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Abstract. Self-organization is a dynamic and adaptive process where components of a 
system acquire and maintain information about their environment and neighbors 
without external control. A fundamental engineering issue when designing self-
organizing emergent multi-agent systems (MASs) is to achieve required macroscopic 
properties by manipulating the microscopic behavior of locally interacting agents. 
Current agent-oriented methodologies are mainly focused on engineering such micro-
scopic issues as the agents, the rules, the protocols, and their interaction without ex-
plicit support for engineering the required outcome of the system. The novel emer-
gence property adjustment requires a discrete agent-based model to interface with the 
continuous simulation tools and interact with them as they move towards conver-
gence. In contrast with current approaches, we propose a bio-inspired approach con-
sisting of a method that allows a systematic specification (i.e., a representation model) 
of desirable macroscopic properties, which can be mapped into the behavior of indi-
vidual agents, followed by development of a system, and the interactive adjustment of 
the required emergent macroscopic properties that need to be achieved. 

Keywords: Self-Organization, Multi-agent Systems, Autonomic Computing, Software 
Engineering, Verification. 

Resumo. Auto-organização é um processo adaptativo e dinâmico onde componentes 
de um sistema adquire e mantém informação sobre o ambiente e seus vizinhos sem 
controle externo. Uma questão de engenharia fundamental durante o projeto de siste-
mas multiagentes organizáveis é alcançar propriedades macroscópicas desejadas para 
manipular o comportamento microscópico das interações locais dos agentes. As meto-
dologias orientadas a agentes propostas até o momento são principalmente focadas na 
engenharia de tais propriedades microscópicas tais como os agentes, as regras, os pro-
tocolos de interação sem um apoio específico para a engenharia do sistema resultante. 
O ajuste de uma propriedade emergente requer um modelo discreto baseado em agen-
tes  para fazer a interface entre ferramentas de simulação contínua e para interagir com 
as mesmas a fim de obter convergência. Em contraste com as abordagens existentes, 
propomos uma abordagem inspirada na biologia que consiste de um método que pro-
ve uma especificação sistemática (i.e., um modelo de representação) das propriedades 
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macroscópicas desejadas – que pode ser mapeada no comportamento individuais dos 
agentes, seguido do desenvolvimento do sistema, e de um ajuste interativo das propri-
edades macroscópicas emergentes desejadas que precisem ser alcançadas. 

Palavras-chave: Auto-Organização, Sistemas Multiagentes, Computação Autonômica, 
Engenharia de Software, Verificação. 
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I. Introduction 

Self-organization is a very powerful approach to the engineering of complex systems 
because of its many interesting properties, including adaptation and robustness. Un-
fortunately, self-organization provides difficult design challenges as we are using ap-
parent microscopic behavior of system components and their interactions to achieve a 
deterministic result for the entire system.  

However, biologists and computer scientists are collaborating closely as they seek 
to understand, and to influence the natural information processes studied in comput-
ing [42]. Computing interacts constantly with other fields. The other fields teach us 
more about computing, and we help them find better ways to model and perhaps un-
derstand the world. Thus, from the analysis of natural systems, it may be possible to 
identify underlying mechanisms and structures to support a software engineering 
methodology for creating systems with complex behavior.  

Self-organization is a dynamic and adaptive process where components of a system 
acquire and maintain information about their environment and neighbors without ex-
ternal control. A fundamental engineering issue when designing self-organizing emer-
gent multi-agent systems (MASs) is to achieve required macroscopic properties by 
manipulating the microscopic behavior of locally interacting agents.  

Current agent-oriented methodologies are mainly focused on engineering such mi-
croscopic issues as the agents, the rules, the protocols, and their interaction without 
explicit support for engineering the required outcome of the system. As a consequence, 
the required macroscopic behavior is achieved in an ad-hoc manner. The emergence 
property adjustment requires a discrete agent-based model to interface with the con-
tinuous simulation tools and interact with them as they move from towards conver-
gence. 

In contrast to the current state-of-the-art, we propose a bio-inspired approach con-
sisting of a method that allows a systematic specification (i.e., a representation model) 
of desirable macroscopic properties, which can be mapped into the behavior of indi-
vidual agents, followed by development of a system, and the interactive adjustment of 
the required emergent macroscopic properties that need to be achieved. The method is 
bio-inspired since we derived it from earlier experiences in modeling and simulating 
stem cell behavior using self-organizing multi-agent systems [30][43][44]. The method 
advances the state of the art in self-organizing emergent agent systems in three ways. 
First the paper presents some fundamental concepts to indicate why agent-oriented 
software engineering and agent-based simulation fit well in the domain of self-
organizing systems, and why a bio-inspired method and representation model is a 
good choice. The paper then presents the method for guiding the design of self-
organizing emergent agent systems, a meta-model, a representation model and a 
framework to support the verification phase. Then, we also demonstrate how the 
method can be applied by considering a self-organized autonomic and emergent ap-
plication networking case study [41]. We present the conclusions and potential future 
research in section 7. 
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II. Self-Organization: Definitions and Mechanisms  

During the last 5 years, there has been significant research in the field of self-
organization in computer science. Several definitions and mechanisms have been ex-
amined in order to understand how computing can model self-organizing systems and 
how self-organizing systems can empower the computer science. 

Visser et al., 2004 [45] defines self-organization as the evolution of a system into an 
organized form in the absence of an external supervisor, where "A system can be defined 
as a group of interacting agents that is functioning as a whole and distinguishable from its sur-
roundings by its behavior" and "An organization is an arrangement of selected parts so as to 
promote a specific function". 

Serugendo et al., 2005 [35] states that "Self-organization is defined as the mechanism or 
the process enabling a system to change its organization without explicit external command 
during its execution time." Further he defines “Strong self-organizing systems are those sys-
tems where there is no explicit central control either internal or external”; and “Weak self-
organizing systems are those systems where, from an internal point of view, there is re-
organization maybe under an internal (central) control or planning." 

Another definition from Di Marzo Serugendo et al., 2007 is: "Self-organisation is the 
mechanism or the process enabling a system to change its organization without explicit exter-
nal command during its execution time". 

A fascinating self-organizing mechanism can be observed by the straight line of 
ants found in our gardens stretching from food sources to anthills. Taking a closer 
look, we found that this straight line was made from hundreds of individual industri-
ous ants, each behaving energetically. If we next focus on the micro view (from a mod-
eling perspective looking at the individual elements of a system), of an individual ant’s 
behavior, it is very easy to interpret the behavior of the individual as unfocussed and 
chaotic. It is certainly very difficult to interpret its behavior as being purposeful when 
taken in isolation. It is only when we take a step back, and look at the behavior of the 
entire group (called the macro view), that we can observe a purposeful global system 
behavior. The purpose of bringing food back to the ant hill (an emergent function) 
emerges from the cumulative view of the behaviors and interactions of the apparently 
undirected individual. Somehow the sum of the local interactions of each individual, 
each responding only to their local environmental, produces a stable, surviving sys-
tem, even though individual ants get lost or die. 

Here we define self-organization of a system as a dynamic and adaptive process 
where each component of a system acquires and maintains information about its envi-
ronment and neighbors without external control and where the emergent system be-
havior may evolve or change over time. 

Self-organization has three main properties: evolution, emergence and adaptation. 

• Emergence: typically, people describe ‘emergence’ as the phenomenon where 
global behavior arises from the interactions between the components of the sys-
tem. Examples of emergence include: global pheromone paths that arise from lo-
cal path following and pheromone-dropping ants, the swarming movements of a 
flock of birds, and traffic jam from the interactions of cars. 

The essence of emergence is the existence of a global behavior that is novel with re-
spect to the constituent parts of the system. The essence of self-organization is an 
adaptable behavior that autonomously acquires and maintains an increased order for 
the system (i.e. statistical complexity, structure, ...). In most systems that are consid-
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ered in the literature, emergence and self-organization occur together. We call such 
systems “self-organizing emergent” systems. In inherently decentralized and highly 
dynamic problem domains the combination of emergence and self-organization is rec-
ommended [23]. 

Because of the complexity imposed by decentralization and the highly dynamic na-
ture of the problem domain it is usually impossible to impose an initial macroscopic 
structure. The macroscopic behavior arises and organizes autonomously producing 
self-organizing emergent behavior. 

