the canvas crop region.

canvas:attrFlip (horiz, vert: boolean)

Arguments

horiz If canvas should be flipped horizontally

vert If canvas should be flipped vertically

 31

Description

Sets the canvas flipping mode used when the canvas is composed.

The main canvas cannot be flipped as it is controlled by the NCL formatter.

canvas:attrFlip () -> horiz, vert: boolean

Return values

horiz If canvas is flipped horizontally

vert If canvas is flipped vertically

Description

Returns the current canvas’ flipping setup.

canvas:attrOpacity (opacity: number)

Argument

opacity Canvas opacity

Description

Changes canvas opacity.

The opacity values varies between 0 (full transparency) to 255 (full opacity).

The main canvas cannot have its value changed as it is controlled by the NCL formatter.

canvas:attrOpacity () -> opacity: number

Return value

opacity Canvas opacity

Description

Returns the current canvas opacity.

canvas:attrRotation (degrees: number)

Argument

degrees Canvas rotation in degrees.

Description

Sets the canvas rotation attribute that must be multiple of 90o.

The main canvas cannot have its value changed as it is controlled by the NCL formatter.

 32

canvas:attrRotation () -> degrees: number

Return value

degrees Canvas rotation in degrees

Description

Returns the current canvas rotation value.

canvas:attrScale (w, h: number)

Arguments

w Canvas scaling height

h Canvas scaling width

Description

Scales the canvas by given width and height.

One of the given values may be true, indicating that the aspect ratio must be kept.

The scaling attribute is independent of the size attribute, which shall remain the same.

The main canvas cannot have its value changed as it is controlled by the NCL formatter.

canvas:attrScale () -> w, h: number

Return values

w Canvas scaling width

h Canvas scaling height

Description

Returns the current canvas scaling values.

2.1.4. Primitives

All the following methods take the canvas’ attributes into account.

canvas:drawLine (x1, y1, x2, y2: number)

Arguments

x1 Line extremity 1 coordinate

y1 Line extremity 1 coordinate

x2 Line extremity 2 coordinate

 33

y2 Line extremity 2 coordinate

Description

Draws a line with its extremities in (x1,y1) and (x2,y2).

canvas:drawRect (mode: string; x, y, width, height: number)

Arguments

mode Drawing mode

x Rectangle coordinate

y Rectangle coordinate

width Rectangle width

height Rectangle height

Description

Method for rectangle drawing and filling.

The parameter mode may receive 'frame' or ‘fill’ values, for drawing the rectangle with no-fill or filling it,
respectively.

canvas:drawRoundRect (mode: string; x, y, width, height, arcWidth, arcHeight: number)

Arguments

mode Drawing mode

x Rectangle coordinate

y Rectangle coordinate

width Rectangle width

height Rectangle height

arcWidth Rounded edge arc width

arcHeight Rounded edge arc height

Description

Function for rounded rectangle drawing and filling.

The parameter mode may be 'frame' in order to draw the rectangle frame or 'fill' to fill it.

canvas:drawPolygon (mode: string) -> drawer: function

Arguments

mode Drawing mode

 34

Return values

f Drawing function

Description

Method for polygon drawing and filling.

The parameter mode may receive the 'open' value, to draw the polygon not linking the last point to the first;
the 'close' value, to to draw the polygon linking the last point to the first; or the 'fill' value, to draw the
polygon linking the last point to the first and painting the region inside.

The function canvas:drawPolygon returns an anonymous function “drawer” with the signature:

 function (x, y) end

The returned function, receives the next polygon vertex coordinates and returns itself as the result. This
recurrent procedure allows the idiom:

 canvas:drawPolygon('fill')(1,1)(10,1)(10,10)(1,10)()

When the function "drawer" receives ‘nil’ as input, it completes the chained operation. Any subsequent call
shall raise an error.

canvas:drawEllipse (mode: string; xc, yc, width, height, ang_start, ang_end: number)

Arguments

mode Drawing mode

xc Ellipse center

yc Ellipse center

width Ellipse width

height Ellipse height

ang_start Starting angle

ang_end Ending angle

Description

Draws an ellipse and other similar primitives as circle, arcs and sectors.

