
PUC

ISSN 0103-9741

Monografias em Ciência da Computação

n° 05/08

Using Quadtrees for Energy Minimization
Via Graph Cuts

Cristina Nader Vasconcelos Asla Medeiros e Sá

Paulo Cezar Pinto de Carvalho Marcelo Gattass

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monogra�as em Ciência da Computação, No. 05/08 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena February, 2008

Using Quadtrees for Energy Minimization Via

Graph Cuts 1

Cristina N. Vasconcelos1, Asla Medeiros e Sá2, Paulo Cezar Pinto de

Carvalho3 and Marcelo Gattass1,2

1 Depto. de Informática - Pontifícia Universidade Católica (PUC-Rio).
Rua Marquês de São Vicente, 225. 22453-900 - Gávea, Rio de Janeiro, RJ, Brasil

2 Tecgraf (PUC-Rio). Rua Marquês de São Vicente, 225. 22451-900 - Gávea, Rio de
Janeiro, RJ, Brasil

3 Instituto de Matemática Pura e Aplicada (IMPA).
Estrada Dona Castorina, 110. 22460 - Jardim Botânico, Rio de Janeiro, RJ, Brasil

crisnv@inf.puc-rio.br, asla@tecgraf.puc-rio.br, pcezar@impa.br,
mgattass@tecgraf.puc-rio.br

Abstract.

Energy minimization via graph cut is widely used to solve several computer vision
problems. In the standard formulation, the optimization procedure is applied to a very
large graph, since a graph node is created for each pixel of the image. This makes it di�cult
to achieve interactive running times. We propose modifying this set-up by introducing a
pre-processing step that groups similar pixels, aiming to reduce the number of nodes and
edges present in the graph for which a minimum cut is to be found.

We use a quadtree structure to cluster similar pixels, motivated by fact that it induces
an easily retrievable neighborhood system between its leaves. The resulting quadtree leaves
replace the image pixels in the construction of the graph, substantially reducing its size.

We also take advantage of some of the new GPGPU concepts and algorithms to ef-
�ciently compute the energy function terms, its penalties and the quadtree structure,
allowing us to take a step toward a real time solution for energy minimization via graph
cuts. We illustrate the proposed method in an application that addresses the problem of
image segmentation of natural images by active illumination.

Keywords: Graph Cuts; Quadtrees; GPGPU

Resumo.

1This work has been sponsored by Ministério de Ciência e Tecnologia da Presidência da República

Federativa do Brasil.

O método de minimização de energia via corte de grafo é amplamente utilizado para
resolver diversos problemas de visão computacional. Em sua formulação tradicional, o
procedimento de optimização é aplicado a um grande grafo, uma vez que é criado um nó
do grafo para cada pixel da imagem, tornando difícil atingir taxas de processamento em
tempo real. Propomos uma modi�cação de dessa formulação, introduzindo um passo de
pré-processamento que agrupa pixeis semelhantes no intuito de reduzir o número de nós e
arestas presentes no grafo para o qual o corte mínimo será encontrado.

Utilizamos a estrutura de uma quadtree para clusterizar pixeis semelhantes, motivados
pelo fato de que ela induz a um sistema de vizinhança entre suas folhas facilmente recu-
perável. As folhas de quadtree resultante substituem os pixeis da imagem na construção
do grafo, reduzindo seu tamanho substancialmente.

Conceitos de programação genérica utilizando o hardware grá�co (GPGPU) também
são incorporados para computar e�cientemente os termos da função de energia, suas penal-
idades e a estrutura da quadtree, permitindo avançar na direção de uma solução em tempo
real para minimização de energia via o Graph Cuts. O metodo proposto [e ilustrado em
uma aplicação que aborda o problema de segmentação de imagens naturais por iluminação
ativa.

Palavras-chave: Corte de Grafo; Quadtrees; GPGPU

3

In charge of publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

ii

1 Introduction

Many important problems in image analysis can be posed as optimization problems in-
volving the minimization of some kind of energy function. For some of those problems,
methods based on computing the minimum cut on graphs o�er the possibility of �nding
global minimum for some classes of energy functions [8].

These methods explore the fact that algorithms for computing minimum cuts in poly-
nomial time have been known for some time [3].

