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Abstract. Coordination languages are tools to manager the interactions among the parts of dis-
tributed systems. However, applications with a large scaled distribution and loosely coupled inter-
action demand flexible coordination mechanisms instead of pre-defined models. Webelieve that
characteristics of dynamic programming languages and coordination libraries can provide more
appropriate control on the application interactions.
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Resumo. Linguagens de coordenação são usadas como ferramentas para gerenciar as interações
entre as partes de um sistema distribuído. Mas, devido à diversidade dessas interações em apli-
cações largamente distribuídas e fracamente acopladas de hoje, modelos de coordenação pré-
definidos não conseguem atender os objetivo. Acreditamos que algumas características de lin-
guagens de programação dynâmicas podem contribuir para o uso de bibliotecas de coordenação,
que podem ser combinadas para controlar as interações da aplicação de forma mais flexível.
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1 Introduction

Over the last years, the focus of distributed computing has shifted from localto wide-area net-
works. In these new environments, because of unknown latencies and of the need to allow systems
to scale up to large numbers of participants, loosely coupled, asynchronous systems have gained
popularity.

In this setting, a lot of attention has been directed to event-driven programming.Instead of
viewing applications as sequential programs with remote invocations to servers, itis now common
to see processes in distributed applications as having a reactive behaviour: handlers are executed
as reactions to different incoming events. Event-based programs often bear a strong resemblance
to state machines. Each incoming event leads the program to a new state, whichtypically must be
recorded in global variables.

However, understanding a program that is coded as a series of responses to different events is
not easy when the number of interacting peers is large. One single process may, at any moment,
be interacting with dozens of other processes, and each of these interactions may require its own
state information. This highlights the need of abstractions to coordinate interacting processes.

The concept of coordination languages as tools to describe the interactions among the parts
in a distributed program was much discussed in the nineties [Gelernter e Carriero 1992,
Papadopoulos e Arbab 1998]. At the time, most discussion focused on the idea of using a pre-
defined set of coordination primitives, such as Linda’s [Carriero e Gelernter 1989] tuple space
manipulation operations, to define the communication and synchronization of the application. Co-
ordination models proposed at that time were often focused on tightly-coupled application models.
Today, the way in which coordination abstractions are programmed must be evaluated in light of
new requirements posed by event-orientation, loose coupling, and dynamic execution environ-
ments. These seem to demand more flexible mechanisms, that may be redefined and combined
even at runtime.

Primitives for communication and synchronization have classically been offered either through
special-purpose programming languages or through libraries. Languages that are designed from
scratch to support distribution usually provide a consistent programming model,but are bound to
predefined communication patterns designed by the language architects. Communication libraries
for conventional languages have the advantage that they can be freely combined in a single ap-
plication, allowing the programmer to choose the preferred pattern for each set of interactions.
However, it is generally the case that libraries must deal with the gaps betweenthe model they
implement and that of the host programming language, and that, besides different communication
models, each library also imposes a different programming model, making it awkward for the
programmer to deal with several of them simultaneously.

The scale and diversity of interactions in Internet-based applications points tothe idea that
no single pre-defined set of interaction patterns will suffice, even considering specific classes of
applications. This indicates the need for environments in which different abstractions and coordi-
nation patterns can be built and combined. However, it would be nice to be freeto experiment and
combine abstractions without having to resort to the relatively low-level programming interfaces
traditionally offered by libraries.

We believe programming languages features could make a significant contribution to this issue.
Using appropriate language constructs, it is possible to build an arbitrary number of coordination
mechanisms from a very small set of primitives. Dynamically typed languages,due to flexible
type systems and extension facilities, can allow libraries to be seamlessly added tothem, creating
environments in which different coordination techniques can be used and combined to compose
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new mechanisms. So, instead of looking for the specific coordination mechanism which will
be better than others for event-driven programs, we should concentrate on such environments,
allowing programmers to create and combine coordination constructs easily.

To evaluate this claim, over the last few years, we have developed a seriesof coordination li-
braries in Lua, a dynamically typed interpreted language with a proceduralsyntax but with several
functional characteristics. In this paper, we discuss the results of this development and the role
of language features in allowing these libraries to be easily combined. Specifically,we highlight
the role of first-class functions, closures, and coroutines. The distributedenvironment which we
analyse is composed by several Lua processes. These could perfectlywell incorporate compiled
parts written in C or C++, but this is irrelevant for our discussion. We also consider that each of
these processes has a single-threaded structure. This has considerable weight in our discussion
and is a decision based on the several complexity issues associated to preemptive multithread-
ing [Ousterhout 1996].

Our main contribution is not to present yet another system for distributed programming, but to
show the role of language features in allowing different coordination mechanisms to be constructed
out of a very small set of primitives, and to be easily mixed and combined.

The rest of this paper is organized as follows. In the next Section, we present a brief intro-
duction to Lua and to the event-driven library we use as a low-level communicationmechanism.
Section 3 presents the design and implementation of an asynchronous RPC primitive which is the
basis for the discussion in the rest of the work. In Section 4, we discuss different coordination
patterns that can be built over this asynchronous primitive. Section 5 presents some remarks on
performance. In Section 6, we discuss related work and, finally, in Section 7, we present some
final remarks.