The parameter mode may receive ‘arc’ to only draw the circunference or ‘fill’ for internal painting.

canvas:drawText (x, y: number; text: string)

Arguments

x Text coordinate

y Text coordinate

text Text do be drawn

 35

Description

Draws the given text at (x,y) in the canvas, using the font set by canvas:attrFont().

2.1.5. Miscellaneous

canvas:clear ([x, y, w, h: number])

Arguments

x Clear area coordinate

y Clear area coordinate

w Clear area width

h Clear area height

Description

Clears the canvas with the color set to attrColor.

If the area parameters are not given, all the canvas should be cleared.

canvas:flush ()

Description

Flushes the canvas after a set of drawing and composite operations.

It’s enough to call this method only once, after a sequence of operations.

canvas:compose (x, y: number; src: canvas; [src_x, src_y, src_width, src_height: number])

Arguments

x Position of the composition

y Position of the composition

src Canvas to compose with

src_x Position in the canvas src

src_y Position in the canvas src

src_width Composition width in the canvas src

src_height Composition height in the canvas src

Description

Composes pixel by pixel the canvas src on the current canvas (destination canvas) at position (x,y).

 36

The other parameters are optionals and indicate which region in the canvas src is used to compose with. When
absent the whole canvas is used.

This operation calls src:flush() automatically before the composition.

The operation satisfies the following equation:

 Cd = Cs*As + Cd*(255 - As)/255

 Ad = As*As + Ad*(255 - As)/255

where:

 Cd = color of the destination canvas (canvas)

 Ad = alpha of the destination canvas (canvas)

 Cs = color of the source canvas (src)

 As = alpha of the source canvas (src)

After the operations the destination canvas has the resulting content and the canvas src remains intact.

canvas:pixel (x, y, R, G, B, A: number)

Arguments

x Pixel position

y Pixel position

R Color red component

G Color green component

B Color blue component

A Color alpha component

Description

Changes the pixel color.

canvas:pixel (x, y: number) -> R, G, B, A: number

Arguments

x Pixel position

y Pixel position

Return values

R Color red component

G Color green component

 37

B Color blue component

A Color alpha component

Description

Returns the pixel color.

canvas:measureText (text: string) -> dx, dy: number

Arguments

x Text coordinate

y Text coordinate

text Text to be measured

Return values

dx text width

dy text height

Description

Returns the border coordinates for the given text, as if it were drawn at (x,y) with the configured font of
canvas:attrFont().

2.2. The event module

2.2.1. General View

This module offers an API for event handling. Using the API, the NCL formatter may
communicate with an NCLua application asynchronously.

An application may also use this mechanism internally, using the “user” event class.

The typical use of NCLua application is to handle events: NCL events (see Section 7.2.8)
or events coming from user interactions (for example, through the remote control).

During its initiation, before becoming event oriented, a Lua script has to register an event
handler function. After the initialization any action performed by the script will be in
response to an event notified to the application, that is, to the event handler function.

=== example.lua ===

... -- initializing code

function handler (evt)

 ... -- handler code

 38

end

event.register(handler) -- register as an event listener

=== end ===

Among the event types that may be received by the handler function are all those generated
by the NCL formatter. As aforementioned, a Lua script is also capable of generating events,
called “spontaneous”, trough a call to the event.post(evt) function.

2.2.2. Functions

event.post ([dst: string]; evt: event) -> sent: boolean; err_msg: string

Arguments

dst Event destination

evt Event to be posted

Return values

sent If the event was successfully sent

err_msg Error message in case of errors

Description

Posts the given event.

The parameter "dst" is the event destination and may assume the values "in" (send to itself) and "out" (send to
the NCL formatter). The default value is ‘out’.

event.timer (time: number, f: function) -> cancel: function

Arguments

time Time in milliseconds

f Callback function

Return value

unreg Function to cancel the timer

Description

Creates a timer that expires after a timeout (in milliseconds) and then call the callback function f.

