

ISSN 0103-9741

Monografias em Ciência da Computação

n

31/08

Extending Web-Based Applications
to Incorporate Autonomous Behavior

Ingrid Oliveira de Nunes

Uirá Kulesza

Camila Patrícia Bazílio Nunes

Elder José Reioli Cirilo

Carlos José Pereira de Lucena

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monogra�as em Ciência da Computação, No. 31/08 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena August, 2008

Extending Web-Based Applications to Incorporate
Autonomous Behavior 1

Ingrid Oliveira de Nunes1, Uirá Kulesza2, Camila Patrícia Bazílio Nunes1,
Elder José Reioli Cirilo1, Carlos José Pereira de Lucena1

1 PUC-Rio, Computer Science Department, LES - Rio de Janeiro - Brazil
2 Federal University of Rio Grande do Norte (UFRN) - Natal - Brazil

ioliveira@inf.puc-rio.br, uira@dimap.ufrn.br, camilan@inf.puc-rio.br,
ecirilo@inf.puc-rio.br, lucena@inf.puc-rio.br

Abstract. Web applications are popular nowadays due to the ubiquity of the client and
also because user experience is becoming each time more interactive. However, several
tasks of these applications can be automated. Agent-oriented software engineering has
emerged as a new software engineering paradigm to allow the development of applications
that present autonomous behavior. In this work, we present two case studies of web-based
systems, on which we added autonomous behavior by means of software agents. We also
discuss some design and implementation issues found on the development of those systems
and propose an architectural pattern as a consequence of our case studies.

Keywords: Multi-agent Systems, Web application, Autonomous Behavior.

Resumo. Hoje em dia, aplicações web são populares devido à ubiquidade do cliente
e também porque a experiência do usuário está se tornando cada vez mais interativa.
Entretanto, diversas tarefas destas aplicações podem ser automatizadas. A engenharia de
software orientada a agentes surgiu como um novo paradigma da engenharia de software
que permite o desenvolvimento de aplicações que apresentam comportamento autônomo.
Neste trabalho, apresentam-se dois estudos de caso de sistemas baseados na web, nos quais
foi adicionado comportamento autônomo através de agentes de software. Também, discute-
se algumas questões de projeto e implementação encontrados no desenvolvimento desses
sistemas e propomos um padrão arquitetural como conseqüência deste estudo.

Palavras-chave: Sistemas Multi-agentes, Aplicações web, Comportamento Autônomo.

1This work has been sponsored by Ministério de Ciência e Tecnologia da Presidência da República
Federativa do Brasil.

In charge of publications:
Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

ii

Contents
1 Introduction 1

2 Extending Web-based Systems: An Exploratory Study 2
2.1 ExpertCommiittee Case Study . 2

2.1.1 Automating User Tasks in EC . 3
2.2 OLIS Case Study . 5

2.2.1 Adding Intelligent Services to OLIS 6

3 Design and Implementation Issues: Discussions and Lessons Learned 7
3.1 Integrating Agents Into Web-Based Applications 8
3.2 Improving Modularization using Aspect-Oriented Programming 9
3.3 Transaction Management and Performance 9
3.4 Towards a Web-MAS Architectural Pattern 10
3.5 Automatic Derivation of Applications . 12

4 Related Work 12

5 Conclusions 13

References 14

iii

1 Introduction
The World Wide Web has begun providing navigation through static web pages. However,
now navigation can also provide an interactive experience, presenting pages with dynamic
content, which are generated according to information submitted by users or based on
their preferences. Over the last years, several technologies have emerged to make the
user interaction with the web more interactive and to produce richer web pages. This is
accomplished by code running on the client-side, written in scripting languages, such as
JavaScript or ActionScript, as also on the server-side, written in languages, for example,
JSP, ASP and PHP, which allow the development of web applications that can process in-
formation received from users and give a speci�c response for them. Moreover, several new
technologies came out improving even more the user experience, such as AJAX, which is a
group of inter-related web development techniques used for creating interactive web appli-
cations and avoids unsightly complete-page reloads, and Flex, an open source framework
for building and maintaining expressive web applications. All of these new technologies
and characteristics of web applications make them very popular. Another reason for their
popularity is that web applications can be updated and maintained without distributing
and installing software on potentially thousands of client computers.

