

PUC

ISSN 0103-9741

Monografias em Ciência da Computação
n° 04/08

Some Proofs about Coroutines

Roberto Ierusalimschy
Ana Lúcia de Moura

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 04/08 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena February, 2008

Some Proofs about Coroutines

Roberto Ierusalimschy and Ana Lúcia de Moura

roberto@inf.puc-rio.br
ana@rnp.br

Abstract:
This paper presents some formal proofs regarding the equivalence of expressive power

of asymmetric coroutines, symmetric coroutines, one-shot continuations, and one-shot
delimited continuations.

Keywords: Coroutines, operational semantics, continuations

Resumo:
Este artigo apresenta algumas provas relativas a equivalência do poder expressivo de

co-rotinas assimétricas, co-rotinas simétricas, continuações one shot e continuações deli-
mitadas one shot.

Palavras-chave: Co-rotinas, semântica operacional, continuações

In charge for publications:
Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ, Brazil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

1 Introduction

In a related paper [dMI09], we advocated the revival of coroutines as a simple yet powerful
control mechanism. In that paper, we claimed that coroutines are at least as expressive
as one-shot continuations, and also that two different forms of coroutines, symmetric
and asymmetric, have equivalent expressive power. In this paper, we present some for-
mal proofs sustaining those claims. To make this paper self contained, we borrowed
from [dMI09] some explanations and definitions.

The remainder of this paper is organized as follows. Section 2 provides a formal
description of our concept of full asymmetric coroutines. In section 3 we demonstrate that
full asymmetric coroutines can provide not only symmetric coroutine facilities but also
one-shot continuations and one-shot delimited continuations. Section 4 summarizes the
paper and presents some final remarks.

2 Full Asymmetric Coroutines

This section presents an operational semantics for a simple language that incorporates
asymmetric coroutines.

2.1 Coroutine Operators

Our model of full asymmetric coroutines has three basic operators: create, resume, and
yield. The operator create creates a new coroutine. It receives a procedural argument,
which corresponds to the coroutine main body, and returns a reference to the created
coroutine. Creating a coroutine does not start its execution; a new coroutine begins in
suspended state with its continuation point set to the beginning of its main body.

The operator resume (re)activates a coroutine. It receives as its first argument a
coroutine reference, returned from a previous create operation. Once resumed, a coroutine
starts executing at its saved continuation point and runs until it suspends or its main
function terminates. In either case, control is transfered back to the coroutine’s invocation
point. When its main function terminates, the coroutine is said to be dead and cannot be
further resumed.

The operator yield suspends a coroutine execution. The coroutine’s continuation point
is saved so that the next time the coroutine is resumed, its execution will continue from
the exact point where it suspended.

The coroutine operators allow a coroutine and its invoker to exchange data. The first
time a coroutine is activated, a second argument given to the operator resume is passed as
an argument to the coroutine main function. In subsequent reactivations of a coroutine,
that second argument becomes the result value of the operator yield. On the other hand,
when a coroutine suspends, the argument passed to the operator yield becomes the result
value of the operator resume that activated the coroutine. When a coroutine terminates,
the value returned by its main function becomes the result value of its last reactivation.

2.2 Operational Semantics

We present here an operational semantics for the mechanisms we just described. Our
approach is similar to the operational semantics of subcontinuations, described in [HDA94].
We start with a core language, a call-by-value variant of the λ-calculus extended with
assignments. In this core language, the set of expressions (denoted by e) includes labels
(l , a set of constant values), variables (x), function definitions (abstractions), function
calls (applications), assignments, conditionals, an equality operator for labels, and a nil

1

value:

e → l | x | λx . e | e e | x : = e | if e then e else e | e = e | nil

Expressions that denote values (v) are labels, functions, and nil:

v → l | λx . e | nil

As usual, FV (e) is the set of free variables in e; we also define LB(e) as the set of labels
in e.

When needed, we will use the usual syntactic sugar letx = e1 ine2 meaning (λx . e2)e1

(where x may occur free in e2); and e1; e2 meaning (λx . e2) e1 for some x not free in e2.
The precedence of the operators is as follows, from higher to lower:

• application

• assignment

• conditionals

• semicolon

• lambda abstractions

• let expressions

A store θ, mapping variables and labels to values, is included in the definition of the
core language to allow side-effects:1

θ: (variables ∪ labels) → values

We extend the definition of FV and of LB to denote the free variables and the labels in
a store:

FV (θ) =
⋃

x∈dom(θ)

FV (θ(x))

LB(θ) =
⋃

x∈dom(θ)

LB(θ(x))

The evaluation of the core language is defined by a set of rewrite rules that are ap-
plied to states (expression–store pairs) until a value is obtained. We use evaluation con-
texts [FF86] to determine, at each step, the next subexpression to be evaluated. The
evaluation contexts (C) defined for our core language specify a right-to-left evaluation2 of
applications:

C → � | e C | C v | x : = C | if C then e else e | e = C | C = v

The rewrite rules for evaluating the core language are given next:

〈C [x], θ〉 ⇒ 〈C [θ(x)], θ〉 (1)
〈C [(λx . e)v], θ〉 ⇒ 〈C [e[z/x]], θ[z ← v]〉,

z 6∈ (FV (θ) ∪ FV (C [(λx . e)v]))
(2)

〈C [x : = v], θ〉 ⇒ 〈C [v], θ[x ← v]〉, x ∈ dom(θ) (3)
〈C [if v then e1 else e2], θ〉 ⇒ 〈C [e1], θ〉, v 6= nil (4)
〈C [if nil then e1 else e2], θ〉 ⇒ 〈C [e2], θ〉 (5)

〈C [l = l], θ〉 ⇒ 〈C [l], θ〉 (6)
〈C [l1 = l2], θ〉 ⇒ 〈C [nil], θ〉, l1 6= l2 (7)

1The core language does not provide a means to bind a value to a label. Its extensions, however, will
include and use that facility.

2Later it will become clear why we use right-to-left evaluation, instead of the more usual left-to-right
order.

2

Rule 1 states that the evaluation of a variable results in its stored value in θ. Rule 2
describes the evaluation of applications; in this case, variable renaming guarantees the
use of a fresh variable z . Rule 3, which describes the semantics of assignments, assumes
that the variable already exists in the store (i.e., it was previously introduced by an
abstraction). Rule 4 and 5 describe conditionals, which test whether the condition is nil
or not to choose a branch. The last two rules describe the equality operator.

