

PUC

ISSN 0103-9741

Monografias em Ciência da Computação

n° 22/08

Incorporation of Dependability Concerns in the
Specification of Multi-Agent Interactions by

Using a Law Approach

Rodrigo de Barros Paes

Carlos José Pereira de Lucena

Gustavo Robichez de Carvalho

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 22/08 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena April, 2008

Incorporation of Dependability Concerns in the
Specification of Multi-Agent Interactions by Using a

Law Approach *

Rodrigo de Barros Paes, Carlos José Pereira de Lucena, Gustavo Robichez de
Carvalho

{rbp,lucena,guga}@inf.puc-rio.br

Abstract. There has been a considerable amount of research using the notion of inter-
action laws to define the expected behavior of an open multi-agent system. In open
multi-agent systems, there is little or no control over the behavior of the agents. In this
paper we introduce laws as a way to support system structuring for fault tolerance.
The idea is that mediators can provide very powerful means for detecting problems
and allow for flexible recovery after they have been detected. The detection strategies
are specified through the laws. We also discuss how some dependability attributes can
be incorporated into the law specification and present the specification of two fault-
tolerance techniques to illustrate our approach.

Keywords: Multiagent systems, Dependability, Interaction Laws, Governance.

Resumo. Tem havido um grande número de trabalhos de pesquisa que utilizam a no-
ção de leis de interação para definir o comportamento esperado de um sistema multi-
agente aberto. Em sistemas multi-agentes abertos existe pouco ou mesmo nenhum con-
trole sobre o comportamento dos agentes. Neste artigo, introduz-se leis como uma téc-
nica de tolerância a faltas. Os mediadores presentes em abordagens baseadas em leis
podem ser considerados como um mecanismo poderoso para auxiliar na detecção de
problemas e permitir a especificação de comportamentos flexíveis para a recuperação
do sistema uma vez que um problema tenha sido detectado. As estratégias de detecção
de problemas são especificadas através de leis. Neste artigo, também se discute como
alguns atributos de fidedignidade podem ser incorporados a especificação de uma lei.
Por fim, como exemplo, mostra-se a especificação de duas técnicas de tolerâncias a fal-
tas utilizando a abordagem proposta.

Palavras-chave: Sistemas Multi-Agentes, Dependability, Leis de Interação, Governan-
ça.

* This work has been sponsored by the Ministério de Ciência e Tecnologia da Presidência da Repúbli-
ca Federativa do Brasil

i

In charge of publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br

1

1 Introduction

There has been a considerable amount of research using the notion of interaction laws
to define the expected behavior of an open multi-agent system. In open multi-agent
systems, there is little or no control over the behavior of the agents. The internal im-
plementation and architecture of agents usually are inaccessible, and different teams
may have developed them but with no coordination between them. Such systems have
to define behavioral rules that state what and when actions must take place. Research
into interaction laws deals with this problem by explicitly specifying such rules and by
providing mechanisms that check if the actual interactions conform to the specification
at runtime. The mechanisms usually are implemented by either a central mediator
[1][3] or by a decentralized community of mediators [2]. These mediators perform the
active role of monitoring the interaction among the agents and interpreting the laws to
verify if the actual system behavior is in conformance with the specifications.

In this paper we go beyond these initial ideas and introduce laws as a way to support
system structuring for fault tolerance. The idea is that these mediators can provide
very powerful means for detecting problems and allow for flexible recovery after they
have been detected. The detection strategies are specified through the laws. Thus, we
discuss how some dependability attributes can be incorporated into the law specifica-
tion and present the specification of two fault-tolerance techniques to illustrate our ap-
proach.

This paper is organized as follows. In Section 2 we present a flexible Law-Governed
approach called XMLaw. We use this approach throughout the examples given in this
paper. Section 3 discusses how dependability concerns can be interpreted from the law
specification point of view. Section 4 shows a case study where we have specified the
laws to cope with dependability concerns. In Section 5 we precisely relate our research
to previous work, explaining the novelty of the incorporation of dependability con-
cerns in law specifications. Finally, in Section 6, we present some discussions about
this and future work.