Much research has been done in setting the mathematical requirements for the energy
functions that justify the use of Graph Cut minimization for both exact and approximate
cases [3],[2],[8]. The applicability of the technique has also been shown by several papers
in themes like image segmentation [14], foreground/background extraction [12], clustering
[16], texture synthesis[9], photo composition[1] and so on.

However, the use of graph-cut methods for real-time applications has been limited by
the size of the graph in which optimization must take place. In this paper we propose a pre-
processing of the input images, in order to produce a new set of nodes and edges, instead
of the image pixels and its neighborhood commonly used for the graph construction. The
proposed sets are considerably smaller, inducing a signi�cant reduction on the running
time of the graph-cut procedure. We call Quad Cut the use of graph cut minimization in

Figure 1: Quad Graph

this modi�ed way, the concept is illustrated in Figure 1.
The idea of the preprocessing is to group similar pixels, but in a way that creates a

well known neighborhood system. For that reason, we choose to group them into Quadtree
nodes. The metric used for grouping should be a similarity criteria appropriate to the
context being analyzed by the energy function.

1

After constructing the quadtree, its leaves are used, instead of image pixels, as the
basis for the construction of the graph. An appropriate energy function and neighborhood
relationships are created to be used in this new procedure.

As we are interested in o�ering a fast approximation for the computer vision problems
that rely on computing the minimum cut on an appropriately constructed graph, in addi-
tion to reducing the graph size, we also explore graphics hardware to e�ciently compute
energy function terms, its penalties and the Quadtree structure. Inspired by [17], we can
take advantage of the Graphics Processing Unit (GPU) parallelism to compute all the
preprocessing steps, including an e�cient construction of a Quadtree with all the informa-
tion needed for the optimization algorithm, leaving the CPU free to minimize the Graph
constructed with the quad leaves.

Figure 2: Example of minimization via Graph Cuts to the image segmentation of natural
images aided by active illumination. In (a) and (b) the input images are shown. In (c)
the initial segmentation provided by active illumination is compared to the �nal optimized
segmentation shown in (d). The composition result (using parameters σL = 0.25, σC =
0.05) is shown in (e).

As an application, we address the problem of foreground/background image segmen-
tation aided by active illumination, in which graph cuts are used to compute an optimal
binary classi�cation, starting with an initial background/foreground separation, provided
by the di�erence in intensity levels for two di�erent illumination levels [12]. Figure 2 illus-
trates the application. Observe that the quality of the binary segmentation produced can
be used for matting.

The paper is organized as follows: some applications that use energy minimization
via graph cuts in vision are reviewed in the next Section; Section 3 brie�y describes the
basic concepts for energy minimization via Graph Cuts; then, in Section 4 we argue that

2

grouping pixels into the Quadtree structure is useful to substantially reduce the nodes of
the �nal graph to be cut. An GPU implementation to construct the quad tree structure is
discussed in section 5. In Section 6 we present an illustrative implementation to accelerate
the active illumination segmentation problem. Results are discussed in Section 6.4 followed
by conclusions and future work.

2 Related Work

In the Computer Vision and Graphics context, the graph cut method, can be interpreted
as a clustering algorithm that works in a image feature space to produce spatially coherent
clusters as result. Several recent works creatively models di�erent applications as a labeling
problem, then uses graph cuts to optimize the proposed labeling. This is the case in
[1], where a framework for composing digital photos into a single picture, called �digital
photomontage�, is described. Having n source images S1, ..., Sn to form a photo composition,
the problem is posed as choosing a label for each pixel p, where each label represents a
source image Si. The proposed method extends the applicability of graph cuts to compute
selective composites, photo extended depth of �eld, relighting, stroboscopic visualization
of movement, time-lapse photo mosaics and panoramic stitching.

In [16], the spatial clustering problem is modeled as a labeling problem. The spatial
coherence is guaranteed by the penalty imposed for neighboring pixels to have di�erent
labels, that are used as weights for the edges between neighbor pixels in the graph.

In [9], texture synthesis is modeled as labeling. The method generates textures by
copying input texture patches into a new location, the graph-cut technique is used to �nd
the optimal region inside the patch to be transferred to the output image. Such patch
�tting step is a minimum cost graph cut problem using a matching quality measure for
pixels from the old and new patch.

The problem of monochrome image colorization is modeled as a segmentation problem
in [15]. The input image is partitioned interactively while the user speci�es input col-
ors, maintaining smoothness almost everywhere except for the sharp discontinuity at the
boundaries in the image.

