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Abstract. Coordination languages are tools to manager the interactions among the parts of dis
tributed systems. However, applications with a large scaled distribution andylcosgled inter-
action demand flexible coordination mechanisms instead of pre-defined modelzlide that
characteristics of dynamic programming languages and coordination librangsravide more
appropriate control on the application interactions.
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guagens de programacédo dynamicas podem contribuir para o uso de tédideecoordenacao,
qgue podem ser combinadas para controlar as interagdes da aplicagamaerfais flexivel.
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1 Introduction

Over the last years, the focus of distributed computing has shifted from tioeegilde-area net-
works. In these new environments, because of unknown latencies thredreed to allow systems
to scale up to large numbers of participants, loosely coupled, asynclsregstems have gained
popularity.

In this setting, a lot of attention has been directed to event-driven programnmsigad of
viewing applications as sequential programs with remote invocations to serversut common
to see processes in distributed applications as having a reactive behdndodters are executed
as reactions to different incoming events. Event-based programs ofiea ks&rong resemblance
to state machines. Each incoming event leads the program to a new statetypiialy must be
recorded in global variables.

However, understanding a program that is coded as a series ohsespio different events is
not easy when the number of interacting peers is large. One single procgsatmay moment,
be interacting with dozens of other processes, and each of these intesantagrrequire its own
state information. This highlights the need of abstractions to coordinate interachcespes.

The concept of coordination languages as tools to describe the interaatiomg dhe parts
in a distributed program was much discussed in the nineties [Gelernter erG49R2,
Papadopoulos e Arbab 1998]. At the time, most discussion focused onghfdising a pre-
defined set of coordination primitives, such as Linda’s [Carriero e G&lel989] tuple space
manipulation operations, to define the communication and synchronization of theatipplicCo-
ordination models proposed at that time were often focused on tightly-coupléceaiom models.
Today, the way in which coordination abstractions are programmed must batedhin light of
new requirements posed by event-orientation, loose coupling, and dynaeuatiex environ-
ments. These seem to demand more flexible mechanisms, that may be redefimednamed
even at runtime.

Primitives for communication and synchronization have classically been d#dieer through
special-purpose programming languages or through libraries. Langtizateare designed from
scratch to support distribution usually provide a consistent programming nimdelre bound to
predefined communication patterns designed by the language architects. Gicatron libraries
for conventional languages have the advantage that they can be fomehined in a single ap-
plication, allowing the programmer to choose the preferred pattern for eaadf mteractions.
However, it is generally the case that libraries must deal with the gaps bethveenodel they
implement and that of the host programming language, and that, besidesrdiffemmunication
models, each library also imposes a different programming model, making it ad/Kamathe
programmer to deal with several of them simultaneously.

The scale and diversity of interactions in Internet-based applications poitite idea that
no single pre-defined set of interaction patterns will suffice, even censglspecific classes of
applications. This indicates the need for environments in which differetraaitions and coordi-
nation patterns can be built and combined. However, it would be nice to befesgeriment and
combine abstractions without having to resort to the relatively low-level pnogriag interfaces
traditionally offered by libraries.

We believe programming languages features could make a significant atintrito this issue.
Using appropriate language constructs, it is possible to build an arbituanper of coordination
mechanisms from a very small set of primitives. Dynamically typed langualyesto flexible
type systems and extension facilities, can allow libraries to be seamlessly adbedhtareating
environments in which different coordination techniques can be usedandilced to compose



new mechanisms. So, instead of looking for the specific coordination meohavhgch will
be better than others for event-driven programs, we should conteoimasuch environments,
allowing programmers to create and combine coordination constructs easily.

To evaluate this claim, over the last few years, we have developed a seciesrdination li-
braries in Lua, a dynamically typed interpreted language with a procesjuralx but with several
functional characteristics. In this paper, we discuss the results of thedogerent and the role
of language features in allowing these libraries to be easily combined. Specifiealhighlight
the role of first-class functions, closures, and coroutines. The distrileumébnment which we
analyse is composed by several Lua processes. These could pesfelttiycorporate compiled
parts written in C or C++, but this is irrelevant for our discussion. We atswicler that each of
these processes has a single-threaded structure. This has cdisiseight in our discussion
and is a decision based on the several complexity issues associated to preemyitithread-
ing [Ousterhout 1996].

Our main contribution is not to present yet another system for distributepigoroning, but to
show the role of language features in allowing different coordination nmésims to be constructed
out of a very small set of primitives, and to be easily mixed and combined.

The rest of this paper is organized as follows. In the next Section, veemra brief intro-
duction to Lua and to the event-driven library we use as a low-level communigatichanism.
Section 3 presents the design and implementation of an asynchronous RPC @rfivhitih is the
basis for the discussion in the rest of the work. In Section 4, we discussatif coordination
patterns that can be built over this asynchronous primitive. Section Snpses@me remarks on
performance. In Section 6, we discuss related work and, finally, in Sectiae Ppresent some
final remarks.

2 Event-driven distributed programmingin Lua

Over the last years, we have been investigating the advantages and limitatioresitirig dis-
tributed programs with a simple event-driven model, based on the Lua programmangatse
[lerusalimschy, Figueiredo e Celes 1996]. Lua is an interpreted programamiggage designed
to be used in conjunction with C. It has a simple Pascal-like syntax and a setabidnal features.
Lua implements dynamic typing. Types are associated to values, not to variatitemal argu-
ments. Functions are first-class values and Lua provides lexical scapingasures. Lua’s main
data-structuring facility is theabletype. Tables implement associative arrays, i.e., arrays that can
be indexed with any value in the language. Tables are used to repredirarg arrays, records,
gueues, and other data structures, and also to represent moduleggmand objects.