2 XMLaw: An Interaction Law Approach

Law-governed architectures are designed to guarantee that the specifications of open
systems will be obeyed. The core of a law-governed approach is the mechanism used
by the mediators to monitor the conversations between components. M-Law [3][1] is a
middleware that provides a communication component, or mediator, for enforcing in-
teraction laws. M-Law was designed to allow extensibility in order to fulfill open sys-
tem requirements or interoperability concerns.

The middleware was built to support law specification using XMLaw [4][5]. XMLaw is
used to represent the interaction rules of an open system specification. For readability
purposes the codes written in XMLaw presented in this paper use a simplified syntax
that is more compact than the one used in early XMLaw publications. These rules are
interpreted by the M-Law mediator that, at runtime, analyzes the compliance of agents
with interaction laws specifications. A law specification is a description of law ele-
ments which are interrelated in a way that it is possible to specify interaction protocols

2

using time restrictions, norms, or even time sensitive norms. XMLaw follows an event-
driven approach, i.e., law elements communicate by the exchange of events.

The XMLaw conceptual model (Fig. 1), or meta-model, uses the abstraction of Scenes
to help organize interactions. The idea of scenes is similar to the one in theater plays,
where actors play a role according to well defined scripts and the whole play is com-
posed of many connected scenes. Scenes are composed of Protocols, Constraints,
Clocks and Norms. It means that these four elements share a common interaction con-
text through the scenes. Since protocols define the interaction among the agents, dif-
ferent protocols should be specified in different scenes.

Law

Action

Norm

Clock

n

Scene

n

n

n

n

n

n

Agent

Protocol

1

1

-creator

State

Transition

-currentStatesn

-from

-outgoingTransitions

n

-toState

-requires

n

Constraint

n

Role

-participant

Message

-sender

nn

-receiver

-initialState 1

Fig. 1. XMLaw metamodel

Statically, an interaction protocol defines the set of states and transitions (activated by
messages or any other kind of event) allowed for agents in an open system. Norms are
jointly used with the protocol specification, constraints, actions and also temporal ele-
ments, to provide a dynamic configuration for the allowed behavior of agents in an
open system. The mediator keeps information about all data regarding system execu-
tion, such as the set of activated and deactivated enforcement elements.

Laws may be time sensitive, e.g., although an element may be active at time t1, it may
not be at time t2 (t1 < t2). XMLaw provides the Clock element to take care of the timing
aspect. Clocks are used to indicate that a certain period has elapsed. They are activated
and deactivated by law elements and, once active, they produce clock-tick events. In
other words, a clock represents time restrictions or controls and they can be used to
activate other law elements.

2.1 Norms

A Norm [4][5] is an element used to enable or disable agents' conversation paths. For
instance, a norm can forbid an agent to interact in a negotiation scene. There are three
types of norms with different semantics in XMLaw: obligations, permissions and pro-
hibitions. The obligation norm defines a commitment that software agents acquire
while interacting with other entities. For instance, the winner of an auction is obligated
to pay the committed value and this commitment might contain some penalties to
avoid breaking this rule. The permission norm defines the rights of a software agent at
a given moment, e.g. the winner of an auction has permission to interact with a bank

3

provider through a payment protocol. Finally, the prohibition norm defines forbidden
actions of a software agent at a given moment; for instance, if an agent does not pay its
debts, it will not be allowed future participation in a scene.