Image segmentation problem can also be solved by minimization via graph cuts. The
main work lies in de�ning the energy function that models the speci�ed application. In
particular, background/foreground segmentation can be solved by means of Graph Cuts.
In [11], [14] and [10] the user has to indicate coarsely the foreground and the background
pixels, as initial restrictions for a minimization process. Then, graph cuts are used to �nd
automatically the globally optimal segmentation for the rest of the image.

Similarly to our algorithm, [10] proposed the use of the image uniform regions as the
nodes used in the graph construction in stead of the image pixels. They group similar
pixels into such regions segmenting the original image using the watershed method. We
believe that such segmentation do not provide a neighborhood system neither a boundary
perimeter and area as easy to compute as the one presented in our proposal provided by
the quadtree structure.

In this paper we will concentrate on applying graph cuts for image foreground-background
segmentation aided by active illumination, as in [12]. Active illumination consists of using
an additional light source in the scene that illuminates the foreground objects more strongly
than the background. This gives a priori clues of the foreground. The information derived

3

from this di�erence in illumination replaces the indication of object and background pix-
els by the user. These initial clues are then used as seeds for an optimization procedure
in order to obtain a high quality segmentation. Potentially, the approach could be used
for video capture, since a projector can be controlled to produce alternating illumination
conditions at 60 Hz.

3 Basic concepts in Energy Minimization via Graph Cuts

In Computer Vision and Graphics, energy functions minimization is commonly computed
using the min-cut/max-�ow algorithms. The general goal for using the min-cut/max-�ow
algorithms is to �nd a labeling L, that assign each variable p ∈ P (usually associated with
the pixels of the input image) to a labeling Lp ∈ L, which minimizes the corresponding
energy function.

The number of possible values assumed by the variables of the energy function is
assumed �nite, and modeled as a set of labels L, each label representing a possible output
value.

The energy function to be optimized can be generally represented as [2]:

E(L) =
∑
p∈P

Dp(Lp) +
∑

p,q∈N

Vp,q(Lp, Lq), (1)

Traditionally, N ⊂ P × P is a neighborhood system on pixels, Dp(Lp) is a function
that measures the cost of assigning the label Lp to the pixel p, while Vp,q measures the
cost of assigning the labels {Lp, Lq} to the adjacent pixels p and q and is used to impose
spatial smoothness.

The method of Graph Cuts to minimize (1) is applied by the creation of a graph
normally containing nodes corresponding to each of the image pixels and some additional
special nodes, called terminals, corresponding to each of the possible labels. There are two
types of edges in the graph: n-links and t-links. N-links are the edges connecting pairs of
neighboring pixels, representing the neighborhood system in the image, while t-links are
edges connecting pixels with terminals nodes. All edges in the graph are assigned some
weight or cost related to the energy function terms. The cost of a t-link corresponds to a
penalty for assigning the corresponding label to the pixel, derived from the data term Dp

in (1). The cost of a n-links corresponds to a penalty for discontinuity between the pixels.
These costs are usually derived from the pixel interaction term Vp,q in (1).

The Graph Cut �nds a minimum of the energy function (1), providing an optimal
labeling for the graph nodes [2].

4 Grouping Pixels into Quadtrees Leaves

When modeling computer vision problems as a energy-minimization problem, one can use
di�erent kinds of image features (e.g., luminance, color, gradient, frequency) and di�erent
metrics (e.g., statistical functions, di�erences between images, min/max relations). How-
ever, whatever the image feature or the metric used in the energy function, most natural
images have areas of pixels presenting similar values according to them. Those pixels are
expected to receive the same label in the energy minimization output. Our approach takes

4

advantage of this fact, grouping pixels of such uniform areas, thus decreasing the graph
size on which the min-cut algorithm is to be applied.

One more question arises here. If, on one hand, grouping pixels reduces the size of
the graph, on the other hand, it may cause its adjacency topology to be more complex
than the usual 4- or 8-connected pixel neighborhood systems. This may lead to spending
considerable time both to �nd suitable clusters of pixels and to compute their adjacency
relationships, overcoming the bene�ts by the smaller graph size.

Driven by these observations, we propose the use of a quadtree structure for grouping
pixels into regions using a similarity criteria, while, at the same, creating a manageable
neighborhood system between the quadtree leaves, in which adjacency relationships are
easily retrievable.