The signature of f is simple, no parameters are received or returned:

 function f () end

 39

The value of 0 milliseconds is valid. In this case, event.timer() shall return immediately and f shall be called
as soon as possible.

event.register ([pos: number]; f: function; [class: string]; […: any])

Arguments

pos Register position (optional)

f Callback function

class Class filter (optional)

… Class dependent filter (optional)

Description

Registers the given function as an event listener, that is, whenever an event happens, f is called (the function
f is an event handler).

The parameter pos is optional.It indicates the position where f is registered. If it is not given, the function is
registered in the last position.

The parameter class is optional and indicates which class of events the function shall receive. If class is
specified, other class dependent filters may be defined. A nil value in any position indicates that the parameter
shall not be filtered..

The signature for f is:

 function f (evt) end -> handled: boolean

Where evt is the event that triggers the function.

The function may return “true”, to sinalize that the event was handled and, therefore, should not be sent to
other handlers.

It is recommended that the function, defined by the application, returns fast, since while it is running no other
event may be processed.

The NCL formatter shall notify the listeners in the order they were registered and if any of them returns true,
the formatter shall not notify the remaining listeners.

event.unregister (f: function)

Arguments

f Callback function

Description

Unregisters the given function as a listener, that is, new events will no longer be notified to f.

event.uptime () -> ms: number

Return values

 40

ms Time in milliseconds

Description

Returns the number of milliseconds elapsed since the beginning of the application.

2.2.3. Event classes

The function event.post() and the registered handler in event.register()
receive events as parameters.

An event is described by a common Lua table, where the class field is mandatory and
identifies the event class.

The following event classes are defined:

key class:

evt = { class='key', type: string, key: string}

* type may be 'press' or 'release'.

* key is the key value; the "event.keys" table holds all keycodes available in the NCL.

Example evt = { class='key', type='press', key=’0’}

NOTE In the key class, the class dependent filter could be type and key, in this order.

ncl class:

Relations among NCL media nodes are based on events. Lua has access to these events through
ncl Class.

Events may act in two directions, that is, the formatter may send action events to change the state
of the Lua player, which in its turn may trigger transition events to signal state changes.

In events, the type field shall assume one of the three values:
 'presentation', 'selection' or 'attribution'

Events may be directed to specific anchors or to the whole node, this is identified by area field, that
assumes the whole node when absent.

In the case of an event generated by the formatter, the action field shall have one of the following
values:
 'start', 'stop', 'abort', 'pause' and 'resume'

 Type ‘presentation’:

evt = { class='ncl', type='presentation', area='?', action='start'/'stop'/'abort'/'pause'/'resume' }

 Type ‘attribution’:

 41

 evt = { class='ncl', type='attribution', area='?', action='start' }

For events generated by the Lua player, the "action" field shall assume one of the following values:
 'start', 'stop', 'abort', 'pause ,and 'resume'

 Type ‘presentation’:

 evt = { class='ncl', type='presentation', area='?', action='start'/'stop'/'abort'/'pause'/'resume' }

 Type ‘selection’:

 evt = { class='ncl', type='selection', area='?', action='stop' }

 Type ‘attribution’:

 evt = { class='ncl', type='attribution', area='?', action='stop' }

NOTE In the ncl class, the class dependent filter could be type, area, and action, in this order.

edit class:

This class reproduces the editing commands for the Private Base manager (see Section 9). However, there is
an important difference between editing commands coming from DSM-CC stream events (see Section 9), and
the editing commands performed by Lua scripts (NCLua objects). The first ones alter not only the NCL
document presentation, but also the NCL document specification. That is, in the end of the process a new
NCL document is generated incorporating all editing results. On the other hand, editing commands coming
from NCLua media objects only alter the NCL document presentation. The original document is preserved
during all editing process.

Just like in other event classes, an editting command is represented by a Lua table. All events shall contain the
command field: a string with the command name. The other fields depend on the command type(see Table 56
in Section 9). The unique difference is with regards to the field that defines the {uri,id} reference pairs, named
data field in the edit class. This field’s values may be not only the reference pairs mentioned in Table 56, but
also XML strings with the content to be added.