The Lua programming language has no embedded support for distriboggépiming. ALua
[Ururahy, Rodriguez e lerusalimschy 2002] is our basic library foaiting distributed event-based
applications in Lua. ALua applications are composed of processes that comtauhicaigh the
network using asynchronous messages. Processes usgleattend primitive to transmit the
messages.

An important characteristic of ALua is that it treats each message as an atbunik of
code. It handles each event to completion before starting the next one vdhls eace conditions
leading to inconsistencies in the internal state of the process. Howevémtastant that the code
in a message does not contain blocking calls, for these would block the mumless, precluding
it from handling new messages.

The ALua basic programming model, in which chunks of code are sent asgessand exe-



cuted upon receipt, is very flexible, and can be used to constructatiffarteraction paradigms,
as discussed in [Ururahy, Rodriguez e lerusalimschy 2002]. Hawpvegramming distributed
applications directly on this programming interface keeps the programmer ay dovelevel,
handling strings containing chunks of code.

As an example, consider the distributed implementation of the sieve of Erathostetiesd
for generating primes between 1 an N described in [Magee, Dulay e Kre#8dt,in which each
process in the application is responsible for testing divisibility by one specifiaepr In this
implementation, each process acts as a filter, receiving a stream of numberdiltdr ALua
program of Figure 1 prints the first value it receives and stores it iili@myprime , for this is
the value it will use to test if the remaining numbers are divisible. Subsequmited values are
passed on to the next filter if they are not multiples of the first value receiedlustrate Lua’s
handling of functions as first class values, all numbers are passed frewaodidate to the next
through calls tdhandleCandidate : Initially, this is the function that stores the received number in
myprime , but after this first executiomandleCandidate  is assigned a new value.

The major complexity in the code in Figure 1 is due to the fact that the next filteeédent
dynamically when the first value is sent to it. This makes sense becausent&maw a priori
how many processes will be needed. To create a new process, tharprogyokes function
alua.spawn , which executes asynchronously, invoking a callback when it is completecalBe
of this asynchronous nature, when the second non-divisible numbeurid fee cannot be sure
that the next filter is already in place. That is why we test if variabkénpipe  exists. If it does
not yet exist, the prime numbers are pushed into arisii{ers2send ). This listis emptied in when
the callback fomlua.spawn is invoked.

Some remarks are in place about string manipulation in Lua. Both quotes, djudties,
and double square brackets may be used as string delimiters. Strings delimidedtdde square
brackets may run for several lines. Theis the string concatenation operator in Lua.

3 Asynchronous RPC

Although this basic message-oriented event-driven programming model isfphuwtean be quite
error-prone and hard to use. Programmers need tools that allow them tbhigidéevel interac-
tion patterns. This is where programming abstractions come into play. To allowdbeaprmer
to deal with higher-level concepts, we have implemented several communidiatiaries over
the last few years, providing support for tuple spaces [Leal, Rodriguerusalimschy 2003],
publish-subscribe [Rossetto, Rodriguez e lerusalimschy 2004], andteeprocedure call
[Rossetto e Rodriguez 2005], among others. In this work, we use remotedoireccall as the
basic communication mechanism, and so we discuss it next.

The RPC abstraction has been adopted in systems ranging from CORBAI[82€6] to
.NET [Common Language Infrastructure (CLI) 2006] and SOAP [Mitraaéoh 2007]. From its
inception, however, critiques to the paradigm were made, [Tanenbaumes$teho88]
[Birman e Renessee 1994], mostly discussing the imposition of a synchrotmaatie on the
client application and the difficulty of matching RPC with fault tolerance, partly @uits one-
to-one architecture. These critiques gain further importance in the corfiteide-area networks.
However, the familiarity that programmers have with the model must not be igntirggk syn-
chronous nature of the original proposal is somewhat incompatible with the tmagling we
need in wide-area distribution, we can resort to an asynchronous RPC magelchronous in-
vocations have been long discussed as an alternative [Ananda, Tdy¥9Ea] but the fact is that



local myprime
local creatednext = false
local numbers2send = {}
local nextinpipe

function handleCandidate (cand)
print (aluaid .. " " .. cand .. " is a prime number")
myprime = cand
handleCandidate = testNumber

end

function send2next (cand)
alua.send (nextinpipe, "handleCandidate (" .. cand .. ")")
end

function spawn_callback(reply)
for id, proc in pairs(reply.processes) do
alua.send(id, [[dofile("primop.lua”)]])
nextinpipe = id
for _, cand in ipairs (numbers2send) do
send2next (cand)
end
end
end

function testNumber (cand)
if (cand%myprime ~= 0) then
if not creatednext then
alua.spawn(l, spawn_callback)
table.insert(numbers2send, cand)
creatednext = true
elseif nextinpipe then
send2next (cand)
else
-- necessary because it is possible that a new process has
-- been created but the spawn callback has not yet been called
table.insert(numbers2send, cand)
end
end
end

Figure 1: ALua code for process in distributed Erathostenes sieve

they are not comfortable to use in traditional sequential programs. Whemdbeam is event-
based, however, asynchronous invocations are natural, and casdmsded to callback functions
to be executed upon the completion of the remote invocation.

Our remote procedure mechanism [Rossetto e Rodriguez 2005], prdwdide rpc library,
explores this idea, associating an asynchronous invocation with callbadiohsover an event-
driven model. The basic execution model remains the one we described in teeddsh with
a process handling each incoming message at a time, with the differencewhatessages are
function invocations.