On the other hand, over the last years, agent-oriented software engineering has emerged
as a new software engineering paradigm to allow the development of distributed complex
applications that are characterized by a system composed of many interrelated sub-systems
(Jennings 2001). A software agent is an abstraction that enjoys mainly the following
properties (Wooldridge & Ciancarini 2000): autonomy, reactivity, pro-activeness and social
ability. Current web applications have several tasks that need human interaction to be
executed. The addition of autonomous behavior to these web applications can bring a
lot of advantages for them, providing the automation (or semi-automation) of tasks that
need human intervention and the incorporation of intelligent services. There are plenty
of examples that illustrate this, such as: (i) recording metrics data as the user interacts
with an application. The recorded data can be sent to a database for future analysis of
user interaction patterns (Adobe 2008); (ii) sending emails to inactive users (Choy, Ng &
Tsang 2005); and (iii) automatically suggesting sales on e-commerce systems based on the
products that users usually buy. Software agents are a strong candidate to provide these
new kinds of autonomous behavior required by web applications.

Nevertheless, the possibility of redesigning existing systems as multi-agent systems or
making big changes on their architecture is impracticable. Some works (Stroulia & Hatch
2003, Choy et al. 2005) have proposed architectures to incorporate software agents into web
applications architecture. However, these approaches present some de�ciencies, such as:
(i) they propose a complex solution for the problem that requires the understanding of new
concepts and techniques; or (ii) these approaches do not provide an e�ective integration
between the agents and the application. In our work, we aim at proposing a simple
and e�cient way to integrate agents and existing web applications in order to provide
autonomous behavior for them.

In this work, we present an exploratory study of incorporating autonomous behavior
into web based applications. We have developed two case studies in which traditional
web-based systems structured according to the Layer architectural pattern (Fowler 2002)
are extended to adequate new autonomous functionalities to their architecture by means
of the agent technology. The �rst one is the Expert Committee, a conference management

1

system for the web domain. The second one is the OLIS, a system that provides di�erent
services to the user, such as calendar and events announcement. We then discuss several
challenges we faced during the addition of software agents to the web applications, and,
as a consequence of the development experience of our case studies, we also propose an
architectural pattern to integrate web applications and software agents.

This remainder of this paper is organized as follows. In Section 2, we present the two
case studies that guided our research. Section 3 discusses design and implementation issues
found when integrating software agents into web applications. The architectural pattern
that emerged from our case studies is also presented in this section. Some works related to
the integration between web applications and software agents are described in Section 4.
Finally, the conclusions and directions for future works are presented in Section 5.

2 Extending Web-based Systems: An Exploratory Study
Our research started with the development of two case studies, to investigate the challenges
related to the addition of autonomous behavior into web-based applications by means of
software agent technology. Both case studies are presented in this section. Each of them
represents a traditional web system structured in layers, in which speci�c autonomous
behavior was added with the aim of automate (or semi-automate) existing system func-
tionalities. Section 2.1 presents the ExpertCommittee, a conference management system,
that was evolved to automate some user tasks. Section 2.2 details the other case study,
the OLIS, a web application that provides some services to the user, such as calendar,
on which we added new autonomous behavior features, e.g. automatic detection of event
con�icts.

2.1 ExpertCommiittee Case Study
The ExpertCommittee (EC) (Nunes, Nunes, Kulesza & Lucena 2008a, Nunes, Nunes,
Kulesza & Lucena 2008b) is a conference management system for the web domain developed
to support the paper submission and reviewing processes from conferences. The EC system
provides functionalities to support the complete process of conference management, such
as: (i) create conferences; (ii) de�ne conference basic data, committee members, areas of
interest and deadlines; (iii) choose areas of interest; (iv) submit paper; (v) assign papers
to be reviewed; (vi) accept/reject to review a paper; (vii) delegate the paper review to
an additional reviewer; (viii) review paper; (ix) accept / reject paper; (x) notify authors
about the paper review; and (xi) submit camera ready. Each of these functionalities can
be executed by an appropriate user type of the system, such as, conference chair, program
committee members, authors and reviewers.

The EC web-based system was structured according to the Layer architectural pattern
(Fowler 2002) and is composed of the following components/layers: (i) GUI - this layer is
responsible to process the web requests submitted by the system users. It was implemented
using the Struts2 framework; (ii) Business - is responsible to structure and organize the
business services provided by the EC system. The transaction management of the business
services was implemented using the mechanisms provided by the Spring3 framework; and

2http://struts.apache.org
3http://www.springframework.org/.

2

(iii) Data - aggregates the classes of database access of the system, which was implemented
using the Data Access Object (DAO) design pattern. The Hibernate4 framework was used
to make persistent the objects in a MySQL5 database.