Exemple:

evt = {

command = ‘addNode’,

compositeId = ‘someId’,

data = ‘<media>...’,

}

The baseId e documentId fields are optional (when applicable) and they assume by default the base and
document identifiers where the NCLua object is in execution.

The event describing the editting command may also receive a time reference as an optional parameter
(optional parameters are indicated in the function signatures as arguments between brackets). This optional
parameter may be used to specify the exact moment when the editing command shall be executed. If this
parameter is not provided in the function call, the editing command shall be executed immediately. When
provided, this parameter may have two different types of values, with two different meanings. If it is a
number value, it defines the amount of time, in seconds, for how long the command shall be postponed.

 42

However, this parameter may also specify the exact moment, in absolute values, the command shall be
executed. In this case, this parameter shall be a table value with the following fields: year (four digits), month
(1-12), day (1-31), hour (0-23), min (0-59), sec (0-61), and isdst (a daylight saving flag, a boolean).

tcp class:

The use of the return channel is done through this class of events..

In order to send or receive a tcp data, a connection shall be firstly established trough posting an event in the
form:

evt = { class='tcp', type='connect', host=addr, port=number, [timeout=number] }

The connection result is returned in a pre-registered event handler for the class. The returned event is in the
form:

evt = { class='tcp', type='connect', host=addr, port=number, connection=identifier, error=<err_msg>}

The error and connection fields are mutually exclusive. When there is a communication error, a message is
returned in the error field. When the communication is succeeded, the connection identifier is returned in the
connection field.

An NCLua application sends data, using a return channel, through posting events in the form:

evt = { class=’tcp’, type='data', connection=identifier, value=string, [timeout=number] }

Similarly, an NCLua application receives data transported in a return channel using events in the form:

evt = { class=’tcp’, type=’data’, connection=identifier, value=string, error=msg}

The error and value fields are mutually exclusive. When there is a communication error, a message is
returned in the error field. When the communication is succeeded, the message is passed in the value field.

In order to close the connection, the following event shall be posted:

evt = { class='tcp', type='disconnect', connection=identifier }

NOTE An specific middleware implementation should handle issues like authentication.

NOTE In the tcp class, the class dependent filter could only be connection.

sms class:

The behaviour for sending and receiveing data using SMS is very similar to the one of the tcp class. The sms
class is optional in the Ginga implementation for full-seg receivers.

An NCLua application sends data, using SMS, through posting events in the form:

evt = { class=’sms’, to=’phone number’, value=string }

Similarly, an NCLua application receives data transported by SMS using events in the form:

evt = { class=’sms’, from=’phone number’, value=string }

NOTE An specific middleware implementation should handle issues like authentication, etc.

NOTE In the sms class, the class dependent filter could only be from.

 43

si class:

The si event class provides access to a set of information multiplexed in a transport stream and periodically
transmitted.

The information acquisition process shall be performed in two steps:

1) A request is made calling the asynchronous event.post() function;

2) An event, to be delivered to the registered-event handlers of an NCLua script, whose data field contains
a set of subfields and is represented by a Lua table. The set of subfields depends on requested information.

NOTE In the si class, the class dependent filter could only be type.

Four event types are defined by the following tables:

type = ‘services’

The table of ‘services’ event type is made up by a set of vectors, each one with information related with a
multiplexed service of the tuned transport stream.

Each request for a table of ‘services’ event type shall be carried out through the following call:

event.post('out', { class='si', type='services'[, index=N][, fields={field_1, field_2,…, field_j}]}),

where:

i) the index field defines the service index, when specified; if not specified, all services of the tuned transport
stream shall be present in the returned event;

ii) the fields table may have as a value any subset of subfields defined for the data table of the returned event
(thus, field_i represents one of the subfields of the data table, as defined in what follows). If the fields list is
not specified, all subfields of the data table shall be filled.