In the next subsections we show how a graph for energy minimization can be con-
structed using quadtree leaves. The construction of the quadtree itself is discussed in
section 5.

4.1 Graph Cuts using Quadtree Leaves

Using the quadtree leaves as the input data for the energy minimization via graph cuts, our
goal is to �nd a labeling L, that assigns a label Lt ∈ L to each leaf t ∈ T of the quadtree,
that minimizes the energy function adopted. The same set of the labels L may be used
here. The modi�ed energy function can be generally represented as:

E(L) =
∑
t∈T

α ∗Dt(Lt) +
∑

t,u∈N

β ∗ Vt,u(Lt, Lu), (2)

Where N ⊂ T×T is a neighborhood system on the quadtree leaves, Dt(Lt) is a function
that measures the cost of assigning label Lt to leaf t, and Vt,u measures the cost of assigning
labels {Lt, Lu} to the adjacent leaves t and u. The α and β terms are weights for balancing
the energy function, explained below.

In such energy function model, the energy variables represent the quadtree leaves. Thus,
graph cut minimization is applied to a graph containing nodes corresponding to each leaf
of the quadtree and terminal nodes corresponding to each of the possible labels. Now,
the n-links connect pairs of neighboring leaves, while t-links connect leaves with terminals
nodes.

4.1.1 Weighting the Quadtree Nodes

The α and β factors were added to equation (2) in order to balance the energy metric
according to leaves topology. The number of pixels inside a leaf t is (2level(t))2, while the
number of pixels in the border between two neighboring leaves t and u is 2min(level(t),level(u)).
Therefore, we can rewrite (2) by taking α, that represents the weight for the regional term,
as the leaf area, and β, that represents the weight for the boundary term, as the number
of neighboring pixels between the two leaves.

With the suggested weights, we ensure that larger leaves have greater impact than
smaller ones, while also enhancing the neighborhood in�uence of larger borders.

E(L) =
∑
t∈T

(2level(t))2 ∗Dt(Lt)

5

+
∑

t,u∈N

2min(level(t),level(u)) ∗ Vt,u(Lt, Lu), (3)

5 E�ciently computing the Quadtrees

In this section we describe how the quadtree can be constructed e�ciently using graphics
hardware.

5.1 Quadtrees in GPGPU

The increasing use of the Graphics Processing Unit (GPU) for general-purpose computa-
tion (GPGPU) is motivated by its newest capability of performing more than the speci�c
graphics computations which they were designed for.

In the context of our proposal, the GPU can be used for e�ciently computing the
energy function terms and also for constructing the quadtree whose leaves will be used as
nodes in the graph cut minimization. For saving the partial results, we apply the useful
concept of "Playing Ping-Pong with Render-To-Texture" [5], rendering to Frame Bu�er
Objects (FBO) [6] when 32-bit �oating-point precision is necessary.

A solution for constructing a quadtree structure for general purposes in GPU is pre-
sented in [17]. A reduction operator is described that creates an image pyramid called
QuadPyramid. The operator writes in each fragment of the pyramid texture whether it
represents a grouping of similar pixels or if it should be threaded as a quadtree internal
node, in this case saving the number of leaves covered by the region represented by the
fragment.

In a second shader, they identify the quadtree leaves reading the pyramid texture
repeatedly, simulating tree traversals from root to leaves. Relative counters, read from the
pyramid texture, are used to control such traversals. The origin and size of the found leaves
are saved in a output texture, organized as a point list. To construct such list for a quadtree
of m leaves over a square image of N pixels, their algorithm may need (m ∗ log(

√
(N)))

texture accesses in the worst case.
For our purposes, the resulting quadtree leaves will be used in CPU for graph construc-

tion. In addition to the origin and size of the leaves, we will also need leaf values that are
used as the graph weights. We propose a simpler image pyramid operator for quadtree
construction than the used in [17] and a new algorithm for identifying leaves from the
pyramid texture. Next sections explain our methods for quadtree construction and leaves
identi�cation.

5.2 Quadtree Construction

Once a similarity criteria has been selected, the input image should be transformed to
the adopted metric space, previously to the quadtree construction. For example, when
grouping pixels by luminance, the original image should be transformed to the luminance
space.