2 Event-driven distributed programming in Lua

Over the last years, we have been investigating the advantages and limitations ofcreating dis-
tributed programs with a simple event-driven model, based on the Lua programming language
[Ierusalimschy, Figueiredo e Celes 1996]. Lua is an interpreted programminglanguage designed
to be used in conjunction with C. It has a simple Pascal-like syntax and a set of functional features.
Lua implements dynamic typing. Types are associated to values, not to variables or formal argu-
ments. Functions are first-class values and Lua provides lexical scoping and closures. Lua’s main
data-structuring facility is thetabletype. Tables implement associative arrays, i.e., arrays that can
be indexed with any value in the language. Tables are used to represent ordinary arrays, records,
queues, and other data structures, and also to represent modules, packages, and objects.

The Lua programming language has no embedded support for distributed programming. ALua
[Ururahy, Rodriguez e Ierusalimschy 2002] is our basic library for creating distributed event-based
applications in Lua. ALua applications are composed of processes that communicate through the
network using asynchronous messages. Processes use thealua.send primitive to transmit the
messages.

An important characteristic of ALua is that it treats each message as an atomic chunk of
code. It handles each event to completion before starting the next one. This avoids race conditions
leading to inconsistencies in the internal state of the process. However, it isimportant that the code
in a message does not contain blocking calls, for these would block the wholeprocess, precluding
it from handling new messages.

The ALua basic programming model, in which chunks of code are sent as messages and exe-
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cuted upon receipt, is very flexible, and can be used to construct different interaction paradigms,
as discussed in [Ururahy, Rodriguez e Ierusalimschy 2002]. However, programming distributed
applications directly on this programming interface keeps the programmer at a very low level,
handling strings containing chunks of code.

As an example, consider the distributed implementation of the sieve of Erathostenesmethod
for generating primes between 1 an N described in [Magee, Dulay e Kramer 1994], in which each
process in the application is responsible for testing divisibility by one specific prime. In this
implementation, each process acts as a filter, receiving a stream of numbers. The filter ALua
program of Figure 1 prints the first value it receives and stores it in variable myprime , for this is
the value it will use to test if the remaining numbers are divisible. Subsequent received values are
passed on to the next filter if they are not multiples of the first value received.To illustrate Lua’s
handling of functions as first class values, all numbers are passed from one candidate to the next
through calls tohandleCandidate : Initially, this is the function that stores the received number in
myprime , but after this first execution,handleCandidate is assigned a new value.

The major complexity in the code in Figure 1 is due to the fact that the next filter is created
dynamically when the first value is sent to it. This makes sense because we don’t know a priori
how many processes will be needed. To create a new process, the program invokes function
alua.spawn , which executes asynchronously, invoking a callback when it is completed. Because
of this asynchronous nature, when the second non-divisible number is found we cannot be sure
that the next filter is already in place. That is why we test if variablenextinpipe exists. If it does
not yet exist, the prime numbers are pushed into a list (numbers2send ). This list is emptied in when
the callback foralua.spawn is invoked.

Some remarks are in place about string manipulation in Lua. Both quotes, doublequotes,
and double square brackets may be used as string delimiters. Strings delimited by double square
brackets may run for several lines. The.. is the string concatenation operator in Lua.

3 Asynchronous RPC

Although this basic message-oriented event-driven programming model is powerful, it can be quite
error-prone and hard to use. Programmers need tools that allow them to model high-level interac-
tion patterns. This is where programming abstractions come into play. To allow the programmer
to deal with higher-level concepts, we have implemented several communication libraries over
the last few years, providing support for tuple spaces [Leal, Rodriguez e Ierusalimschy 2003],
publish-subscribe [Rossetto, Rodriguez e Ierusalimschy 2004], and remote procedure call
[Rossetto e Rodriguez 2005], among others. In this work, we use remote procedure call as the
basic communication mechanism, and so we discuss it next.

The RPC abstraction has been adopted in systems ranging from CORBA [Siegel 1996] to
.NET [Common Language Infrastructure (CLI) 2006] and SOAP [Mitra e Lafon 2007]. From its
inception, however, critiques to the paradigm were made, [Tanenbaum e Renesse 1988]
[Birman e Renessee 1994], mostly discussing the imposition of a synchronous structure on the
client application and the difficulty of matching RPC with fault tolerance, partly due to its one-
to-one architecture. These critiques gain further importance in the context of wide-area networks.
However, the familiarity that programmers have with the model must not be ignored. If the syn-
chronous nature of the original proposal is somewhat incompatible with the loose coupling we
need in wide-area distribution, we can resort to an asynchronous RPC model.Asynchronous in-
vocations have been long discussed as an alternative [Ananda, Tay e Koh 1992] but the fact is that
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local myprime
local creatednext = false
local numbers2send = {}
local nextinpipe

function handleCandidate (cand)
print (alua.id .. ": " .. cand .. " is a prime number")
myprime = cand
handleCandidate = testNumber

end

function send2next (cand)
alua.send (nextinpipe, "handleCandidate (" .. cand .. ")")

end

function spawn_callback(reply)
for id, proc in pairs(reply.processes) do

alua.send(id, [[dofile("primop.lua")]])
nextinpipe = id
for _, cand in ipairs (numbers2send) do

send2next (cand)
end

end
end

function testNumber (cand)
if (cand%myprime ~= 0) then

if not creatednext then
alua.spawn(1, spawn_callback)
table.insert(numbers2send, cand)
creatednext = true

elseif nextinpipe then
send2next (cand)

else
-- necessary because it is possible that a new process has
-- been created but the spawn callback has not yet been called
table.insert(numbers2send, cand)

end
end

end

Figure 1: ALua code for process in distributed Erathostenes sieve

they are not comfortable to use in traditional sequential programs. When the program is event-
based, however, asynchronous invocations are natural, and can be associated to callback functions
to be executed upon the completion of the remote invocation.

