

ISSN 0103-9741

Monografias em Ciência da Computação

n

32/08

Extending PASSI to Model
Multi-agent Systems Product Lines

Ingrid Oliveira de Nunes

Uirá Kulesza

Camila Patrícia Bazílio Nunes

Elder José Reioli Cirilo

Carlos José Pereira de Lucena

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monogra�as em Ciência da Computação, No. 32/08 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena August, 2008

Extending PASSI to Model Multi-agent Systems
Product Lines 1

Ingrid Oliveira de Nunes1, Uirá Kulesza2, Camila Patrícia Bazílio Nunes1,
Elder José Reioli Cirilo1, Carlos José Pereira de Lucena1

1 PUC-Rio, Computer Science Department, LES - Rio de Janeiro - Brazil
2 Federal University of Rio Grande do Norte (UFRN) - Natal - Brazil

ioliveira@inf.puc-rio.br, uira@dimap.ufrn.br, camilan@inf.puc-rio.br,
ecirilo@inf.puc-rio.br, lucena@inf.puc-rio.br

Abstract. Multi-agent System Product Lines (MAS-PLs) have emerged to integrate soft-
ware product lines (SPLs) and agent-oriented software engineering techniques by incorpo-
rating their respective bene�ts and helping the industrial exploitation of agent technology.
Some approaches have been proposed in this context; however, they do not address devel-
opment scenarios of traditional SPL architectures using agent abstraction. In this paper,
we present a new approach for modeling MAS-PLs, focusing the domain analysis stage.
Our approach is based on PASSI methodology and incorporates some extensions to ad-
dress agency variability. A case study, OLIS (OnLine Intelligent Services), illustrates our
approach.

Keywords: Multi-agent Systems, Software Product Lines, Methodology, Software Reuse.

Resumo. Linhas de Produto de Sistemas Multi-agents (LP-MASs) surgiram para inte-
grar linhas de produto de software (LPS) e técnicas de engenharia de software orientada
a agentes pela incorporação dos seus respectivos benefícios e auxiliando na exploração in-
dustrial da tecnologia de agentes. Algumas abordagens foram propostas neste contexto;
entretanto, elas não atendem o desenvolvimento de cenários tradicionais das arquiteturas
de LPS usando a abstração de agentes. Neste artigo, apresentamos uma nova abordagem
para modelar LP-MASs, focando no estágio da análise de domínio. Nossa abordagem
é baseada na metodologia PASSI e incorpora algumas extensões que focam na variabili-
dade de agência. Um caso de estudo, OLIS (OnLine Intelligent Services), ilustra a nossa
abordagem.

Palavras-chave: Sistemas Multi-agentes, Linhas de Produto de Software, Metodologia,
Reuso de Software.

1This work has been sponsored by Ministério de Ciência e Tecnologia da Presidência da República
Federativa do Brasil.

In charge of publications:
Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

ii

Contents
1 Introduction 1

2 Related Work 2

3 OLIS Case Study 2

4 Modeling OLIS in Domain Analysis with a PASSI extension 4
4.1 Feature Modeling . 5
4.2 Domain Requirements Description . 5
4.3 Agent Identi�cation . 6
4.4 Role Identi�cation . 6
4.5 Task Speci�cation . 7

5 Discussions 8

6 Conclusions and Future Work 10

References 11

iii

1 Introduction
Over the last years, agents have become a powerful technology to allow the development
of distributed complex applications. Software agents are a natural high-level abstrac-
tion that helps understanding and modeling this kind of systems. Agents usually present
some particular properties (Wooldridge & Ciancarini 2000), such as autonomy, reactivity,
pro-activeness and social ability; therefore they facilitate to develop systems that present
autonomous behavior. A behavior is considered autonomous when it requires arti�cial
intelligence techniques or the system accomplishes actions previously performed by users.
Several methodologies (Sellers & Giorgini 2005) have been proposed in order to allow the
development of Multi-agent Systems (MASs). However, most of them do not take into
account the adoption of extensive reuse practices that can bring an increased productivity
and quality to the software development.