Here, as in [17], the quadtree construction starts by a reduction operator, creating an
image pyramid. For each fragment in the pyramid level being constructed, the operator
reads four texture samples from the previous pyramid level, representative of its four
children in the quadtree. If the samples represent similar nodes, then, the fragment is

6

classi�ed as a leaf, grouping them into a single node that receives its children mean value.
Otherwise, the fragment is classi�ed as a tree internal node. The reduction operator is
performed until the pyramid top level (1× 1 pixel dimension) is reached.

Our algorithm is simpler than the one presented in [17]. While grouping leaves, [17]
also computes relative counters in fragments representing internal nodes. Those counters
indicate how many leaves are covered by the internal node being processed. In our case,
we do not count the existing leaves inside a internal node region because this information
is not needed in our leaves isolation solution.

For our purposes, the pyramid texture is used for saving the grouping decision (alpha
channel) and the leaves values (RGB channels). Figure 3 shows an image pyramid found
using the example application of section 6.

Figure 3: image pyramid found using the example application

5.3 Identifying Final Leaves

In order to identify the quadtree leaves in the pyramid texture, we propose a leaf isolation
method that does not require computing several texture transversals, as used in [17], and,
as a consequence, does not impose the use of a GPU supporting several nested branches.

Using the pyramid image as input, this processing step produces a texture whose pixels
contain the data corresponding to a quadtree leaf (its size, position and representative
value), or a color associated with empty data. This texture saves all the data needed for
building the graph a posteriori.

Our algorithm erases texels representing other than leaf nodes in the pyramid texture.
For that, we use a new fragment shader that reads our pyramid texture and discards all
fragments that should not be leaf nodes in the �nal tree. This shader produces the output
texture in a single rendering pass that makes at most two texture accesses per fragment.

The cleanup shader initially reads the fragment classi�cation (leaf/non-leaf) from the
alpha channel of the pyramid texture. If the sample is already classi�ed as non-leaf, the
fragment is immediately discarded. Otherwise, the pyramid texture is queried again, now
on its corresponding parent texture coordinate. When the parent was classi�ed as a leaf,
this means that this fragment was grouped with its neighbors into a higher level leaf,
so it can also be discarded. However, in the case of a non-leaf parent, this means that
the previous shader could not group this node with its neighbors and that the fragment
represents a leaf in the �nal tree.

7

The fragments that pass through those tests are considered as �nal quadtree leaves
and are written in the output texture, saving in its channels all the data to be associated
with the leaf that the fragment represents (see �gure 4). By doing this, we guarantee that
subsequent steps of the graph construction do not have to query any other texture.

Figure 4: Quadtree Leaf Texture

All the information necessary for graph-cut computing is contained in this texture. For
illustration, in �gure 5 we reconstruct the entire quadtree using only the leaf texture shown
in �gure 4). Each leaf is painted according to its level.

Figure 5: Found Quadtree (leaf color according with its level).

8

6 Application to Active Segmentation

In this section we describe in detail an application of the proposed method to the problem
of image segmentation by active illumination using graph cuts.

Segmentation using active illumination employs a single, intensity-modulated light
source that stays in a �xed position between shots, as proposed in [12]. The two shots,
di�erently illuminated, are used to obtain an initial segmentation used as a seed, referred
as segmentation seed, and to attribute weights to the pixels that are used in graph cut
optimization step to produce a improved �nal segmentation.

6.1 Energy Function De�nition

The objective function adopted is the same proposed in [12]. The regional term considers
the luminance di�erence between the two input images and the object color histogram as
information that characterize the segmentation. The luminance di�erence for background
pixels is considered to have Gaussian distribution, with density

pB(p) =
1√

2πσL

exp(
−|LI2(p)− LI1(p)|2

2σ2
L

), (4)

where σL is the standard deviation of the luminance di�erences, illustrated in �gure 6 b.
The segmentation seed is de�ned as O = {p | pB(p) < t}, where t is a small threshold.
The color histogram of these initial foreground pixels are used to characterize the object

as in [11]. In this work, only the components a and b of the Lab color systems are considered
to characterize the object color distribution. For simplicity, the histogram is de�ned over
a uniform partition.

The object distribution function is modeled as

pO(p) =
nk

nO
(5)

where nk is the number of pixels assigned to the bin k and nO is the number of pixels in
the object region O.

Observe that only one of the input images is used to construct the histogram informa-
tion, since mixing di�erent images may distort color information. In most cases, we use
the image corresponding to the lowest projected intensity.