Our remote procedure mechanism [Rossetto e Rodriguez 2005], providedby the rpc library,
explores this idea, associating an asynchronous invocation with callback functions over an event-
driven model. The basic execution model remains the one we described in the lastsection with
a process handling each incoming message at a time, with the difference that now messages are
function invocations.

To provide the same flexibility as we have with normal function values in Lua, therpc.async

primitive does not directly implement the invocation, but, instead, returns a function that calls
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the remote method (with its appropriate arguments). Figure 2 illustrates the use ofrpc.async to
invoke a remote functionCurrentValue .

Mandatory parameters forrpc.async are the remote process (server ) and the remote function
identifier (CurrentValue ). An optional argument is a callback function (register ). In Figure 2,
the function returned byrpc.async is stored in variablegetCurrentRemValue . When function
getCurrentRemValue is invoked (with “foo” as the single argument toCurrentValue )„ control
returns immediately to the caller. At some later point, when the program returns tothe event loop
and receives the result of the remote function, callbackregister will be invoked, receiving this
result as an argument.register then assigns the received value to global valuecurrentRemValue .
(In a more realistic setting, it could also schedule the next update of this value.)

-- callback function
function register (value)

currentRemValue = value
end

-- asynchronous remote function
getCurrentRemValue = rpc.async(server, CurrentValue, re gister)

...
-- remote invocation
getCurrentRemValue("foo")

Figure 2: Usingrpc.async .

Two language features are specially important for allowing therpc.async primitive to return
a function that can be manipulated as any other value: (i) functions as first-class values; and (ii)
closures.

Having functions as first-class values means they can be passed as arguments to or be used as
return values from other functions. Aclosureis a semantic concept combining a function with an
environment. The distinguishing feature of closures is the ability to associate anintermediate set
of data with a function where the data set is distinct from both the global data of the program and
data local to the function itself. As a consequence, closures can be used tohide state, implement
higher-order functions and defer evaluation. With these two mechanisms, a function can return a
nested function, and the new function has full access to variables and arguments from the enclosing
function.

Figure 3 shows the (complete) implementation of therpc.async primitive. Basically, it creates
a function (calledf ) that encapsulates the remote invocation. This function receives a variable
number of arguments (the... , captured in tableargs ), which are serialized and sent to the remote
process. The callback function (cb ) is registered to handle the results when they arrive. The
request is sent to the remote process through a call toalua.send . We believe the concision of
this implementation reflects the importance of using a programming language with appropriate
flexibility and support for extension.

Thus, therpc.async primitive returns a function, defined inside it, which depends on values
passed as arguments on each specific invocation of this operation. Each time thereturned function
is invoked, a new remote call is performed, which uses the same values for the remote process,
remote function, and callback function (aclosure), but different actual arguments to the remote
function.
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function rpc.async(dest, func, cb)
local f = function (...)

-- get the function arguments
local args = {...}
-- register the callback
local idx = set_pending(cb)
-- process the arguments
marshal(args)
local chunk = string.format ("rpc.request(%q, %s, %q, %q)" ,

func, tostring(args), localId, idx)
-- send the request
alua.send(dest, chunk)

end
return f

end

Figure 3: Implementation ofrpc.async

Asynchronous interaction and event-driven models

Therpc.async primitive allows us to program in an event-driven style with the syntax of function
calls for communication.

The event-driven programming model is convenient in that it mirrors asynchronous interac-
tions among processes. However, because we have only one execution line, whenever a process
needs to receive an event before continuing execution, the current actionmust be finalized to wait
for the message (that is, the process must return to the event loop to be able tohandle the next
message). Moreover, to maintain the interactivity, the system must make sure that no message
handler takes too long to execute. So, event handlers must run quickly, i.e., long tasks must also
be broken into small pieces, between which the system saves the current state and returns to the
main loop. In order to do that, the event handler can post a request and schedule the remainder of
the current computation to be executed later, as explored in [Welsh, Culler e Brewer 2001]. Typi-
cally, to maintain state between the function that is being executed and that which will be executed
later, the programmer must resort to global variables, because the current locals will not exist any
more at this future point. This process, referred by Adya et al. asstack ripping[Adya et al. 2002],
is one of the main difficulties for developing applications using the event-driven programming
style [Behren et al. 2003].

The closure mechanism can once again come into play to reduce this stack ripping process,
by allowing local variables to be maintained in nested functions. When a process makes a remote
request and needs to register acontinuation(or callback) to be executed when the request reply is
received, the closure mechanism can be used to encapsulate the values that need to be kept during
the request manipulation.

The example presented in Figure 4 illustrates this idea. In this example, therequest function
computes the average of a set of values provided by several processes. For that, the primitive
rpc.async is used to build asynchronous requests to take values in each remote process and the
avrg function is defined as the callback function. This function is a closure ofrequest , and is thus
able to keep the values of the variablesacc andrepl (used to compute the average) even when the
process returns to the main event loop.
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-- Array of remote processes
servers = {"ProcA","ProcB","ProcC"}

function request(servers)
local acc, expected = servers.n, repl = 0

function avrg (ret)
repl = repl + 1
acc = acc + ret.results
if (repl == expected) then

print ("Current Value: ", acc/repl)
end

end

-- Request the remote values
for i = 1, expected do

-- Create the asynchronous function
local get = rpc.async(servers[i], getValue, avrg)
-- Invoke the remote function
get()

end
end

Figure 4: Exploring the closure mechanism do avoidstack ripping.

