

ISSN 0103-9741

Monografias em Ciência da Computação

n 25/08

Documenting and Modeling
Multi-agent Systems Product Lines

Ingrid Oliveira de Nunes

Uirá Kulesza

Camila Patrícia Bazílio Nunes

Carlos José Pereira de Lucena

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monogra�as em Ciência da Computação, No. 25/08 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena April, 2008

Documenting and Modeling Multi-agent Systems
Product Lines 1

Ingrid Oliveira de Nunes1, Uirá Kulesza2,3, Camila Patrícia Bazílio Nunes1,
Carlos José Pereira de Lucena1

1 PUC-Rio, Computer Science Department, LES - Rio de Janeiro - Brazil
2 Recife Center for Advanced Studies and Systems - Recife - Brazil

3 New University of Lisbon - Lisboa - Portugal

ioliveira@inf.puc-rio.br, uira@cesar.org.br, camilan@inf.puc-rio.br, lucena@inf.puc-rio.br

Abstract. In this work, we explore the use of existing software product line (SPL) ap-
proaches to document and model a multi-agent system product line (MAS-PL). Our anal-
ysis focuses speci�cally in the domain analysis and design stages of SPL development. The
main aim of our study is to investigate the bene�ts, limitations and challenges of current
SPL and MAS-PL approaches/methodologies to document and model MAS-PL features.
Our investigation is illustrated and validated through the use of a web-based conference
management system. As a result of our study, we propose the adaptation and extension
of existing approaches to address the modeling of MAS-PL features.

Keywords: Software Product Lines, Multi-agent Systems, Documentation, Methodology.

Resumo. Neste trabalho, exploramos o uso de abordagens de linhas de produto de soft-
ware (SPL) existentes para documentar e modelar uma linha de produto de sistemas multi-
agentes (MAS-PL). Nossa análise foca-se especi�camente nos estágios de análise e projeto
do domínio do desenvolvimento de SPL. O principal objetivo do nosso estudo é investigar
os benefícios, limitações e desa�os das abordagens/metodologias de SPL e MAS-PL atuais
para documentar e modelar features de MAS-PL. Nossa investigação é ilustrada e validada
através do uso de um sistema de gerenciamento de conferências baseado em web. Como
resultado do nosso estudo, propomos a adaptação e extensão das abordagens existentes
para permitir a modelagem de features de MAS-PL.

Palavras-chave: Linhas de Produto de Software, Sistemas Multi-agents, Documentação,
Metodologia.

1This work has been sponsored by Ministério de Ciência e Tecnologia da Presidência da República
Federativa do Brasil.

In charge of publications:
Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

ii

Contents
1 Introduction 1

2 Background 2

3 ExpertCommittee Case Study Overview 3
3.1 The EC MAS-PL . 3
3.2 Dealing with Variability . 4

4 Modeling and Documenting Agency Features 5
4.1 Domain Analysis . 5
4.2 Domain Design . 6

5 Discussions 7

6 Conclusions and Future Work 10

References 10

iii

1 Introduction
Nowadays, a common scenario in organizations is to develop similar products and to pro-
vide di�erent customizations of these products to individual customers. This is typically
addressed in an empirical way. Software product lines (SPLs) (Pohl, Böckle & van der
Linden 2005, Clements & Northrop 2002) represent a new trend of software reuse that in-
vestigates methods and techniques to build and customize families of applications through
a systematic method. Clements & Northrop (Clements & Northrop 2002) de�ne a software
product line (SPL) as �a set of software intensive systems that share a common, managed
set of features satisfying the speci�c needs of a particular market segment or mission and
that are developed from a common set of core assets in a prescribed way �. According to
(Czarnecki & Helsen 2006), a feature is a system property that is relevant to some stake-
holder and is used to capture commonalities or discriminate among products in a product
line. The main aim of SPL engineering is to analyze the common and variable features of
applications from a speci�c domain, and to develop a reusable infrastructure that supports
the software development. This set of applications is called a family of products.