• Adaptation: an adaptive system will self-modify into different system-states in 
order to navigate, function and succeed within different environments. The de-
velopment of self-adaptive systems can be viewed from two perspectives, either 
top-down when considering an individual system, or bottom-up when consider-
ing self-organizing systems. A self-organizing system is expected to cope with 
the presence of perturbations and change autonomously to maintain its organi-
zation. 

• Evolution: evolution is a consequence of emergence and adaptation in self-
organizing systems. Constituent parts or components and behaviors can appear 
and disappear when needed.  

Figure 1 presents the multi-scale self-organization architecture from the micro scale 
local component interactions to the macro scale emergent self-organization. Emergent 
function or properties emerge from micro scale agent interactions in several layers re-
sulting in a complex self-organized system. The emergent function might be a desir-
able behavior or an undesirable behavior (or misbehavior) in that the self-organization 
might emerge to a robust state or a failure state.  

 

Figure 1. The agent-based multilayer self-organization architecture shows the 
emergent fuctions and the self-organization emerged from agents interactions 

through the micro scale to the macro scale. 
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A multi-agent approach contains the definition of entities or components composing a 
system and of the interaction among them. This approach has proven to be appropri-
ate to simulate systems characterized by emergent properties for which basic compo-
nent behaviors are known while analyzing overall phenomena derived from the inter-
actions among them, under particular starting conditions. From this architecture we 
can depict the heterogeneity property where agents can interact with emergent func-
tions being represented by emergent components composed of agents which occur in 
biological systems as cells. In such systems each cell is a self-organized autonomous 
component that emerges from molecular interactions and also interacts not only with 
other cells but with other molecules at the environment level. 

The complexity of self-organizing emergent systems usually arises from our inabil-
ity to reduce the global properties to a combination of local behaviors. Hierarchies are 
present in a system when multiple nested self-organized levels can be observed. Living 
systems accomplish self-organization repeatedly across a vast range of length scales 
through hierarchical organization. Successful biological systems have been able to util-
ize the available (self-assembled) biological components at any particular length scale, 
together with the available forces and transport mechanisms, to develop new and dis-
tinct self-organization processes at a larger length scale. This hierarchical organization 
is evident in the animal kingdom through the assembly of: proteins from amino acids; 
cells from proteins and other macromolecules; tissues and organs from cells; organ-
isms from tissues and organs; social communities of organisms from individual organ-
isms. 

Here we summarize the assumptions related to self-organizing principles for this 
work: 

• Order is emergent rather than pre-determined. 

• A system’s future is, in general, unpredictable. 

• The basic entities of a complex system are agents; 

• The individual agents are not aware either of the larger organization, or its goals 
and needs. Clearly any single agent within the system cannot know the state and 
current behavior of every other agent, and as a result cannot determine its behav-
ior based on such complete global system information. Instead the behaviors of 
agents are governed by rules based on the local environment. 

• Agents are typically comprised of reactive rules that are usually of the form of if 
condition then fire action. For example, a possible rule for an agent might be if 
there’s a space next to me and I am currently too hot then move into an empty 
space. 

• An agent can perceive aspects of its environment and can act so as to change the 
state of the environment. Critically, in a complex system agents must affect the 
environment in such a way that the change in the environment can: 1) be per-
ceived by others; and 2) affect the behavior of others. That is the agents must 
have a reasonable degree of interaction beyond, for instance, simple obstacle 
avoidance in robot vehicle simulations. 

• Agents may be equipped with an ability to adapt and learn rules so as to have a 
more effective way of maximizing their usefulness in given situation. New rules 
would try, for example, to make the agent more able to act effectively in a wider 
variety of environmental situations. 
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• Rules may compete for survival. The more a rule is used in determining behavior 
the greater its chance of surviving in the future. Rules that are seldom or never 
used will have less chance of survival. Rules may change randomly or intention-
ally and may be integrated for more sophisticated action. 

• Agents are resource-bounded and can only perceive (or experience) their local 
environment; 

• A few individuals or agents will not make a sustainable complex system. It is 
only when the number of agents reaches a certain critical threshold that the sys-
tem will exhibit global, meaningful behavior. 

• The information is used though two main mechanisms: trigger-based - event no-
tification; and follow-through - the information being communicated drives the 
agent actions step-by-step. 

III. Self-Organizing System Design Issues and Main Challenges 

As software systems grow in complexity, interconnectedness, and geographic distribu-
tion, we will increasingly face unwanted emergent behavior. Unpredictable software 
systems are hard to debug and hard to manage. We need better tools and methods for 
anticipating, detecting, diagnosing, and ameliorating emergent misbehavior. These 
tools and methods will require research into the causes and nature of emergent misbe-
havior in software systems. 

Emergent behavior can be beneficial, for instance, individual ants are less smart 
than the collection of ants known as an ant colony. But it is not always beneficial. For 
example, stock market panics are a form of unwanted emergent behavior in which the 
irrational behavior of many individual investors makes things worse for everyone. 

The environment can play a key role by constraining a system, and a system needs 
to be able to adapt to these environmental constraints. Hence, we require a better un-
derstanding of the relationship between micro and macro levels in order to build a sys-
tem able to adapt to environmental dynamics. 

Thus, the first main challenge is how to make emergent behavior of a system con-
verge to a pattern or trend, which is the self-organization goal or sub-goals? Under-
standing how such self-organizing components are constrained to carry out the ap-
propriate actions at the right places and times is a key challenge. 

Another main challenge is the need for tools, models and guides to develop such 
systems. What would be an appropriate representation model and what tools are 
needed to support this representation? Are existing ones sufficient? We need a tool to 
observe unpredictable behavior in the face of small perturbation and also a mechanism 
of self-adaptation in a presence of misbehavior. Others have certainly looked at the 
issue of emergent behavior in enterprise systems. For example, the emphasis on self-
management in IBM's autonomic computing vision clearly leads to emergent behavior, 
as pointed out by Kephart and Chess [22], although they focused more on how to en-
courage emergent good behavior, rather than to detect, diagnose, or prevent emergent 
misbehavior. 

As well self-organizing emergent MAS will only be acceptable in an industrial ap-
plication if one can provide guarantees about MAS macroscopic behavior. Thus an im-
portant issue is to measure the self-organization and to validate these systems. A self-
organizing system can be studied from a local or global perspective and more perspec-
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tives can be considered if self-organization spans multiple nested hierarchical levels. In 
all cases measures of self-organization [35] mean observed organizational structure, a 
process that produces and maintains that structure, or a certain function or global goal 
that the system aims to fulfill using self-organization. 

Structure-based measurement focuses on assessing the system structure after it has 
stabilized following a series of changes in self-organization. Measures focusing on the 
self-organization process are related to the system’s dynamics and its evolution over 
time. Finally, measurements focusing on the function that must be delivered by self-
organization are related to how well the self-organizing system is able to fulfill its 
purpose. Therefore, measures in this case concern the characteristics of the problem the 
system is dedicated to solve and are similar to those used for performance assessment 
in classical systems. 

Examples of typical self-organization measures include: capacity to reach an or-
ganization able to fulfill the goal of the system as a whole once the system is started 
(success/failure/time required, convergence); capacity to reach a re-organization after 
a perturbing event (success/failure/time required); degree of decentralized control 
(central/totally decentralized/hybrid); or capacity to withstand perturbations: stabil-
ity/adaptability. 

The global behavior verification of the system consists in determining that the sys-
tem complies with the desired function. The main question is how to determine if a 
certain self-organizing emergent system exhibits the required macroscopic behavior. 
Firm guarantees could be obtained if the system is modeled formally and the required 
macroscopic behavior is proven analytically. However, constructing a formal model 
and correctness proof of a complex interacting computing system is infeasible [9]. In-
teraction models are so powerful that they can be considered to be incomplete, in the 
mathematical sense. One cannot model all possible behavior of an interaction model 
and thus formally proving correctness of interactive models such as self-organizing 
emergent systems is not merely difficult but impossible in general [46]. Therefore, we 
need measurements that represent these self-organizing emergent systems exhibiting 
trends that are predictable; by trend we understand average (system-wide) behavior. 

To sum up, a fundamental problem is the lack of a step-by-step plan that supports 
systematic specifying specification of desirable macroscopic properties, mapping these 
properties onto the behavior of individual agents, building the system, and verifying 
that it has the required macroscopic properties. 