We say that an expression (or a program) e results in a value v , denoted as e ⇓ v ,
when 〈e, θ0〉

∗⇒ 〈v , θ〉, where θ0 is the empty store and θ is any arbitrary store. As usual,
∗⇒ is the reflexive-transitive closure of ⇒.

It is easy to check that our language, up to now, is deterministic: given an expression
e, there is at most one expression e1 such that e ⇒ e1. (In particular, it has a unique de-
composition property.) However, to simplify some proofs presented later, we will introduce
a garbage-collection rule [MFH95] that breaks this determinism:

〈e, θ ∪ θ′〉 ⇒ 〈e, θ〉, dom(θ′) ∩ (FV (θ) ∪ FV (e) ∪ LB(θ) ∪ LB(e)) = { } (8)

This rule simply allows us to remove from the store any set of bindings that are not referred
to by other expressions in a state. Again it is easy to check that this rule does not break
the determinism of results; given any expression e, there is still at most one value v such
that e ⇓ v .

In order to incorporate asymmetric coroutines into the language, we extend the set of
expressions with labeled expressions (l : e), plus the coroutine operators:

e → . . . | l : e | create e | resume e e | yield e

The precedence of the label is lower than that of the semicolon, so l : a; b reads as l : (a; b)
instead of (l : a); b. We use labels as references to coroutines, and labeled expressions to
represent a currently active coroutine. As we will see later, labeling a coroutine context
allows us to identify the coroutine being suspended when the operator yield is evaluated.

The definition of evaluation contexts must include the new expressions. In this new
definition we specify a right-to-left evaluation for the operator resume:

C → . . . | create C | resume e C | resume C v | yield C | l : C

We actually need two types of evaluation contexts: full contexts (denoted by C) and
subcontexts (denoted by C ′). A subcontext is an evaluation context that does not contain
labeled contexts (l : C). It corresponds to an innermost active coroutine (i.e., a coroutine
wherein no nested coroutine occurs).

Next we give the rewrite rules that describe the semantics of the coroutine operators:

〈C [create v], θ〉 ⇒ 〈C [l], θ[l ← v]〉, l 6∈ (LB(θ) ∪ LB(C [create v])) (9)
〈C [resume l v], θ〉 ⇒ 〈C [l : θ(l) v], θ[l ← nil]〉 (10)

〈C1[l : C ′2[yield v]], θ〉 ⇒ 〈C1[v], θ[l ← λx .C ′2[x]]〉 (11)
〈C [l : v], θ〉 ⇒ 〈C [v], θ〉 (12)

Rule 9 describes the action of creating a coroutine. It creates a fresh label to represent
the coroutine and stores a mapping from this label to the coroutine body.

Rule 10 shows that the resume operation produces a labeled expression, which corre-
sponds to a coroutine continuation obtained from the store. This continuation is invoked
with the extra argument passed to resume. In order to prevent the coroutine to be reac-
tivated, its label is mapped to nil in the resulting store.

Rule 11 describes the action of suspending a coroutine. The evaluation of the yield
expression must occur within a labeled subcontext (C ′2) that resulted from the evaluation

3

of the resume expression that invoked the coroutine. This restriction guarantees that a
coroutine always returns control to its corresponding invocation point. The argument
passed to yield becomes the result value obtained by resuming the coroutine. The con-
tinuation of the suspended coroutine is represented by a function whose body is created
from the corresponding subcontext. This continuation is saved in the store, replacing the
mapping for the coroutine’s label.

The last rule defines the semantics of coroutine termination, and shows that the value
returned by the coroutine main function becomes the result value obtained by the last
activation of the coroutine. The mapping of the coroutine label to nil, established when
the coroutine was resumed, prevents the reactivation of a dead coroutine.

3 Expressing Alternative Control Structures

In this section we show that full asymmetric coroutines can implement not only symmetric
coroutines but also one-shot continuations and one-shot delimited continuations; therefore,
they can provide any sort of control structure implemented by those constructs. In other
words, asymmetric coroutines has the same expressive power of these other constructs.

Our notion of expressive power is as follows: given two languages A and B with a
common core, differing only in that one has a set of operators {a1, · · · , an} and the other
a set {b1, · · · , bm}, we say that A has (at least) the same expressive power of B (or that
A is as least as expressive as B) if there is a context C such that, if a program e results
in v in language B , then the program C [e] also results in v in language A.

3.1 Symmetric Coroutines

The basic characteristic of symmetric coroutine facilities is the provision of a single control-
transfer operation that allows coroutines to pass control explicitly among themselves.
Therefore, our model of symmetric coroutines needs only two basic operators: create
and transfer. For convenience, it also provides another operator, current, that returns a
reference to the running (current) coroutine.

Creating a symmetric coroutine is similar to creating an asymmetric coroutine: the
operator create receives a procedural argument—the coroutine main body—and returns
a reference to the new coroutine. The operator transfer saves the continuation point of
the current coroutine and (re)activates the coroutine whose reference is passed as its first
argument. The reactivated coroutine starts executing at its saved continuation point and
runs until it transfers control to another coroutine, or its main function terminates. The
end of the main coroutine is the end of the program; the end of any other coroutine
implicitly transfers the control back to the main coroutine.3

Like our asymmetric coroutines, our symmetric coroutines can exchange data; when a
coroutine transfers control, the second argument given to the operator transfer becomes
the result value of the transfer operation which suspended the reactivated coroutine.

Let us now formalize our model of symmetric coroutines. We do that by extending the
core language introduced in Section 2.2. We will call this extended language λsym . We
begin by extending the set of expressions with the symmetric coroutine operators:

e → l | x | λx . e | e e | x : = e | if e then e else e | e = e | nil |
create e | transfer e e | current

3This is a somewhat arbitrary behaviour. A program could as well terminate upon the termination of
any of its coroutines.

4

We also extend the definition of evaluation contexts to include the new expressions, spec-
ifying a right-to-left evaluation for the arguments of transfer:

C → � | e C | C v | x : = C | if C then e else e | C = e | v = C |
create C | transfer e C | transfer C v

In our semantics for symmetric coroutines, rewrite rules are applied to expression–
store–label triplets; the third element of this triplet represents the active coroutine. A
distinguished label lI identifies the main coroutine. The first rules of λsym are similar to
Rules 1–8 of the core language, except that they operate on triplets instead of pairs, never
changing the active coroutine.