The structures of the Permission (Table 1), Obligation and Prohibition elements are
equal. Each type of norm contains activation and deactivation conditions. In Table 1,
an assembler will receive the permission upon logging in to the scene (scene activation
event called negotiation) and will lose the permission after issuing an order (event or-
derTransition). Furthermore, norms define the agent role that owns it through the sec-
ond parameter. In Table Table 1, the assembler agent ($assembler) will receive the
permission. Constraints and actions also can be associated with norms, but these ele-
ments will be explained later in Sections 2.2 and 2.3. Norms also generate activation
and deactivation events. For instance, as a consequence of the relationship between
norms and transitions, it is possible to specify which norms must be made active or
deactivated for firing a transition. In this sense, a transition only could fire if the
sender agent has a specific norm.

// norm definition

01: assemblerPermissionRFQ{permission, $assembler, (negotiation), (orderTransition)

// constraint declared in the context of the norm

02: checkCounter{br.pucrio.CounterLimit}

// actions declared in the context of the norm

03: permissionRenew{(nextDay), br.pucrio.ZeroCounter}

04: rfqTransition{(rfqTransition), br.pucrio.RFQCounter}

05: } //end norm definition

Table 1. XMLaw specification of the permission structure

2.2 Constraints

A constraint [4][5] is a restriction over norms or transitions and, generally, it specifies
filters for events, constraining the allowed values for a specific attribute of an event.
For instance, messages carry information that is enforced in various ways. A message
pattern enforces the message structure fields. A message pattern does not describe
what are the allowed values for specific attributes, but constraints can be used for this
purpose. In this way, developers are free to build constraints that are as complex as
needed for their applications.

Constraints are defined inside Scene (Table 2) or Norm (Table 1) elements. Constraints
are implemented using Java code. The Constraint element defines the class attribute
that indicates the Java class that implements the filter. This class is called when a tran-
sition or a norm is supposed to fire, and basically the constraint analyzes if the mes-
sage values or any other events' attributes are valid. Table 2 shows a constraint that
verifies if the date expressed in a message is valid; if it is not, the message will be
blocked. In Table 1, a constraint is used to verify the number of messages that the

4

agent has sent until now; if it has been exceeded, the permission is no longer valid.

01: negotiation{

...

09: t1{s1->s2, rfqMsg, [checkDueDate]}

...

14: checkDueDate{br.pucrio.ValidDate}

...

20:} // end scene

Table 2. Constraint checkDueDate used by a transition

2.3 Actions

An action is a domain-specific Java code that runs integrated with XMLaw specifica-
tions. Actions can be used to plug services into the mediator. For instance, the media-
tor can call a debit service from a bank agent to automatically charge the purchase of
an item during a negotiation. In this case, we specify in the XMLaw that there is a class
that is able to perform the debit. In XMLaw, an action can be defined in three different
scopes: Law, Scene and Norms.

Since actions are also XMLaw elements, they can be activated by any event, such as a
transition activation, a norm activation and even an action activation. The action struc-
ture is showed in the example of Table 1 at lines 03 and 04 (in this example: a norm
action). The class attribute of an Action specifies the Java class in charge of the func-
tionality implementation. The first parameter references the events that activate this
action and as many events as needed can be defined to trigger an action.

2.4 XMLaw for Dependability

The flexibility achieved by using the event-driven approach at a high-level of abstrac-
tion is not present in the other high level approaches [6][7]. The advantages claimed in
favor of the use of events as a modeling element are also present in LGI [2], however at
a low level of abstraction. A flexible underlying event-based model as presented in
XMLaw can allow conceptual models for governance to be more prepared to accom-
modate changes. This is specially needed when we consider using the law-approach to
deal with new concerns not considered in its original specification, such as depend-
ability. For this reason, we have used XMLaw to specify and implement our case stud-
ies..

3 Laws and Dependability

Dependability of a system can be defined as the ability to avoid service failures that are
more frequent and more severe than is acceptable [8]. Dependability is an integrating
concept that encompasses the following attributes [8]:

5

• availability: readiness for correct service.

• reliability: continuity of correct service.

• safety: absence of catastrophic consequences on the user(s) and the environ-
ment.

• integrity: absence of improper system alterations.