4 Coordinating Concurrent Activities

The model we described in the previous sections avoids many synchronization issues. Because
each event is handled to completion, the fine-grained kind of synchronism one needs with pre-
emptive multithreading, due to the possibility of arbitrary execution interleavings, is not required.
However, support is still needed for a number of synchronization and communication issues.

Gelernter and Carriero [Gelernter e Carriero 1992] discuss the advantages of viewing com-
munication and synchronization primitives as means ofcoordinatinga concurrent or distributed
application. In this section, we adopt this approach and discuss how different coordination ab-
stractions can be provided by libraries that can be combined, either as building blocks, to create
further abstractions, or simply as alternative to be used inside an application, as needed. We again
focus on language features that allow libraries with these abstractions to be seamlessly integrated
into the language.

The issues we discuss can be classified in two major lines. The first of them is the need for
different communication abstractions. Programmers do not always want to deal directly with the
asynchronous programming model we introduced, based on asynchronous invocations and call-
backs. This model is interesting when there is an inherent asynchronism in theinteraction itself,
as is the case, for instance, in the example presented in Figure 4, in which the contacted peers can
reply in arbitrary order. Some other interactions, on the other hand, are inherently synchronous.
Consider the case of a client contacting a server for a file which is to be viewed by the user. It may
well be more natural for the programmer to code this interaction as a synchronous invocation. In-
side a single application, the programmer will typically need to code different interactions, and it
would be nice for him to be able to code each of these in the most convenient way. In Sections 4.1
and 4.2 we discuss support for different interaction models.

The second class of abstractions we discuss is the one related to classical synchronization
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among concurrent processes, for mutual exclusion and cooperation [Andrews 2000]. Even if, in
our model, fine-grained synchronization problems, such as interleaved accesses to global variables,
are avoided, we can still have problems occurring at a coarser granularity. Subsequent calls to one
process may need to occur with the guarantee that no events were handledbetween the two (for
instance, to guarantee an atomic view of a set of operations). Also, becausewe are in a distributed
setting, we may need to synchronize actions occurring at different processes. Sections 4.3 and 4.4
discuss support for classical synchronization.

4.1 Synchronous RPC

With asynchronous invocations, the programmer must turn control flow upsidedown, using call-
back functions to code thecontinuationof the computation after the results of the invocation are
available. This directly reflects the event-driven nature of a program, but can not be the best model
for the programmer to work with. In this section, we discuss functionrpc.sync , that creates func-
tions that make synchronous calls to other processes over the same asynchronous communication
model. As functionrpc.async , function rpc.sync receives as parameters the process identifi-
cation and the remote function name Because it is synchronous, the callback parameter does not
make sense (in fact, a callback which resumes the current computation will be implicitlybuilt by
rpc.sync ).

We illustrate the use ofrpc.sync with the code in Figure 5 that repeatedly retrieves a value
from a remote processprocA, uses this value to perform a calculation, and updates the remote
process.

get = rpc.sync("procA", "getValue")
set = rpc.sync("procA", "setValue")

while true do
oldvalue = get()
newvalue = transform(oldvalue)
set(newvalue)

end

Figure 5: Example usingrpc.sync

Because ALua runs on a single thread, suspending the execution during asynchronous call
would block the ALua event loop as well. As a consequence, a process would not receive new
requests until the invocation is completed. The most frequent solution to this would beto introduce
multithreading. However, we would like to avoid the burden of performance and complexity added
by preemptive multithreading [Rossetto e Rodriguez 2005]. For the implementation of rpc.sync ,
we rely on yet another language mechanism: the cooperative multitasking facility offered by Lua
coroutines.

A coroutine is similar to a thread in that it maintains its own execution stack, but it must
issue an explicit control primitive for control to be transferred to any other coroutine. This is
interesting because it allows applications to maintain different execution lines while avoiding the
complexities of race conditions, but on the other hand it leaves the responsibilityof managing
the control transfer to the programmer. In the case of syncronous RPC,the control transfer is
automatically encapsulated in the remote invocation. Each new computation is handled in anew
coroutine and, when a synchronous call is performed, the current coroutine is suspended and
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execution flow returns to the ALua loop.
To implementrpc.sync , we userpc.async as a basis and again the mechanisms of functions

as first-class values and closures. Figure 6 contains a sketch of this implementation.

function sync(proc, func)
-- Create a function to perform the remote invocation
-- The ’...’ refers to the variable parameters
local remote = function (...)

-- Reference to current coroutine
local co = coroutine.running()
-- Create a callback that will resume the execution
local callback = function (...)

coroutine.resume(co, ...)
end

-- Make the remote invocation
local aux = rpc.async(proc, func, callback)
aux(...)

-- Suspend the current coroutine execution before
-- returning
return coroutine.yield()

end
return remote

end

Figure 6: Implementation ofrpc.sync

At this point it is convenient to explain some features of Lua coroutines.yield and resume ,
respectively, suspend and resume a coroutine execution.coroutine.resume receives as its first ar-
gument the coroutine to be resumed; any extra argument will be returned bycoroutine.yield . In
the same fashion, any argument passed tocoroutine.yield will be returned bycoroutine.resume .
This provides a communication channel among coroutines.

Back to the implementation ofrpc.sync : when functionremote is called, it first creates a call-
back that will be responsible for resuming the current coroutine. Then,remote invokesrpc.async

to perform the remote communication (passing the internal callback) and suspends the current ex-
ecution (coroutine.yield ). When the results arrive,rpc.async calls the internal callback passing
these results, which are forwarded tocoroutine.resume . The coroutine is then resumed and the
results are returned to the caller ofremote . Figure 7 illustrates this behavior.