Software product lines (SPLs) (Pohl, Böckle & van der Linden 2005, Clements &
Northrop 2002) have emerged as a new trend of software reuse investigating methods
and techniques in order to build and customize families of applications through a system-
atic method. Clements & Northrop (Clements & Northrop 2002) de�ne a SPL as �a set
of software intensive systems that share a common, managed set of features satisfying the
speci�c needs of a particular market segment or mission and that are developed from a
common set of core assets in a prescribed way�. According to (Czarnecki & Helsen 2006),
a feature is a system property that is relevant to some stakeholder and is used to capture
commonalities or discriminate among products in a product line. The main aim of SPL
engineering is to analyze the common and variable features of applications from a speci�c
domain, and to develop a reusable infrastructure that supports the software development.
This set of applications is called a family of products.

Only recent research (Pena, Hinchey, Resinas, Sterritt & Rash 2007, Dehlinger & Lutz
2005) has explored the integration between SPL and MAS. The aim of these new approaches
is to integrate SPL and agent-oriented techniques by incorporating their respective bene�ts
and helping the industrial exploitation of agent technology. Nevertheless, these approaches
use a SPL perspective for particular purposes and do not address the development of SPLs
to derive MAS.

In this context, this work presents an approach for modeling MAS-PLs. We aim at
proposing a methodology that covers the full SPL development process. However, in this
paper we focus at the domain analysis stage. Our previous work (Nunes, Kulesza, Nunes
& Lucena 2008) allowed us to identify particular kinds of variability of MAS-PLs and how
e�ective the SPL methodologies are for documenting them. We now propose an approach
that extends PASSI (Cossentino 2005), an agent-oriented methodology, to support the
management of SPL variabilities. PASSI provides a useful way for specifying a MAS,
although it considers the development of single systems. We motivate and illustrate this
work with the OLIS case study, a product line of systems that provides di�erent services
to the user, such as calendar and events announcement.

The remainder of this paper is organized as follows. Some works related to multi-agent
systems and product lines are described in Section 2. In Section 3, an overview of the
OLIS case study is presented, giving some details about its development. In Section 4,
we show how we have modeled our product line at the domain analysis stage, based on a
PASSI extension. We present some discussions in the Section 5. Finally, the conclusions
and directions for future works are discussed in Section 6.

1

2 Related Work
Over the past few years, several methods have been published to address the problems and
challenges of SPL engineering. FORM (Kang, Kim, Lee, Kim, Shin & Huh 1998) extended
FODA (Kang, Cohen, Hess, Novak & Peterson 1990) to cover the entire spectrum of do-
main and application engineering, including the development of reusable architectures and
code components. Pohl et al (Pohl et al. 2005) propose a framework for SPL engineering
that de�nes the key sub-processes of the domain engineering and application engineering
process as well as the artefacts produced and used in these processes. PLUS (Gomaa 2004)
provides a set of concepts and techniques to extend UML-based design methods and pro-
cesses for single systems in a new dimension to address software product lines. In our
previous work (Nunes, Kulesza, Nunes & Lucena 2008), we have identi�ed that most of
the SPL methodologies provide useful notations to model the agency features. However,
none of them completely covers their speci�cation. Agent technology provides particular
characteristics that need to be considered in order to take advantage of this paradigm.

On the other hand, many agent-oriented methodologies have been proposed. Tropos
(Bresciani, Perini, Giorgini, Giunchiglia & Mylopoulos 2004) provides guidance for the
four major development phases of application development (Early requirements, Late re-
quirements, Architectural design and Detailed design). PASSI (Cossentino 2005) brings a
particularly rich development lifecycle that spans initial requirements though deployment
and, in addition, emphasizes the social model of agent-based systems. Using the anal-
ogy of human-based organizations, Gaia (Wooldridge, Jennings & Kinny 2000) provides
an approach that both a developer and a non-technical domain expert can understand.
A complete overview and comparison of MAS methodologies is presented in (Sellers &
Giorgini 2005). A particular objective of our study was to �nd out how these methodolo-
gies can be used to help on the development of MAS-PLs.