The new rules for the symmetric coroutine operations are as follows:

〈C [create v], θ, l1〉 ⇒ 〈C [l2], θ[l2 ← v], l1〉, where l2 is a fresh label (13)
〈C [transfer l2 v], θ, l1〉 ⇒ 〈θ(l2) v , θ[l2 ← nil, l1 ← λx .C [x]], l2〉, l1 6= l2 (14)
〈C [transfer l v], θ, l〉 ⇒ 〈C [v], θ, l〉 (15)
〈C [current], θ, l〉 ⇒ 〈C [l], θ, l〉 (16)

〈v , θ, l〉 ⇒ 〈θ(lI) v , θ[lI ← nil], lI 〉, l 6= lI (17)

Rule 13 describes the semantics of creating a symmetric coroutine; this operation is
similar to the creation of an asymmetric coroutine, described in Section 2.2.

Rule 14 describes the transfer of control between symmetric coroutines. A transfer
binds the current label l1 to the current continuation C in the store, and gets the con-
tinuation of the coroutine to be (re)activated (θ′(l2)). This continuation is then invoked
with the second argument passed to transfer. Rule 15 handles the particular case where a
coroutine transfers control to itself; this operation simply returns the given value.

Rule 16 provides the semantics for the current primitive.
Rule 17 describes what happens when a coroutine ends. The continuation of the main

coroutine is invoked with the value given by the ending coroutine. The end of the main
coroutine ends the program, so there is no rule for that case. We say that e ⇓ v if
〈e, θ0, lI 〉

∗⇒ 〈v , θ, lI 〉 for some store θ.
The implementation of symmetric coroutines on top of asymmetric facilities is not

difficult. Symmetrical transfers of control between asymmetric coroutines can be simulated
with pairs of yield–resume operations and an auxiliary dispatching loop that acts as an
intermediary in the switch of control between the two coroutines. When a coroutine wishes
to transfer control, it yields to the dispatching loop, which in turn resumes the coroutine
that must be reactivated. The translation of these ideas into the language λa gives us the
following definition:4

let current = lI in
let transfer =

let main = current in
let next = main in
let disp = nil in
disp: = λval .

if current = main then val else (next : = main; Cd [resume current val]);
λco. λval .

if current = main then current : = co; disp val else (next : = co; yield val)
in · · ·

4We use the technique of first declaring the variable disp and then defining its value to allow a recursive
function.

5

where the context Cd is defined as

let val = � in current : = next ; disp val

Our goal now is to prove that, with this definition for current and transfer , any ex-
pression of λsym keeps its meaning in λa . More precisely, we want to prove that, whenever
e results in v in λsym , then let current = · · · in e also results in v in λa .

For such proof, we will define a mapping Γ from states in λsym to states in λa . This
mapping is only defined for reachable states. A state 〈e, θ, l〉 is reachable if 〈e1, θ0, lI 〉

∗⇒
〈e, θ, l〉. Reacheable states satisfy the following property:

Lemma 1 In any reachable state 〈e, θ, l〉, θ(l) = nil ∧ (l = lI ∨ θ(lI) 6= nil).

Proof: The initial label lI is not defined in the initial empty state θ0, so the property is
trivially true in the initial state. It is easy to check that all rules preserve the property.

�

The mapping Γ needs to add some elements to the store of a state. For any store θ, we
define a store θ as follows:

θ = θ[main ← lI ,next ← lI , disp ← (λval . · · ·), transfer ← (λco. λval . · · ·)]

In words, θ is the store θ augmented with the definitions created by transfer . The names
main, next , and disp are local to the definition of transfer , and so can be α-renamed
to avoid conflicts, if needed. We will assume that transfer , current 6∈ dom(θ), as both
transfer and current are kind of “reserved words” in λsym . (This assumption is easily
enforced by α-renamings of conflicting variables.)

The mapping Γ for reachable states is defined as follows:

Γ〈e, θ[lI ← nil], lI 〉 = 〈e, θ[current ← lI]〉
Γ〈e, θ[lI ← λx .C [x]], l〉 = 〈C [Cd [l : e]], θ[current ← l]〉, l 6= lI
The first case handles states where the main coroutine is active; the second case handles

other states. A detail of the mapping Γ is the treatment of the main coroutine. While the
symmetric coroutines semantics saves the main continuation C in the store, associated to
lI , the asymmetric coroutines semantics keeps it in the main expression, because it has
no way to capture this continuation when simulating a transfer . The sub-continuation Cd

(the dispatcher) decides whether the computation should return to that main continuation
or resume another coroutine.

Lemma 2 If 〈e1, θ1, l1〉
1⇒ 〈e2, θ2, l2〉 in λsym then Γ〈e1, θ1, l1〉

∗⇒ Γ〈e2, θ2, l2〉 in λa .

Proof: It is easy to see that, whenever the main expression in λsym has the form
C1[e], the main expression in λa either has the same form or has the form C2[Cd [l : C1[e]]];
in any case e is the next subexpression to be evaluated.5

The only rules from λsym not present in λa are Rules 14–15 (transfer), 16 (current),
and 17 (coroutine termination).

Rule 16 is trivial, because the mapping Γ ensures that current always contains the
current coroutine.

5Here is where we need right-to-left evaluation. In λsym , (transfere1 e2) is a primitive, and its rule (14)
only fires when both expressions are already reduced to values. When we translate that to λa , it becomes
a regular function application, ((transfer e1) e2). With left-to-right evaluation, (transfer e1) would be
evaluated before e2, and so the reduction steps in the simulation would not mimic the original steps. With
right-to-left evaluation we ensure that the simulation, like the original semantics, will first evaluate the
second expression, then the first expression, and only then will apply transfer .

6

For Rule 14 we must consider three cases: transfers from the main coroutine, transfers
to the main coroutine, and transfers not involving the main coroutine.

For transfers from the main coroutine we have the following sequence of steps in λa :

Γ〈C [transfer l v], θ, lI 〉 =
〈C [transfer l v], θ[current ← lI]〉 ∗⇒
〈C [current : = l ; disp val], θ[current ← lI , val ← v]〉 ∗⇒
〈C [disp v], θ[current ← l]〉 ∗⇒
〈C [if current = main then val else (next : = main; Cd [resume current val])],

θ[current ← l , val ← v]〉 ∗⇒
〈C [Cd [resume l v]], θ[current ← l]〉 ∗⇒
〈C [Cd [l : θ(l) v]], θ[current ← l , l ← nil]〉 =
Γ〈θ(l) v , θ[l ← nil, lI ← λx .C [x]], l〉
It is easy to see that this corresponds to Rule 14. Note that the last sequence of steps

may include several uses of Rule 8 to clear the store from entries created by applications
(e.g., val).