Figure 1 illustrates the architecture of the EC web-based system and highlights the base
architecture. This implementation corresponds to the �rst version of the EC. It already
provides all the functionalities necessary to manage the conference process. However, there
are some tasks in the EC, that could be automated, such as automatically distributing
the submitted papers of a conference to the committee members, instead of the chair
making it manually. Thus, we evolved the system, adding autonomous behavior to it.
We consider autonomous behavior actions that the system automatically performs and
previously needed human intervention. The introduction of autonomous behavior in the
original system was accomplished using multi-agent system technology, such as agents,
roles and their associate behaviors. Next section details how the software agents were
introduced in the ExpertCommittee core architecture.

2.1.1 Automating User Tasks in EC
The EC system was evolved to incorporate new functionalities that reduce the user e�ort
to manage the conference. These functionalities are: (i) automatic paper distribution -
papers are automatically distributed among the committee members to be reviewed, ac-
cording to some prede�ned rules; (ii) task management - the system controls the pending
tasks of the user, and the ones that he/she already done; (iii) deadline monitoring - the
conference deadlines are monitored, and the system takes the appropriate actions when
the deadline expires or is about to expire; (iv) user noti�cations - the system sends noti-
�cations to the user about the conference status; (v) conference suggestion - the authors
of submitted papers receive suggestions of conferences that are related to the conference
that they submitted the paper.

Software agents were implemented into the EC architecture to address these new au-
tonomous behavior functionalities. The architecture of the new version of the EC is illus-
trated in Figure 1. The JADE6 framework was used as the base platform to implement
our agents. These agents are responsible for monitoring the execution of di�erent func-
tionalities of the EC in order to trigger new actions related to the autonomous behavior
functionalities from the system. The integration between the original web based system
and these new agents comprises a multi-agent system. Details about each agent that
comprises the system are listed below:

• Environment Agent: this agent monitors the EC system by observing the execu-
tion of speci�c business services. These monitored events of the EC system represent
the environment in which the user agents are situated. Each user agent is speci�ed
to perceive changes in the environment and make actions according to them. When
the environment agent is initialized, it registers itself as an observer of the services
that compose the Business layer. These services are observable objects that allow
the observation of their actions. That means that, for each call of the system busi-
ness methods, the services not only execute the requested methods, but they also

4http://www.hibernate.org/.
5http://www.mysql.org/.
6http://jade.tilab.com/.

3

Figure 1: The ExpertCommittee Architecture.

notify their respective observers. The only observer in our implementation is the
EnvironmentAgent, whose aim is to notify the other agents of the system about the
changes;

• User Data Agent: this agent receives noti�cations when new users are created
in the database. When it happens, it creates a new user agent that will be the
representation of the user in the system. The initial execution of the user data agent
demands the creation of a user agent for each user already stored in the database;

• User Agent: each user stored in the system has an agent that represents him/her
in the system. This is the autonomous behavior, agents performing actions that the
users should do. The user agent was designed in such a way that it can dynamically
incorporate new roles. Each agent role perform speci�c actions according to the
role that the user plays in the conference, such as chair, coordinator and author.
An example of autonomous behavior is when the paper submission deadline expires
and the user agent in the chair role will automatically distribute the papers to the
committee members. Besides this example, most of the user agents are responsible:
(i) for analyzing and discovering pending tasks for user agents based on the roles
the users play in the system; and (ii) for asking the noti�er agent to send email
noti�cations;

• Deadline Agent: this agent is responsible for monitoring the conference deadlines.
This monitoring serves basically two purposes: (i) to notify the user agents when a
deadline is nearly expiring; and (ii) to notify the user agents when a deadline has

4

already expired. It also triggers some actions in the user agents, by sending messages
informing them about the deadlines that expired;

• Task Agent: this agent is responsible for managing the user tasks. It receives
requests for creating, removing and setting the execution date of tasks. The requests
are made by the user agents;

• Noti�er Agent: this agent receives requests from other agents to send messages to
the system users. In the current implementation, it sends these messages through
email.

Thus, the integration between the web architecture and the agents in the EC system
was accomplished by introducing an agent called EnvironmentAgent. This agent receives
noti�cations of the business layer about the relevant operations executed by system users
and broadcasts them to the other agents. Then, the agents change their behavior according
to the information that they received and was interesting for them. The Observer pattern
(Gamma, Helm, Johnson & Vlissides 1995) was used to keep the EnvironmentAgent and
the business services loosely coupled. A class called ObservableServices extends the
Observer class (see Figure 1). All the services that compose the business layer extend this
class, which provides some common methods to all of them, besides inheriting the methods
that are part of the Observer pattern.

2.2 OLIS Case Study
The OLIS (OnLine Intelligent Services) case study is a web application that can provide
several personal services to users. The �rst version of the system is composed mainly by
two services: the Events Announcement and the Calendar Services. However, the OLIS
was designed in such a way that the system can be evolved to incorporate new services
without interfere the existing ones. The system has di�erent �avors according to the type
of event that it manages: generic events, academic events and travel events. In this paper,
we detail the OLIS system version with travel events.