To provide the same flexibility as we have with normal function values in Luaptteync
primitive does not directly implement the invocation, but, instead, returns didnnthat calls



the remote method (with its appropriate arguments). Figure 2 illustrates the psaxfic to
invoke a remote functioBurrentValue

Mandatory parameters fgic.async  are the remote processiver ) and the remote function
identifier Currentvalue ). An optional argument is a callback functiomgfster ). In Figure 2,
the function returned bypc.async is stored in variableetCurrentRemvalue . When function
getCurrentRemValue s invoked (with*foo” as the single argument urrentvalue ), control
returns immediately to the caller. At some later point, when the program retuting évent loop
and receives the result of the remote function, callbaghkter  will be invoked, receiving this
result as an argumentgister  then assigns the received value to global valuentRemValue
(In a more realistic setting, it could also schedule the next update of this value.)

-- callback function

function register (value)
currentRemValue = value

end

-- asynchronous remote function
getCurrentRemValue = rpc.async(server, CurrentValue, re gister)

-- remote invocation
getCurrentRemValue("foo")

Figure 2: Usingpc.async

Two language features are specially important for allowingghasync  primitive to return
a function that can be manipulated as any other value: (i) functions as fisst\@tues; and (ii)
closures.

Having functions as first-class values means they can be passed as agjunoeibe used as
return values from other functions. @dosureis a semantic concept combining a function with an
environment. The distinguishing feature of closures is the ability to associatéeamediate set
of data with a function where the data set is distinct from both the global date pftgram and
data local to the function itself. As a consequence, closures can be usield tetate, implement
higher-order functions and defer evaluation. With these two mechanismsctiofu can return a
nested function, and the new function has full access to variables armdemtgifrom the enclosing
function.

Figure 3 shows the (complete) implementation ofrthiasync  primitive. Basically, it creates
a function (called) that encapsulates the remote invocation. This function receives a variable
number of arguments (the , captured in tablargs ), which are serialized and sent to the remote
process. The callback functionb( is registered to handle the results when they arrive. The
request is sent to the remote process through a calldsend . We believe the concision of
this implementation reflects the importance of using a programming language withpapfe
flexibility and support for extension.

Thus, therpc.async  primitive returns a function, defined inside it, which depends on values
passed as arguments on each specific invocation of this operation. Each tieteithed function
is invoked, a new remote call is performed, which uses the same values fantioger process,
remote function, and callback function ¢kosurg, but different actual arguments to the remote
function.



function rpc.async(dest, func, ch)
local f = function (...)
-- get the function arguments
local args = {..}
-- register the callback
local idx = set_pending(cb)
-- process the arguments
marshal(args)
local chunk = string.format (“rpc.request(%q, %s, %q, %q)"
func, tostring(args), localld, idx)
-- send the request
alua.send(dest, chunk)
end
return f
end

Figure 3: Implementation afpc.async

Asynchronousinteraction and event-driven models

Therpc.async  primitive allows us to program in an event-driven style with the syntax oftfanc
calls for communication.

The event-driven programming model is convenient in that it mirrors asgnolis interac-
tions among processes. However, because we have only one executiorh@msver a process
needs to receive an event before continuing execution, the current atigirbe finalized to wait
for the message (that is, the process must return to the event loop to be abledte the next
message). Moreover, to maintain the interactivity, the system must make suretheessage
handler takes too long to execute. So, event handlers must run quickly, ng takkks must also
be broken into small pieces, between which the system saves the ctiaterdrsd returns to the
main loop. In order to do that, the event handler can post a requestihadue the remainder of
the current computation to be executed later, as explored in [Welsh, CullemeB2001]. Typi-
cally, to maintain state between the function that is being executed and that whice executed
later, the programmer must resort to global variables, because thetdooas will not exist any
more at this future point. This process, referred by Adya et atak ripping[Adya et al. 2002],
is one of the main difficulties for developing applications using the eventsdfwegramming
style [Behren et al. 2003].

The closure mechanism can once again come into play to reduce this stack fppaess,
by allowing local variables to be maintained in nested functions. When a jgrotases a remote
request and needs to registeramntinuation(or callback) to be executed when the request reply is
received, the closure mechanism can be used to encapsulate the vatuesethto be kept during
the request manipulation.

The example presented in Figure 4 illustrates this idea. In this examplegths function
computes the average of a set of values provided by several precdssethat, the primitive
rpc.async  is used to build asynchronous requests to take values in each remotespodebe
avrg function is defined as the callback function. This function is a closureyadst , and is thus
able to keep the values of the variabdes andrepl (used to compute the average) even when the
process returns to the main event loop.



-- Array of remote processes
servers = {"ProcA","ProcB","ProcC"}

function request(servers)
local acc, expected = servers.n, repl = 0

function avrg (ret)
repl = repl + 1
acc = acc + retresults
if (repl == expected) then
print ("Current Value: ", accl/repl)
end
end

-- Request the remote values

for i = 1, expected do
-- Create the asynchronous function
local get = rpc.async(servers[i], getValue, avrg)
-- Invoke the remote function
get()

end

end

Figure 4: Exploring the closure mechanism do aiatk ripping

4 Coordinating Concurrent Activities

The model we described in the previous sections avoids many synchronizaties.isBecause
each event is handled to completion, the fine-grained kind of synchronisnmexeds with pre-
emptive multithreading, due to the possibility of arbitrary execution interleavingst isequired.
However, support is still needed for a number of synchronization and coroatiom issues.