The returned event is created after all request information is processed by the middleware (information that is
not broadcasted within the maximum interval specified by Table 6 of ABNT NBR 15603-2:2007 shall be
returned as ‘nil’). The data table is returned as follows:

evt = {

 class = 'si',

 type = 'services',

 data = {

 [i] = { -- each service for each i

 id = <number>,

 isAvailable = <boolean>,

 isPartialReception = <boolean>,

 parentalControlRating = <number>,

 runningStatus = <number>,

 44

 serviceType = <number>,

 providerName = <string>,

 serviceName = <string>,

 stream = {

 [j] = {

 pid = <number>,

 componentTag = <number>,

 type = <number>,

 regionSpecType = <number>,

 regionSpec = <string>,

 }

 }

 }

}

NOTE In Ginga implementation in conformance with ABNT NBR 15606-2:2007, in order to compute the values of the
data-table subfields to be returned in events of services type, SI tables should be used as a basis, as well as descriptors
associated with the service [i].

 The values of the id and runningStatus data-table subfields should be computed according to the values of
service_id and running_status fields, respectively, of the SDT table (see Table 13 of ABNT NBR 15603-2:2007) that
describes the service [i].

 The values of the providerName and serviceName data-table subfields should be computed according to the
values of service_name and service_provider_name fields, respectively, of the service_descriptor (see ABNT NBR 15603-
2:2007) that describes the service [i].

 The value of the parentalControlRating data-table subfield should be computed according to the value of the
rating field of the parental_rating_descriptor that has the country_code field with the equivalent country value that has the
user.location variable of the Settings node.

 The value of the isAvaiable data-table subfield should be computed according to the value of the country_code
field (with the available set of countries) of the country_availability_descriptor (see Section 8.3.6 of ABNT NBR 15603-
2:2007) related with service [i]. The “true” value shall be assigned only if the country_code field has a country value
equivalent to the value of the user.location variable of the Settings node.

 The value of the isPartualReception data-table subfield should be computed according to the value of service_id
field of the partial_reception_descriptor (see Section 8.3.32 of ABNT NBR 15603-2:2007).

 The semantics of the serviceType data-table subfield should be defined by Table H.2 (see ABNT NBR 15603-
2:2007).

 The semantics of the runningStatus data-table subfield should be defined by Table 14 of ABNT NBR 15603-
2:2007).

 The value of the pid stream-table subfield should have the same value of the pid field of the elementary stream
[i] header (see ISO/IEC 13818-1).

 The value of the componentTag stream-table subfield should be computed according to the value of
component_tag field of the stream_identifier_descriptor (See Section 8.3.16 of ABNT NBR 15603-2:2007) related with
the elementary stream [i].

 The semantics of the type stream-table subfield should be defined according to Table 2-34 of the ITU-T Rec.
H.222.0 | ISO/IEC 13818-1: 2008, related with the elementary stream [i].

 45

 The coding method for the regionSpec stream-table subfield should be defined by regionSpecType stream-table
subfield, according to the semantics defined in Table 53 of ABNT NBR 15603-2:2007.

 The value of the regionSpec stream-table subfield should define the region for which the elementary stream [i]
is designated.

 The regionSpec and regionSpecType stream-table subfields should also be computed based on the
target_region_descriptor (See ABNT NBR 15603-2:2007).

type = ‘mosaic’

The table of the ‘mosaic’ event type is made up by a set of information for building the mosaic, and is
provided in a matrix format.

Each request for a table of ‘mosaic’ event type shall be carried out through the following call:

event.post('out', { class='si', type='mosaic'[, fields={field_1, field_2,…, field_j}]}),

where the fields list may have as a value any subset of subfields defined for the data table of the returned
event (thus, field_i represents one of the subfields of the data table, as defined in what follows). If the fields
list is not specified, all subfields of the data table shall be filled.