• maintainability: ability to undergo modifications and repairs.

Many means have been developed to attain the various attributes of dependability,
namely:

• Fault prevention: means to prevent the occurrence or introduction of faults.

• Fault tolerance: means to avoid service failures in the presence of faults.

• Fault removal: means to reduce the number and severity of faults.

• Fault forecasting: means to estimate the present number, the future incidence
and the likely consequences of faults.

The XMLaw approach was structured in such a way that we can discuss how to incor-
porate these means into the law specification. The main benefit of doing this is to reuse
the infrastructure of laws (the mediator and the language) to explicitly specify strate-
gies to achieve dependability. As follows, we discuss how the means can be inter-
preted from the law point of view.

Fault prevention - Prevention of development faults is an aim for software develop-
ment methodologies (e.g., information hiding, modularization, use of strongly-typed
programming languages). Improvement of development processes in order to reduce
the number of faults introduced in the produced systems is a step further in that it is
based on the recording of faults in the products and the elimination of the causes of the
faults via process modifications [8]. One of the problems that leads to faults is an ill-
defined or ambiguous requirement specification. The law specification is in fact a pre-
cise specification of the expected behavior of the system as a whole. This specification
can be used to (i) guide the development of the individual agents that compose a sys-
tem; (ii) guide the development of test scripts concerning the integration among the
agents; (iii) and to act as execution assertions at execution time. All of these factors can
be integrated into an already existing development process. For example, activities of a
development process can include: specification of use cases, specification of interaction
laws, development of agents, agents test using the laws, and so on. Moreover, a well
structured and extensively used law also can prevent systems from service failure. In
[9][10][11], XMLaw was used to implement frameworks of laws. The idea is to prevent
faults using the same law in many different application instances, in a way similar to
object oriented frameworks.

Fault tolerance - Fault tolerance techniques basically are composed of two phases: er-
ror detection and error recovery. The mediators used in the law-governed approaches
can provide immense support for detecting erroneous situations. We adopted the defi-
nition of error from [8], where an error is defined as the part of the total state of the
system that may lead to its subsequent service failure.

6

Usually, the mediators are implemented as a middleware that intercepts the desired
communication among the agents and acts according to the law specification. Subse-
quently, it is possible to write laws that are concerned with the detection of errors. For
example, in XMLaw some possible sources of faults can be:

• The law specification itself that may not represent how the system is expected
to behave: i.e., the developer wrote a wrong law. Consequently, this law can
lead to a service failure, or failure for short.

• In XMLaw it is possible to specify external java components (actions and con-
straints) that will be invoked when required by the law. However, these com-
ponents can contain programming faults, which can lead to failures.

• The interaction among the agents does not occur the way it has been specified
in the law. In some cases, the non-conformance with the laws can mean an er-
ror situation generated by some agent fault. The laws can be used to detect and
to specify strategies to deal with such situations. The XMLaw provides a set of
events that can be listened to detect error situations, such as: (i) mes-
sage_not_compliant. This event occurs when the mediator receives a message
from the agent that does not match the expected message; (ii) con-
straint_not_satisfied. This event occurs when a constraint does not allow a cer-
tain interaction; (iii) agents trying to enter in scene where they do not have
permission to enter; (iv) when a clock generates a clock_tick event it may mean
that a certain agent that was supposed to send a message is not available.

Besides, the error detection situations discussed above, it also is possible to establish
recovery strategies by performing error handling or fault handling. The case study
presented in Section 4 shows examples of some recovery strategies implemented using
the laws.

Fault removal - Some examples of fault removal techniques are inspections, model
checking and testing. In [12], we have presented a test case based approach and an ar-
chitecture to generate test reports by using XMLaw. Since the laws specify the ex-
pected behavior of the whole system, similar to mock objects [13], the idea is to write
mock agents that implement the behavior needed by the test cases. In this manner, the
developer can test the real agents while interacting with the mock agents.