The regional term of the energy function is:

R(xp) =

{
− log(pO(p)), if xp is 1
− log(pB(p)), if xp is 0

(6)

where 1 is foreground and 0 is background.
The likelihood function for neighboring boundary pixels given by

B(p, q) = 1 − exp(
−(||Lab(p)− Lab(q)||)2

2σ2
C

), (7)

where Lab(p) denotes the color at point p and σC is the standard deviation of the L2-norm
of the color di�erence.

9

The boundary term for neighboring pixels p, q is given by −|xp − xq| logB(p, q), where
points q are the neighbors of p.

The �nal objective function combines both the regional and the boundary term and is
given by:

E(X) =
∑

p ∈ I1

R(xp)−
∑

p,q ∈ I1

|xp − xq| · logB(p, q), (8)

As shown in [12], the proposed energy function is regular, which means that it can be
minimized by graph-cuts. This remains valid for the modi�ed energy function de�ned on
quadtrees leaves. As a consequence, Quad-Cuts can be applied to minimize the modi�ed
energy function.

6.2 Energy Function in GPU

The next sections describe how shaders can be used to compute e�ciently the regional and
boundary terms of the active illumination energy function applying GPGPU.

Figure 6: Strati�ed Texture.

To pass the computed data e�ciently across the algorithm we create what we call a
Strati�ed Texture, illustrated in Figure 6.

10

The Strati�ed Texture is generated by saving, in its di�erent channels, red, green, blue
and alpha, all the data needed for the following steps of our algorithm. In this example
application, the red and green channels are used for storing the a and b channels of the
input image converted to Lab color space, the blue channel for storing the initial seed
segmentation obtained by thresholding the luminance di�erence, and the alpha channel for
storing the background distribution.

6.2.1 Color Space Conversion

The input images are converted from RGB to CIE Lab color space, to exploit metrics in a
perception-based color space presenting orthogonality properties between luminance and
chrominance information.

Shaders for color space conversion have been used intensively by GPGPU programs.
However, in order to e�ciently compute the RGB to Lab conversion with high precision
we also take advantage of the concept of rendering to texture with 32 bit �oating point
internal format using frame bu�er objects (FBO) [6]. We save the Lab a and b computed
channels in the resulting texture r and g channels, as illustrated in �gure 6(a).

6.2.2 Background Probability

The background probability is computed in GPU according to equation (4), measuring the
distribution of the luminance di�erence of the lit and unlit images. The result is illustrated
in Figure 6(b).

For e�ciently using the GPU parallelism, we pre-compute the constants 1/
√

2πσL and
1/(2σ2

L) of equation (4) for a �xed σL. Those values are passed to the shader, avoiding
repeatedly calculating it for every fragment.

6.2.3 Computing the Color Distribution

In order to compute the object distribution function using equation (5), we construct the
histogram of the a and b channels from Lab color space (saved in strati�ed texture red
and green channels), distinguishing object pixels using the object seed (from the strati�ed
texture blue channel).

Motivated by its performance in computing histograms with a large set of bins, we
choose to adapt [13] to our application context. Originally, that approach was proposed
for monochromatic histograms, computing the histogram bin selection in a vertex shader,
by loading the texture using either vertex texture fetches or by rendering the input image
pixels into a vertex bu�er, according to the graphics hardware capability.

We propose to adapt [13] to a vertex shader that computes bin selection in a 2D
mapping, modifying it to compute a histogram representing the frequencies of occurrence in
both input channels. Our vertex shader computes the vertex position by reading the a and
b channels, multiplying their normalized values by the number of bins in the corresponding
dimension, and then transforming the resulting values to frame coordinates.

Observe that a histogram of a trichromatic image could also be computed in GPU using
techniques for representing 3D arrays such as those proposed in [7].

11

stratified
texture

luminance
difference
(Gaussian)

RGB to Lab
Conversion

object region seed

unlit image

lit image

image reconstruction image composition

construct Quad-Cut graph energy minimization

object distribution (histogram)construct quadtree

GPU

CPU

GPU

Figure 7: The proposed Quad-Cut method.

6.3 Application pipeline

The main steps of the example application are illustrated in Figure 7.
The lit and unlit input images are converted to Lab color space. Then, another shader

computes the background distribution texture. The result of those shaders are grouped in
the strati�ed texture as described in section 6.2 and illustrated in �gure 6.