Gelernter and Carriero [Gelernter e Carriero 1992] discuss the tyes of viewing com-
munication and synchronization primitives as meansamrdinatinga concurrent or distributed
application. In this section, we adopt this approach and discuss how diffeverdination ab-
stractions can be provided by libraries that can be combined, either as buildokg bio create
further abstractions, or simply as alternative to be used inside an applicatioeeded. We again
focus on language features that allow libraries with these abstractions tar&essly integrated
into the language.

The issues we discuss can be classified in two major lines. The first of them iedd for
different communication abstractions. Programmers do not always wanakdidectly with the
asynchronous programming model we introduced, based on asynakromocations and call-
backs. This model is interesting when there is an inherent asynchronismimtdrection itself,
as is the case, for instance, in the example presented in Figure 4, in whiamntaeted peers can
reply in arbitrary order. Some other interactions, on the other hand, azeeimiy synchronous.
Consider the case of a client contacting a server for a file which is to be dieywthe user. It may
well be more natural for the programmer to code this interaction as a synclsronmcation. In-
side a single application, the programmer will typically need to code differemtittions, and it
would be nice for him to be able to code each of these in the most convenignirv&ections 4.1
and 4.2 we discuss support for different interaction models.

The second class of abstractions we discuss is the one related to clagsdabosization



among concurrent processes, for mutual exclusion and cooperatione#®@000]. Even if, in
our model, fine-grained synchronization problems, such as interleavesksasto global variables,
are avoided, we can still have problems occurring at a coarser grijmuarbsequent calls to one
process may need to occur with the guarantee that no events were hbhatilegn the two (for
instance, to guarantee an atomic view of a set of operations). Also, begawase in a distributed
setting, we may need to synchronize actions occurring at different pesceSsctions 4.3 and 4.4
discuss support for classical synchronization.

4.1 Synchronous RPC

With asynchronous invocations, the programmer must turn control flow ugsiga, using call-
back functions to code theontinuationof the computation after the results of the invocation are
available. This directly reflects the event-driven nature of a prograntamunot be the best model
for the programmer to work with. In this section, we discuss funaposync , that creates func-
tions that make synchronous calls to other processes over the sameraspushcommunication
model. As functiorrpc.async , functionrpc.sync receives as parameters the process identifi-
cation and the remote function name Because it is synchronous, the callbaciefmrdoes not
make sense (in fact, a callback which resumes the current computation will be imdigitiypy
rpc.sync ).

We illustrate the use apc.sync  with the code in Figure 5 that repeatedly retrieves a value
from a remote procegsrocA uses this value to perform a calculation, and updates the remote
process.

get = rpc.sync("procA”, "getValue")
set = rpc.sync("procA", "setValue")

while true do
oldvalue = get()
newvalue = transform(oldvalue)
set(newvalue)

end

Figure 5: Example usingc.sync

Because ALua runs on a single thread, suspending the execution dwymglaronous call
would block the ALua event loop as well. As a consequence, a prooasisl wot receive new
requests until the invocation is completed. The most frequent solution to this wotddrteduce
multithreading. However, we would like to avoid the burden of performandeamplexity added
by preemptive multithreading [Rossetto e Rodriguez 2005]. For the implementatiomsme
we rely on yet another language mechanism: the cooperative multitasking faffeitgby Lua
coroutines

A coroutine is similar to a thread in that it maintains its own execution stack, but it must
issue an explicit control primitive for control to be transferred to any rotlegoutine. This is
interesting because it allows applications to maintain different execution lines whildiray the
complexities of race conditions, but on the other hand it leaves the responsibilitanaging
the control transfer to the programmer. In the case of syncronous RBCpontrol transfer is
automatically encapsulated in the remote invocation. Each new computation is handiegiwn a
coroutine and, when a synchronous call is performed, the currentitioe is suspended and



execution flow returns to the ALua loop.
To implementpc.sync , we usepc.async as a basis and again the mechanisms of functions
as first-class values and closures. Figure 6 contains a sketch of this impa¢ioren

function sync(proc, func)
-- Create a function to perform the remote invocation
-- The ...’ refers to the variable parameters
local remote = function (...)
-- Reference to current coroutine
local co = coroutine.running()
-- Create a callback that will resume the execution
local callback = function (...)
coroutine.resume(co, ...)
end

-- Make the remote invocation
local aux = rpc.async(proc, func, callback)
aux(...)

-- Suspend the current coroutine execution before
-- returning
return coroutine.yield()
end
return remote
end

Figure 6: Implementation afc.sync

At this point it is convenient to explain some features of Lua coroutigies. andresume,
respectively, suspend and resume a coroutine executiontine.resume  receives as its first ar-
gument the coroutine to be resumed; any extra argument will be returrmebltine.yield .In
the same fashion, any argument passedrtatine.yield will be returned byoroutine.resume
This provides a communication channel among coroutines.

Back to the implementation gfc.sync : when functionremote is called, it first creates a call-
back that will be responsible for resuming the current coroutine. Trhante invokesrpc.async
to perform the remote communication (passing the internal callback) and sggperalirrent ex-
ecution €oroutine.yield ). When the results arrivegc.async  calls the internal callback passing
these results, which are forwardedctooutine.resume . The coroutine is then resumed and the
results are returned to the callerrahote . Figure 7 illustrates this behavior.