Fault forecasting - Fault forecasting mainly aims at identifying, classifying and rank-
ing the events that would lead to systems failures. In [14], XMLaw was applied to
identify the criticality of agents at runtime. When an agent becomes too critical, in or-
der to prevent the system from service unavailability, the laws specify actions that in-
voke a replication mechanism to create replicas of the most critical agents.

As discussed above, the laws and the mediator architecture can provide a suitable
method of incorporating dependability concerns. Although we have discussed many
attributes of dependability, in the next section we narrow the focus of the discussion
and present a sales system example to discuss reliability issues. The idea is to show
that the law specification can incorporate fault-tolerance techniques in order to sup-
port the system in the continuity of correct service.

7

4 Implementing Fault Tolerance Strategies

In this section, we show how designers can use the laws to incorporate dependability
concerns to the specification of laws. We present a case study based on the sales con-
trol system presented in [15], and show how we implemented the requirements of this
system. More specifically, we show how two forward recovery strategies shown in Fig.

2 were specified through the laws.

Intermittent
Fault

Solid
Fault

Error
Detection

Compensation

Service
Continuation

Fault
Handling

Maintanance
Call

Full Forward Recovery

Intermittent
Fault

Solid
Fault

Error
Detection

Service
Continuation

Fault
Handling

Maintanance
Call

Rollforward

Partial Forward Recovery

Fig. 2. Forward Recovery Strategy [8]

The sales control system consists of a database agent, a set of control points and a set of
sales points, as illustrated in Fig. 3. Its main function is to maintain a database describ-
ing all the products to be sold so that many distributed sales points can obtain the cor-
rect prices of the items selected by the customers. Several control points provide inter-
faces that allow the human managers of the system to update the product information
in the database at run time. We assume that such updating is regarded as a very criti-
cal activity and consequently, to guard against fraud, the policy is that two human
managers, one of whom is at a senior level, have to be involved in and agree to any
such updating. Thus, it will be necessary to update the data cooperatively from the
control points. Such updates must also be atomic with respect to sales points that may
be querying the database at the same time. Hence, an item is not really deleted or
added to the database unless the corresponding action commits successfully.

DbAgent Database

Manager
Control

Point A

Senior
Control

Point B

Sales

Points

Fig. 3. Sales control system

The complete law specification is presented in Table 3. It will be described in detail
while discussing the three scenarios below: requirement 1, situation 1 and situation 2.

8

REQUIREMENT 1: UPDATES MUST BE ATOMIC.

The usual approach for solving this problem would be by applying a backward recov-
ery in the event there is some problem with the second manager confirmation. In this
case study, we have approached this problem through the combined use of the interac-
tion protocol, actions and constraints. The interaction protocol shown in Fig. 4 defines
two main paths: transitions {t1, t2} or {t3, t4}. The path {t1, t2} means the senior man-
ager has made the first update, and the second path means the senior manager has
made the second update. In both cases, when the first transition fires (t1 or t3), the ac-
tion keepContent is invoked. This action stores the content of the update in the context
of the scene, so this content can be used further. In fact, this content is used by the con-
straint checkContent. This constraint verifies if the content of the second update is
equal to the previous content. If so, then the transition (t2 or t4) is finally fired and the
dbAgent atomically updates the database.

s2

s4

t1: msg1

t4: [Constraints: checkContent]

msg1

t2: [Constraints: checkContent]

msg2

t5: timeout1

t8: timeout2

t3: msg2

s1 s3

s8

s6

<<success>>

<<failure>>

<<failure>>

s5

t7: timeout1

s7

t10: timeout2

t6: [Constraints: checkContent]
msg2

t9: [Constraints: checkContent]