IV. A Bio-inspired Emergent-based Method  

In this section, we motivate the need for a bio-inspired emergent-based method for 
self-organizing multi-agent systems. Not only are biological systems an excellent ap-
plication area for multi-agent systems concepts and development technologies; they 
also inspire models for new software phenomena such as self-adaptation, self-
protection, self-healing, heterogeneity, self-organization, cooperation and coordination 
mechanisms (for instance, see [17][18][19]). By inspiring we mean that it is possible to 
apply the knowledge obtained from the study of biological systems to contribute to 
innovations in the engineering of multi-agent systems. 

Thus, there is a need for a coherent method addressing important self-organizing 
engineering objective as development of novel design concepts, measurement of self-
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organizing systems, development of robust self-organizing engineering systems, and 
effective decomposition of complex self-organizing engineering problems. 

We derived the method proposed here from earlier experiences on modeling and 
simulating stem cell behavior using self-organizing multi-agent systems [30][43][44]. 
During the research on agent-based conceptual model representation we noticed a lack 
of design support in the literature for modeling the micro scale from the macro scale 
and for the design of dynamic adaptive behaviors. We noticed the environment role 
during the developmental process and how the self-organization emergent pattern 
should be observed and evaluated in order to verify the system. 

V. The Method and Representation Model 

We will present our method and representation model for emergent-based self-
organizing multi-agent systems through a self-organized autonomic and emergent ap-
plication network case study. Autonomic computing is an important research area in 
which self-organizing emergent solutions address a specific need. Decentralized auto-
nomic computing in [9] is achieved when a system is constructed as a group of locally 
interacting autonomous entities that cooperate in order to maintain the desired sys-
tem-wide self-star requirements adaptively [17][47]  without any external or central 
control.  

For instance, self-healing emphasizes the requirement to detect, diagnose, and re-
pair problems autonomously to make the system more reliable and available (i.e. fail-
ure dynamics). Self-configuring emphasizes the requirement to handle structural 
changes so that the system configuration or “set-up” occurs autonomously (i.e. setup-
structural dynamics). Self-optimizing requires a system never to settle for the status 
quo but to look continuously for ways to optimize its efficiency and performance by 
autonomously monitoring and tuning the system behavior (i.e. normal dynamics that 
signals to optimize). Self-protection emphasizes the requirement for a system to antici-
pate, detect, identify, and protect against malicious attacks or cascading failures 
autonomously to maintain overall system security and integrity (i.e. malicious dynam-
ics). 

IBM’s approach to autonomic computing typically takes one autonomic manager to 
achieve one self-x requirement. Self-organizing emergent solutions achieve a self-x re-
quirement through the interactive behavior of multiple agents.  

Subsection 5.1 briefly details the application case study to make the paper self-
contained and to support the method and representation model rationale. Subsection 
5.2 presents the method itself. Then subsection 5.3 details the meta-model proposed 
while the subsection 5.4 details the representation model composed of structure repre-
sentation and dynamic representation adapted from UML 2.0. Finally, subsection 5.5 
presents the complete proposed method. 

V.i. The Self-Organized Autonomic and Emergent Application Networking 

In the self-organized autonomic application networking [41], we might have each ap-
plication service and middleware platform modeled as a biological entity, analogous to 
an individual bee in a bee colony. An application service can be designed as an 
autonomous and distributed software agent, which implements a functional service 
and follows simple biological behaviors such as replication, death, migration and en-
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ergy exchange (Fig 2). In that way, agents may implements grid application or Internet 
data center application on a wired network. 

A middleware platform is the environment. It runs on a network host and operates 
agents (application services). Each platform implements a set of runtime services that 
agents use to perform their services and behaviors, and follows biological behaviors 
such as replication, death and energy exchange. Similar to biological entities, agents 
and platforms in our case study store and expend energy for living. Each agent gains 
energy in exchange for performing its service to other agents or human users, and ex-
pends energy to use network and computing resources. Each platform gains energy in 
exchange for providing resources to agents, and continuously evaporates energy to the 
network environments. 

Model agents and platforms follow several rules to determine how much energy 
agents/platforms expend at a time and how often they expend energy. Agents expend 
more energy more often when receiving more energy from users. Platforms expend 
more energy more often when receiving more energy from agents. 

The abundance or scarcity of stored energy affects behaviors of an agent/platform. 
For example, an abundance of stored energy indicates higher demand for the 
agent/platform; thus the agent/platform may be designed to favor replication in re-
sponse to higher energy level. A scarcity of stored energy (an indication of lack of de-
mand) may cause death of the agent/platform. 

Similar to biological systems, the application networking exhibits emerging desir-
able system characteristics such as scalability and adaptation. These characteristics 
emerge from collective behaviors and interactions of agents and platforms, rather than 
being present in any single agent/platform. 

 
Figure 2. The bio-inspired autonomic application network case study, adapted from [41] 

Simulation results show that agents and platforms autonomously scale to rapid de-
mand changes and adapt to dynamic changes in the network (e.g. user location and 
resource availability). In certain circumstances, agents and platforms spontaneously 
cooperate in a symbiotic manner to pursue mutual benefits (i.e. to increase their scal-
ability and adaptability), although each of them is not designed with that purpose in 
mind. 

Agents and platforms are decentralized. There are no central entities to control and 
coordinate agents/platforms (i.e. no directory servers and no resource managers). De-
centralization allows agents/platforms to be scalable and simple by avoiding a single 
point of performance bottleneck and by avoiding any central coordination in develop-
ing deploying agents/platforms. Agents and platforms are autonomous. They monitor 
their local network environments, and based on the monitored environmental condi-
tions, they autonomously behave, and interact without any intervention from/to other 
agents, platforms and human users. They are adaptive to dynamically changing envi-
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ronment conditions or constraints (e.g. user demands, user locations and resource 
availability). Adaptation is achieved through designing agent/platform behavior con-
straints to consider local environment conditions based on global states. For example, 
agents may implement a migration constraint of moving towards a platform that for-
wards a large number of request messages for their services. This results in the adapta-
tion of agent locations, and agents concentrate around the users who request their ser-
vices. Also, platforms may invoke replication and death behaviors when their energy 
levels become over and below thresholds. This results in the adaptation of platform 
population, and platforms adjust resource availability on them against the demands 
for resources. 

Application service behaviors may include: migration, agents may move from one 
platform to another; replication, agents may make a copy of themselves as a result of 
abundance of energy. A replicated (child) agent is placed on the platform, on which its 
parent agent resides, and it receives half the amount of the parent’s energy level; dea-
th, agents may die because of energy starvation. When an agent dies, an underlying 
platform removes the agent from the network and releases all resources allocated to 
that agent. 

Each platform runs on a network host and operates agents. The health level is de-
fined as a function of the age and resource availability on a network host on which the 
platform runs. The age indicates how long a network host remains alive (i.e. the stabil-
ity of a network host). Resource availability indicates the resources (e.g. memory spa-
ce) available for agents and platforms on a network host. Health level affects the be-
haviors of both a platform and agent. For example, a higher health level indicates 
higher stability and higher resource availability on a network host on which the plat-
form resides. Thus, the platform may be designed to replicate itself on a healthier 
neighboring host than on the current local host. This results in the adaptation of plat-
form locations. Platforms work on stable and resource rich network hosts. 

Network platform behaviors may include: replication, platform copying as a result 
of energy abundance (i.e. higher demand for resources available on the platforms), 
providing half the amount of the parent’s energy level to child platform; and death 
where platforms may die because of the lack of energy. A dying platform disconnects 
itself from the network and releases all resources the in use by the platform. Despite 
the death of a platform, an underlying network host remains active so that other plat-
forms can operate on it in the future. 

Runtime services are middleware services that agents and platforms use to perform 
their functions. In order to maximize decentralization and autonomy of a-
gents/platforms, agents only use their local runtime services. Agents are not allowed 
to invoke any runtime services running on a remote platform. 