4.2 Futures

As yet another example of building communication abstractions, we can also impleupgortts
for futures[Lieberman 1987]. In some cases, the programmer may know, at a cediainop
execution, that he needs to schedule a computation whose result will be neddiedes. Futures
allow the programmer to synchronize actions between processes in a lets@mnship. This
mechanism can be implemented usipgasync as a basis and the remote call in this case
returns apromise[Liskov e Shrira 1988], which can be used to retrieve the results laterenwWh
the promise is invoked, we use coroutines to suspend execution if the resutistget available
— in a similar way to what we did in the implementationrpé.sync



LuaRPC
Remote request

——————— W | coroutine.create() » Coroutine

| _, coroutine.yield() M»
-

< Remote call's result
coroutine.resume() ‘7
;[4 return()

Figure 7: Coroutines in a synchronous call.

Figure 8 shows the implementationrp€.future . The function builds and returns an internal
function, which is very similar to the one returnedipg.async , except that this time, when the
returned function is invoked, besides calling the remote function asynchigndugturns the
promise, another closure, which may be invoked to synchronize on thiésresthe asynchronous
invocation. The future mechanism uses an internal structeself , to control if the results
for the remote call were received. Asnpt.sync , a callback is created to handle the results of
the asynchronous invocation. This callback fills the future structure with thétseand verifies
whether the process is blocked waiting for them. Todield in theresult  structure indicates
that the process has called the promise to retrieve the results, but thepavees available. (In
this case, the promise sets ttefield and suspends execution of the running coroutine.) As the
results are now available, the callback returns them to the suspendetire@rou

4.3 Monitors

In this section we discuss an implementation of monitors [Hoare 1974]. Monitorshis$trere
are different from the classic proposals in that they are dynamic: furxctitay be added to a
monitor at any point in execution.

Our implementation for monitors is based on synchronous calls to acquire a lotkutia
pends the execution until this lock is acquired. We implemeanbaitoras a structure containing
a boolearock, which indicates if the monitor is free, an entrance queue, and the identity ofits cr
ator. monitor.create creates a new monitor (with no enclosed functions) and returns a reference
to it. After an “empty” monitor is created, arbitrary functions can be placed undpratgction
by calling functionmonitor.doWhenFree , such as:

local function set_internal(value)
-- Do some activities here
end
-- Creates a monitor
local mnt = monitor.create()
set = monitor.doWhenFree(mnt, set_internal)

Figure 9 shows the implementation of functimonitor.dowhenFree  This function again cre-
ates and returns a new function that encapsulates the one receivedaemreeter. This new
function uses the lock to guarantee the execution in mutual exclusion in relation tduotbéons
in the monitor.monitor.dowhenFree  also deals with the input parameters and the resultspddie

10



function future(proc, func)
local f = function(...)
-- Future structure to store the results
local result = {}
-- This callback is responsible to receive the results and
put them into the future structure above
local callback = function(...)
result.ready = true
result.values = {..}
-- If the 'co’ field exists, the process is blocked
if result.co then
coroutine.resume(result.co, ...)
end
end
-- Create a promise for the invocation
local promise = function()
-- If the results are not available, suspend the execution
if not result.ready then
result.co = coroutine.running()
coroutine.yield()
end
-- Extract the result from the Lua’s table and return them
return unpack(result.values)
end
-- Send the remote request
async(proc, func, callback)(...)
-- Return the promise
return promise
end
return f
end

Figure 8: Implementation apc.future

function captures the results in a Lua table that is storeelsn variable. After releasing the lock,
the result is unpacked and returned.

Functionsmonitor.take ~ andmonitor.release control lock acquisition as followsnonitor.take
tries to acquire the lock on a given monitor. If the lock is free, this function swstikesalue and
execution continues normally. If the lock is takempitor.take  puts the current coroutine in the
lock’s waiting queue and yields. Functiamnitor.release symmetrically, releases the lock on
a monitor. It verifies whether there is any coroutine in the monitor entrance quedieif 0,
resumes the first waiting coroutine. Otherwisenitor.release marks the lock as free.

This mechanism for mutual exclusion is different from most classic languegmosgals in
that it does not provide direct syntactic encapsulation of the protectetidns. This makes the
monitor a dynamic mechanism, allowing functions to be added to the monitor only as needed.
This dynamic idea is in some ways captured in ptieread API [Butenhof 1997] and in théock
interface in the concurrency API of JDK5.0 [Mahmoud 2005]. Howewace again, the fact
of handling functions as first-class values allows us to create these protecttidns and have
them behave similarly to the classic, syntactically protected ones. This allowiexitslity of
dynamism in a less error-prone environment.

The implementation ofonitor.dowheFree , based on remote calls, creates the possibility of
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-- mnt: monitor created to protect the function
-- func: function to execute in mutual exclusion
function doWhenFree(mnt, func)
-- Reference to the monitor structure
local idx = mnt.idx
-- 'from’ points to the monitor creator
local take = rpc.sync(mnt.from, "monitor.take")
local release = rpc.async(mnt.from, "monitor.release")
return function (...)
take(idx)
-- Invokes the function and captures its results
local rets = pack(func(...))
release(idx)
return unpack(rets)
end
end

Figure 9: Implementation of functiononitor.doWhenFree

having a single monitor protecting functions from different processes, stipgdistributed mu-
tual exclusion. For instance, a process could create a monitor and adibfisnto it. Next, the
process could pass this monitor to another process, which adds new fundiibtige time the
monitored functions are invoked, they make remote calls to acquire the lock. Howalyeone
of them will succeed and the others will wait in the queue for the lock to basetk Figure 10
illustrates the use of a distributed monitor. In this example, several distributedspesceould re-
ceive, upon initialization, calls to a function suchirts , all of them with the same monitor being
received as an argument. Each of the processes could then probegtthis monitor, functions
that manipulate a shared state.

local isOn = false
local function _off()
-- Only turns off if the neighbor is 'on’
if neighbor_state() then isOn = false end
end
function init(mnt, neighbor)
- 'mnt' is a monitor and 'neighbor’ is other process
neighbor_state = rpc.sync(neighbor, "get state")
off = monitor.doWhenFree(mnt, _off)
end

Figure 10: A distributed monitor.