The returned event is created after all request information is processed by the middleware (information that is
not broadcasted within the maximum interval specified by Table 6 of ABNT NBR 15603-2:2007 shall be
returned as ‘nil’). The data table is returned as follows:

evt = {

 class = 'si',

 type = 'mosaic',

 data = {

 [i] = {

 [j] = {

 logicalId = <number>,

 presentationInfo = <number>,

 id = <number>,

 linkageInfo = <number>,

 bouquetId = <number>,

 networkId = <number>,

 tsId = <number>,

 serviceId = <number>,

 eventId = <number>,

 }

 }

 46

 }

}

NOTE In Ginga implementation in conformance with ABNT NBR 15606-2:2007, in order to compute the values of the
data-table subfields to be returned in events of mosaic type, SI tables should be used as a basis, as well as descriptors
associated with the mosaic.

 The maximum values for [i] and [j], as well as the values of the logicalId, presentationInfo, id, linkageInfo,
bouquetId, networkId, tsId, serviceId and eventId data-table subfields should be computed according to the values of
number_of_horizontal_elementary_cells, number_of_vertical_elementary_cells, logical_cell_id,
logical_cell_presentation_info, id, cell_linkage_info, bouquet_id, original_network_id, transport_stream_id, service_id
and event_id fields, respectively of the mosaic_descriptor (See Section 8.3.9 of ABNT NBR 15603-2:2007)

type = ‘epg’

The table of the ‘epg’ event type is made up by a set of vectors. Each vector contains information about an
event of the content being transmitted.

Each request for a table of ‘epg’ event type shall be carried out through one of the following possible calls:

1) event.post('out', { class='si', type='epg', stage=’current’[, fields={field_1, field_2,…,
field_j}]})

where the fields list may have as a value any subset of subfields defined for the data table of the returned
event (thus, field_i represents one of the subfields of the data table, as defined in what follows). If the
fields list is not specified, all subfields of the data table shall be filled.

Description: returns information regarding to the current event of the content being transmitted.

2) event.post('out', {class='si', type='epg', stage='next'[, eventId=<number>][,
fields={field_1, field_2,…, field_j}]})

where:

i) the eventid field, when specified, identifies the event immediately before the event whose information
is required. When not specified, the requested information is for the event that immediately follows the
curresnt event.

ii) the fields list may have as a value any subset of subfields defined for the data table of the returned
event (thus, field_i represents one of the subfields of the data table, as defined in what follows). If the
fields list is not specified, all subfields of the data table shall be filled.

Description: returns information regarding to the event immediately after the event defined in eventId, or
information regarding to the event immediately after the current event, when eventId is not specified.

3) event.post('out', {class='si', type='epg', stage=’schedule’, startTime=<date>,
endTime=<date>[, fields={field_1, field_2,…, field_j}]})

where the fields list may have as a value any subset of subfields defined for the data table of the returned
event (thus, field_i represents one of the subfields of the data table, as defined in what follows). If the
fields list is not specified, all subfields of the data table shall be filled.

Description: returns information regarding to events within the time interval defined by the startTime
and endTime fields, which have tables in the <date> format as values.

 47

The returned event is created after all request information is processed by the middleware (information that is
not broadcasted within the maximum interval specified by Table 6 of ABNT NBR 15603-2:2007 shall be
returned as ‘nil’). The data table is returned as follows:

evt = {

 class = 'si',

 type = 'epg',

 data = {

 [i] – {

 startTime = <date>,

 endTime = <date>,

 runningStatus = <number>,

 name = <string>,

 originalNetworkId = <number>,

 shortDescription = <string>,

 extendedDescription = <string>,

 copyrightId = <number>,

 copyrightInfo = <string>,

 parentalRating = <number>,

 parentalRatingDescription = <string>,

 audioLanguageCode = <string>,

 audioLanguageCode2 = <string>,

 dataContentLanguageCode = <string>,

 dataContentText = <string>,

 hasInteractivity = <boolean>,

 logoURI = <string>,

 contentDescription = {

 [1] = <content_nibble_1>,

 [2] = <content_nibble_2>,

 [3] = <user_nibble_1>,

 [4] = <user_nibble_2> }

 },

 48

 linkage = {

 tsId = <number>,

 networkId = <number>,

 serviceId = <number>,

 type = <number>,

 data = <string>,

 },

 hyperlink = {

 type = <number>,

 destinationType = <number>,

 tsId = <number>,

 networkId = <number>,

 eventId = <number>,

 componentTag = <number>,

 moduleId = <number>,

 serviceId = <number>,

 contentId = <number>,

 url = <string>,

 },

 series = {

 id = <number>,

 repeatLabel = <number>,

 programPattern = <number>,

 episodeNumber = <number>,

 lastEpisodeNumber = <number>,

 name = <string>,

 },

 eventGroup = {

 type = <number>,

 49

 [j] = {

 id = <number>,

 tsId = <number>,

 networkId = <number>,

 serviceId = <number>,

 }

 },

 componentGroup = {

 type = <number>,

 [j] = {

 id = <number>,

 totalBitRate = <number>,

 description = <string>,

 caUnit = {

 id = <number>,

 component = {

 [k] = tag (<number>)

 }

 },

 }

 }

 }

 }

}

NOTE In Ginga implementation in conformance with ABNT NBR 15606-2:2007, in order to compute the values of the
data-table subfields to be returned in events of epg type, SI tables should be used as a basis, as well as descriptors
associated with the event [i].

 The values of the startTime, endTime, runningStatus and originalNetworkId data-table subfields should be
computed according to the values of the start_time, (duration + start_time), running_status and original_network_id fields,
respectively, of the SI table event_information_section (see Table 15 of ABNT NBR 15603-2:2007).

 The values of the name and shortDescription data-table subfields should be computed according to the values of
the event_name_char and text_char fields, respectively, of the short_event_descriptor (see Section 8.3.15 of ABNT NBR
15603-2:2007).

 50

 The value of the extendedDescription data-table subfield should be computed according to the value of the
text_char field of the extended_event_descriptor (see Section 8.3.7 of ABNT NBR 15603-2:2007).

 The values of the copyrightId e copyrightInfo data-table subfields should be computed according to the values
of the copyright_identifier and additional_copyright_info fields, respectively, of the copyright_descriptor (see Table 2-63
of ITU-T Rec. H.222.0 | ISO/IEC 13818-1: 2008).

 The semantics of the parentalRating data-table subfield should be defined according to Table 33 of ABNT NBR
15603-2:2007. Its value should be computed according to the value of the country_code field of the
parental_rating_descriptor and the environment variable (Settings node) user.location.

 The semantics of the parentalRatingDescription data-table subfield should be defined according to Table 32 of
ABNT NBR 15603-2:2007. Its value should be computed according to the value of the country_code field of the
parental_rating_descriptor and the environment variable (Settings node) user.location.

 The values of the audioLanguageCode and audioLanguageCode2 data-table subfields should be computed
according to the values of the ISO_639_language_code and text_char fields, respectively, of the data_content_descriptor
(see Table 54 of ABNT NBR 15603-2:2007).

 The values of the dataContentLanguageCode and dataContextText data-table subfields should be computed
according to the values of the ISO_639_language_code and text_char fields, respectively, of the data_content_descriptor
(see Table 54 of ABNT NBR 15603-2:2007).

 The value of the hasInteractivity data-table subfield shall have the “true” value when event [i] has an interactive
application available.

 The value of the logoURI data-table subfield should define the logotype location transmitted in a CDT Table
(see Section 8.3.44 of ABNT NBR 15603-2:2007).

 The subfield values of the contentDescription table should be computed according to corresponding fields of the
content_descriptor (See Section 8.3.5 of ABNT NBR 15603-2:2007).

 The values of the tsId, networkId, serviceId, type and data linkage-table subfields should be computed according
to the values of the transport_stream_id, original_network_id, original_service_id, description_type and user_defined
fields, respectively, of the linkage_descriptor (see Section 8.3.40 of ABNT NBR 15603-2:2007).