Over the past few years, several methods have been published to address the prob-
lems and challenges of SPL engineering (Kang, Kim, Lee, Kim, Shin & Huh 1998, Pohl
et al. 2005, Gomaa 2004). Some of them only propose methodological guidelines, not spec-
ifying how to design or implement the SPL, meaning developers have to create their own
way to develop the product line. Some of these methodologies propose a complete SPL
development process based on existing paradigms, such as component-based (Atkinson,
Bayer & Muthig 2000) or object-oriented (Gomaa 2004) software development. However,
there are new trends, such as multi-agent systems (MASs) (Jennings 2001, Wooldridge
& Ciancarini 2000), which are not considered by the current SPL methodologies. MASs
have emerged as a new software paradigm to help in the development of complex software
systems, which contain properties such as autonomy, reactivity, pro-activeness and social
ability. Recently, new approaches (Pena, Hinchey, Resinas, Sterritt & Rash 2007, Dehlinger
& Lutz 2005) were proposed designed to explore the bene�ts of integrating SPL and Agent-
Oriented Software Engineering (AOSE) techniques. Nevertheless, there are still many chal-
lenges to overcome in the development of multi-agent systems product lines (MAS-PLs)
(Pena, Hinchey & Ruiz-Cortés 2006).

In this context, this paper investigates the adoption of proposed SPL and MAS-PL
methodologies in the documentation and modeling of MAS-PL. During this process, we
had to deal with challenges, such as how the features can be documented, modeled and
modularized throughout the entire domain engineering process. A product line of con-
ference management systems that includes the implementation of several optional agency
features is used to illustrate and validate our study. Some adaptations and extensions of
current SPL approaches are also proposed in order to address their identi�ed de�ciencies
in the modeling and documentation of more complex agency features.

The remainder of this paper is organized as follows. Section 2 presents some exist-
ing SPL methodologies. In Section 3, an overview of the ExpertCommittee case study
is presented, giving some details about its development. In Section 4, we show how we
have modeled and documented our product line at the domain analysis and domain de-
sign phases. We present some discussions in the Section 5. Finally, the conclusions and
directions for future works are discussed in Section 6.

1

2 Background
We have studied and compared some existing SPL methodologies. Almost all methods
focus on the description of SPL properties at a very high level of abstraction and give no
guidance on how the required �exibility should be realized at the implementation level.
In our initial comparative study (Nunes 2008), we used the same evaluation framework
of (Matinlassi 2004) to compare the SPL and MAS-PL methodologies. The goal of this
evaluation was to obtain an overview of the methodologies and not necessarily to rate
them. Subsequently, we analyzed how the investigated approaches could deal with the
documentation and modeling of agency features. Table 1 presents partial results of this
analysis. Due to space restrictions in this paper, we only reported the results of this second
part of our study. For additional details of our study, please refer to (Nunes 2008).

Table 1: Methodologies Comparison.
Methodology Domain Analysis Domain Design
FORM Feature diagram with com-

position rules
Subsystem, Process Model
and Module Models

Framework
(Pohl
et al. 2005)

Reusable, textual and
model-based requirements,
variability model

Reference architecture,
re�ned variability model,
mapping from design ar-
tifacts to requirements
artifacts

PLUS Requirements model con-
sisting of a use case model
and feature model

Static and dynamic models,
feature/class dependencies,
design of component-based
software architecture

MacMAS ex-
tension (Pena
et al. 2007)

Feature Model (features are
goals)

Acquaintance Organiza-
tion, Traceability and Role
Models

Approach
(Dehlinger &
Lutz 2005)

Role Schema, Role Varia-
tion Point

-

Commonly the SPL approaches adopt feature models as the typical notations to specify
the SPL features. FORM (Kang et al. 1998) provides a feature modeling method for
analyzing and capturing the common and variable features of SPLs and their respective
interdependencies. The features are organized into a coherent model referred to as a
feature model, which models the features of a product line as a tree, indicating mandatory,
optional and alternative features. Features are essential abstractions that both customers
and developers understand. Pena et. al. (Pena et al. 2007) also proposes the use of
feature models, but the features are the goals of the agents. Goals are not a detail of the
system that is visible to the end user; therefore, they should not appear in a feature model.
(Pohl et al. 2005) document variabilities through a variability model, which models what
varies from one product to another with the explicit indication of the variation points and
variants. Furthermore, it also motivates the de�nition of explicit tracing links between the
variations points/variants from the variability model and other analysis and design models

2

(e.g., use cases and class diagrams). PLUS (Gomaa 2004) proposes a feature model based
on UML notation, but contains the same information of traditional feature models. Almost
all the approaches do not address explicitly the modeling of the SPL requirements. The
PLUS approach de�nes a customization of the use case model to specify and document
the SPL requirements. Dehlinger & Lutz (Dehlinger & Lutz 2005) adopt a product-line-
like view of an agent-based software system and proposes a requirements speci�cation
template to capture and reuse dynamically changing con�gurations of agents for future
similar systems.