The object distribution function is obtained by computing the object histogram of the a
and b channels read from the strati�ed texture, using only pixels that failed the background
threshold test (read from its blue channel). This histogram is saved in a texture to be used
later in the energy function construction.

Then, the quadtree is created using our reduction operator through the strati�ed tex-
ture. Following the method in section 5.3, the resulting pyramid texture in cleaned, gen-
erating a texture that contains only the leaf nodes. that contains all information needed
about each leaf: its level, from its relative position in the texture; its a and b from LAB
conversion saved in the red and green channels; and the luminance distribution, saved in
the blue channel.

All the above steps are computed in GPU. After them, the graph is constructed in
CPU by reading the data from the leaf texture (�g. 4) and from the histogram textures.

In CPU we store the quadtree leaves in a pointer less representation, as a linear
quadtree. The leaves are associated with location codes for fast neighbor search as in
[4].

The graph is constructed using the leaf data, which stores the previously computed
terms of the objective function, according to the method explained in section 4, which is
minimized by the Graph-Cut minimization as in [3].

12

The solution of the minimization provides the classi�cation of the quadtree leaves as
background or foreground. So, using the position and size of each leaf, we reconstruct the
resulting image that represents the alpha mask solution.

Back to the GPU, for the �nal composition, a smooth shader is applied to the computed
alpha mask. Finally, a blending operator αF + (1 − α)B is applied to the segmented
foreground and the new background.

6.4 Results

Segmentation results using Quad-Cuts and the �nal compositions are shown in �gures 2
and 8. To illustrate the considerable reduction in the number of variables in the mini-
mization problem, both �gures 2 and 8 are originally 800× 600 (480,000) pixels, while the
computed quadtrees have 9,556 (2%) leaves and 30,036 (6%) leaves, respectively. Notice
that the special characteristics of �gure 8 (that presents many holes and thin structures)
are automatically preserved through 15,992 leaves in the lowest level (1×1 pixel) and 8,718
in the next level (4× 4 pixels).

We also measured the execution time of an background/foreground segmentation using
graph-cut and active illumination with a Quad-Cut implementation with its preprocessing
steps computed in GPU. A NVIDIA GeForce 7900 graphic card was used for the timings
shown in Table 1.

Table 1: Processing time

step in seconds

Energy function on GPU:

RGB to Lab < 0.001
Background prob < 0.001
Histogram < 0.015

Quad on GPU:

Pyramid Construction 0.047
Quad Leaves Isolation < 0.001

Quad on CPU:

Reading Texture to CPU 0.015
Leaf List 0.016
Neighborhood 0.014
Graph-cut Minimization 0.001
Answer Reconstruction 0.016

7 Conclusions

We propose to accelerate the computation of energy minimization using graph cuts by
applying a pre-processing step for reducing the number of graph nodes and edges. In this
pre-processing, pixels are grouped by a similarity criteria according to the problem context.

We argue in favor of using a quadtree structure for managing such clustering regions,
motivated by the easily retrievable neighborhood system between its leaves. In order to

13

Figure 8: Composition Result 2 (using σL = 0.25, σC = 0.05).

support our claim, we present a general formulation of the energy function using the leaves
as its variables, and we also presented a general graph-cut construction over the quadtree
leaves.

We also show how the quadtree structure can be constructed using graphics hardware.
Initially, we use a reduction operator for constructing an image pyramid that writes in
each texel whether a similarity clustering was applied or not. Such shader is simpler than
the one proposed in [17]. Then we propose a leaf isolation method that discards from the
pyramid texture all the texels that do not represent a quadtree leaf, e�ciently removing
unneeded information of non-leaf nodes. The proposed method requires fewer texture
readings than the method proposed by [17], due to fact that the algorithm that it employs
for �nding leaves does not compute tree traversals for discovering each leaf in the tree.

14

Our graph construction method does not compute a point list on GPU of the quadtree
leaves, as [17] does. Instead, as explained before, we use the leaf texture data to save the
weights of the computed energy function, and the leaf texture coordinates are used to set
the leaf level, size and corner position. Saving all the data needed for the posterior steps
into such leaf texture allows an e�cient interplay between the result generated in GPU
and the energy minimization on CPU.

We also presented an application of our method to the foreground/background segmen-
tation problem. It can be observed from the presented results (�gures 2 and 8) that the
proposed method for grouping pixels into quad leaves conserved image �ne grain details
of the original image (by creating leaves as small as 1 × 1) while also featuring a good
grouping rate, by creating large leaves in regions of similar pixels .