Our monitor mechanism also offers support for waiting and signalling conditioablas, as
traditional monitors do. Due to limitations of space, and because it does not introgducissues,
we do not describe this support here.

4.4 Synchronization Constraints and Synchronizers

In this section, we discuss a simple architecture, based on handlers, tinitspes to define dif-
ferent handlers to process incoming requests. The handler is selectediag to the invoked
function, so we can define per-request handlers. If the function dddsame an associated han-
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dler, a default handler is used. This simply calls the function passing themargs received in the
request and returns the results to the caller. Using this architecture vexulane how alternative
coordination policies can be created for a distributed application.

As an example, we turn our attention to the possibility of defining conditions foraitumcall
to be executed. These conditions will allow us to model both intra and interggcoerdination.
We defined a handler that uses a queue and a scheduler policy to reimptamenordination
abstractions proposed byg¢iind and Agha [Fplund 1996, Agha et al. 1993]. We chose this pro-
posal because it is one of the few that provides support for distritagesell as for concurrent
synchronization.

Intra-object synchronization in [Blund 1996, Agha et al. 1993] is supporteddynchroniza-
tion constraints As with guards[Riveill 1995, Briot 2000], the idea is to associate constraints or
expressions to a function to determine whether or not its execution should edlio a certain
state. This kind of mechanism allows the developer to separate the speaifichsgnchroniza-
tion policies from the basic algorithms that manipulate his data structures, asdgpgsonitors,
in which synchronization must be hardcoded into the algorithms.

As an example taken from [@iund 1996], consider a radio button object with methods
andoff . To ensure that these methods are invoked in strict alternations, the progracan
define a state variablgOn , that indicates whether or not the button is turned on. Synchronization
constraints can be defined disabling methodvhenisOn is true, and disabling methatf when
it is false.

For inter-object synchronization, @tund proposes the use s§ynchronizersSynchronizers are
separate objects that maintain integrity constraints on groups of objectg.k&bp information
about the global state of groups and permit or prohibit the execution of uietexording to this
global state.

Keeping the rules in a central point, instead of scattering them among thespescéacili-
tates modifications and allows using synchronizers in an overlapping fasbamsider again the
example of radio buttons. Besides the individual integrity constraint of ateeineocation, a set
of radio buttons must satisfy the constraint that at most one button is on at any tonéhig-
situation, Fplund proposes the following solution. A synchronizer keeps the globalgstate in
variableactivated , whose value is true if any radio button in the set is on. A disable clause in the
synchonizer states that, for any button in the set, methasldisabled if the value of this variable
is true. To ensure the maintance of the global state, synchronizers plsordriggers code that
is associated to the execution of methods in the individual members of the gnatnplieal by the
synchronizer. In the case of our example, a trigger is associated to tbatiexeof methocbn,
settingactivated  to true, and to methodff , setting it to false.

We provide support for these mechanisms through modulésynchronization constraints)
andsynchronizer , that interact with the handler. Both modules introduce constraints that must
be checked by function calls. In the case of themodule, these are local calls that verify the
internal state, whereagnchronizer ~ permits processes to register themselves as synchronizers of
each remote object (or process, in our case) they coordinate.

Figure 11 illustrates how a program could use synchronization constraimtsupeghe proper-
ties of the radio button example taken from@femd 1996].sc.add_constraint associates guard
functions to the RPC visible functions — those not defined as local. It recavarguments the
name of function to be guarded and the function that implements verification. Thertatbtéves
as arguments the request information and must reétugaif the guarded function can be executed
or falseotherwise.
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local isOn = false
local function can_turn_on(request)
return not isOn

end

local function can_turn_off(request)
return isOn

end

function on()
isOn = true

end

function off()
isOn = false

end

sc.add_constraint("on", can_turn_on)
sc.add_constraint("off", can_turn_off)

Figure 11: Defining synchronization constraints.

Figure 12 illustrates the creation of a synchronizer that coordinates a dettiibuted pro-
cesses that represent radio buttons, enforcing that at most one of thetivageal at any time.
When one of the buttons receives a request, it contacts the synchronieeirto verify the re-
mote constraints, which allow or not the button to execute the function accordimgpthed state
information.

local activated = false
local function can_turn_on(request)
return not activated
end
local function trigger_on(request)
activated = true
end
local function trigger_off(request)
activated = false
end
-- defines constraint and triggers for each distributed but ton
for _, bt in ipairs(buttons) do
synchronizer.set_trigger(bt, "on", trigger_on)
synchronizer.set_trigger(bt, "off", trigger_off)
synchronizer.add_constraint(bt, "on", can_turn_on)
end

Figure 12: A synchronizer defining a remote constraint and triggersdet af distributed buttons.

Both synchronizer.set_trigger and synchronizer.add_constraint receive, as their argu-
ment, the remote process identification, the name of the function in this procesbedndction
to be executed once the synchronizer is contacted. For triggers, thigfutypically updates the
global state, and for constraints, it must return, respectitrelg,or falseto permit or prohibit the
constrained function execution. Moreover, the function to be executedescas a parameter,
information about the constrained function into the variadaeest .