The factors that constrain the agent migration behavior include: 
• Service request ratio is the ratio of number of service requests on a remote platform 
to the number of service requests on a local platform; this ratio is used to encourage 
agents to move towards the local platform.  
• Health level ratio is the ratio of the health level of a remote host to the health level on 
a local host; this ratio encourages agents to move to platforms running on healthier 
hosts.  
• Migration interval is the interval from the time of a previous migration, which is 
used to discourage agents from migrating too often. If there are multiple neighboring 
platforms to which an agent can migrate, the agent calculates a weighted sum of the 
values if the previous factors for each of the platforms, and migrates to a platform that 
generates the highest weighted sum.  
Agent replication and death behaviors use a factor that evaluates the current energy 
level of an agent. 



 

 10 

The factors affecting platform replication behavior include: 
• Health Level Ratio which is ratio of the health level on a remote host to the health 
level on a local host; this ratio encourages platforms to replicate themselves on a heal-
thier host. 
A replicated (child) platform is placed on a host whose health level is highest among 
neighboring hosts.  

Platform death behavior is a factor that evaluates the current energy level of plat-
form. Each platform does not perform death behavior while an agent(s) runs on the 
platform.  

Each agent/platform incurs energy loss (i.e. behavior cost) to invoke behaviors ex-
cept death behavior. When the energy level of an agent/platform goes over the cost of 
a behavior, the agent/platform decides whether it performs the behavior by calculat-
ing a weighted sum of factor values. 

V.ii. The Method 

The method consists of a meta-model to structure entities, a representation model 
which adapts UML 2 diagrams [48][49][50] to support the mapping between macro 
and micro scale, and a method to support the verification phases. 

 

Figure 3. The Method Rationale 

There are two main activities that must be incorporated into the requirement analysis 
phase: the textual definition of the self-organizing global behavior which might be 
composed of self-organizing mechanisms patterns [52][51], and the description of the 
desired emergent properties that compose the global behavior and associated patterns. 
At this point the software engineer does not know how the local interactions happen 
to make emergent properties arise. However, if the software engineer wants the self-
organizing system to converge, and to verify and optimize the self-organization sys-
tem in an iterative development, than those local activities are critical to the system 
development. 
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In the design phase the analyst models the emergent properties defined in the pre-
vious phase. This modeling consists of: defining the structural entities defined on the 
proposed meta-model presented in the next subsection; and decomposing the emer-
gent properties into local behaviors relative to the self-organizing patterns. During the 
design phase, after the structural definitions, it is also necessary to define the thresh-
olds for the emergent properties. Those thresholds will be based on the constraints 
specified for the global behavior and will be the input for the convergent method dur-
ing the verification phase when the simulation will guide parameter tuning through an 
online search planner. 

Considering the case study, the last subsection described the global behavior to be 
achieved – self-management, adaptation and scalability; and the self-organization pat-
terns that help achieve these goals – replication, migration, death, and energy ex-
change. Next subsections will demonstrate how to perform the related steps. 

V.iii. The Meta-model 

A good procedure (if not the only viable one) for successful deployment of agent tech-
nology is to present the it as an incremental extension of known and trusted methods, 
and to provide powerful engineering tools that support industry-accepted methods of 
technology deployment. Accepted methods of industrial software development de-
pend on standard representations for artifacts to support the analysis, specification, 
and design of agent software. 

Thus, the goal of the meta-model proposed in this paper is to provide a foundation 
for self-organizing agent-based software engineering on top of a known and trusted 
meta-model for software development. Therefore our meta-model was based on the 
UML 2 meta-model. The Unified Modeling Language (UML) has a long history and is 
the result of a standardization effort based on different modeling languages (such as 
Entity-Relationship-Diagrams, the Booch-Notation, OMT, OOSE). The most popular 
versions of UML are UML 1.x, but during the last four years UML 2.0 has been gradu-
ally replacing UML 1.x.   

Some efforts [53] on applying and extending UML 2 to agent-based development 
have been investigated. UML consists of a notation describing:  

1. the syntax of the modeling language and a graphical notation,  
2. and a meta model for the static semantics of UML, but not providing operational 

semantics.  

The method proposed in this paper reuses all the notation and graphical notation in 
UML and extends the UML meta-model in order to provide foundations for the struc-
tural definition of self-organizing multi-agent systems. Before describing the meta-
model proposed, Fig. 4 shows the conceptual model that contains  the new elements in 
the meta-model. 

In this paper, we consider the environment as an explicit part of multi-agent sys-
tems, considering both the environment and the agents as first-order abstractions. The 
rationale for making the environment a first-order abstraction in multi-agent systems 
is presented in [54]. Although this discussion is not directed to self-organizing sys-
tems, we have seen in section 2 the importance of the environment role in self-
organizing systems. In this situation, the environment has a dual role: 

1. it provides the surrounding conditions for agents to exists, which implies that 
the environment is an essential part of every multi-agent system, and  
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the environment provides an exploitable design abstraction to build multi-agent 
system applications [54]. This second role will be explicitly addressed in the dynamic 
representation model presented in the next subsection. 

 

Figure 4. The meta-model conceptual model 

An important issue in self-organizing systems is the global state. The global state is 
composed of the environment state and agent state. The environment state by turn is 
composed of all agent states, since if one agent leaves the environment or moves itself, 
the environment state changes.  If we want to design the global state, we must con-
sider explicitly the environment state in our modeling.   

Moreover, the environment provides the conditions under which agents exist and it 
mediates both the interaction among agents and their access to resources. As well the 
environment is locally observable to agents and if multiple environments exist, an 
agent can only exist in one environment at a time. In self-organizing systems, the envi-
ronment acts autonomously with adaptive behavior just like agents and interacts by 
means of reaction or through the propagation of events. We classify the events as: 

(i) emission: signal an asynchronous interaction among agents and their environ-
ment. Broadcasting can be performed through emissions;  

(ii) trigger: signal a change of agent state as a consequence of a perceived event. For 
instance, an agent can raise a trigger event when perceiving an emission event 
which changed its state;  

(iii) movement: signal an agent movement across the environment;  
(iv) reaction: signal a synchronous interaction among agents, however without ex-

plicit receiver. It can be a neighbor of the agent or the environment;  
(v) communication: signal a message exchange between agents with explicit receiv-

ers (one or more). Each of those events may be raised by actions performed by 
agents or by the environment and updates their states. 
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Figure 5. The meta-model proposed 

Fig. 5 shows the new meta-classes and the new stereotypes that have been proposed. 
The icons that represent the stereotypes are associated with the meta-classes on which 
the stereotypes are based. In UML, a class may be designated as active (i.e., each of its 
instances having its own thread of control) or passive (i.e., each of its instances execut-
ing within the context of some other object) through the Boolean attribute isActive. If 
true, then the owning class is referred to as an active class. If false, then such a class is 
referred to as a passive class. Default value is false. As an active object has a different 
meaning than an agent [28][29] we have defined the adaptive class for classifying 
agents and environments. The next subsection provides more detail about the meta-
classes with the proposed representation model. 

V.iv. The Representation Model 

Agent oriented design is a technique used to separate and encapsulate agent behavior. 
Therefore dynamic models and the interplay that exists between the static and dy-
namic models are very important. A static model cannot be proven accurate without 
associated dynamic models. Dynamic models, on the other hand, do not adequately 
represent considerations of structure and dependency management. Thus, the designer 
must iterate between the two kinds of models to converge on an acceptable solution. 

Static Model 

We propose to reuse the UML Class Diagram to represent the static model presented 
in this paper. A Class Diagram describes both a data model, i.e. collection of declara-
tive (static) model elements, like classes and types, and its contents and relationships. 
Moreover the static structure of the system to be developed and all relevant structure 
dependencies and data types can be modeled with class diagrams. 
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Figure 6. The Adaptive Class definition 

We defined the meta-class Adaptive which must either be stereotyped as agent or envi-
ronment. The Adaptive class holds for all agent common definitions (for instance, see 
[55], MAS-ML [28][29], AUML [27], Anote [21]). It can be either a proactive or reactive 
agent with sensors and effectors. An agent can execute several actions regarding its 
goals or perceptions. As well, the environment has the same features since its autono-
mous behavior mentioned before in this paper. 

We are not addressing in this work the agent local interactions through protocols 
and messages since there has been a huge effort from the agent research community 
about inter-agent communication. For instance, MAS-ML and AUML modeling lan-
guages can be easily combined with the work proposed here for designing interaction 
protocols. 

We have two new structural features, the input and output event, and one new be-
havior feature, the action. The former define the events that the agent or environment 
perceives (input event) and that is a condition for activating an action, and the events 
that they generate (output event) after executing the action.  