The Events Announcement service allows the user to announce events to other system
users through an events board. The events have some common basic attributes, such as
- subject, description, location, city, start and end dates, frequency that it happens - and
some speci�c attributes, which are, in travel events, the place type and the activities that
can be done in the event. The Calendar service lets the user to schedule events in his/her
calendar. Besides the information of the events published in the events board, calendar
events have a list of users that participate of it. Announced events can be imported to the
users' calendar.

Figure 2 presents the OLIS architecture, with a dashed line delimitating which com-
ponents belong to the core architecture. It can be noticed that it is very similar to the
EC core architecture. The OLIS web-based system was also structured according to the
Layer architectural pattern (Fowler 2002), which is the pattern usually used to structure
web applications. The layers that compose the architecture are exactly the same of the
EC - GUI, Business and Data layers. The responsibilities attributed to each one of the
layers were also the same. The only di�erence is that we used di�erent web application
frameworks in the GUI Layer, in EC we used the �rst version of the Struts framework, and
Struts 2 in OLIS.

5

Figure 2: The OLIS Architecture.

After developing the �rst version of OLIS web application, we have identi�ed that new
autonomous behavior features could be introduced to automatize some tasks in the system.
An example is to store user preferences about travel events and then automatically suggest
users about new events announced, according to their preferences. Another improvement
in the application is the addition of new features that retrieve information processed by
software agents, such as weather information. So, we evolved the OLIS application, adding
new features to it, which take advantage of the agents technology. We present the features
that were added to OLIS, and how we developed them in the next section.

2.2.1 Adding Intelligent Services to OLIS
The services that compose OLIS application are presented in several applications. Never-
theless, they only provide functionalities to the user manage information. Then, we evolved
these services, aggregating autonomous behavior, to process the data stored in the system,
analyze it and take conclusions from it. The services become intelligent services.

The new features incorporated to the OLIS �rst version are: (i) Events reminder - the
user con�gures how many minutes he/she wants to be reminded before the events, and
the system sends noti�cations to notify the user about events that are about to begin; (ii)
Events scheduler - when an user adds a new calendar event that involves more partici-
pants, the system checks the other participants' schedule to verify if the event con�icts
with other events. If so, the system suggests a new date for the calendar event that is
appropriate according to the participants schedule; (iii) Events Suggester - when a new
event is announced, the system automatically recommends the event after checking if it is
interesting to the users based on their preferences. The system also checks if the weather
is going to be appropriate according to the place type where the event is going to take
place; (iv) Weather - this is a new user service. It provides information about the current
weather conditions and the forecast of a location. This service is also used by the system
to recommend announced travel events.

6

The evolution of the OLIS web application was accomplished by the introduction of
software agents and agent roles on the architecture. Figure 2 shows the architecture inte-
grated with the agents. The implementation of this version of the system is a hybrid agent
architecture: the Environment agent and the Facade agent were implemented with JADE,
and the other agents with Jadex7. JADE agents are Java classes that are subclasses of the
Agent class from the JADE platform. Thus, we could add new methods to the agent classes
to provide access to the objects of the system by passing the agent reference. However,
Jadex speci�es agents in an XML �le in terms of their believes, goals and plans, and it
provides a reasoning engine, which is necessary for the other agents of the system. Next
we describe each one of the OLIS agents:

• Environment Agent. This agent receives noti�cations about the execution of
business operations and it propagates them to the other agents of the system. Its
behavior is similar to the Environment agent from EC;

• Manager Agent. This agent is responsible for creating new user agents when a new
user is inserted in the database. It also starts an user agent for each user already
stored in the database during the application start up. It is equivalent to the User
Data agent from EC;

• Facade Agent. This agent is the access point of the web application to get infor-
mation from the agents. It hides the other system agents from application, so that
the application only needs to know about the Facade agent to get the information
from the agents;

• Weather Agent. This agent provides the weather information. It looks for the
current weather conditions and the forecast of a speci�c location;

• User Agent. Each user of the system has an user agent that represents him/her.
Each User agent has �ve di�erent roles: (i) Event Reminder Role - reminds the
user about events that are going to begin; (ii) Event Scheduler Role - invites other
users to a calendar event and �nds a time for the event that is compatible with the
participants' schedule; (iii) Event Participant Role - accepts or rejects an invitation
to participate of an event and, in case of reject, provides a time that is appropriate
for the user according to his/her schedule; (iv) Event Announcer Role - announces
new events to the other user agents; (v) Event Client Role - checks if the event
announced is interesting according to the user preferences. This role also checks if
the weather will be good according to the place type, consulting the Weather agent.
Eventually, the user agents can access the business services to perform changes in
the data model.