For transfers to the main coroutine we have the following reductions:

Γ〈C1[transfer lI v], θ[lI ← λx .C2[x]], l〉 =
〈C2[Cd [l : C1[transfer lI v]]], θ[current ← l]〉 ∗⇒
〈C2[Cd [l : C1[next : = lI ; yield val]]], θ[current ← l , val ← v]〉 ∗⇒
〈C2[Cd [v]], θ[current ← l , l ← λx .C1[x]]〉 ∗⇒
〈C2[current : = next ; disp val], θ[current ← l , l ← λx .C1[x], val ← v]〉 ∗⇒
〈C2[if current = main then val else · · ·],

θ[current ← lI , l ← λx .C1[x], val ← v]〉 ∗⇒
〈C2[v], θ[current ← lI , l ← λx .C1[x]]〉 =
Γ〈C2[v], θ[lI ← nil, l ← λx .C1[x]], lI 〉
For other transfers, our simulation in λa does the following:

Γ〈C1[transfer l2 v], θ[lI ← λx .C2[x]], l1〉 =
〈C2[Cd [l1: C1[transfer l2 v]]], θ[current ← l1]〉 ∗⇒
〈C2[Cd [l1: C1[next : = l2; yield val]]], θ[current ← l1, val ← v]〉 ∗⇒
〈C2[Cd [l1: C1[yield v]]], θ[current ← l1,next ← l2]〉 ∗⇒
〈C2[Cd [v]], θ[current ← l1,next ← l2, l1 ← λx .C1[x]]〉 ∗⇒
〈C2[current : = next ; disp val],

θ[current ← l1,next ← l2, l1 ← λx .C1[x], val ← v]〉 ∗⇒
〈C2[if current = main then val else (next : = main; Cd [resume current val])],

θ[current ← l2,next ← l2, l1 ← λx .C1[x], val ← v]〉 ∗⇒
〈C2[Cd [resume l2 val]], θ[current ← l2, l1 ← λx .C1[x], val ← v]〉 ∗⇒
〈C2[Cd [l2: θ(l2) v]], θ[current ← l2, l1 ← λx .C1[x], l2 ← nil]〉 =
Γ〈θ(l2) v , θ[lI ← λx .C2[x], l1 ← λx .C1[x], l2 ← nil], l2〉
Again this corresponds to Rule 14.
For Rule 15 we must consider two cases: transfers from the main coroutine to itself

and transfers from a non-main coroutine to itself. For transfers from the main coroutine
to itself we have the following sequence of steps in λa :

Γ〈C [transfer lI v], θ, lI 〉 =
〈C [transfer lI v], θ[current ← lI]〉 ∗⇒
〈C [current : = lI ; disp val], θ[current ← lI , val ← v]〉 ∗⇒
〈C [disp v], θ[current ← lI]〉 ∗⇒
〈C [if current = main then val else · · ·], θ[current ← lI , val ← v]〉 ∗⇒
〈C [v], θ[current ← lI]〉 =
Γ〈C [v], θ, lI 〉

7

Transfers from non-main coroutines to themselves follow the same sequence of steps of
Rule 14.

Finally, for Rule 17, when a coroutine terminates (that is, evaluates to a value), our
simulation in λa does the following:

Γ〈v , θ[lI ← λx .C [x]], l〉 =
〈C [Cd [l : v]], θ[current ← l]〉 ∗⇒
〈C [current : = next ; disp val], θ[current ← l , val ← v]〉 ∗⇒
〈C [if current = main then val else · · ·], θ[current ← lI , val ← v]〉 ∗⇒
〈C [v], θ[current ← lI]〉 =
Γ〈C [v], θ[lI ← nil], lI 〉

�

Lemma 3 If 〈e1, θ1, l1〉
∗⇒ 〈e2, θ2, l2〉 in λsym then Γ〈e1, θ1, l1〉

∗⇒ Γ〈e2, θ2, l2〉 in λa .

Proof: Induction on the number of steps and Lemma 2.
�

Theorem 1 If e ⇓ v in λsym , then (let transfer = · · · in e) ⇓ v in λa . Moreover, if e
diverges in λsym , then let transfer = · · · in e diverges in λa .

Proof: If we follow the first steps of the evaluation of let current = · · · in e, which
evaluate the outer let expressions, we have

〈let current = · · · in e, θ0〉
∗⇒ 〈e, θ0[current ← lI]〉

By definition, if e ⇓ v in λsym , then 〈e, θ0, lI 〉
∗⇒ 〈v , θ, lI 〉. So, by Lemma 3,

Γ〈e, θ0, lI 〉
∗⇒ Γ〈v , θ, lI 〉 in λa . Now note that Γ〈e, θ0, lI 〉 = 〈e, θ0[current ← lI]〉 and

that Γ〈v , θ, lI 〉 = 〈v , θ[current ← lI]〉. Therefore,

〈let current = · · · in e, θ0〉
∗⇒ 〈e, θ0[current ← lI]〉 ∗⇒ 〈v , θ[current ← lI]〉

Now assume an expression e that diverges in λsym . That means that, given any natural
n, there is a derivation 〈e, θ0, lI 〉

m⇒ 〈e1, θ1, l1〉, where m ≥ n. But that means that

Γ〈e, θ0, lI 〉 = 〈e, θ0[current ← lI]〉 k⇒ 〈e ′1, θ1[current ← l1]〉

Because each simulated step involves at least one step in λa , we have that k ≥ m ≥ n.
Therefore, the derivation length of the simulation is also unbound, meaning that the
simulation diverges too.

�

For completeness, we will now show how to emulate λa programs on top of λsym ,
that is, how to implement resume–yield using transfer. A naive (but slightly wrong)
implementation could be like this:

let yield = nil in
let resume = λco. λval .

let previous = current in
let oldyield = yield in

yield : = λval . (yield : = oldyield ; transfer previous val);
transfer co val

in · · ·

8

Function yield is initially nil, because the main coroutine cannot yield. Function
resume contains the bulk of the implementation. First it saves the current coroutine and
the current value of yield . Then it redefines yield as a function that, when called, restores
yield and transfers control back to the now-current coroutine. Finally, resume transfers
control to the invoked coroutine.