 The values of the type, destinationType, tsId, networkId, eventId, componentTag, moduleId, contentId and url
hyperlink-table subfields should be computed according to the values of the hyper_linkage_type, link_destination_type,
transport_stream_id, original_network_id, event_id, component_tag, moduleId, content_id and url_char fields,
respectively, of the hyperlink_descriptor (see Section 8.3.29 of ABNT NBR 15603-2:2007).

 The values of the id, repeatLabel, programPattern, episodeNumber, lastEpisodeNumber and name series-table
subfields should be computed according to the values of the series_id, repeat_label, program_pattern, episode_number,
last_episode_number and series_name_char fields, respectively, of the series_descriptor (see Section 8.3.33 of ABNT
NBR 15603-2:2007).

 The values of the type, id, tsId, networkId and serviceId eventGroup-table subfields should be computed
according to the values of the group_type, event_id, transport_stream_id, original_network_id and service_id fields,
respectively, of the event_group_descriptor (see Section 8.3.34 of ABNT NBR 15603-2:2007).

 The values of the type, id, totalBitRate, description, caUnit.id, caUnit.component[k].tag, tsId, networkId and
serviceId componentGroup-table subfields should be computed according to the values of the component_group_type,
component_group_id, total_bit_rate, text_char, CA_unit_id and component_tag fields, respectively, of the
component_group_descriptor (see Section 8.3.37 of ABNT NBR 15603-2:2007).

type=’time’

The table of the ‘time’ event type contains information about the current UTC (Universal Time Coordinated)
date and time, but in the official country time zone in which the receptor is located.

Each request for a table of ‘time’ event type shall be carried out through the following call:

event.post('out', { class='si', type=’time’})

The returned event is created after all request information is processed by the middleware (information that is
not broadcasted within the maximum interval specified by Table 6 of ABNT NBR 15603-2:2007 shall be
returned as ‘nil’). The data table is returned as follows:

 51

evt = {

 class = 'si',

 type = 'time',

 data = {

 year = <number>,

 month = <number>,

 day = <number>,

 hours = <number>,

 minutes = <number>,

 seconds = <number>

 }

NOTE In Ginga implementation in conformance with ABNT NBR 15606-2:2007, in order to compute the values of the
data-table subfields to be returned in events of time type, the TOT table should be used as a basis, as well as the
local_time_offset_descriptor, according to Section 7.2.9 of ABNT NBR 15603-2:2007.

user class:

By using the class user, applications may extend their functionalities, create their own events.

In this class, no fields are defined (with the exception of the class field).

NOTE In the user class, the class dependent filter could be type, if this field is defined.

2.3. The settings module

Exports the settings table with the reserved environment variables and the variables defined
by the NCL document author, as defined in the application/x-ncl-settings node.

It is not allowed to set values to the fields representing variables in the settings node. An
error shall be raised in this case. Properties of the application/x-ncl-settings node may only
be changed trough using NCL links.

The settings table splits its groups into several subtables, corresponding to each
application/x-ncl-settings node’s group. For instance, in an NCLua object, the settings
node’s variable “system.CPU” is referred to as settings.system.CPU.

Examples of use:

lang = settings.system.language

age = settings.user.age
val = settings.default.selBorderColor

settings.service.myVar = 10

 52

settings.user.age = 18 --> ERROR!

2.4. The persistent module

NCLua applications may save data in a restricted middleware area and recover it between
executions. Lua player allows an NCLua application to persist a value to be used by itself
or by another procedural object. In order to do that it defines a reserved area, inaccessible to
non-procedural NCL media objects. This area is split into the groups “service”, “channel”
and “shared”, with same semantics of the homonym groups of the NCL settings node.
There are no predefined or reserved variables in these groups, and procedural objects are
allowed to change variable’s values directly. Other procedural languages, in particular Java
for NCLet objects (<media> elements of type application/x-ginga-NCLet) should offer an
API to access this same area.

In this module, Lua offers an API to export the persistent table with the variables defined in
the reserved area.

The use of the persistent table is very similar to the settings table, except that, in this case,
procedural codes may change field values.

Examples of use:

persistent.service.total = 10

color = persistent.shared.color