4.2 Futures

As yet another example of building communication abstractions, we can also implement support
for futures[Lieberman 1987]. In some cases, the programmer may know, at a certain point of
execution, that he needs to schedule a computation whose result will be needed only later. Futures
allow the programmer to synchronize actions between processes in a looser relationship. This
mechanism can be implemented usingrpc.async as a basis and the remote call in this case
returns apromise[Liskov e Shrira 1988], which can be used to retrieve the results later. When
the promise is invoked, we use coroutines to suspend execution if the results are not yet available
— in a similar way to what we did in the implementation ofrpc.sync .
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Figure 7: Coroutines in a synchronous call.

Figure 8 shows the implementation ofrpc.future . The function builds and returns an internal
function, which is very similar to the one returned byrpc.async , except that this time, when the
returned function is invoked, besides calling the remote function asynchronously, it returns the
promise, another closure, which may be invoked to synchronize on the results of the asynchronous
invocation. The future mechanism uses an internal structure,result , to control if the results
for the remote call were received. As inrpc.sync , a callback is created to handle the results of
the asynchronous invocation. This callback fills the future structure with the results and verifies
whether the process is blocked waiting for them. Theco field in the result structure indicates
that the process has called the promise to retrieve the results, but they werenot yet available. (In
this case, the promise sets theco field and suspends execution of the running coroutine.) As the
results are now available, the callback returns them to the suspended coroutine.

4.3 Monitors

In this section we discuss an implementation of monitors [Hoare 1974]. Monitors described here
are different from the classic proposals in that they are dynamic: functions may be added to a
monitor at any point in execution.

Our implementation for monitors is based on synchronous calls to acquire a lock, that sus-
pends the execution until this lock is acquired. We implement amonitoras a structure containing
a booleanlock, which indicates if the monitor is free, an entrance queue, and the identity of its cre-
ator. monitor.create creates a new monitor (with no enclosed functions) and returns a reference
to it. After an “empty” monitor is created, arbitrary functions can be placed under itsprotection
by calling functionmonitor.doWhenFree , such as:

local function set_internal(value)
-- Do some activities here

end
-- Creates a monitor
local mnt = monitor.create()
set = monitor.doWhenFree(mnt, set_internal)

Figure 9 shows the implementation of functionmonitor.doWhenFree This function again cre-
ates and returns a new function that encapsulates the one received as a parameter. This new
function uses the lock to guarantee the execution in mutual exclusion in relation to other functions
in the monitor.monitor.doWhenFree also deals with the input parameters and the results. Thepack
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function future(proc, func)
local f = function(...)

-- Future structure to store the results
local result = {}
-- This callback is responsible to receive the results and
-- put them into the future structure above
local callback = function(...)

result.ready = true
result.values = {...}
-- If the ’co’ field exists, the process is blocked
if result.co then

coroutine.resume(result.co, ...)
end

end
-- Create a promise for the invocation
local promise = function()

-- If the results are not available, suspend the execution
if not result.ready then

result.co = coroutine.running()
coroutine.yield()

end
-- Extract the result from the Lua’s table and return them
return unpack(result.values)

end
-- Send the remote request
async(proc, func, callback)(...)
-- Return the promise
return promise

end
return f

end

Figure 8: Implementation ofrpc.future

function captures the results in a Lua table that is stored inrets variable. After releasing the lock,
the result is unpacked and returned.

Functionsmonitor.take andmonitor.release control lock acquisition as follows.monitor.take

tries to acquire the lock on a given monitor. If the lock is free, this function switches its value and
execution continues normally. If the lock is taken,monitor.take puts the current coroutine in the
lock’s waiting queue and yields. Functionmonitor.release symmetrically, releases the lock on
a monitor. It verifies whether there is any coroutine in the monitor entrance queue, and, if so,
resumes the first waiting coroutine. Otherwise,monitor.release marks the lock as free.

This mechanism for mutual exclusion is different from most classic language proposals in
that it does not provide direct syntactic encapsulation of the protected functions. This makes the
monitor a dynamic mechanism, allowing functions to be added to the monitor only as needed.
This dynamic idea is in some ways captured in thepthreadAPI [Butenhof 1997] and in thelock
interface in the concurrency API of JDK5.0 [Mahmoud 2005]. However,once again, the fact
of handling functions as first-class values allows us to create these protectedfunctions and have
them behave similarly to the classic, syntactically protected ones. This allows theflexibility of
dynamism in a less error-prone environment.

The implementation ofmonitor.doWheFree , based on remote calls, creates the possibility of
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-- mnt: monitor created to protect the function
-- func: function to execute in mutual exclusion
function doWhenFree(mnt, func)

-- Reference to the monitor structure
local idx = mnt.idx
-- ’from’ points to the monitor creator
local take = rpc.sync(mnt.from, "monitor.take")
local release = rpc.async(mnt.from, "monitor.release")
return function (...)

take(idx)
-- Invokes the function and captures its results
local rets = pack(func(...))
release(idx)
return unpack(rets)

end
end

Figure 9: Implementation of functionmonitor.doWhenFree .

having a single monitor protecting functions from different processes, supporting distributed mu-
tual exclusion. For instance, a process could create a monitor and add functions to it. Next, the
process could pass this monitor to another process, which adds new functions. At the time the
monitored functions are invoked, they make remote calls to acquire the lock. However, only one
of them will succeed and the others will wait in the queue for the lock to be released. Figure 10
illustrates the use of a distributed monitor. In this example, several distributed processes could re-
ceive, upon initialization, calls to a function such asinit , all of them with the same monitor being
received as an argument. Each of the processes could then protect, using this monitor, functions
that manipulate a shared state.

local isOn = false
local function _off()

-- Only turns off if the neighbor is ’on’
if neighbor_state() then isOn = false end

end
function init(mnt, neighbor)

-- ’mnt’ is a monitor and ’neighbor’ is other process
neighbor_state = rpc.sync(neighbor, "get_state")
off = monitor.doWhenFree(mnt, _off)

end

Figure 10: A distributed monitor.