The problem with that definition happens when a coroutine terminates its main func-
tion. Language λsym transfers control back to the main coroutine, but in λa control should
return to the corresponding resume. To solve this problem, we insert in resume a new
variable test , which controls whether yield was properly called:

let yield = nil in
let resume = λco. λval .

let previous = current in
let oldyield = yield in
let test = nil in

yield : = λval . (yield : = oldyield ; test : = λx . x ; transfer previous val);
test : = λval . test (yield val);
test (transfer co val)

in · · ·
When a coroutine yields, test is set to the identity function, so it has no effect and

resume behaves as before. When a coroutine returns without yielding (that is, its main
function returns), test yields the returned value (and repeats the test when control even-
tually returns).

We leave to the reader the proof of correctness of these definitions.

3.2 One-shot Continuations

One-shot continuations [HF87, BWD96] differ from multi-shot continuations in that it is
an error to invoke a one-shot continuation more than once, either implicitly (by returning
from the procedure passed to call/1cc) or explicitly (by invoking the continuation created
by call/1cc).

To give a formal semantics for one-shot continuations, again we extend our core lan-
guage to create the language λc1cc . The new expressions are call1cc (which captures a
continuation) and throw (which invokes a continuation):

e → l | x | λx . e | e e | x : = e | if e then e else e | e = e | nil |
call1cc e | throw v

The evaluation context is extended accordingly:

C → � | e C | C v | x : = C | if C then e else e | C = e | v = C |
call1cc C

A throw is not intended to be used directly by a programmer. It is created by a call1cc
always with a value as its first operand, but only executes when it receives a second
operand. So, we treat throw v as a value:

v → l | λx . e | nil | throw v

If we drop the one-shot restriction, the semantics for first-class continuations is straight-
forward:

〈C [callcc v], θ〉 ⇒ 〈C [v (throw λy .C [y])], θ〉
〈C [throw v1 v2], θ〉 ⇒ 〈v1 v2, θ〉

9

As expected, callcc calls its parameter with an argument that, when called, reinstalls the
continuation that was active when callcc was invoked (C).

One problem with that semantics is that it duplicates the continuation C . After a
callcc, C appears both as the current continuation and as a captured continuation inside
the throw expression. That makes it quite difficult to ensure that a continuation is called
only once. We can solve that difficulty by storing the continuation in the store:

〈C [callcc v], θ〉 ⇒ 〈(throw l)(v (throw l)), θ[l ← λy .C [y]]〉, l 6∈ dom(θ)
〈C [throw l v], θ〉 ⇒ 〈θ(l) v , θ〉

It is easy to see that this semantics is equivalent to the previous one. In both semantics, if
the continuation is ever invoked, the result will be (λy .C [y]) v . Otherwise, if the original
argument to callcc returns, the result expression in the second semantics will be again
(λy .C [y]) v , which reduces in two steps to the result of the first semantics, C [v].

Now, to ensure one-shotness, we redefine throw to invalidate its label after using it:

〈C [call1cc v], θ〉 ⇒ 〈(throw l)(v (throw l)), θ[l ← λy .C [y]]〉, l 6∈ dom(θ) (18)
〈C [throw l v], θ〉 ⇒ 〈θ(l) v , θ[l ← nil]〉 (19)

As usual, we say that e ⇓ v in λc1cc if 〈e, θ0〉
∗⇒ 〈v , θ〉, for some store θ.

To simulate that semantics on top of λsym (symmetric coroutines), we use the following
definition for call1cc:

let call1cc = λf .
let cc = current in
let throw = λval . (let curr = cc in cc: = nil; transfer curr val) in

transfer (create λc. c (f c)) throw
in · · ·
We will call a λsym program that uses create, transfer, and current only through

calls to call1cc a one-shot simulation. During a one-shot simulation, each call to call1cc
creates a new instance of cc and a new instance of throw . We will use the term cci to
denote any of these α-renamed instances of cc, and throwi for instances of throw . One-shot
simulations keep the following important invariant:

Lemma 4 During the execution of a one-shot simulation, labels are stored only in cci

variables. Moreover, any label is stored in at most one (live) variable and no stored label
refers to the current coroutine.

Proof: Only call1cc and throw can access the cci variables. Only call1cc can call
create to create new labels. A new label immediately becomes the current coroutine.
Calls to call1cc assign the value of the current coroutine to a cci . So, labels never leak to
other variables.

For the uniqueness of variables referring to a given label, we notice that, when a
program starts, there are no cci variables, so the invariant is vacuously true. When
call1cc is called, the current label is stored in a cci variable, but immediately control goes
to a freshly created coroutine, restoring the invariant that no stored label refers to the
current coroutine. When throw is called, a temporary curr variable receives the value of
a specific cci and cci receives nil; then curr becomes the current coroutine and goes out
of scope, restoring the invariant.

�

Now we need a way to relate λc1cc states to λsym states. For this end we define a
relation

〈e, θ〉 ∼= 〈e, θ, l〉

10

between λc1cc states and λsym states, where θ is defined as follows:6

• θ has all bindings from θ except those indexed by labels;

• θ contains an extra variable call1cc, with the function definition, and multiple extra
variables throwi and cci , as described next;

• For each sub-expression throw li in the λc1cc program, θ contains variables throwi

and cci plus a label li such that, if θ(li) 6= nil, then

θ(throwi) = λval . (let curr = cci in cci : = nil; transfer curr val)
θ(cci) = li
θ(li) = θ(li)

otherwise, when θ(li) = nil,

θ(throwi) = λval . (let curr = cci in cci : = nil; transfer curr val)
θ(cci) = nil

(In this case the value of θ(li) is irrelevant, because there are no references left to li .)
Lemma 4 ensures that each label li can be associated to at most one corresponding

throwi , so each throw li translates to a unique set of throwi , cci , and li . Any change in a
given cci or li cannot affect other parts of the program.

Lemma 5 If 〈e1, θ1〉
1⇒ 〈e2, θ2〉 in λc1cc and 〈e1, θ1〉 ∼= 〈e1, θ1, l1〉, then there is a label

l2 such that 〈e1, θ1, l1〉
∗⇒ 〈e2, θ2, l2〉 in λsym .

Proof:
The extra entries of θ1 cannot appear in e1, so they do not affect transitions other

than those made by Rules 18 or 19. Similarly, only those rules involve labels. So, if the
transition in λc1cc is not defined by Rule 18 or 19, λsym can make the same transition.