An action is executed during agent or environment execution without explicitly be-
ing called by other objects or agents. Agents interact themselves sending and receiving 
messages or sending and receiving events. Regarding objects, an operation can be im-
plemented by a method that can be called by either itself or another object. In our 
model, an operation can be implemented by a method that can be called through ac-
tions execution by the action owner. Moreover, the UML Action meta-class was not 
used to represent agents and environment actions since it does not extend Behavioral-
Feature, so can not be described as a Classifier characteristic. 
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Every action is described specifying preconditions and effects. Like the Operation 
meta-class, the Action meta-class is associated with the Constraints meta-class in order 
to define the pre and post conditions and the in and output events. Constraints are condi-
tions expressed in natural language text or in a machine legible language in order to 
declare an entity’s semantics [48].  

Input and output events vary according to the stereotypes. An output event may be 
the effect of a reaction as a synchronous change in state of the involved agents. The 
effect of the emission event is a change in the places in the environment involved in 
the emission. The trigger is an effect of an agent perception of a certain event in the 
environment. The effect of the trigger event is a change in agent or environment state 
according to what is perceived. The movement event is raised when an action causes a 
change in the agent position in the environment. And a communication event is the 
effect of interaction protocols. The messages exchanged through interaction protocols 
should be FIPA [36] compliant so they can be understood by the receiver agents. 

 

Figure 7. Example: the partial class diagram from case study 

Fig. 7 exemplifies our meta-model by showing the partial class diagram from the auto-
nomic network case study. There you can see the Platform being classified as an envi-
ronment adaptive class, the Application Service being classified as an agent adaptive 
class and their relationships. 

Fig. 8 provides details of the input and output events and actions from the Applica-
tion Service class. For instance, the Store_ernergy() action is executed if the agent trigger 
the store_energy input event is raised by a different action and if this application service 
is not in a high demand state. The high demand state is defined as a pre-condition. The 
Store_ernergy() action will also emit the store_energy output event so it can be triggered 
by the Platform occupied by the agent. The post-condition for this action is that the 
energy of the application service must be increased by ten percent. 

Fig. 9 provides the details of the input and output event and action features from the 
Platform class. For instance, the Replicate_platform() action will be executed if the plat-
form triggers the replicate_platform input event raised from the energy exchange behav-
ior and when the platform is on high demand. In this situation the Replicate_platform() 
action will raise three output events:  

1. replicate_application_service, so all the application services occupying the platform 
will have  the  ability to replicate itself to the new platform spontaneously, which 
means, as soon as they can. The application services might have been executing an 
important service or behavior and might not be able to replicate themselves at the 
time the platform was replicated;  
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2. release_energy, when splitting it; and  

3. release_resource. 

 

Figure 8. The Application Service Agent Class 

 

Figure 9. The Platform Environment Class 

Dynamic Model 

Our dynamic model is based on the UML State Machine diagram (which is basically 
state charts [58]), combined with action and interaction overview diagram [48][49][50]. 
We did not use activity modeling from Activity diagrams. Activity modeling empha-
sizes the sequence and conditions for coordinating lower-level behaviors. These be-
haviors are commonly called control flow and object flow models. The actions coordi-
nated by activity models can be initiated because other actions finish executing, as ob-
jects and data become available, or because events occur external to the flow. They cer-
tainly play a key role in modeling self-organizing systems because they allow the in-
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formation flow modeling to achieve coordination [9]; they can also be used as a com-
plementary design activity. However we need to model the global state, the environ-
ment state. Recall that the macro properties are defined through emergent properties 
which materialize from a set of local and global states during local behaviors. Thus, we 
need to adapt the State Machine Diagram so it can be adequate for our proposal. 

A State Machine Diagram describes discrete behavior modeled through finite state-
transition systems. The sequences of states that an object or an interaction goes 
through during its life in response to events, together with its responses and actions 
can be modeled. State Machine Diagrams are applied for the state descriptions of e.g. 
classifiers, for detailing use cases, for behavior description of interfaces and ports, for 
detailed descriptions of event and signal handling. They describe states (simple, com-
posite, submachine states), transitions, state machine, regions, initial and final states 
and pseudo states. In UML 2.0 interfaces can posses protocol state machines, state en-
try and exit and termination can be formulated and rules for transitions in inherited 
state machines are added and updated. 

UML 2.0 distinguishes behavioral state machines, i.e. state machines can be used to 
specify behavior of various model elements. For example, they can be used to model 
the behavior of individual entities (e.g., class instances). The state machine formalism 
described is an object based variant of Harel state charts; and Protocol State machines, 
i.e. Protocol state machines are used to express usage protocols. Protocol state ma-
chines express the legal transitions that a classifier can trigger. The state machine nota-
tion is a convenient way to define a lifecycle for objects, or an order of the invocation 
of its operation. Protocol state machines do not preclude any specific behavioral im-
plementation and enforce legal usage scenarios of classifiers. 

More specifically, our dynamic model reuses the UML 2 behavioral state machine. 
Each agent and environment behavior is designed using behavioral state machine dia-
grams. Each behavioral state machine diagram can communicate with all the other dia-
grams through a communication channel and the desired emergent property may ap-
pear as a result of those communications. Moreover, behaviors are composed of ac-
tions. Actions are executed through input events and pre-conditions and raise output 
events. 

We need to compose behaviors in parallel. To date, state diagram composition is se-
quential. As well, the self-organizing mechanism may reuse all or part of local behav-
iors. Thus, the new dynamic model representation must be able to encapsulate behav-
iors in such a way that they can be reused. To characterize the macro properties, we 
need to represent the communication of the agents with the environment. Thus we 
need local behaviors communicating with environment behaviors in order to achieve a 
macro behavior or emergent property. Hence the semantics of state-actions models 
proposed by this paper to accomplish those issues is defined by the semantics of state 
diagrams, dynamic overview diagram and descriptions in natural languages. 

 

Figure 10. The abstract state-action representation model for an agent’s behavior 
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Fig. 10 illustrates the abstract state-action representation model for an agent’s behav-
ior. From the diagram top you have to define the instance of the agent for that behav-
ior state. If it was an environment behavior than the agent instance name has to be re-
placed by the environment instance name. Each behavior state diagram must start 
with a transition. The behavior state of the agent (or environment) instance may 
change according to a transition firing (action execution); the transition will only be 
fired if the agent executing the specified behavior is in State 1 and according to the in-
put event received and the evaluated pre-condition, if specified. 

The action executed might also fire an output event and might affect the agent state 
resulting in a post condition definition. In order to identify which entity would per-
ceive the output event in a complex composition behavior, attributes can be defined 
and specified in the transition before the ^ symbol and output event to be perceived by 
the entity (ies). 

 

Figure 11. Abstract view of behavior communication channels and input versus 
output event perceptions. 

Fig. 11 shows how behaviors can communicate through our abstract state-action repre-
sentation model. The Figure shows the abstract view of behavioral communication 
channels and input versus output event perceptions. For instance, an output event 
from the upper left model from State 1 to State 2 (red line) may be perceived as an in-
put event that starts at the bottom left model and takes it to the State 1. The arrows be-
tween behaviors’ state models show how they communicate among themselves and 
whether they perceive an input event or an output event. 

We also placed some extra case study diagrams at the end of this paper (Fig. 16-17). 
There you can find instantiated descriptions about how the behavior communications 
works and how the parallel behavior model is accomplished. While developing the 
models we realized how the emergent properties or self-organization patterns can be 
represented in a meso-scale through the agent and environment behavior communica-
tions. Models can be encapsulated as emergent properties achieving modularity and 
cohesion at that level of abstraction. 
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Figure 12. Emergent Properties decomposed in meso scale behaviors  

In addition, there are several behavior state intersections between emergent properties. 
Through this modeling representation we can easy reuse them and determine how 
they are related with other emergent properties. For instance, in our case study we had 
nine emergent properties related to the modeled self-organizing patterns (migration, 
replication, death, energy exchange and runtime service execution) for either applica-
tion service and platform. And we reused several behaviors from agent behaviors in 
different emergent property models. We also notice the presence of multiple environ-
ment static entities, as shared resources in those models. Fig. 12 illustrates these phe-
nomena and, again, Fig.16-17 shows the case study models for the emergent properties 
desired. 