Our monitor mechanism also offers support for waiting and signalling condition variables, as
traditional monitors do. Due to limitations of space, and because it does not introduce new issues,
we do not describe this support here.

4.4 Synchronization Constraints and Synchronizers

In this section, we discuss a simple architecture, based on handlers, that permits us to define dif-
ferent handlers to process incoming requests. The handler is selected according to the invoked
function, so we can define per-request handlers. If the function does not have an associated han-
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dler, a default handler is used. This simply calls the function passing the arguments received in the
request and returns the results to the caller. Using this architecture we canexplore how alternative
coordination policies can be created for a distributed application.

As an example, we turn our attention to the possibility of defining conditions for a function call
to be executed. These conditions will allow us to model both intra and inter-process coordination.
We defined a handler that uses a queue and a scheduler policy to reimplement the coordination
abstractions proposed by Frφlund and Agha [Frφlund 1996, Agha et al. 1993]. We chose this pro-
posal because it is one of the few that provides support for distributedas well as for concurrent
synchronization.

Intra-object synchronization in [Frφlund 1996, Agha et al. 1993] is supported bysynchroniza-
tion constraints. As with guards[Riveill 1995, Briot 2000], the idea is to associate constraints or
expressions to a function to determine whether or not its execution should be allowed in a certain
state. This kind of mechanism allows the developer to separate the specification of synchroniza-
tion policies from the basic algorithms that manipulate his data structures, as opposed to monitors,
in which synchronization must be hardcoded into the algorithms.

As an example taken from [Frφlund 1996], consider a radio button object with methodson

and off . To ensure that these methods are invoked in strict alternations, the programmer can
define a state variableisOn , that indicates whether or not the button is turned on. Synchronization
constraints can be defined disabling methodon whenisOn is true, and disabling methodoff when
it is false.

For inter-object synchronization, Frφlund proposes the use ofsynchronizers. Synchronizers are
separate objects that maintain integrity constraints on groups of objects. They keep information
about the global state of groups and permit or prohibit the execution of methods according to this
global state.

Keeping the rules in a central point, instead of scattering them among the processes, facili-
tates modifications and allows using synchronizers in an overlapping fashion.Consider again the
example of radio buttons. Besides the individual integrity constraint of alternate invocation, a set
of radio buttons must satisfy the constraint that at most one button is on at any time. For this
situation, Frφlund proposes the following solution. A synchronizer keeps the global group state in
variableactivated , whose value is true if any radio button in the set is on. A disable clause in the
synchonizer states that, for any button in the set, methodon is disabled if the value of this variable
is true. To ensure the maintance of the global state, synchronizers also support triggers: code that
is associated to the execution of methods in the individual members of the group controlled by the
synchronizer. In the case of our example, a trigger is associated to the execution of methodon,
settingactivated to true, and to methodoff , setting it to false.

We provide support for these mechanisms through modulessc (synchronization constraints)
andsynchronizer , that interact with the handler. Both modules introduce constraints that must
be checked by function calls. In the case of thesc module, these are local calls that verify the
internal state, whereassynchronizer permits processes to register themselves as synchronizers of
each remote object (or process, in our case) they coordinate.

Figure 11 illustrates how a program could use synchronization constraints to ensure the proper-
ties of the radio button example taken from [Frφlund 1996].sc.add_constraint associates guard
functions to the RPC visible functions — those not defined as local. It receives as arguments the
name of function to be guarded and the function that implements verification. The latter receives
as arguments the request information and must returntrue if the guarded function can be executed
or falseotherwise.
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local isOn = false
local function can_turn_on(request)

return not isOn
end
local function can_turn_off(request)

return isOn
end
function on()

isOn = true
end
function off()

isOn = false
end

sc.add_constraint("on", can_turn_on)
sc.add_constraint("off", can_turn_off)

Figure 11: Defining synchronization constraints.

Figure 12 illustrates the creation of a synchronizer that coordinates a set ofdistributed pro-
cesses that represent radio buttons, enforcing that at most one of them is activated at any time.
When one of the buttons receives a request, it contacts the synchronizer inorder to verify the re-
mote constraints, which allow or not the button to execute the function according theglobal state
information.

local activated = false
local function can_turn_on(request)

return not activated
end
local function trigger_on(request)

activated = true
end
local function trigger_off(request)

activated = false
end
-- defines constraint and triggers for each distributed but ton
for _, bt in ipairs(buttons) do

synchronizer.set_trigger(bt, "on", trigger_on)
synchronizer.set_trigger(bt, "off", trigger_off)
synchronizer.add_constraint(bt, "on", can_turn_on)

end

Figure 12: A synchronizer defining a remote constraint and triggers for aset of distributed buttons.

Both synchronizer.set_trigger and synchronizer.add_constraint receive, as their argu-
ment, the remote process identification, the name of the function in this process, andthe function
to be executed once the synchronizer is contacted. For triggers, this function typically updates the
global state, and for constraints, it must return, respectively,true or falseto permit or prohibit the
constrained function execution. Moreover, the function to be executed receives, as a parameter,
information about the constrained function into the variablerequest .