For Rule 18, λsym behaves as follows:

〈C [call1cc e], θ〉 ∼=
〈C [call1cc e], θ, l1〉

∗⇒
〈C [transfer (create λc. c (f c)) throwi], θ[throwi ← · · · , cci ← l1, f ← e], l1〉

∗⇒
〈C [transfer li throwi], θ[throwi ← · · · , cci ← l1, f ← e, li ← λc. c (f c)], l1〉

∗⇒
〈throwi (e throwi), θ[throwi ← · · · , cci ← l1, l1 ← λx .C [x]], li〉 ∼=
〈(throw li)(e (throw li)), θ[li ← λx .C [x]]〉
For Rule 19, λsym behaves as follows:

〈C [throw li v], θ[li ← λx .Ci [x]]〉 ∼=
〈C [throwi v], θ[throwi ← λval . (· · ·), cci ← li , li ← λx .Ci [x]], l1〉

∗⇒
〈C [cci : = nil; transfer curr val],

θ[curr ← li , throwi ← λv . (· · ·), cci ← li , li ← λx .Ci [x], val ← v], l1〉
∗⇒

〈C [transfer li v], θ[throwi ← λval . (· · ·), cci ← nil, li ← λx .Ci [x]], l1〉
∗⇒

〈(λx .Ci [x]) v , θ[throwi ← λval . (· · ·), cci ← nil, li ← nil], li〉 ∼=
〈θ(li) v , θ[li ← nil]〉

6The main reason this is a relation and not a mapping is that the current coroutine label l in λsym has
no direct relationship with a corresponding state in λc1cc . Given a state in λc1cc there is no way to tell
which should be the “correct” l in λsym .

11

�

With that lemma, we can prove that, whenever a λc1cc program reaches a final value,
its simulation in λsym also reaches the same value. However, the λsym program might not
be in the main coroutine (label lI), so it would continue executing the main coroutine.
The following lemma proves that this cannot happen.

Lemma 6 During the execution of a one-shot simulation, at any state 〈e, θ, l〉, either l
is the initial label lI or e has the form throwi e ′. Moreover, for any l ∈ dom(θ) that has a
cci pointing to it, either l is the initial label lI or θ(l) has the form λy . throwi e ′.

Proof: When a simulation begins, its label is lI and there are no labels in the store,
so the invariant is true. When a continuation is captured (invocation of call1cc), we have
basically the following transition:

〈C [call1cc e], θ, l1〉
∗⇒ 〈throwi (e (throwi)), θ[l1 ← λx .C [x]], l1〉

The final expression obviously has the form throwi e ′. For the captured continuation, either
l1 = lI or C [x] had the form throwi e ′; in the second case, θ(l1) has the form λy . throwi e ′.

When a continuation is invoked, the transition is basically this:

〈C [throwi v], θ[cci ← li , li ← λx .Ci [x]], l1〉
∗⇒ 〈Ci [v], θ[cci ← nil], li〉

By the invariant, either li = lI or Ci [x] had the form throwi e ′. In either case, the invariant
is true in the resulting expression. In the resulting state, both labels l1 and li have no cci

pointing to them (by Lemma 4), so they do not break the invariant.
�

An expression of the form throwi e is not a value in λsym , so a corollary of the previous
lemma is that, in a state 〈e, θ, l〉, if e is a value then l = lI .

Lemma 7 If 〈e, θ0〉
∗⇒ 〈v , θ1〉 in λc1cc, where e is a user-written program, then in λsymwe

have that
〈e, θ0[call1cc ← . . .], lI 〉

∗⇒ 〈v , θ2, lI 〉

Proof: A user-written program cannot contain throw expressions, so we have θ0 =
θ0[call1cc ← . . .]. By induction and Lemma 5, if 〈e, θ0〉

∗⇒ 〈v , θ1〉, then 〈e, θ0, lI 〉
∗⇒

〈v , θ1, l〉. By the corollary of Lemma 6, l = lI . So the resulting state is 〈v , θ2, lI 〉 for
some θ2.

�

Theorem 2 If e ⇓ v in λc1cc, where e is a user-written program, then we know that
(let call1cc = · · · in e) ⇓ v in λsym . Moreover, if e diverges in λc1cc, then let call1cc =
· · · in e diverges in λsym .

Proof: If we follow the first steps of the evaluation of let call1cc = · · · in e, which
evaluate the outer let, we have

〈let call1cc = · · · in e, θ0, lI 〉
∗⇒ 〈e, θ0[call1cc ← . . .], lI 〉

If e ⇓ v in λc1cc , then 〈e, θ0〉
∗⇒ 〈v , θ1〉, for some store θ1. By Lemma 7, this means

that 〈e, θ0[call1cc ← . . .], lI 〉
∗⇒ 〈v , θ2, lI 〉. Therefore,

〈let call1cc = · · · in e, θ0, lI 〉
∗⇒ 〈e, θ0[call1cc ← . . .], lI 〉

∗⇒ 〈v , θ2, lI 〉

12

For the case where e diverges, the proof is similar to that of Theorem 1.
�

3.3 One-shot Subcontinuations

Subcontinuations [HDA94] are an example of a delimited continuation mechanism. A sub-
continuation represents the rest of an independent partial computation (a subcomputation)
from a given point in that subcomputation. The operator spawn establishes the base,
or root, of a subcomputation. It takes as argument a procedure (the subcomputation) to
which it passes a controller. If the controller is not invoked, the result value of spawn is
the value returned by the procedure. If the controller is invoked, it captures and aborts
the continuation from the point of invocation back to, and including, the root of the sub-
computation. The procedure passed to the controller is then applied to that captured
subcontinuation. A controller is only valid when the corresponding root is in the contin-
uation of the program. Therefore, once a controller has been applied, it will only be valid
again if the subcontinuation is invoked, reinstating the subcomputation.