msg1

Fig. 4. Interaction Protocol

01:updateProductInformation{

02: msg1{senior,dbAgent,$productInfo1}

03: msg2{(senior|manager),dbAgent,$productInfo2}

04: s1{initial}

05: s3{success}

06: s6{failure}

07: s8{failure}

08: t1{s1->s2, msg1}

09: t2{s2->s3, msg2, [checkContent]}

10: t3{s1->s4, msg2}

11: t4{s4->s3, msg1, [checkContent]}

12: t5{s2->s5, timeout1}

9

13: t6{s5->s3, msg2, [checkContent]}

14: t7{s5->s6, timeout1}

15: t8{s4->s7, timeout2}

16: t9{s7->s3, msg1, [checkContent]}

17: t10{s7->s8, timeout2}

// Clocks

18: timeout1{120000, periodic, (t1), (t2, t6)}

19: timeout2{120000, periodic, (t3), (t4, t9)}

// Constraints

20: checkContent{br.pucrio.CheckContent}

// Actions

21: keepContent{(t1,t3), br.pucrio.KeepContent}

// Actions for fault handling

22: handleTimeout{(t7,t10), br.pucrio.TimeoutHandler}

23: handleDifferentContent{(checkContent), br.pucrio.DifContentHandler}

24: warnManagerBroadcast{(t5,t8), br.pucrio.Retry}

25:}

Table 3. Law Specification

SITUATION 1: THE SECOND MANAGER DOES NOT ANSWER.

As the data must be updated cooperatively, the second manager is strictly necessary to
commit the operation. In this case, we chose to apply a full forward recovery for when
there is no update confirmation coming from the second manager. As can be seen in
Fig. 2, there are three main activities, namely: error detection, compensation and fault
handling. The law specifies how to perform these activities. Error detection is accom-
plished by perceiving that the second manager is not answering. The clocks at line 18
and 19 are activated when the message from the first manager is sent. Then, they count
2 minutes (120000 milliseconds), which is the amount of time that the second manager
needs to send the second update message. If the second manager does not answer dur-
ing this time, the clock generates a clock_tick event. By capturing this clock tick we are
able to perceive when the error (in this case, the manager is not answering) has oc-
curred. Then, after detecting the error, we can perform a compensation strategy. In our
case, the strategy is very simple. It sends a broadcast message to all agents warning
that there is an update pending due to the lack of a manager confirmation. This is done

10

through action warnManagerBroadcast at line 24. This action is activated just when tran-
sitions t5 or t8 are fired in consequence of the clock_tick event. The clock is declared as
periodic, which means that it remains cyclically generating events every two minutes
until it becomes inactive through transitions t2, t6, t4 or t9 (lines 18 and 19). Therefore,
managers have two more minutes to answer the broadcast message sent by the warn-
ManagerBroadcast action. If any manager answers the broadcast message with an up-
date confirmation, then transitions t6 or t9 are fired and the protocol finishes success-
fully. Otherwise, if there is still no answer from the manager, there is a need for fault

handling. This case is handled by the action handleTimout at line 22. This action sends
a message to all agents involved in the conversation by saying that the second man-
ager has not answered and, therefore, each agent can perform its own forward recov-
ery strategy.

Although many complexities have been omitted for the sake of simplicity and brevity,
the example is sufficiently detailed to illustrate how the laws could incorporate de-
pendability concerns. Specifically, in this case, this is accomplished by specifying a full
forward recovery strategy, through error detection, compensation and fault handling.

SITUATION 2: MANAGERS SEND DIFFERENT UPDATE CONTENTS.

In order to confirm an update message from a first manager, the second manager must
send another message with exactly the same content as the first manager's message. In
this case, we propose a very simple fault tolerance strategy. First, we conduct error de-
tection through constraints and actions, and afterwards we conduct fault handling to
make the agents involved in the conversation become aware of the failure. Regarding
error detection, the action keepContent stores the content of the first message in the
context, and the constraint checkContent checks if the content of the second message is
equal to the first message. If the constraint checkContent discovers the content is not the
same, then it generates the event constraint_activation. This event is captured by the ac-
tion handleDifferentContent. This action basically does fault handling, informing all
participant agents there was a wrong content. It gives the managers another opportu-
nity to send the correct message.