To implement synchronization constraints and synchronizers, we dedetopandler that
manipulates a queue of requests. The handler processes the queeghattitt is empty or the
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remaining requests cannot be executed due to the synchronization rukesjuést is executed
only if all of its local constraints and remote verifications evaluate to true. Hervavhen a

requested function is executed, we need to restart the queue evaluatarsddais function can
have modified the internal or global states, making some request newly eligileeeicution.

We first implemented the scheme as described igl{ifid 1996], that is, verifying and exe-
cuting the requests in a sequential fashion — a new request is handledteniyra previous one
is completed. However, evaluating remote constraints is expensive becaysedbges commu-
nicates with the synchronizer and blocks until the answer arrives. éitfgha shows a diagram
illustrating this scheme. Although the synchronizer imposes constraints only ctiofuset , the
process waits the synchronizer’s answer arrives before execuéngdnesget .

Serial Processing Parallel Processing
Process Synchronizer Process Synchronizer
set() set()
Check(“sGtu) > ChECk(“Set")
get() T i get() T

> >

) get()

PRy -

) set() ) set()
) get) |

(a) | (b)

Figure 13: Diagram of (a) the original and (b) our proposals for tamgs evaluation.

Using coroutines once again, we implemented an alternative scheme to fuqptaeecon-
currency in this system. Since we know that the verification of remote constraiifisation will
block the process, we encapsulated this verification inside a new coroutitiee poocess can
suspend it while the synchronizer analyzes the constraints, and thegisdeee to handle other
request. The new scheme is shown in Figure 13-b.

Our implementation checks the synchronization constraints before contactingttreaniz-
ers, avoiding the network communication if the local verification fails. Howewerabse new
function calls can now modify the internal state during the remote constraintsiobeitkerifies
the synchronization constraints again when it receives all replies froichsynizers in order to
guarantee that the internal states still allows the request execution.

5 Performance Results

In this section, we discuss execution times of the mechanisms we described @gagpér. Our

goal is to evaluate the minimal cost that these mechanisms add to the basic RP&hisrach
We measured the average time for a client to execute an asynchronous&RGSt to a remote
function in the following cases:

e RPC: the basic client/server scheme that is used as reference.
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e Monitor: the remote function protected by a monitor.

e Queue Handler: the same basic scheme used in the case of RPC, but with the server using

the queue infrastructure to handle the client requests. This infrasiustaine basis for
implementing local and remote constraints.

e Local Constraint: the remote function is protected by a local constraint.

e Remote Constraint: the function has a remote constraint, which is evaluated by a synchro-

nizer.

In the tests, the client, server, and synchronizer processes exedifferient hosts. Moreover,
we implemented remote functions that do not receive any argument and retwalue (oid
value), and the local and remote constraints are functions that just tetern

Table 1 shows the average time (in miliseconds) to execute an asynchrenumits call in each
case described above. As a reference, we show the average timddea &Ml request (using
Sun JDK 6), with the same criteria. We performed two tests with RMI, enablinglisatiling the
justin time (JIT) Java compiler. With JIT disabled, Java runs in interpreted nmugieams does
not generate machine native code. We performed the tests in machingsesbwith a Pentium 4
1.7GHz, 256MB RAM and Ethernet 100Mb/s, executing Linux (kernel D}.2

| Mechanism | Time |
Java RMI — JIT enabled 0.426 ms
Java RMI — JIT disabled 0.803 ms
RPC 1.134 ms
Monitor 1.758 ms
Queue Handler 1.328 ms
Local Constraint 1.338 ms
Remote Constraint 4,281 ms

Table 1: Execution times for different constructs

Our implementation of RPC was not specially performance-oriented, so wimepaced to
RMI, which is built as part of Java’s architecture, execution times donk loed. Here we are
focusing specifically on the time to execute a remote call, but in an application thid ieypart
of a mix of activities, which, when using a dynamic language for coordinasbauld include
parts in C or C++ for te hard processing tasks.

The queue handler adds a little overhead to the basic RPC because & regut in a queue
before its execution. On the other hand, a local constraint has almossnio coir test case, since
it is just a function call that returrtsue.

In the remote constraint test, the server must also contact another prtheesgnchronizer,
in order to execute the request. However, the synchronizer implementationéscoraplex than
the distributed monitor, which explains their different performance. Besidesirtte spent in
the network communication with the server, the synchronizer must implement mauokaiois
guarantee a consistent view of global state and prevent deadlockthe Sgnchronizer uses a
transactional protocol with the server.

We performed a second experiment to measure the time to the server tes@eeesf requests
in a serial and parallel fashion, as described in Section 4.4. In this experithe server exports
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two functions,get andset , and receives requests of two clients, each one invoking a specific
function (Figure 13). Theet function is protected by a remote constraint, wheggshas no
protection. First, we configured the server to execute the requests inldashian, i.e., the server
processes the next request only when it finishes processing theygene. We then changed the
server behavior to execute a new request while the synchronizea&sline remote constraint.
Table 2 shows the times (in milliseconds) for each scenario. In the serm| ttessrequest for

the get function is limited by the evaluation of the remote constraint, so the requests for each
function take almost the same amount of time. However, in the parallel configyrtteserver

can process thget requests while the synchronizer evaluatesséie remote constraint, so that
average time of thget request is much lower.

| Request| Serial Processing Parallel Processing

get 5.138 ms 2.858 ms
set 5.247 ms 5.314 ms

Table 2: Serial and Parallel Processing of Requests

6 Related Work

Over the years, support for synchronization and communication abstractsnbeen imple-
mented in several programming languages, such as Emerald [Black e8@], 19

Orca [H., Kaashoek e A. 1992], Java [Gosling et al. 2005], Erlangngrong et al. 1996], and
E [Miller, Tribble e Shapiro 2005], and in a number of libraries, such as ®8@R
[Sun Microsystems 1988], Linda [Carriero e Gelernter 1989], JXTAriG2001], ProActive
[Caromel, Klauser e Vayssiere 1998], and Chord [Stoica et al. 200af.goal in presenting the
implementation of different coordination abstractions is not to discuss the megisatiiem-
selves, but to support the argument that programming language feaameselp bridge the
gap between the simplicity and flexibility offered, respectively, by the laggwand library ap-
proaches [Briot, Guerraoui e Lohr 1998].