We can describe the semantics of subcontinuations with another extension of our core
language, which we will call λsubc . This extended language incorporates labeled expres-
sions and two control operators: spawn, which creates and starts a subcomputation, and
controller, which invokes a controller.

e → l | x | λx . e | e e | x : = e | if e then e else e | e = e | nil |
l : e | spawn e | controller l

Like throw in λc1cc , the operator controller is not intended to be used directly by
a programmer. As we will see next, it is created by the evaluation of spawn, with a
specific label as its first argument, which identifies the corresponding subcomputation. It
only executes when it receives a second argument, which represents the procedure to be
applied to the captured subcontinuation. We then treat controller l as a value in λsubc :

v → l | λx . e | nil | controller l

We use the following definition for the evaluation contexts of λsubc :

C → � | e C | C v | x : = C | if C then e else e | C = e | v = C |
l : C | spawn C

The semantics of subcontinuations is described by the rules shown next:7

〈C [spawn v], θ〉 ⇒ 〈C [l : v (λx . controller l x)], θ〉
where l is a fresh label

(20)

〈C [l : v], θ〉 ⇒ 〈C [v], θ〉 (21)
〈C1[l : C2[controller l v]], θ〉 ⇒ 〈C1[v (λx . l : C2[x])], θ〉 (22)

Rule 20 describes the semantics of the operator spawn. It installs a new (fresh) label,
producing a labeled expression—a subcomputation—which invokes spawn’s argument
with a controller associated with that label.

Rule 21 shows what happens when a subcomputation ends without invoking the con-
troller: its label is removed and its result value is returned to its last invocation point.

7Except for some syntactical adaptations, this is the operational semantics of subcontinuations devel-
oped in [HDA94].

13

Rule 22 describes the action of invoking a controller, showing how a subcontinuation is
created. A controller invocation must occur within a labeled expression with a matching
label (an active subcomputation). The captured subcontinuation is an abstraction created
from the context of that subcomputation, including the matching label. The second
argument provided to the operator controller is applied to that subcontinuation; this
application occurs in a context that does not include the abstracted context.

When the restriction imposed to one-shot continuations—a single invocation—is ap-
plied to subcontinuations, we have the concept of one-shot subcontinuations. To describe
the semantics of one-shot subcontinuations, we can use the same technique that we used to
ensure one-shotness for first-class continuations. First we extend λsubc with a new operator
(subcont) that invokes a subcontinuation. The operator subcont is always associated
with a specific label, which identifies a subcomputation. The expression subcont l is
treated as a value:

v → . . . | subcont l

We then redefine the rewrite rules to ensure that a subcontinuation can be invoked
only once:

〈C [spawn v], θ〉 ⇒ 〈C [l : v (λx . controller l x)], θ[l ← nil]〉
where l is a fresh label

(23)

〈C [l : v], θ〉 ⇒ 〈C [v], θ〉 (24)
〈C1[l : C2[controller l v]], θ〉 ⇒ 〈C1[v (subcont l)], θ[l ← λx .C2[x]]〉 (25)

〈C [subcont l v], θ〉 ⇒ 〈C [l : θ(l) v], θ[l ← nil]〉 (26)

Rules 23 and 24 are similar to Rules 20 and 21; the only difference is that Rule 23
clarifies the notion of a fresh label by stating that a fresh label is not present in the store.

According to Rule 25, when a controller is invoked the captured subcontinuation is
saved in the store, mapped to the label that represents the corresponding subcomputation.
The procedure passed to the controller receives a subcont expression that can be used to
invoke that subcontinuation.

Rule 26 shows that the invocation of a subcontinuation invalidates the mapping of its
corresponding label; this prevents a subcontinuation to be shot more than once.

When we compare the semantics of one-shot subcontinuations with the semantics of
full asymmetric coroutines (described in Section 2.2), we can observe many similarities.
A full asymmetric coroutine can be seen as an independent subcomputation. Spawning
a subcomputation is similar to creating and activating an asymmetric coroutine. Except
for the application of the controller argument to the captured subcontinuation, invoking a
subcomputation controller (Rule 25) is very much like suspending an asymmetric coroutine
(Rule 11). Invoking a one-shot subcontinuation (Rule 25) is also similar to resuming an
asymmetric coroutine (Rule 10).

The following definition of spawn simulates the semantics of one-shot subcontinuations
on top of λa :

14

let spawn = λf .
let controller = nil in
let subcomp = create λc.Ct [f (c)] in
let subcont = λx . resume subcomp x in
let invokecontroller = λg . (

subcont : = (λx . resume subcomp x);
controller : = nil ;
Cy [yield λx . g(x)]) in

let reinstate = nil in
reinstate: = λx . (controller : = invokecontroller ; Cr [subcont x]);
reinstate(λh. controller h)

in spawn

Our definition of spawn makes use of three auxiliary contexts. The context Ct im-
plements the actions that need to be performed when a subcomputation terminates: the
invalidation of its controller and the return of the value produced by the subcomputation
to its (re)activation point. Its definition is

let x = � in controller : = nil;λy . x

The context Cy represents a continuation point of a subcomputation; it is executed
when a subcontinuation is invoked, signaling that the subcontinuation has been shot. It
is defined as

let x = � in subcont : = nil; x

The context Cr is the continuation point of a subcomputation (re)activation; it is
executed when the subcomputation ends or invokes a controller. In order to express sub-
continuations that are composed by an arbitrary number of nested subcomputations, we
need to determine the subcomputation that corresponds to the invoked controller and
successively suspend all its nested subcomputations until the controller root is reached.
By doing this, we include those nested subcomputations in the captured subcontinuation.
When this subcontinuation is invoked we can reinstate its corresponding subcomputation
by successively resuming the suspended subcomputations, in the reverse order of their sus-
pension, until the original controller invocation point is reached. To express this behavior,
we define the context Cr as

let x = � in
if controller then reinstate(invokecontroller(x)) else x (reinstate)

We will not provide a thorough proof of the correctness of our definition for spawn,
both because it is lengthy and because it follows the same pattern of our previous proofs.
Instead, we present next a sketch of that proof.

In our simulation of one-shot subcontinuations in λa , the auxiliary contexts Cr and
Ct implement the actions that need to be performed when a simulated subcomputation
suspends its execution and when it terminates. Therefore, when a subcomputation is
active, we have the following relation between an evaluation context in λsubc and in our
simulation in λa :

C [l : e] in λsubc
∼= C [Cr [l : Ct [e]]] in λa

Let us trace the execution of spawn in our simulation. It produces the following steps:

〈C [spawn f], θ〉 ∗⇒
〈C [Cr [resume li (λh. controlleri h)]],

θ[li ← λc.Ct [f (c)], subcompi ← li , controlleri ← invokecontrolleri , . . .]〉
∗⇒

〈C [Cr [li : Ct [f (λh. controlleri h)]]], θ[li ← nil, . . .]〉

15

We can observe that our simulation of spawn implements the semantics defined by
Rule 23. Moreover, if we trace the termination of the simulated subcomputation, we
observe that it also follows the semantics defined by Rule 24:

〈C [Cr [li : Ct [v]]], θ〉 ∗⇒ 〈C [(λx . v)(reinstatei)], θ〉 ⇒ 〈C [v], θ〉

For a controller invocation, and the subsequent invocation of its captured subcontinu-
ation, we have two cases: the suspension and reactivation of a single subcomputation and
the suspension and reactivation of an arbitrary number of nested subcomputations. We
will show next that for both cases our simulation follows the semantics defined by Rules 25
and 26.