 

Figure 13. From meso scale to micro scale in self-organizing multi-agent systems  
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Once we have defined the meso scale models, we need to model the micro scale. 
I.e., we need to define the local behaviors of those models. As already mentioned our 
models combine state diagrams with overview interaction diagram. The interaction 
overview diagram plays a key role in this process since we can use it to model for each 
state the local interaction between the state owner and other entities from the system, 
as objects, agents or environment. Hence, we use interaction overview diagrams to de-
fine interactions through a variant of static-action behavior diagrams in a way that 
promotes an overview of the control flow where the nodes are interactions and a link 
between the meso scale to the micro scale. 

V.v. The Verification Method through Convergence 

Definitely, self-organizing emergent MAS will only be acceptable in an industrial ap-
plication if one can give guarantees about their macroscopic behavior. We need to 
measure the self-organization and we need to verify these systems.  A self-organizing 
system can be studied through measurements at either local or global scales and more 
scales can be considered if self-organization spans multiple nested hierarchical levels. 

Examples of typical self-organization measures include:  

• capacity to reach an organization able to fulfill the goal of the system as a whole 
once the system is started (success/failure/time required, convergence);  

• capacity to reach a re-organization after a perturbing event (suc-
cess/failure/time required);  

• degree of decentralized control (central/totally decentralized/hybrid);  

• or capacity to withstand perturbations: stability/adaptability.  
Those measures can also be obtained for our autonomic network case study. 

The global behavior verification of the system consists in determining that the system 
complies with the desired function. The main question is how to know if a certain self-
organizing emergent system exhibits the required macroscopic behavior considering 
that one cannot model all possible behaviors of an interaction model and thus formally 
proving correctness of interactive models such as self-organizing emergent systems 
[9][46]. Therefore, we need measurements that represent these self-organizing emer-
gent systems and exhibit trends (an average system-wide behavior) that are predict-
able. 

Current research [4][5][9] has been discussing configuration or parameter tuning to 
accomplish this task. In the Gardelli approach, if an agent is behaving differently from 
the average–especially for critical actions – we may decide to inspect the agent further 
or deny access to resources. To accomplish this task, simulation parameters are set: ini-
tial number of agents, normal vs. abnormal agent ratio, normal and abnormal agent 
entering rate. Anomaly detection system parameters such as the number and rate of 
inspections are also adjustable. In particular, in this approach we are able to make 
some assumptions about the percentage of abnormal behaving agents, the rate of 
agents entering/leaving the system, and the detection rate. 

DeWolf applied the equation-free approach [9] as the verification technique. In sci-
entific computing research, there exists a whole store of numerical analysis algorithms 
that support the analysis of the system dynamics and which have a mathematical 
foundation. Typically, these are applied to formal equation-based models. The “Equa-
tion-Free Macroscopic Analysis” approach supports the empirical application of these 
analysis algorithms without the need for a formal equation-based model. These tech-
niques result in more valuable and advanced verification results compared to normal 
begin-to-end simulations. These results are supported by dynamical systems theory 
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[56]. The macroscopic equation-based models are replaced with microscopic realistic 
simulations. The analysis algorithms can be seen to steer the simulation process by it-
eratively deciding on which simulations are needed and generating appropriate initial 
conditions, parameter values, etc. 

In both approaches it is necessary to have a manual external observation entity that 
evaluates the results and does parameter tuning. We go further. Let’s have self-
configuration during the verification phase using an intelligent verification tool. 

We consider the DeWolf approach the most appropriate one. Besides being the ear-
liest method proposed, it has been exhaustively demonstrated for self-organizing sys-
tems using agent-based solutions. Therefore we decided to extend it in order to define 
our convergent method. 

Our method consists of having an autonomic computing approach. We encapsulate 
the DeWolf method in an Autonomic Manager [17][47] (Fig. 14). We complement and 
exploit the DeWolf approach by incorporating self-configurators and planners. Online 
Planners [57] are excellent tools for verifying global properties of self-organizing 
multi-agent systems, and indicating how local decisions perturb the system thus 
changing the global behavior. If the planner has the environment initial state, it finds 
an actions sequence that solves the problem goal. We propose to use online planning 
with the Learning Real Time A* algorithm [37]. 

The autonomic manager is responsible for monitoring the autonomic element, ana-
lyzing requirements and adapting the autonomic element so it can fulfill the require-
ments [17]. In our approach, there is one autonomic manager for the self-organizing 
system to be verified, which is represented by the autonomic element, i.e., the man-
aged resource. 

 

Figure 14. Autonomic Convergence Stability through Self-Configuration using 
LRTA* 

The autonomic manager has as requirements the self-organizing goals and emergent 
properties defined previously. The autonomic manager can perceive all the input and 
output events from the agents and environments through the monitor module. To cre-
ate an instance of the autonomic manager, it is necessary to define symmetric actions 
so backward procedures can be performed, provide a domain-based algorithm that 
operates through the flow of control according to the actions, declare the subset of 
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states that characterize a goal or emergent property (for each), and provide the state 
evaluation strategy which is based on trends or allowed average behavior. 

Thus the analysis module has as input the subset of states that characterize a goal or 
emergent property (for each), and the state evaluation strategy. The plan module is 
responsible to plan effectively the system state backward steps so the execution mod-
ule can execute the backward and the system may converge to a desired or optimum 
state. While executing those steps, the autonomic manager keeps the knowledge so it 
can also optimize its behavior. 

Real-time search methods, such as LRTA* [37], have been used to solve a wide vari-
ety of planning problems because they can make decisions fast and still converge to a 
minimum-cost plan if they solve the same planning task repeatedly. It updates the 
heuristic estimate of the current state in each iteration. 

This algorithm works on a search space where every state x has a heuristic estimate 

)(xh of the cost from x  to a goal. It is complete under a set of reasonable assumptions. 

If )(xh is admissible, after a number of trials h(x) converges to their exact values along 

every optimal path. 

The state space is defined as (X, A, c, s, G), where (X, A) is a finite graph, 

): ∞aAc is a cost function that associates each arc with a finite cost, s is the start 

state, and G ⊂  X is the set of goal states. X is a finite set of states, and A ⊂  X ×  X -  

}|),{( Xxxx ∈ is a finite set of arcs. Each arc ),( wv  represents an action whose execu-

tion causes the agent to move from v to w. The state space is undirected: for any action 

(x, y) A∈  there exists its inverse (y; x) A∈ with the same cost c(x, y) = c(y, x). The suc-

cessors of a state x  are )(xSucc  = }),(|{ Xyxy ∈ A path ),...,,,( 210 nxxxx  is a se-

quence of states such that every pair Axx ii ∈
+

),( 1 . The cost of a path is the sum of costs 

of the actions in that path. A heuristic function ),0[: ∞aXh  associates with each 

state x an approximation )(xh  of the cost of a path from x  to a goal. The exact cost 

)(* xh  is the minimum cost to go from x  to a goal h  is admissible iff 

)(*)(, xhxhXx ≤∈∀ . A path ),...,,,( 210 nxxxx   with nixhxh ii ≤≤= 0),(*)(  is opti-

mal.  

 

Figure 15. LRTA* Algorithm, from [38]  
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The LRTA* algorithm works as follows. From the current state x , it performs look 

ahead at depth d , and updates )(xh  to the )}(),(min[),(max{ vhvxkxh + , where v  is a 

frontier state and ),( vxk  is the cost of going from x  to v . Then, it moves to a state y, 

successor of x, with minimum )(),( yhyxc + . This state becomes the current state and 

the process iterates, until a goal state is found. This process is called a trial. If the final 
heuristic estimates of a trial are used to solve the same problem instance, LRTA* im-
proves its performance. Repeating this strategy, LRTA* eventually converges to opti-
mal paths if h is admissible.   

The LRTA* algorithm with lookahead at depth 1 and converging to optimal paths 
(with   admissible) appears in Figure 15. The   and   functions [37], when applied to a 
state  , generate its set of successors and its initial heuristic estimate, respectively. Pro-
cedure LRTA* initializes the heuristic estimate of every state using the function , and 
repeats the execution of LRTA*-trial until convergence (  does not change). At this 
point, an optimal path has been found. 