In fact, this strategy performs a partial forward recovery. It detects the error, keeps the
system in a safe state (note neither transitions t2 nor t4 are fired, because once contents
are determined to be different, the constraint does not permit a transition to fire), per-
forms a fault handling procedure and, in case the second manager sends another mes-
sage with the same content, the protocol finishes successfully.

As previously stated in situation 1 above, also in the second situation it has been pos-
sible to show that laws may incorporate dependability concerns through their specifi-
cation.

5 Related Work

Minsky [2] proposes a coordination and control mechanism called law governed inter-
action (LGI). This mechanism is based upon two basic principles: the local nature of
the LGI laws and the decentralization of law enforcement. The local nature of LGI laws
means that a law can regulate explicitly only local events at individual home agents,
where a home agent is the agent being regulated by the laws; the ruling for an event e
can depend only on e itself, and on the local home agent's context; and the ruling for
an event can mandate only local operations to be carried out at the home agent. On the

11

other hand, the decentralization of law enforcement is an architectural decision argued
as necessary for achieving scalability. However, when it is necessary to have a global
view of the interactions, the decentralized enforcement demands state consistency pro-
tocols, which may not be scalable. In contrast, M-Law uses XMLaw, which provides an
explicit conceptual model and focuses on different concepts, such as Scenes, Norms
and Clocks. In other words, in our opinion, LGI design is aimed primarily at decen-
tralization and XMLaw design is aimed primarily at expressivity, flexibility and at
possibilities for specialization [9]. A current limitation of XMLaw is the centralization
of the mediator. A work in progress is the investigation of how XMLaw specifications
could be compiled into decentralized LGI mediators. In this way, LGI can be viewed as
having the basic foundation to build higher-level elements, such the ones in XMLaw.
Moreover, by using M-Law, it is possible to extend the framework hotspots and intro-
duce new components, which represent concepts in the conceptual model; and change
the communication mechanism.

From the point of view of dependability, LGI has a strong emphasis on security and
trust. Its architecture encompasses certification authorities, cryptography and a set of
operations for this means. However, to the best of our knowledge LGI has not explic-
itly incorporated reliability, fault handling and other issues discussed in this paper.

The Electronic Institution (EI) [6] is another approach that provides support for inter-
action laws. An EI has a set of high level abstractions that allows for the specification
of laws using concepts such as agent roles, norms and scenes. However, EI also does
not explicitly approach dependability concerns.

6 Discussions

In this paper, we have discussed the relationship between interaction laws and de-
pendability concerns. We have presented a law-based approach called XMLaw. We
showed how XMLaw could be used to implement fault-tolerance strategies.

Using laws to specify dependability concerns allows for reuse of all the infrastructure
for monitoring and enforcement present in the law approaches. Besides, the depend-
ability is defined in a precise and declarative manner.

The event-driven approach of XMLaw has contributed to specify dependability ques-
tions in a flexible way. It allows composing uncoupled elements, such as transitions,
norms and clocks.

We are currently conducting some experiments using XMLaw to enable Dependability
Explicit Computing (DepEx) [16]. DepEx treats dependability metadata as first-class
data. We are using XMLaw to collect domain-specific metadata and subsequently use
it to aid design-time and run-time decision-making.

ACKNOWLEDGMENTS

This work is partially supported by CNPq/Brazil under the project “ESSMA”, number
5520681/2002-0 and by individual grants from CNPq/Brazil.

REFERENCES

12

[1] R. Paes, M. Gatti, G. Carvalho, L. Rodrigues, and C. Lucena, A middleware for
governance in open multi-agent systems," PUC-Rio, Tech. Rep. MCC 33/06, 2006,
http://wiki.les.inf.puc-rio.br/uploads/8/87/Mlaw-mcc-agosto-06.pdf.