In the domain design, most of the SPL approaches investigated only provide support to
document and detail the SPL architectures in a very high-level manner. FORM proposes
the modeling of an SPL architecture using three models: (i) subsystem model - presents the
overall system structure; (ii) process model - details the dynamic behavior of the system;
and (iii) module model - speci�es each reusable component of the architecture. PLUS
adopts traditional UML models marked with additional stereotypes to classify the system
classes. It mentions the use of agents in the design of an SPL architecture, but it does not
de�ne a way to document it. Table 1 shows that the other investigated approaches (Pohl
et al. 2005, Dehlinger & Lutz 2005) do not provide explicit support to specify and model
the SPL architecture and its respective components.

3 ExpertCommittee Case Study Overview
Our approach was developed based on our experience with the ExpertCommittee (EC)
(Nunes, Nunes, Kulesza & Lucena 2008) case study, a multi-agent system product line for
the web domain.

The EC is a conference management system, developed as a typical web-based applica-
tion whose aim is to manage the paper submission and reviewing processes from conferences
and workshops. The EC system provides functionalities to support the complete process of
conference management. Each of these functionalities can be executed by an appropriate
user type of the system, such as conference chair, program committee members, authors
and reviewers.

This MAS-PL was developed in an evolutionary way. We present details about the
MAS-PL development (Section 3.1). After that, we discuss some MAS particular variability
types that we have identi�ed in our case study (Section 3.2).

3.1 The EC MAS-PL
We developed our case study considering that an evolving system can be seen as an SPL,
because the features that are common to all versions of the system comprise the core
architecture of the product line. Thus, each version of the system, which has new features,
characterizes a new product.

Our MAS-PL was developed in an evolutionary way. There were three versions of
the EC. The �rst version of the EC is a typical web-based application composed of the
mandatory features that support the process of conference management. It was structured
according to the Layer architectural pattern (Fowler 2002). The second version of the EC
system contains features that are related to autonomous behavior, such as deadline and
pending tasks monitoring, and it has also some new features that add new functionalities

3

to the system as well. The software agent abstraction was used to model and implement
the autonomous behavior added to the original EC system.

The third and last version of the EC system was implemented by applying a series
of refactorings in version 2. The system was restructured to make the (un) plugging of
optional features possible. Each optional feature was modularized by using a combination
of OO design patterns and techniques with Spring2 con�guration �les that allows the
injecting of dependencies inside the variable points of the EC SPL architecture, which can
be seen in Figure 1.

Figure 1: EC MAS-PL Architecture.

3.2 Dealing with Variability
Di�erent kinds of variability were identi�ed in the EC MAS-PL. In our case study, we
mainly explored the variabilities related to autonomous behavior and their respective im-
plementation using software agents. Throughout this paper, these kinds of features are
called agency feature. Next we brie�y describe them:

New Autonomous Behavior. We had to introduce agents into the architecture when we
added autonomous behavior to the system. The Task Management feature implied
the addition of a new agent in the system, which can be present or not, depending
on the product being derived;

New Behavior for an Agent or Role. Some features have an impact inside the agent
or the role. They allow de�ning agent internal variabilities by de�ning speci�c new
behaviors of agents. The Conference Suggestion Feature is an autonomous feature;
thus, the user agent, or more speci�cally the author role, performs it. When a paper
is registered in a conference, the author role perceives it and sends suggestions of
related conferences for the author who has registered his/her paper;

2http://www.springframework.org/

4

New Role for an Agent. Each role of the EC has a corresponding role in the user agent
when a product has some autonomous behavior. However, not all roles are manda-
tory, such as the role Reviewer. Thus, roles must be modeled in a way that they can
be (un) plugged.

Almost all the autonomous behavior features are accomplished by the collaboration of
di�erent agents. In our study, we have identi�ed that many of these features are typically
addressed by a di�erent set of components and agents from the SPL architecture. In this
way, a particular challenge of our study was to document and model the structure and
behavior of these crosscutting features in domain analysis and design.

4 Modeling and Documenting Agency Features
In this section, we discuss the modeling and documentation of the agency features from
the EC MAS-PL, presented in Section 3. We focus speci�cally on the domain analysis and
design stages. We have initially analyzed how existing SPL and MAS-PL approaches can
deal with the speci�cation and modeling of agency features. Based on the de�ciencies and
lack of expressivity of these existing approaches, we propose new extensions to document
the agency features of the EC MAS-PL. The main aim of our work is to de�ne a set of
guidelines to model and document agency features along all SPL development stages.