To implement synchronization constraints and synchronizers, we developed a handler that
manipulates a queue of requests. The handler processes the queue untileither it is empty or the
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remaining requests cannot be executed due to the synchronization rules. Arequest is executed
only if all of its local constraints and remote verifications evaluate to true. However, when a
requested function is executed, we need to restart the queue evaluation because this function can
have modified the internal or global states, making some request newly eligible for execution.

We first implemented the scheme as described in [Frφlund 1996], that is, verifying and exe-
cuting the requests in a sequential fashion — a new request is handled only after the previous one
is completed. However, evaluating remote constraints is expensive because theprocess commu-
nicates with the synchronizer and blocks until the answer arrives. Figure 13-a shows a diagram
illustrating this scheme. Although the synchronizer imposes constraints only on function set , the
process waits the synchronizer’s answer arrives before executing the requestget .

Figure 13: Diagram of (a) the original and (b) our proposals for constraints evaluation.

Using coroutines once again, we implemented an alternative scheme to further explore con-
currency in this system. Since we know that the verification of remote constraints verification will
block the process, we encapsulated this verification inside a new coroutine, sothe process can
suspend it while the synchronizer analyzes the constraints, and the process is free to handle other
request. The new scheme is shown in Figure 13-b.

Our implementation checks the synchronization constraints before contacting the synchroniz-
ers, avoiding the network communication if the local verification fails. However, because new
function calls can now modify the internal state during the remote constraints checking, it verifies
the synchronization constraints again when it receives all replies from synchronizers in order to
guarantee that the internal states still allows the request execution.

5 Performance Results

In this section, we discuss execution times of the mechanisms we described along the paper. Our
goal is to evaluate the minimal cost that these mechanisms add to the basic RPC mechanism.
We measured the average time for a client to execute an asynchronous RPCrequest to a remote
function in the following cases:

• RPC: the basic client/server scheme that is used as reference.
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• Monitor: the remote function protected by a monitor.

• Queue Handler: the same basic scheme used in the case of RPC, but with the server using
the queue infrastructure to handle the client requests. This infrastructure is the basis for
implementing local and remote constraints.

• Local Constraint: the remote function is protected by a local constraint.

• Remote Constraint: the function has a remote constraint, which is evaluated by a synchro-
nizer.

In the tests, the client, server, and synchronizer processes execute indifferent hosts. Moreover,
we implemented remote functions that do not receive any argument and return no value (void
value), and the local and remote constraints are functions that just returntrue.

Table 1 shows the average time (in miliseconds) to execute an asynchronousremote call in each
case described above. As a reference, we show the average time for aJava RMI request (using
Sun JDK 6), with the same criteria. We performed two tests with RMI, enabling anddisabling the
just in time (JIT) Java compiler. With JIT disabled, Java runs in interpreted mode only, ans does
not generate machine native code. We performed the tests in machines equipped with a Pentium 4
1.7GHz, 256MB RAM and Ethernet 100Mb/s, executing Linux (kernel 2.4.20).

Mechanism Time

Java RMI – JIT enabled 0.426 ms
Java RMI – JIT disabled 0.803 ms
RPC 1.134 ms
Monitor 1.758 ms
Queue Handler 1.328 ms
Local Constraint 1.338 ms
Remote Constraint 4.281 ms

Table 1: Execution times for different constructs

Our implementation of RPC was not specially performance-oriented, so when compared to
RMI, which is built as part of Java’s architecture, execution times don’t look bad. Here we are
focusing specifically on the time to execute a remote call, but in an application this would be part
of a mix of activities, which, when using a dynamic language for coordination,should include
parts in C or C++ for te hard processing tasks.

The queue handler adds a little overhead to the basic RPC because the request is put in a queue
before its execution. On the other hand, a local constraint has almost no cost in our test case, since
it is just a function call that returnstrue.

In the remote constraint test, the server must also contact another process,the synchronizer,
in order to execute the request. However, the synchronizer implementation is more complex than
the distributed monitor, which explains their different performance. Besides the time spent in
the network communication with the server, the synchronizer must implement mechanisms to
guarantee a consistent view of global state and prevent deadlocks. Sothe synchronizer uses a
transactional protocol with the server.

We performed a second experiment to measure the time to the server to process a set of requests
in a serial and parallel fashion, as described in Section 4.4. In this experiment, the server exports
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two functions,get and set , and receives requests of two clients, each one invoking a specific
function (Figure 13). Theset function is protected by a remote constraint, whereasget has no
protection. First, we configured the server to execute the requests in a serial fashion, i.e., the server
processes the next request only when it finishes processing the previous one. We then changed the
server behavior to execute a new request while the synchronizer evaluates the remote constraint.
Table 2 shows the times (in milliseconds) for each scenario. In the serial case, the request for
the get function is limited by the evaluation of the remote constraint, so the requests for each
function take almost the same amount of time. However, in the parallel configuration, the server
can process theget requests while the synchronizer evaluates theset remote constraint, so that
average time of theget request is much lower.