Procedure LRTA*-trial performs a solving trial on the problem instance. It initializes 
the current state   with the start , and executes the following loop until finding a goal. 
First, it performs look ahead from   at depth 1, updating its heuristic estimate accord-
ingly (call to function LookaheadUpdate1). Second, it selects state y of   with minimum 
value of   as next state (breaking ties randomly). Third, it executes an action that passes 
from x to y. At this point, y is the new current state and the loop iterates. Note that the 
heuristic estimators computed in a trial are used as initial values in the next trial. 

Function LookaheadUpdate1 performs look ahead from   at depth 1, and updates   if 
it is lower than the minimum cost of moving from x to one of its successors y plus its 
heuristic estimate . It returns true if   changes, otherwise it returns false. In a state 
space like the one assumed here (finite, positive costs, finite heuristic estimates) where 
from every state there is a path to a goal it has been proved that LRTA* is complete. In 
addition, if h is admissible, over repeated trials the heuristic estimates eventually con-
verge to their exact values along every optimal path [37]. 

Some recent work [38][39] has been proposed with new algorithms to produce bet-
ter solutions in the first trial and converge faster when compared with other state-of-
the-art algorithms on classical benchmarks for real-time search. They provide experi-
mental evidence of the improvement in performance of new versions, at the extra cost 
of longer planning steps. 

How to use the autonomic convergence method 

To summarize, it is necessary to accomplish three steps: 
1. Define the internal and external actions. The internal actions are the actions of the 

agents and the environment. The external actions are the input for the system. Consid-
ering our autonomic network case study, for each biology inspired behavior such as 
replication, death, migration and exchange energy there would be necessarily a corre-
sponding reversing action so the systems can be run backwards. For example, the rep-
lication action would have a corresponding death action for the application service or 
platform that was replicated. 

2. Define the goals. The goals are the macro properties and the emergent properties. 
The goals must at least match a subset of states of the system 

3. Define the state evaluation. The state evaluation will analyze all the global states 
already reached and will verify which subset of the states matches the set of thresholds 
for the macro properties that represents the desired behavior. 
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Regarding the LRTA* algorithm, the optimal paths are the set of states being evaluated 
and the cost of each action can be incremented and decremented based on whether 
positive or negative energy is exchanged in the autonomic network case study. 

Discussion 

Our first evaluation on the convergent method proposed in this paper was using the 
Plansin open source framework [40]. This framework incorporates a search engine that 
may use several different strategies, and defines a structure that facilitates the con-
struction of automated planners based on heuristic forward search that use discrete 
event simulators as the model for the process to be planned. Besides it already pro-
vides several different search strategies, including the LRTA* algorithm. 

We planned to reuse Plansin when developing the autonomic convergence tool. 
However because of functionality constraints (Plansin considers the simulator as a 
black-box entity, but as we are dealing with hierarchies it did not completely fit our 
needs), we are currently developing the autonomic convergence tool addressing the 
method rationale described here and we will evaluate it against the case study pre-
sented and other cases studies in current development. The last section provides fur-
ther details about this discussion and related work. 

VI. Representations and Related Work for Self-Organizing 
Systems 

This section presents the state of the art regarding agent-oriented methodologies and 
self-organization not necessarily agent-based methodology. We argue why they fall 
short on addressing current self-organizing engineering challenges or why our ap-
proach fulfills them better or in a complementary way. 

Agent-based not-related to self-organization 

Current agent-oriented methodologies focus on engineering microscopic issues [20] 
e.g. the agents, their rules, action-selection, knowledge-representation, how they inter-
act, protocols, organizations, norms, etc. As argued in [25], most current approaches to 
agent-oriented software engineering mainly disregard the macro scale issues and focus 
on development of small-size MASs (micro), and on the definition of suitable models, 
methodologies, and tools for these kinds of systems.  Examples include: Gaia v.2 [26], 
Anote [21], MaSE [24], and Tropos. 

We have used MAS-ML [28][29] for modeling self-organizing stem cells [30]. Again, 
MAS-ML is mainly focused on micro-scale issues. We tried it first because we were at-
tracted by the existing organization concept in MAS-ML. Although it was very easy to 
model the organizational entities, and its interactions parts as proteins and cells, we 
could not model the emergent self-organized behavior. It was difficult to verify the 
system and adapting it would be a significant effort, as it would be necessary to adapt 
the conceptual framework TAO [31] on which MAS-ML is based. Also the implemen-
tation solution from the models had an undesired overhead CPU since it was not made 
regarding self-organizing systems. 

The Agent Unified Modeling Language (AUML) [27] is a graphical modeling lan-
guage that is being standardized by the Foundation for Intelligent Physical Agents 
(FIPA [36]) Modeling Technical Committee. AUML was proposed as an extension of 
the Unified Modeling Language (UML). In AUML, the agent–oriented organization 
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defines a range of elements and notations as a requirements specification for domain 
modeling. It aims to provide a model and an internal architecture of an agent system. 
It provides a specialized abstract view of modeling (class, use-case, diagram, interface 
etc.). AUML use cases capture goal-oriented interactions between agents with speci-
fied roles in the software system. The agent class also defines the capabilities of that 
agent in the organization, the perceptions of the environment, which basically are the 
sensors, the protocols on which the agent interacts with other agents, and the set of 
organizations where the agent plays the roles with their constraints. Currently, there is 
no mechanism that allows the design of macro properties in AUML and no method for 
specifying self-organizing systems. We tried to use AUML in our experiments and it 
did not satisfy our self-organizing concerns regarding the engineering issues raised on 
section 3. 

ADELFE [32] is a methodology devoted to software engineering of adaptive multi-
agents. They define self-organization as the capacity of an agent to be locally “coopera-
tive.” This does not mean that it is always helping the other agents or that it is altruis-
tic, but only that it is able to recognize cooperation failures called “Non Cooperative 
Situations” (NCS, which could be related to exceptions in classical programs) and to 
treat them. They argue that even if all the behaviors of the cooperative agents are given 
(agent model + NCS model), the MAS as a whole can adapt itself because the interac-
tions are not a priori coded. Changing the interactions between agents (self-
organization) changes the global function of the system and, then, allows the “strong 
adaptation” of the MAS. 

First, the ADELFE approach simplified the concept of self-organization to coopera-
tion. Second they do not address macro properties. They address non cooperative be-
haviors designed at local or agent level. Hence the approach does not allow us to de-
sign the self-organization patterns or emergent properties. In their model, the agent 
reasons about the emergent behavior. In self-organizing systems the local parts are not 
aware of the self-organizing emergent pattern as already discussed in section 2. 

Hence, we can conclude that there is no explicit support for engineering macro-
scopic behavior in existing agent-oriented methodologies. Micro-scale issues are im-
portant, but for self-organizing emergent MAS it is necessary to deal explicitly with 
macro-scale issues. 

Related self-organizing system research 

Little work related to engineering self-organizing systems has appeared in the litera-
ture in the last five years. Joint work conducted in a technical forum within the Agen-
tLink III NoE framework elaborated on issues concerning self-organization and emer-
gence in multi-agent systems (MAS) and frameworks to describe self-organizing sys-
tems [35] . 

The framework proposed is composed of the following six parts: the system de-
scription, the environment description, the perturbations coming from the environ-
ment, the entity description, the interaction description, and the self-organization en-
gine. Although the framework proposed indicates the order of what should be done, it 
does not provide an approach to modeling; there is no indication of any method, rep-
resentative model or specific methodology or language. 

Van Parunak and Bruckner proposed a design guide for swarming systems engi-
neering  [33] consisting of ten design principles: the four first are derived from coupled 
processes (interactions through information’s exchange coupled agents or processes) 
the next three are derived from autocatalysis and the final three last are derived from 
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functional adjustment (the self-organizing system must produce functions that are use-
ful to the system’s stakeholders). Even if swarming systems have demonstrated their 
effectiveness as an alternative model of cognition and have been applied to number of 
applications, this approach is not very easy to apply because of the huge number of 
parameters to tune. The ten given principles are very general and no associated tools 
exist. No guide is given to indicate if the use of swarming systems is more relevant 
than conventional cognitive techniques for designing the current application or prob-
lem. No representation model is given which helps to map the design from micro scale 
to macro scale. No verification method is proposed. 