4.1 Domain Analysis
The domain analysis stage de�nes activities for eliciting and documenting the common and
variable requirements of an SPL. It is concerned with the de�nition of the domain and scope
of the SPL, and speci�es the common and variable features of the SPL to be developed. In
our study, we have analyzed how the modeling and documentation notations of current SPL
approaches can deal with agency features. Table 1 shows the results obtained considering
the SPL methodologies investigated in our study.

The EC MAS-PL features modeling and documentation was supported by the feature
model proposed in (Czarnecki, Helsen & Eisenecker 2004). It is an evolution of the original
feature model proposed in (Kang, Cohen, Hess, Novak & Peterson 1990) and also adopted
by FORM. Figure 2 shows a partial view of this feature model. The features that were in
all the versions are the mandatory ones. Features that made part of only some versions or
varied from one version to another one are the optional features.

The way proposed in the PLUS method was quite adequate to model our use cases.
Use cases are grouped in packages according to the feature to which it was related. In this
approach, stereotypes are used to indicate if a use case is mandatory (kernel), alternative
or optional. The method also proposes a feature dependency table to map use cases to each
feature. We adopted these tables instead of the graphical notation of (Pohl et al. 2005).
Figure 3 shows a partial view of the EC MAS-PL use case model. It contains three kernel
use cases, one optional use case related to the reviewer role and two agency features: task
management and conference suggestion. The following adaptations were applied to the use
case notation proposed in (Gomaa 2004) to better specify the agency features: (i) agents
were represented with the same symbol as actors and are associated to the use cases with
which they are involved; (ii) the <<agency feature>> stereotype was adopted to indicate
that the use cases of a speci�c package is related to an agency feature.

5

Figure 2: Feature Model.

The detailed description of the EC MAS-PL use cases was carried out in the following
way: (i) the kernel use cases were described using the common documentation provided by
existing UML methods; and (ii) the agency features were documented using the template
depicted in Table 2. This new template details important information to understand the
interactions between the agency feature and other ones, such as: the event that starts the
use case, the agents and roles that are involved and if the feature is mandatory, optional or
alternative. We did not used the template proposed in (Dehlinger & Lutz 2005) because
it is a too low-level speci�cation and it addresses the internal variability of the agents.

4.2 Domain Design
The domain design aims at de�ning an architecture that addresses both the common and
variable features of an SPL. A set of components and core assets can be speci�ed as part
of the SPL architecture. The modularization of features must also be taken into account
during the design of the architecture core assets to allow the (un) plugging of features.

The EC MAS-PL architecture was documented in our case study in two di�erent levels:
(i) a component view - that illustrates the main components (or subsystems) of the SPL
architecture; and (ii) a logical view - that details the di�erent components de�ned for the
SPL architecture in terms of UML class diagrams. Figures 1 and 4 show, respectively, the
component and logical view of the EC architecture. The component view details the web
system layers and the deployed agents that execute inside this system. The component
view gives not only an overall overview of the SPL architecture components and agents,
but also expresses their organization in runtime.

6

Figure 3: Use Case Diagram.

The logical view details the architecture components and agents in terms of UML
class diagrams. Similar to PLUS, we used stereotypes to classify the classes, but our
classi�cation was mandatory (kernel), optional or alternative. The classes of di�erent
components can be organized in packages, or they also can be colored to characterize
a speci�c component. Figure 1 shows the main components of the EC MAS-PL (GUI,
Business and Data Layers), and the di�erent agents responsible for implementing the
autonomous behavior of the system. Each di�erent agency feature of the MAS-PL can
be detailed using: (i) a separate class diagram that only contains the classes responsible
for implementing that feature and alternatively the classes that are related with it; (ii) a
colored indication in the main class diagram that shows the elements (classes, interfaces,
methods) related to the implementation of that feature. It is exempli�ed in Figure 4;
and (iii) a speci�c design template that details the components and agents involved in the
realization of an agency feature, and their respective interactions.

Table 3 shows the design template of the Conference Suggestion agency feature. It
details the goals, entities, events and execution plan related to the conference suggestion
feature provided by a set of agents. It complements the agency feature description provided
in domain analysis (Figure 2) by detailing the communication of the di�erent system agents
and the environment. While the class diagrams of an agency feature describe the elements
that modularize it, our template design details the dynamics of the agents involved in its
realization.