Request Serial Processing Parallel Processing

get 5.138 ms 2.858 ms
set 5.247 ms 5.314 ms

Table 2: Serial and Parallel Processing of Requests

6 Related Work

Over the years, support for synchronization and communication abstractions has been imple-
mented in several programming languages, such as Emerald [Black et al. 1987],
Orca [H., Kaashoek e A. 1992], Java [Gosling et al. 2005], Erlang [Armstrong et al. 1996], and
E [Miller, Tribble e Shapiro 2005], and in a number of libraries, such as SunRPC
[Sun Microsystems 1988], Linda [Carriero e Gelernter 1989], JXTA [Gong 2001], ProActive
[Caromel, Klauser e Vayssiere 1998], and Chord [Stoica et al. 2001].Our goal in presenting the
implementation of different coordination abstractions is not to discuss the mechanisms them-
selves, but to support the argument that programming language featurescan help bridge the
gap between the simplicity and flexibility offered, respectively, by the language and library ap-
proaches [Briot, Guerraoui e Lohr 1998].

Arbab and Papadopoulos [Papadopoulos e Arbab 1998] present a survey of coordination mod-
els and languages, and classify the surveyed works in two major categories. Data-driven models
offer coordination primitives which can be freely mixed with the computational code.Propos-
als such as Linda and the synchronizers we discussed in Section 4.4 are placed by the authors in
this category. This is also the approach we follow in our model. The other category, control-
driven models, encompasses models in which the coordinating entities are separate from the
computational ones. Typical examples of this category areconfiguration lan-
guages [Magee, Dulay e Kramer 1994, Arbab, Herman e Spilling 1993], which focus on describ-
ing interconnections between independent processes or components.

Adya and others [Adya et al. 2002] discuss advantages and disadvantages of multithread-
ing and event-based programming, considering the distinction betweenmanualand automatic
stack management. One point that further links their work to ours is the emphasis on allowing
the programmer to freely combine both models when coding an application. Eugster and oth-
ers [Eugster, Guerraoui e Damm 2001] also discuss the importance of combining different inter-
action paradigms (RMI and publish/subscribe) in a single distributed programmingtool.
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Many authors have highlighted the importance of object oriented concepts, such as encapsu-
lation and the message passing paradigm, for concurrent and distributed program-
ming [Briot, Guerraoui e Lohr 1998, Agha 1990, Nicol, Wilkes e Manola 1993]. We believe this
discussion is orthogonal to ours and do not pursue it in this paper.

There appears to be little work exploring how language features interact with libraries for con-
currency and distribution. The work of Varella and Agha [Varela e Agha 2001] and that of Eugster
et al. [Eugster, Guerraoui e Damm 2001] are among the few that approach the discussion of dis-
tributed programming libraries from a language point of view. Varella and Agha point out the
need for extensions to Java, indicating that the original set of language features is insufficient, and
on the other hand defends that only a few extensions can suffice to provide a simple distributed
programming model. Eugster et al. identify a set of mechanisms which enforce language support
for publish/subscribe. Specifically, they identify the concept of closuresas one of these mecha-
nisms. Their work also intends to contribute to the discussion about whether touse the integrative
or library approach to provide publish/subscribe in object-oriented languages.

The idea of providing synchronous communication facilities over event-driven systems is ex-
plored in some worksi [Schmidt e Cranor 1996, Lea, Vinoski e Vogels 2006, Vinoski 2005]. Haller
and Odersky [Haller e Odersky 2006] are explicitly interested in avoiding the problems associated
to the typical “control inversion” of event-driven systems. However, inthe case of their work, the
“continuation” of the current computation must be explicitly coded in a receive clause.

7 Final remarks

In this work, we explore some special programming language features — namely, dynamic exe-
cution environment, functions as first-class values, closures and coroutines —to build different
coordination mechanisms for distributed asynchronous computing. Although we are particularly
interested in exploring these features in the Lua programming language, ourgoal is not to pro-
mote this language specifically, but, instead, to contribute the discussion aboutthe role of lan-
guage features in bridging the gap between the integrative and library approaches for distributed
programming. The specific programming system we describe is simply an environment we used to
demonstrate that programming abstractions which simplify distributed applications canbe easily
implemented and combined given a small set of language features.

We defined a basic asynchronous primitive, calledasync , with a callback function, which
allows programming in a direct event-driven style with the syntax of function calls for commu-
nication among interacting processes. Over this primitive we explored the system’sflexibility by
building differente well-known coordination abstractions.

By using cooperative multitasking (provided by coroutines) combined with the asynchronous
primitive, we implemented the synchronous primitivesync , allowing the programmer to have a
synchronous view of interactions without having to deal with the classic shared memory issues
posed by preemptive multithreading. We also discussed thefuture primitive, which supports de-
ferred invocations. Operations provided by theasync , sync , andfuture primitives allow the pro-
grammer to combine different communication paradigms in the same application: one canexplore,
simultaneously, the active style of the remote call model, or the reactive style of theevent-driven
model. By considering the diversity of interactions possible in distributed applications, specially
in Internet-based applications, it becomes important to allow different programming abstractions
to be built and combined into the same application.

For the classical synchronization problems of mutual exclusion and cooperation, we chose to
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implement monitors and synchronizers. In both cases, the abstractions we built can be used both
for intra and inter-process synchonization. Both our monitors and synchronizers, in line with the
dynamic character of our environment, allow synchoniztion constraints to be defined dynamically,
at any point in the life cycle of objects and applications.

Finally, languages with the features we emphasize, such as dynamic executionmodel and
support to functions as first-class values and closures, are often interpreted languages. Nor-
mally, interpreted languages are not adequate for computing-intensive systems. As discussed
in [Ururahy, Rodriguez e Ierusalimschy 2002], the idea is that one should use a dual programming
model in which the interpreted language coordinates the application and a traditional compiled
language handles the computing-intensive parts.
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