[2] N. H. Minsky and V. Ungureanu, Law-governed interaction: a coordination and
control mechanism for heterogeneous distributed systems," ACM Trans.Softw. Eng.
Methodol., vol. 9, no. 3, pp. 273--305, 2000.

[3] R. Paes, G. Carvalho, M. Gatti, C. Lucena, J.-P. Briot, and R. Choren, Enhancing the
Environment with a Law-Governed Service for Monitoring and Enforcing Behavior in
Open Multi-Agent Systems, In: Weyns, D.; Parunak, H.V.D.; Michel, F. (eds.): Envi-
ronments for Multi-Agent Systems, Lecture Notes in Artificial Intelligence, vol.
4389. Berlim: Springer-Verlag, p. 221–238, 2007

[4] R. Paes, G. Carvalho, C. Lucena, P. Alencar, H. Almeida, and V. Silva, Specifying
laws in open multi-agent systems," in Agents, Norms and Institutions for Regulated
Multiagent Systems - ANIREM, Utrecht, The Netherlands, July 2005.

[5] R. Paes, G. Carvalho, and C. Lucena, Xmlaw specification: version 1.0," PUC-Rio,
Rio de Janeiro, Brasil, Tech. Rep. to appear, 2007.

[6] M. Esteva, Electronic institutions: from specification to development,"
Ph.D.dissertation, Institut d'Investigaci en Intel.ligncia Artificial, Catalonia - Spain,
October 2003.

[7] V. Dignum, J. Vzquez-Salceda, and F. Dignum, A model of almost everything:
Norms, structure and ontologies in agent organizations," in Third International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS'04), vol. 3, 2004.

[8] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, Basic concepts and taxon-
omy of dependable and secure computing," IEEE Trans. on Dependable and Secure
Computing, vol. 1, no. 1, pp. 11--33, Jan. 2004.

[9] G. Carvalho, C. Lucena, R. Paes, and J.-P. Briot, Refinement operators to facilitate
the reuse of interaction laws in open multi-agent systems," in SELMAS '06: Proceed-
ings of the 2006 international workshop on Software engineering for large-scale multi-
agent systems. New York, NY, USA: ACM Press, 2006, pp. 75--82.

[10] G. Carvalho, Frameworks for open multi-agent systems," Doctoral Mentoring
at AAMAS, 2006.

[11] G. Carvalho, C. Lucena, R. Paes, J.-P. Briot, and R. Choren, A governance
framework implementation for supply chain management applications as open
multi-agent system," in 7th International Workshop on Agent-Oriented Software Engi-
neering (AOSE-2006), 2006.

[12] L. F. Rodrigues, G. Carvalho, R. Paes, and C. Lucena, Towards an integration
test architecture for open mas," in Software Engineering for Agent-oriented Systems
(SEAS 05), Uberlndia, Brazil, 2005.

[13] T. Mackinnon, S. Freeman, and P. Craig, Endo-testing: Unit testing with mock
objects," in eXtreme Programming and Flexible Processes in Software Engineering -
XP2000, 2000.

[14] M. A. de C. Gatti, C. J. P. de Lucena, and J.-P. Briot, On fault tolerance in law-
governed multi-agent systems," in SELMAS '06: Proceedings of the 2006 international

13

workshop on Software engineering for large-scale multi-agent systems. New York, NY,
USA: ACM Press, 2006, pp. 21--28.

[15] J. Xu, B. Randell, A. Romanovsky, C. Rubira, R. Stroud, and Z. Wu, Fault toler-
ance in concurrent object-oriented software through coordinated error recovery,"
ftcs, vol. 00, p. 0499, 1995.

[16] M. Kaniche, J.-C. Laprie, and J.-P. Blanquart, A dependability-explicit model
for the development of computing systems," in SAFECOMP '00: Proceedings of the
19th International Conference on Computer Safety, Reliability and Security. Lon-
don, UK: Springer-Verlag, 2000, pp. 107--116.