5 Discussions
In this section, we discuss some lessons learned and challenges that we have found when
documenting the agency features of EC MAS-PL. These lessons learned o�er directions for
a methodology for developing MAS-PL that we are currently de�ning.

Agency Feature Documentation using SPL methodologies. During the modeling and
documentation of the EC MAS-PL, we have identi�ed that most of the SPL methodologies

7

Table 2: Agency Feature Description.
Agency Feature: Conference Suggestion
Reuse Category: Optional
Dependency: Extends Register Paper Use Case
Description: When a paper is registered to a conference
Event: paper was registered to a conference
Agent/Roles: user agent / author role, noti�er agent
Main Flow:
1. User registers a paper to a conference.
2. User Agent perceives the change in the environment.
3. Author role detects the conferences that have areas of
interest similar to the ones of the registered paper and creates
a message to be sent to the user.
4. Author role sends a message to the Noti�er Agent request-
ing to send the message to the user.
5. Noti�er Agent sends the message.

Figure 4: Class Diagram of the EC product line.

8

Table 3: Agency Feature Design Description.
Agency Feature: Conference Suggestion
Goal: Send conference suggestions to users
Entities: EnvironmentAgent, UserAgent, No-
ti�erAgent, AuthorRole and ConferenceService.
Events Generated: SendMessage
Events Perceived: RegisterPaper
Plan:
Environment
Agent

Action: send message to User Agents
Message Content: paper registered

User Agent Action: creates Author Role and adds it to the agent
Condition: user is the �rst author of the paper

Author Role Action: send message to Conference Service
Message Content: conferences related to the confer-
ence the author has registered

Conference
Service

Action: send message to Author Role
Message Content: related conferences

Author Role Action: creates user message with conferences re-
turned
Action: send message to Noti�er Agent
Message Content: user message to be sent to the user

Noti�er Agent Action: send user message

provide useful notations to model the agency features. However, none of them completely
covers their speci�cation. Agent technology provides particular characteristics that need
to be considered in order to take advantage of this paradigm. In our case study, we
adopted a di�erent strategy to model the SPL agency features. We started modeling the
agency features using only the notations provided by SPL methodologies to investigate their
expressivity. After that, we adapted and complemented the selected notations to improve
the documentation of the agency features. The domain analysis and design templates were
created in this context.

MAS-PL methodologies. The investigated MAS-PL methodologies do not address de-
velopment scenarios of traditional SPL architectures using agent technology. Instead, they
adopt an existing MAS methodology as a base and extend it with SPL techniques for a
particular purpose. Pena et. al. (Pena et al. 2007) adapt the Methodology for analyzing
Complex MultiAgent Systems (MaCMAS) to deal with evolving systems. Dehlinger &
Lutz (Dehlinger & Lutz 2005) have proposed an extensible agent-oriented requirements
speci�cation template for distributed systems that supports safe reuse. Their proposal
adopts a product line to promote reuse in MASs, which was developed using the MaCMAS
and the Gaia methodologies. The main problems that we have observed when using these
MAS-PL methodologies to model and document the EC MAS-PL were: (i) they do not of-
fer a complete solution to address the modeling of agency features in both domain analysis
and design; and (ii) they suggest the introduction of complex and heavyweight notations
that are di�cult to understand when adopted in combination with existing notations (e.g.
UML) and do not capture explicitly the separated modeling of agency features.

9

Crosscutting agency features. Many of the agency features are implemented by a set
of di�erent system components, agents and classes. They are characterized as crosscutting
features, because their design and implementation are typically spread and tangled along
di�erent system modules. In our study, we observed that the current SPL methodologies
do not provide clear support to deal with the documentation of these crosscutting features.
In domain design, we have proposed a template design to help the documentation of the
agency features. It allows specifying how the di�erent design elements interact to address
a speci�c agency feature. We are currently investigating how existing aspect-oriented
approaches (Jacobson & Ng 2004, ?) can help the visual documentation of the agency
features in combination with our templates.

6 Conclusions and Future Work
In this paper, we presented an exploratory study that analyzed and discussed how existing
SPL approaches can help the documenting and modeling of multi-agent system product
lines (MAS-PLs). Di�erent agency features were presented, which were added to an exist-
ing web-based conference management system as optional features. Three types of agency
variabilities were addressed in our paper: addition of agents; addition of plans; and addi-
tion of roles. Most of the MAS-PL documentation was supported by the PLUS approach,
showing the e�ectiveness of current SPL approaches to document MAS-PL. However, the
documentation of the agency features required the creation of additional templates to spec-
ify: (i) the interdependencies and relationships between core functionalities (mandatory
use cases) and optional agency features (optional use cases) in domain analysis; and (ii)
the elements and dynamics responsible to address a given agency feature in domain design.