We also show that the e�cient implementation of all preprocessing steps on GPU
leads to reasonably fast processing rates. As a consequence, we believe that our method
constitutes an important step towards real time segmentation and matting using active
segmentation.

References

[1] Agrawala, A., Doncheva, M., Agrawala, M., Drucker, S., Colburn, A., Curless, B.,
Salesin, D., Cohen, M.: Interactive digital photomontage. In: Computer Graphics
Proceedings ACM SIGGRAPH, pp. 294�302 (2004)

[2] Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-�ow al-
gorithms for energy minimization in computer vision. In: Proc. of Int'l Workshop
Energy Minimization Methods in Computer Vision and Pattern Recognition (2001)

[3] Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph
cuts. IEEE Transactions on PAMI 23, 1222�1239 (2001)

[4] Frisken, S.F., Perry, R.: Simple and e�cient traversal methods for quadtrees and
octrees. journal of graphics tools 7(3), 1�11 (2002)

[5] Goddeke, D.: Playing Ping Pong with Render-To-Texture (2005)

[6] Green, S.: The opengl framebu�er object extension. Games Developers Conference
(GDC (2005)

[7] Harris, M., Luebke, D., Buck, I., Govindaraju, N., Kruger, J., Lefohn, A., Purcell, T.:
Gpgpu: General-purpose computation on graphics hardware. In: Tutorial at ACM
SIGGRAPH 2005 (2005)

[8] Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts?
Proc. IEEE Transactions on Pattern Analysis and Machine Inteligence 26, 147�159
(2004)

[9] Kwatra, V., Schödl, A., Essa, I., Turk, G., Bobick, A.: Graphcut textures: Image and
video syntesis using graph cuts. In: ACM Transactions Graphics, Proc. SIGGRAPH
(2003)

15

[10] Li, Y., Sun, J., Tang, C.K., Shum, H.Y.: Lazy snapping. In: Proceedings of ACM
SIGGRAPH 2004, pp. 303�308 (2004)

[11] Rother, C., Kolmogorov, V., Blake, A.: Grabcut - interactive foreground extraction
using iterated graph cuts. ACM Trans. Graph. 23(3), 309�314 (2004). DOI http:
//doi.acm.org/10.1145/1015706.1015720

[12] Sá, A., Vieira, M., Montenegro, A., Carvalho, P., Velho, L.: Actively illuminated
objects using graph-cuts. In: Proceedings of SIBGRAPI 2006 (2006)

[13] Scheuermann, T., Hensley, J.: E�cient histogram generation using scattering on gpus.
In: SI3D '07: Proceedings of the 2007 symposium on Interactive 3D graphics and
games, pp. 33�37. ACM Press, New York, NY, USA (2007). DOI http://doi.acm.org/
10.1145/1230100.1230105

[14] Wang, J., Bhat, P., Colburn, R., Agrawala, M., , Cohen, M.: Interactive video cutout.
Computer Graphics Proceedings ACM SIGGRAPH (2005)

[15] Yun-Tao, J., Shi-min., H.: Interactive graph cut colorization. The Chinese Journal of
Computers. 29(3), 508�513 (2006)

[16] Zabih, R., Kolmogorov., V.: Spatially coherent clustering using graph cuts.
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR'04). 2, 437�444 (2004)

[17] Ziegler, G., Dimitrov, R., Theobalt, C., Seidel, H.P.: Real-time quadtree analysis using
histopyramids. In: B.E. Rogowitz, T.N. Pappas (eds.) IS&T and SPIE Conference
on Electronic Imaging, Proceedings of SPIE-IS&T Electronic Imaging, pp. XX�XX.
International Society for Optical Engineering (SPIE), SPIE and IS&T, San Jose, USA
(2007)

16

	Introduction
	Related Work
	Basic concepts in Energy Minimization via Graph Cuts
	Grouping Pixels into Quadtrees Leaves
	Graph Cuts using Quadtree Leaves
	Weighting the Quadtree Nodes

	Efficiently computing the Quadtrees
	Quadtrees in GPGPU
	Quadtree Construction
	Identifying Final Leaves

	Application to Active Segmentation
	Energy Function Definition
	Energy Function in GPU
	Color Space Conversion
	Background Probability
	Computing the Color Distribution

	Application pipeline
	Results

	Conclusions