Recent research work has investigated the integration synergy of MASs and SPLs tech-
nologies. Dehlinger & Lutz (Dehlinger & Lutz 2005) have proposed an extensible agent-
oriented requirements speci�cation template for distributed systems that supports safe
reuse. Pena et al (Pena et al. 2007) present an approach to describing, understanding,
and analyzing evolving systems. The MAS-PL methodologies do not address development
scenarios of traditional SPL architectures using agent technology. Instead, they adopt an
existing MAS methodology as a base (Gaia and MaCMAS methodologies respectively)
and extend it with SPL techniques for a particular purpose. The main problems that we
have observed (Nunes, Kulesza, Nunes & Lucena 2008) in these MAS-PL methodologies to
model and document MAS-PLs were: (i) they do not o�er a complete solution to address
the modeling of agency features in both domain analysis and design; and (ii) they suggest
the introduction of complex and heavyweight notations that are di�cult to understand
when adopted in combination with existing notations (e.g. UML) and do not capture
explicitly the separated modeling of agency features.

3 OLIS Case Study
According to (Krueger 2002), there are di�erent SPLs adoption strategies. The proactive
approach motivates the development of product lines considering all the products in the
foreseeable horizon. A complete set of artifacts to address the product line is developed

2

from scratch. In the extractive approach, a SPL is developed starting from existing soft-
ware systems. Common and variable features are extracted from these systems to derive
an initial version of the SPL. Finally, the reactive approach advocates the incremental de-
velopment of SPLs. Initially, the SPL artifacts address only a few products. When there is
a demand to incorporate new requirements or products, the common and variable artifacts
are incrementally extended in reaction to them. We have developed two MAS-PLs to drive
our study and both followed the reactive approach. The �rst one is a conference manage-
ment web system, the ExpertCommittee, on which we added autonomous behavior. More
details can be seen in (Nunes, Nunes, Kulesza & Lucena 2008) and (Nunes, Kulesza, Nunes
& Lucena 2008). The second one, the OLIS, is detailed in this section. OLIS case study
explores the BDI (belief-desire-intention) model (Rao & George� 1995). It will be used to
illustrate our approach in the next section.

The OLIS (OnLine Intelligent Services) case study is a web application that provides
several personal services to users. The �rst version of the system is composed mainly by two
services: the Events Announcement and the Calendar services. The Events Announcement
service allows the user to announce events to other system users through an events board.
The Calendar service lets the user to schedule events in his/her calendar. Announced
events can be imported to the users' calendar. However, OLIS was designed in such a way
that the system can be evolved to incorporate new services without interfere in the existing
ones. The system has di�erent �avors according to the type of event that it manages, such
as: generic events, academic events and travel events.

Figure 1: OLIS Feature Model.

After developing the �rst version of OLIS web application, new autonomous behavior
features were introduced to automate some tasks in the system. We evolved the OLIS
application, adding new features to it, which take advantage of the agents technology. The
services become intelligent services. Figure 1 shows the feature model of the system.

3

The new features incorporated to the OLIS �rst version are: (i) Events reminder - the
user con�gures how many minutes he/she wants to be reminded before the events, and the
system sends messages to notify the user about events that are about to begin; (ii) Events
scheduler - when an user adds a new calendar event that involves more participants, the
system checks the schedule of the other participants to verify if this event con�icts with
other existing ones. If so, the system suggests a new date for the calendar event that is
appropriate according to all schedules from participants ; (iii) Events Suggester - when a
new event is announced, the system automatically recommends the event after checking if
it is interesting to the users based on their preferences. This feature is also responsible to
check if the weather is going to be appropriate according to the place type where the event
is going to take place; (iv) Weather - this is a new user service. It provides information
about the current weather conditions and the forecast of a location. This service is also
used by the system to recommend announced travel events.