Arbab and Papadopoulos [Papadopoulos e Arbab 1998] presemnvey ©f coordination mod-
els and languages, and classify the surveyed works in two major catedoat-driven models
offer coordination primitives which can be freely mixed with the computational céttepos-
als such as Linda and the synchronizers we discussed in Section 4.4ce pjathe authors in
this category. This is also the approach we follow in our model. The otherargtemntrol-
driven models encompasses models in which the coordinating entities are separate from the
computational ones. Typical examples of this category arenfiguration lan-
guages [Magee, Dulay e Kramer 1994, Arbab, Herman e Spilling 1998¢hwocus on describ-
ing interconnections between independent processes or components.

Adya and others [Adya et al. 2002] discuss advantages and didadgeanof multithread-
ing and event-based programming, considering the distinction betmesuoal and automatic
stack management. One point that further links their work to ours is the empmaal®wing
the programmer to freely combine both models when coding an application. Eugdtetta
ers [Eugster, Guerraoui e Damm 2001] also discuss the importancentiriog different inter-
action paradigms (RMI and publish/subscribe) in a single distributed prograniathg
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Many authors have highlighted the importance of object oriented conceptsas encapsu-
lation and the message passing paradigm, for concurrent and distributagtamr
ming [Briot, Guerraoui e Lohr 1998, Agha 1990, Nicol, Wilkes e Manol83]9 We believe this
discussion is orthogonal to ours and do not pursue it in this paper.

There appears to be little work exploring how language features inteithdilwaries for con-
currency and distribution. The work of Varella and Agha [Varela e Agb@12and that of Eugster
et al. [Eugster, Guerraoui e Damm 2001] are among the few that apptioadiscussion of dis-
tributed programming libraries from a language point of view. Varella andaAgtint out the
need for extensions to Java, indicating that the original set of languagyeds is insufficient, and
on the other hand defends that only a few extensions can suffice tm@rasimple distributed
programming model. Eugster et al. identify a set of mechanisms which enfoigaslge support
for publish/subscribe. Specifically, they identify the concept of closasesne of these mecha-
nisms. Their work also intends to contribute to the discussion about whethse the integrative
or library approach to provide publish/subscribe in object-oriented lagegua

The idea of providing synchronous communication facilities over evenedsystems is ex-
plored in some worksi [Schmidt e Cranor 1996, Lea, Vinoski e Vogel2dinoski 2005]. Haller
and Odersky [Haller e Odersky 2006] are explicitly interested in avoidiagtbblems associated
to the typical “control inversion” of event-driven systems. Howevethimcase of their work, the
“continuation” of the current computation must be explicitly coded in a receive&laus

7 Final remarks

In this work, we explore some special programming language featuresmelyadynamic exe-
cution environment, functions as first-class values, closures and coroutinesuid different
coordination mechanisms for distributed asynchronous computing. Althoughewsagicularly
interested in exploring these features in the Lua programming languaggpalis not to pro-
mote this language specifically, but, instead, to contribute the discussion thleoutle of lan-
guage features in bridging the gap between the integrative and librargaagbyas for distributed
programming. The specific programming system we describe is simply an eméndmve used to
demonstrate that programming abstractions which simplify distributed applicatiore aasily
implemented and combined given a small set of language features.

We defined a basic asynchronous primitive, calieghc , with a callback function, which
allows programming in a direct event-driven style with the syntax of functidis @ commu-
nication among interacting processes. Over this primitive we explored the sy$lexitidity by
building differente well-known coordination abstractions.

By using cooperative multitasking (provided by coroutines) combined with thechsynous
primitive, we implemented the synchronous primitisyac , allowing the programmer to have a
synchronous view of interactions without having to deal with the classic dlmaegmory issues
posed by preemptive multithreading. We also discusseditihe primitive, which supports de-
ferred invocations. Operations provided by tsgnc , sync , andfuture  primitives allow the pro-
grammer to combine different communication paradigms in the same application: ometane,
simultaneously, the active style of the remote call model, or the reactive style ef¢né-driven
model. By considering the diversity of interactions possible in distributed apipinsa specially
in Internet-based applications, it becomes important to allow different @noging abstractions
to be built and combined into the same application.

For the classical synchronization problems of mutual exclusion and cdimpenae chose to
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implement monitors and synchronizers. In both cases, the abstractions weahuik eised both
for intra and inter-process synchonization. Both our monitors and synzkrsnin line with the
dynamic character of our environment, allow synchoniztion constraints tefioeed dynamically,
at any point in the life cycle of objects and applications.

Finally, languages with the features we emphasize, such as dynamic exenwiiah and
support to functions as first-class values and closures, are oftenretetpganguages. Nor-
mally, interpreted languages are not adequate for computing-intensivensystés discussed
in [Ururahy, Rodriguez e lerusalimschy 2002], the idea is that oneldluige a dual programming
model in which the interpreted language coordinates the application and a trdditiomailed
language handles the computing-intensive parts.
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