3 Design and Implementation Issues: Discussions and Lessons
Learned

During the development of our case studies, we identi�ed some design and implementa-
tion issues when integrating the existing web application and the software agents. In this

7http://vsis-www.informatik.uni-hamburg.de/projects/jadex/

7

section, we present and discuss some relevant questions about this integration and we also
propose an architectural pattern for incorporating autonomous behavior into web applica-
tions. We aimed at proposing a solution that: (i) it is quite simple to be implemented;
and (ii) have a minimum impact in design and implementation of existing web systems.

3.1 Integrating Agents Into Web-Based Applications
Software agents are situated in an environment, in which are able to perceive its events
in order to take actions in a timely fashion to changes that occur in the environment
(Wooldridge & Ciancarini 2000). When extending the web systems to incorporate the
autonomous behavior, the �rst problem that we had to solve was how the software agents
could perceive changes in the environment. We consider our environment the data model
with its current data information. Changes on this model happen as a consequence of the
user interactions with the system. So each time the user performs an action that changes
the data model, the agents should detect it or be noti�ed about this fact, and then they
take the appropriate actions. In BDI (belief-desire-intention) agents, we can think the data
model, or a part of it, as the believes of the agents, and the agents should perceive when
their believes change.

A possible solution to this problem is that the agent could be consulting the database
in periodic times, as it is proposed in (Choy et al. 2005). However, this solution could cause
a big overhead in the system if it is done in a short period, or changes will be perceived
with a large delay if is done in a large period, which can cause undesired situations, such
as missing a change if more than one change happen in the same data. Therefore, we
used the Observer pattern to let the business services notify the agents about operations
they execute. This allows the agents process information only when something actually
changed in the environment. Besides receiving information, agents must have an access
to the business services to perform changes in the data model. This is easy to be done
through method invocation to the interfaces provided by the business services.

Another common situation is that system functionalities may retrieve information from
the agents. Software agents exchange messages, and objects call methods; so it was a
problem for an object from the system to retrieve information from the agents. Usually,
the agent platforms do not provide an easy way for objects from the system to interact with
the agents. For example, in Jadex, the agents are speci�ed in XML �les, and an object
is not able to access them and does not know their interface to call a speci�c method.
However, this is something desired, because agents can provide information that needs
reasoning and learning to be produced, e.g. in OLIS case study, on which the weather
agent provides information about the weather. Furthermore, it is common that it takes
some time to get information from the agents, as they can do a lot of processing. Thus,
delayed answers should also be considered. In OLIS, we developed the Facade agent to
let the objects of the web application access and get information from the agents. The
Facade agent was implemented with JADE, so it is was designed as a common Java class
that provides an interface to access information of interest from the system agents. We
provided both synchronous and asynchronous methods; thus the object can make a request
providing a callback function and continue its processing, while it is waiting for the answer
for its request. The Facade agent is a singleton instance; therefore its reference can also
be easily retrieved.

8

3.2 Improving Modularization using Aspect-Oriented Programming
An important characteristic that was taken into consideration when integrating the web
application and the agents were to keep them loosely coupled in order to make possible
to easily insert and remove the software agents from the web application. It also helps to
incorporate the autonomous behavior (agents), with a minimum impact into an existing
web application and it improves the reusability and maintenance of the system.

The implementation of the environment agent using the Observer pattern allowed
the agents perceiving changes in the environment. Moreover, the agents can be easily
(un)plugged to the system. We can remove the agents from the application without im-
pacting its normal operation. The Observer pattern provides an abstract coupling between
the subject and the observer; the services of the Business layer does not know who the con-
crete observers are. Furthermore, there are some application program interfaces (APIs),
such as the Java API, that already provides the Observable class and the Observer inter-
face.

The implementation of the Observer pattern using aspect-oriented programming could
make the addition of agents to the web application even less intrusive. Aspect-oriented pro-
gramming (AOP) (Kiczales, Lamping, Menhdhekar, Maeda, Lopes, Loingtier & Irwin 1997)
enables to separate code that implements crosscutting concerns and modularize it into as-
pects. It provides mechanisms and techniques to compose crosscutting behaviors into the
desired operations and classes during compile-time and even during execution. The source
code for operations and classes can be free of crosscutting concerns and therefore easier to
understand and maintain. The code of the Observer pattern presents an invasive nature,
resulting on a scattered and tangled code among several classes. Therefore, this leads the
pattern to �disappear into the code�, and it also bring di�culties to the understanding,
maintenance and documentation of the pattern, and consequently of the application.