We are currently working on the development of a methodology that allows an explicit
documentation and tracing of agency features throughout the SPL development process.
The proposed methodology aims to be simple and systematic. We believe that due to
the high complexity of many SPL methodologies, many of them are not used in practice.
Di�erent and new abstractions have been proposed in these methodologies, making the
understanding and adoption of them di�cult. Our methodology is being organized as a
process framework composed of: (i) a core - that de�nes a set of mandatory activities and
artifacts; and (ii) speci�c customizations - that specify additional activities and artifacts
to the core according to speci�c scenarios that need to be addressed. Our approach aims to
be systematic in the sense of providing clear and detailed guidelines about how developers
should use it.

References
Atkinson, C., Bayer, J. & Muthig, D. (2000), Component-based product line development:

The KobrA approach, in P. Donohoe, ed., `Proceedings of theFirstSoftware Product
Line Conference', pp. 289�309.

Clements, P. & Northrop, L. (2002), Software Product Lines: Practices and Patterns,
Addison-Wesley, Boston, MA, USA.

Czarnecki, K. & Helsen, S. (2006), `Feature-based survey of model transformation ap-
proaches', IBM Systems Journal 45(3), 621�645.

10

Czarnecki, K., Helsen, S. & Eisenecker, U. W. (2004), Staged con�guration using feature
models, in `SPLC', pp. 266�283.

Dehlinger, J. & Lutz, R. R. (2005), A Product-Line Requirements Approach to Safe Reuse
in Multi-Agent Systems, in `SELMAS '05: Proceedings of the fourth international
workshop on Software engineering for large-scale multi-agent systems', ACM Press,
New York, NY, USA, pp. 1�7.

Fowler, M. (2002), Patterns of Enterprise Application Architecture, Addison-Wesley Pro-
fessional.

Gomaa, H. (2004), Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures, Addison Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA.

Jacobson, I. & Ng, P.-W. (2004), Aspect-Oriented Software Development with Use Cases
(Addison-Wesley Object Technology Series), Addison-Wesley Professional.

Jennings, N. R. (2001), `An agent-based approach for building complex software systems',
Commun. ACM 44(4), 35�41.

Kang, K. C., Kim, S., Lee, J., Kim, K., Shin, E. & Huh, M. (1998), `Form: A feature-
oriented reuse method with domain-speci�c reference architectures', Ann. Softw. Eng.
5, 143�168.

Kang, K., Cohen, S., Hess, J., Novak, W. & Peterson (1990), Feature-oriented domain
analysis (foda) feasibility study, Technical Report CMU/SEI-90-TR-021, Software
Engineering Institute, Carnegie-Mellon University.

Matinlassi, M. (2004), Comparison of software product line architecture design methods:
Copa, fast, form, kobra and qada, in `ICSE '04: Proceedings of the 26th Interna-
tional Conference on Software Engineering', IEEE Computer Society, Washington,
DC, USA, pp. 127�136.

Nunes, I. (2008), `Towards a multi-agent product line development methodology'.
http://www.inf.puc-rio.br/ ioliveira/maspl/.

Nunes, I., Nunes, C., Kulesza, U. & Lucena, C. (2008), Developing and evolving a multi-
agent system product line: An exploratory study, in `9th International Workshop
on Agent-Oriented Software Engineering (AOSE 2008) at the 7th International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008) (to ap-
pear)', Estoril, Portugal.

Pena, J., Hinchey, M. G., Resinas, M., Sterritt, R. & Rash, J. L. (2007), `Designing and
managing evolving systems using a MAS product line approach', Science of Computer
Programming 66(1), 71�86.

Pena, J., Hinchey, M. G. & Ruiz-Cortés, A. (2006), `Multi-agent system product lines:
challenges and bene�ts', Communications of the ACM 49(12), 82�84.

Pohl, K., Böckle, G. & van der Linden, F. J. (2005), Software Product Line Engineering:
Foundations, Principles and Techniques, Springer-Verlag, New York,USA.

11

Wooldridge, M. & Ciancarini, P. (2000), Agent-Oriented Software Engineering: The State
of the Art, in P. Ciancarini & M. Wooldridge, eds, `First Int. Workshop on Agent-
Oriented Software Engineering', Vol. 1957, Springer-Verlag, Berlin, pp. 1�28.

12