Let us first trace a controller invocation that involves a single subcomputation:

〈C1[Cr [li : Ct [C2[controlleri g]]]], θ〉 ∗⇒
〈C1[Cr [li : Ct [C2[Cy [yield (λx . g(x))]]]]],

θ[subconti ← λx . resume li x , controlleri ← nil]〉 ∗⇒
〈C1[Cr [λx . g(x)]], θ[li ← λx .Ct [C2[Cy [x]]], controlleri ← nil, . . .]〉 ∗⇒
〈C1[g(reinstatei)], θ[li ← λx .Ct [C2[Cy [x]]], . . .]〉
It is easy to see that this corresponds to Rule 25. If the captured subcontinuation is

invoked, our simulation reinstates the subcomputation, following the semantics defined by
Rule 26:

〈C [reinstatei v], θ[li ← λx .Ct [C2[Cy [x]]], subconti ← λx . resume li x , . . .]〉 ∗⇒
〈C [Cr [subconti v]], θ[controlleri ← invokecontrolleri , . . .]〉

∗⇒
〈C [Cr [li : Ct [C2[v]]]], θ[subconti ← nil, li ← nil, . . .]〉
Let us now trace a controller invocation from within a nested subcomputation. For the

sake of simplicity, we will consider only one level of nesting; it is not difficult to generalize
the argument to an arbitrary number of levels. We can observe that our simulation
reaches the invoked controller’s root, including the two subcomputations in the captured
subcontinuation:

〈Co [Cr [lo : Ct [Ci [Cr [li : Ct [C2[controllero g]]]]]]], θ〉 ∗⇒
〈Co [Cr [lo : Ct [Ci [Cr [λx . g(x)]]]]],
θ[li ← λx .Ct [C2[Cy [x]]], controllero ← nil, subconto ← λx . resume lo x]〉 ∗⇒
〈Co [Cr [lo : Ct [Ci [reinstatei(invokecontrolleri(λx . g(x)))]]]],
θ[li ← λx .Ct [C2[Cy [x]]], controllero ← nil, . . .]〉 ∗⇒
〈Co [Cr [λx . g(x)]],
θ[lo ← λx .Ct [Ci [reinstatei [Cy [x]]]], controlleri ← nil,

subconti ← λx . resume li x , li ← λx .Ct [C2[Cy [x]]], . . .]〉 ∗⇒
〈Co [g(reinstateo)],
θ[lo ← λx .Ct [Ci [reinstatei [Cy [x]]]], li ← λx .Ct [C2[Cy [x]]], . . .]〉

Finally, if that subcontinuation is invoked, our simulation successfully reinstates the
two nested subcomputations:

〈C [reinstateo v],
θ[lo ← λx .Ct [Ci [reinstatei [Cy [x]]]], subconto ← λx . resume lo x ,

li ← λx .Ct [C2[Cy [x]]], subconti ← λx . resume li x , . . .]〉 ∗⇒
〈C [Cr [lo : Ct [Ci [reinstatei v]]]],
θ[li ← λx .Ct [C2[Cy [x]]], subconti ← λx . resume li x ,

subconto ← nil, lo ← nil, . . .]〉 ∗⇒
〈C [Cr [lo : Ct [Ci [Cr [li : Ct [C2[v]]]]]]],
θ[subconti ← nil, li ← nil, subconto ← nil, lo ← nil, . . .]〉

16

4 Final Remarks

In this paper, we demonstrated that full asymmetric coroutines can express symmetric
coroutines and vice-versa. We also demonstrated that full coroutines can express both
one-shot continuations and one-shot delimited continuations; therefore they can provide
any sort of control structure implemented by those constructs.

It is interesting to compare our notion of expressive power with Felleisen’s [Fel90].
His definition allows transformations in the leaves of a program (what he calls macro
expressibility), while ours allows transformations at the root (therefore allowing function
expressibility). It is clear that both definitions keep intact the program structure; the
enclosing of a program e in a fixed context to bring C [e] clearly does not require “a
global reorganization of the entire program”. For our purposes Felleisen’s definition is not
sufficient, because we need some form of global state for some simulations (e.g., to keep
the current coroutine label when implementing symmetric coroutines).

The next step is to explore negative results, such as a formal proof that we cannot
express full coroutines using restricted forms of coroutines, or multi-shot continuations
using coroutines. Intuitively, we can argue for both results based on how these languages
handle contexts; for instance, while the rewrite rule for callcc duplicates a context, no
rule in λa ever does it. But we still have to formalize these ideas.

References

[BWD96] C. Bruggeman, O. Waddell, and R. Dybvig. Representing control in the presence
of one-shot continuations. In Proceedings of the ACM SIGPLAN’96 Conf. on
Programming Language Design and Implementation (PLDI’96), pages 99–107,
Philadelphia, PA, May 1996. ACM. SIGPLAN Notices 31(5).

[dMI09] Ana Lucia de Moura and Roberto Ierusalimschy. Revisiting coroutines. ACM
Transactions on Programming Languages and Systems, 2009. to appear.

[Fel90] Matthias Felleisen. On the expressive power of programming languages. In
Proceedings of 3rd European Symposium on Programming ESOP’90, pages 134–
151, Copenhagen, Denmark, May 1990.

[FF86] M. Felleisen and D. Friedman. Control operators, the SECD-machine, and
the λ-calculus. In M. Wirsing, editor, Formal Description of Programming
Concepts-III, pages 193–217. North-Holland, 1986.

[HDA94] R. Hieb, R. Dybvig, and Claude W. Anderson III. Subcontinuations. Lisp and
Symbolic Computation, 7(1):83–110, 1994.

[HF87] C. T. Haynes and D. P. Friedman. Embedding continuations in procedural
objects. ACM Transactions on Progamming Languages and Systems, 9(4):582–
598, October 1987.

[MFH95] Greg Morrisett, Matthias Felleisen, and Robert Harper. Abstract models of
memory management. In Proceedings of the Seventh International Conference
on Functional Programming Languages and Computer Architecture, pages 66–
77, La Jolla, CA, 1995.

17