We are currently exploring the refactoring of some existing autonomous behavior func-
tionalities from the EC and OLIS systems using AOP. In the current perspective, aspects
have been useful in the implementation of these systems to not only to observe the exe-
cution of business services, but also in the modularization of existing agent functionalities
that are encountered spread and tangled along di�erent classes from Agent layer (Nunes
et al. 2008a, Nunes et al. 2008b).

3.3 Transaction Management and Performance
Besides the questions already presented, there are two important implementation details
that should be mentioned. The �rst one is the transaction management. In typical web
applications, the execution of business methods are under a transaction. Thus, if an error
occurs during the method execution, the operations that were already executed are undone.
With transaction management, the information stored in the database cannot achieve an
inconsistent state. The design issue is if the noti�cation to the observer should be done
inside or outside the transaction scope. If the business methods should be committed even
though an error occurs during the noti�cation to the agents, this noti�cation should be out
of the transaction or the exception thrown should be caught and treated. If the business
method execution must rollback when something wrong happens during the noti�cation
to the agents, the noti�cation must be inside the transaction.

Another design and implementation issue is related to the system performance. The

9

inclusion of noti�cations on the business methods implies an overhead on the system, in
particular when an entity is deleted, because its state is read and kept in memory before
its deletion. Though, only the methods that impacts in the behaviors of the agents should
propagate its execution. Usually, methods that only retrieve information from the data
model do not need to notify the observers.

3.4 Towards a Web-MAS Architectural Pattern
In this section, we present the Web-MAS architectural pattern. This pattern was de-
rived from our case studies based on the common elements identi�ed when integrating
the web based systems and their respective software agents. The proposed pattern pro-
vides a general structure to add autonomous behavior to existing web applications using
agent technology. This extension has a minimum impact on the architecture of web-based
systems. Moreover, the agents can be easily removed after being introduced on the system.

The pattern addresses applications that follow the typical web application architecture,
i.e. the Layer architectural pattern (Buschmann, Meunier, Rohnert, Sommerlad, Stal,
Sommerlad & Stal 1996). Although, it would also be adapted to consider other alternative
implementations of web-based systems. This pattern helps to structure applications that
can be decomposed into groups of subtasks in which each group of subtasks is at a particular
level of abstraction. The solution we propose is composed of these components: (i) the
presentation, business and data layers, which comprise the layered web application; (ii)
the agents layer; (iii) the business layer monitor; (iv) and the agents layer facade. The
structure of these components is depicted in the Figure 3. Next we describe each one of
these components:

Figure 3: WEB-MAS Architectural Pattern.

10

Presentation Layer. This layer can also be called Graphical User Interface (GUI) layer.
The top-most level of the application is the user interface. The main function of
the interface is to translate tasks and results to something the user can understand.
Usually, this layer follows the model-view-controller (MVC) pattern (Fowler 2002).
This pattern considers three roles: (i) model - an object that represents some infor-
mation about the domain; (ii) view - represents the display of the model in the user
interface; and (iii) controller - takes user input, manipulates the model and causes
the view to update appropriately. Commonly, Web Application Frameworks (WAF)
are used to implement this layer;

Business Layer. This layer is also known as Logic layer. It coordinates the applica-
tion processes commands, makes logical decisions and evaluations, and performs
calculations. It also moves and processes data between the two surrounding layers.
Typically, there is transaction control in this layer;

Data Layer. In this layer, the information is stored and is retrieved from a database or
a �le system. It is then passed back to the Business layer for processing, and then
eventually back to the user. The information is represented in a data model, on
which there are objects and relationships among them;

Agents Layer. This component is responsible for the autonomous behavior de facto. It is
composed by software agents. The agents provide intelligent services and automate
tasks that were previously done directly by users. Instead of being simple objects
with attributes and methods, they have believes, goals and plans. The agents receive
messages from the Environment agent about the execution processes that this agent
detects by monitoring the execution processes of the Business Layer. According to
the messages received, the agents take appropriate actions and can also perform
changes in the data model by using the business services;

Business Layer Monitor. This component is responsible for monitoring the execution
processes of business transactions in the web application. The execution processes to
be monitored are the ones that are related to the autonomous behavior. The Business
Layer Monitor aggregates the Environment agent, which receive noti�cations about
the operations executed in the Business layer and propagates them to the other
agents;

Agents Layer Facade. This component is the access point of the web application to the
Agents Layer. Besides the information that is stored in the data model, agents can
also generate information through some processing. Then, this facade provides an
interface for the business services get information from the other agents of the system.
This component is composed by the Facade agent, which receives a request from a
business service, forward it to the appropriate agent and pass the result back to the
service. When this agent starts up, it registers itself as a singleton instance. Then
the business services can access this agent and make a request. There are three ways
of communication: (i) Synchronous - the business service calls the Facade agent and
wait for the response; (ii) Asynchronous with pooling - the business service calls the
Facade agent, continue its processing, and periodically checks if the response arrived;
and (iii) Asynchronous with callback approach - the business service calls the Facade

11

agent, continue its processing, but it is noti�ed through a callback function, which
is passed as parameter when the Facade agent was called.