Luca Gardelli [1][4][5][6] proposed a meta-model and a methodological approach 
for engineering self-organizing multi-agent systems. The meta-model is based on 
stigmergy (indirect communication where individual parts communicate with one an-
other only by modifying their local environment). Artifacts are first-class entities rep-
resenting the environment which mediates agent interaction and enables emergent co-
ordination: as such, they encapsulate and enact the stigmergic mechanisms (diffusion, 
aggregation, selection, …) and the shared knowledge upon which emergent coordina-
tion processes are based. He developed the engineering framework on top of the TuC-
SoN agent coordination infrastructure. Gardelli’s approach is not a complete method-
ology, rather a collection of best practices to initiate the early design. It is composed of 
three phases: a) modeling, look for the desired global behavior among the self-
organization pattern catalogue and model the strategy; b) simulation,  preview the dy-
namics of the abstract models to see if emergent properties actually happen - models 
are expressed in a formal language (Pi-Calculus [5]) able to describe stochastic phe-
nomena; c) tuning, tune the model and related parameters to obtain the specific re-
quired behavior and evaluate feasibility – they can detect abnormal behaving agents 
through analysis of the distribution of their actions. For instance, if an agent is behav-
ing “differently” from the average, especially for critical actions – we may decide to 
further inspect the agent or deny access to resources. Although the use of formal tools 
allow us to gain a deeper insight in emergence and self-organization, there is a general 
belief and proof that emergent systems can not be specified formally [34]. There is also 
a gap between the emergent (macro) properties defined through self-organizing design 
patterns to the model itself. The meta-model allows the design of one scale. Hence if 
we have a multi-scale self-organizing system, we won’t be able to design those cross-
scales and hierarchies.  

De Wolf [34] has defined a full life-cycle methodology based on the Unified Process 
customized to explicitly focus on engineering macroscopic behavior of such kind of 
systems. This customization takes place in the following steps of the process: 

-After the requirements analysis is completed, one checks if an autonomous behav-
ior is needed, if the available information is distributed, if the system is subject to high 
dynamics such as failures and frequent changes; 

- In the design phase, general guidelines or principles, reference architectures, de-
centralized mechanisms allowing coordination between agents to achieved desirable 
macroscopic properties, have to be used to design self-organizing emergent MAS. In 
that sense, [34] proposes an initial catalogue including the most widely used coordina-
tion mechanisms such as digital pheromones, gradient fields, market based coordina-
tion, and tag based coordination. Furthermore, he proposes "Information flow" as a 
design abstraction (by extending the UML 2.0 Activity Diagram) which enables de-
signing a solution independent of the coordination mechanism. 
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- In the verification and testing phase, he combines agent-based simulations with 
scientific numerical algorithms for dynamical system design.  

Although DeWolf proposes a design approach we find two main problems as a suf-
ficient design abstraction for self-organizing multi-agent systems. First, a very complex 
system would require very complex information flows at the macro scale. DeWolf does 
not propose any way to modularize, compose or even reuse the models which makes 
the design approach hard to understand. As well the macroscopic information flows 
are based on information not states. However, the macro properties are usually related 
to an optimum or desired system state or to avoid undesired system misbehavior.  

Regarding the verification and testing phase, DeWolf proposed three analysis algo-
rithms to use in his research [9]: projective integration, Newton-based steady state de-
termination, and bifurcation analysis. The projective integration algorithm aims at a 
considerable acceleration over time by minimizing the number of needed simulation 
steps through extrapolation. Simulations can be accelerated in other ways. Suppose the 
goal is to obtain the steady state behavior, i.e. we look for values of the macroscopic 
variables that remain constant as time evolves. One such numerical algorithm is New-
ton’s algorithm. Then the cycle is repeated until the conditions and thresholds of the 
Newton algorithm decide to have reached a steady state. This results in finding steady 
states for every value of a given parameter, their stability, and a corresponding bifur-
cation diagram with respect to the parameter. A bifurcation analysis algorithm allows 
analyzing the quantitative and qualitative changes in the behavior of the system as a 
result of a changing parameter. In mathematics, particularly in dynamical systems, a 
bifurcation diagram shows the possible long-term values (equilibrium/ fixed points or 
periodic orbits) of a system as a function of a bifurcation parameter in the system. It is 
usual to represent stable solutions with a solid line and unstable solutions with a dot-
ted line. We however proposed to use the LRTA* and its improved version rather than 
these three analysis algorithms, and we proposed to use an autonomic convergence 
using that algorithm (and improved versions one) to achieve self-configuration. 

VII. Conclusions and Future Work 

In contrast with current agent-oriented methodologies, which mainly focused on engi-
neering such microscopic issues as the agents, the rules, the protocols, and their inter-
action, our focus in on explicit support for engineering the required outcome of the 
system and the adjustment of the emergence properties towards convergence. The no-
vel emergence property adjustment requires a discrete agent-based model to interface 
with the continuous simulation tools and interact with them as they move from to-
wards convergence. 

We proposed a bio-inspired approach consisting of a method that allows a system-
atic specification (i.e., a representation model) of desirable macroscopic properties, 
which can be mapped into the behavior of individual agents, followed by develop-
ment of a system, and the interactive adjustment of the required emergent macroscopic 
properties that need to be achieved. The bio-inspired method and representation 
model is used for engineering self-organizing emergent multi-agents systems. From 
the bio-inspired point of view, agents can interact with emergent functions being rep-
resented by emergent components composed of agents as exist in biological systems as 
cells. Each cell is a self-organized autonomous component that emerges from molecu-
lar interactions and also interacts not only with other cells but with other molecules at 
the environment level. 
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Regarding the representation model, we proposed a multiple scale design from 
macro to micro properties. To accomplish this design we proposed an UML-based 
meta-model on which we put forward the environment as an explicit part of the multi-
agent system, considering both the environment and the agents as a first-order abstrac-
tions. We used this assumption because we believe that the global state is composed of 
the environment state and agent state together. We added new meta-classes and the 
new stereotypes to the UML meta-model. 

We also described the static and dynamic representation model. Our dynamic 
model reuses the UML 2 behavioral state machines. Agents and environment behav-
iors can be decomposed and each of them has a communication channel in order to 
produce an agent state with the desired overall robust performance. Moreover, behav-
iors are composed of actions. Actions are executed through input events and pre con-
ditions and raise output events. All those abstractions were created in order to achieve 
behavior composition through parallel behaviors.  

We represented the emergent properties or self-organization patters at a meso-scale 
through the agent and environment behavior communications. In our approach, the 
models can be encapsulated as emergent properties achieving modularity and cohe-
sion at that level of abstraction. In addition, behaviors’ state intersections between 
emergent properties can be easily identified through our approach. The modeling rep-
resentation can help support further research on how to modularize aspects of emer-
gent properties, as well as on how to reuse or combine them.  In addition, we proposed 
to use interaction overview diagrams to define interactions through a variant of static-
action behavior diagrams in a way that provides an overview of the control flow 
where the nodes are interactions and a link between the meso-scale and the micro 
scale. 

To complement the engineering method for self-organizing systems we proposed 
an autonomic convergence method. We aim to know if a certain self-organizing emer-
gent system exhibits the required macroscopic behavior. Our method consists of hav-
ing an autonomic computing approach. We encapsulate the DeWolf method in, what 
we call, Autonomic Stability. We complement and exploit his approach incorporating 
self-configuration and planners. We argued that online planners are excellent tools for 
converging global properties of self-organizing multi-agent systems, and pointing up 
how local decisions perturb the system changing the global behavior. An important 
contribution to this paper also is that through the autonomic network case study, we 
concluded that engineering self-organizing multi-agent systems through the method 
proposed helps with engineering of autonomic computing systems. 

We are still conducting several proofs of concept studies on the enabling technolo-
gies needed to realize the method presented in this paper. One of them is in the context 
of the stem cell project [30][43][44]. We are modeling and simulating stem cell behavior 
as self-organizing multi-agent systems in order to support the therapy in vitro process. 
We also need to develop the full distributed and multi-scale autonomic convergence 
tool addressing the method rationale described and apply it to the stem cell project. To 
date, we have done some proof of concepts only at one scale. In addition, we want to 
do some experiments with at least two of the available improved algorithms already 
proposed in the literature for Learning Real-Time A* 
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Figure 16. The Replication Pattern for the Application Service 
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Figure 17. The Replication Pattern for the Platform 
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Figure 18. The Migrating Pattern for the Application Service 

 