The communication between the business services and the Environment agent is accom-
plished by means of the introduction of the Observer design pattern (Gamma et al. 1995).
The intent of this pattern is to de�ne a one-to-many dependency between objects so that
when one object performs an action or changes state, all its dependents are noti�ed au-
tomatically. By the use of this pattern, we keep a loose coupling between the application
and the Agents layer . In the Observer pattern, the concrete subject is the object that
sends a noti�cation to its observers when its state changes or performs an action; thus all
the services that compose the Business layer are concrete subjects. They must implement
the Observable interface, which allows the observation of their actions. For each call of
the business methods, the services not only execute the requested method, but they also
notify their respective observers. The concrete observer implements an updating interface
to receive noti�cations from the subject. In our architecture, there is only one concrete
observer, which is the Environment agent. This agent registers itself as an observer of
the services that compose the Business layer when it is initialized. When some action is
performed in the Business layer, the Environment agent is noti�ed about this event and it
broadcasts the event to all other agents of the system.

3.5 Automatic Derivation of Applications
Our case studies are composed by (i) a core - that represents the existing web applica-
tion; and (ii) agency features - which are extensions to the web applications that add new
autonomous behavior functionalities to the system. We are currently investigating the
di�erent kinds of variability related to the software agents, and how to better modularize
them, enabling an automatic product customization. In particular, we are exploring how
existing software product lines techniques can: (i) improve the modularization of the dif-
ferent features/services available in the system; and (ii) help the automatic customization
of these features/services.

Software Product Lines (Clements & Northrop 2002, Pohl, Böckle & van der Linden
2005) (SPL) is a new trend in the software reuse (Parnas 2001), which addresses the devel-
opment of applications that shares common functionalities and maintain speci�c function-
alities that vary according to speci�c systems being considered. We are exploring the use of
the SPL technology to better modularize the features and/or services of web applications.
This allows an easy customization of di�erent versions of the system. Furthermore, the
products can be automatically derived by means of model-based tools: software factories
(Green�eld, Short, Cook & Kent 2004), GenArch (Cirilo, Kulesza & Lucena 2007, Cirilo,
Kulesza, Coelho, Lucena & von Staa 2008, Cirilo, Kulesza & Lucena 2008), pure::variants8.

4 Related Work
There are some approaches in the literature that address the challenge of adding soft-
ware agents on existing web applications. Stroulia & Hatch (Stroulia & Hatch 2003)

8http://www.pure-systems.com/

12

propose a software framework called TaMeX, which supports the development of intelli-
gent multi-agent applications that integrate existing web-based applications o�ering related
services in a common domain. The architecture of the framework is based on an extensi-
ble integration-speci�cation language and a run-time environment consisting of re�ective
intelligent agents able to interpret and execute integration speci�cations, de�ned in the
language. The TaMeX architecture is a distributed multi-agent architecture consisting of
two types of agents: task agents, which are responsible for interacting with the end users;
and application wrappers, which are responsible for executing existing web applications
and translating between the domain model of the integrated application and the individ-
ual domain models of the wrapped applications. Our work also proposes the addition of
software agents on existing web applications. However, we aimed at proposing a simple
solution for that. The use of the TaMeX framework implies learning of a new programming
language and speci�c methods. Besides, it obligates the use of its language to implement
the software agents.

Choy et al propose in (Choy et al. 2005) the use of software agents to make the commu-
nication in a distance learning community more e�ective. They focus on the communication
between teachers and students. The software agent they built is designed to work on behalf
of teachers, assisting them in communicating more e�ectively and closely with students,
saving lot of time by delegating routine jobs. Basically, the software agents monitor the
system and send alert e-mails in speci�c situations. The main elements that were intro-
duced in the web application are: (i) Schedule Control Class, which controls the agent's
life and behavior; (ii) Job Listener Classes, which generates noti�cations when exceptional
events occur; (iii) Data Retrieval Class, which retrieves all required information at once
for the Job Central Processing Class; and (iv) Job Central Processing Class, which hosts
the criteria to generate e-mail alerts and sends them. This work does not actually inte-
grate agents to the web application. The agents run in a parallel way with the system
and consult the same database that is manipulated by the web application. Agents do not
communicate with the rest of the system. Moreover, it does not allow the web application
to access information directly from the agents. Both situations are addressed by our work.

5 Conclusions
This paper presented an exploratory study about the incorporation of autonomous behavior
into existing web applications. This addition is achieved by the introduction of software
agents in the existing web application. We presented two case studies that guided our
research. The �rst case study was the ExpertCommittee, a conference management system
that provides the functionalities to help users with the paper submission and reviewing
processes. The second case study, OLIS, is a system the provides di�erent services to the
user, such as a calendar service. Both case studies are typical web applications that we
evolved to incorporate new features, which automates tasks that previously needed user
information and generates information that needs the a reasoning engine.

We also showed the issues that we found during the case studies development: (i)
how the software agents percept changes in the data model; and (ii) how the business
service can retrieve information from the agents. We proposed an architectural pattern
derived from our case studies to solve this problems. It is proposed the use of a Business
Layer Monitor, composed by the environment agent, which is an observer of the business

13

services and notify the agents about changes in the system; and the Agents Layer Facade,
composed by the facade agent, which is the web application access point to get information
to the other agents. Our pattern is structured in such a way that agents can be easily
inserted and removed from the system. We also discussed some relevant questions about
the architectural pattern that we have proposed.

We are currently working in the development of other case studies to validate the
WEB-MAS architectural pattern and check if our pattern is su�ciently generic to be
applied to other systems. We are also implementing our case studies using aspect-oriented
programming, to allow the (un)pluggability of the agents in the web applications.

References
Adobe (2008), `Adobe - �ex 3'. http://www.adobe.com/products/�ex/.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., Sommerlad, P. &
Stal, M. (1996), Pattern-Oriented Software Architecture: A System of Patterns, John
Wiley Sons.

Choy, S.-O., Ng, S.-C. & Tsang, Y.-C. (2005), Building software agents to assist teaching in
distance learning environments, in `ICALT '05', IEEE Computer Society, Washington,
DC, USA, pp. 230�232.

Cirilo, E., Kulesza, U., Coelho, R., Lucena, C. & von Staa, A. (2008), Integrating Compo-
nent and Product Lines Technologies, in `ICSR 2008', China.

Cirilo, E., Kulesza, U. & Lucena, C. (2007), GenArch: A Model-Based Product Derivation
Tool, in `SBCARS 2007', Campinas, Brazil, pp. 17�24.

Cirilo, E., Kulesza, U. & Lucena, C. (2008), `A Product Derivation Tool Base on Model-
Driven Techniques and Annotations', Journal of Universal Computer Science .

Clements, P. & Northrop, L. (2002), Software Product Lines: Practices and Patterns,
Addison-Wesley, Boston, MA, USA.

Fowler, M. (2002), Patterns of Enterprise Application Architecture, Addison-Wesley Pro-
fessional.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995), Design Patterns: Elements of
Reusable Object-oriented Software, Addison-Wesley.

Green�eld, J., Short, K., Cook, S. & Kent, S. (2004), Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and Tools, John Wiley and Sons.

Jennings, N. R. (2001), `An agent-based approach for building complex software systems',
Commun. ACM 44(4), 35�41.

Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M. & Irwin,
J. (1997), Aspect-Oriented Programming, in `ECOOP'97', Vol. 1241, Springer-Verlag,
Berlin, Heidelberg, and New York, pp. 220�242.

14

Nunes, I., Nunes, C., Kulesza, U. & Lucena, C. (2008a), Developing and evolving a multi-
agent system product line: An exploratory study, in `AOSE 2008', Estoril, Portugal.

Nunes, I., Nunes, C., Kulesza, U. & Lucena, C. (2008b), Documenting and modeling multi-
agent systems product lines, in `SEKE 2008', Redwood City, San Francisco Bay, USA.

Parnas, D. L. (2001), `On the design and development of program families', pp. 193�213.

Pohl, K., Böckle, G. & van der Linden, F. J. (2005), Software Product Line Engineering:
Foundations, Principles and Techniques, Springer-Verlag, New York,USA.

Stroulia, E. & Hatch, M. P. (2003), `An intelligent-agent architecture for �exible service
integration on the web', IEEE Transactions on Systems, Man, and Cybernetics, Part
C 33(4), 468�479.

Wooldridge, M. & Ciancarini, P. (2000), Agent-Oriented Software Engineering: The State
of the Art, in P. Ciancarini & M. Wooldridge, eds, `AOSE 2000', Vol. 1957, Springer-
Verlag, Berlin, pp. 1�28.

15