The evolution of OLIS web application was accomplished by the introduction of soft-
ware agents and their respective roles on the architecture. Agents were implemented using
JADE2 and Jadex3 platforms. There are �ve di�erent types of agents in the system: (i)
EnvironmentAgent � perceives changes in the data model and propagates them to the other
agents; (ii) FacadeAgent � retrieves information from agents to the business services, it is a
facade between the web application and the agents; (iii) WeatherAgent � provides informa-
tion about the weather and weather forecast; (iv) ManagerAgent � starts the UserAgents
when the system starts up or when a new user is inserted in the system; (v) UserAgent
� each user has an agent that represents him/her in the system. It acts in the name of
the user. Each UserAgent is composed by roles, which implement agency features. For
example, the EventScheduler and EventParticipant roles implement the Events scheduler
feature.

4 Modeling OLIS in Domain Analysis with a PASSI exten-
sion

In this section, we present our approach for modeling MAS-PLs, which is based on the
PASSI methodology. Due to the de�ciencies and lack of expressivity for documenting vari-
ability, we propose extensions to document the agency features in MAS-PLs. We focus
in this paper speci�cally on the domain analysis stage, yet the main aim of our work is
to de�ne a set of guidelines to model and document agency features along all SPL de-
velopment stages. The case study previously presented (Section 3) is used to illustrate
our extensions. It is important to notice that although the need to clearly modeling the
agency features became from the incremental development of OLIS and ExpertCommit-
tee, the extension proposed here can also be useful when adopting proactive and reactive
development strategies.

PASSI (Process for Agent Societies Speci�cation and Implementation) (Cossentino
2005) is an agent-oriented methodology that speci�es �ve models with their respective
phases for developing MASs. The methodology covers all the development process, from
requirements to code. The �ve di�erent models from PASSI are System Requirements

2vsis-www.informatik.uni-hamburg.de/projects/jadex/
3http://vsis-www.informatik.uni-hamburg.de/projects/jadex/

4

Model, Agency Society Model, Agent Implementation Model, Code Model and Deploy-
ment Model. The domain analysis stage corresponds to the System Requirements Model,
which generates a model of the system requirements in terms of agency and purpose. PASSI
follows one speci�c guideline: the use of standards whenever possible; and this justi�es the
use of UML as modeling language. However, the UML semantics and notation is extended
to design speci�c needs of agents. PASSI methodology is designed for developing single
systems, therefore we had to adapt it to express variability.

4.1 Feature Modeling
Feature modeling is an important activity in SPLs. It is the activity of modeling the
common and variable properties of concepts and their interdependencies (Czarnecki 1998).
The features are organized into a coherent model referred to as a feature model, which
speci�es the features of a product line as a tree, indicating mandatory, optional and al-
ternative features. Features are essential abstractions that both customers and developers
understand. Originally, the feature model was proposed in (Kang et al. 1990).

Figure 1 illustrates the OLIS feature model. It shows its di�erent kinds of features: (i)
Mandatory � features that are in all the versions of the system and are part of its core.
Examples are the Calendar and Events Announcement features; (ii) Optional � features
that made part of only some versions of the MAS-PL, such as the Event Scheduler and
Event Suggester features; and (iii) Alternative � features that varied from one version to
another one. There are di�erent types of events and one of them must be chosen in the
product derivation process (Cirilo, Kulesza & Lucena 2008). Besides the feature model,
constraints express the feature interdependencies. Some features can depend on another,
e.g. the Weather feature must be present if the Event Suggester and Travel Event Type are
selected, and some features are mutually exclusive, the event type illustrates this constraint.

4.2 Domain Requirements Description
According PASSI, in the Domain Requirements Description phase, we make a functional
description of the system composed of a hierarchical series of use case diagrams. In order
to enable the variabilities modeling, we have adapted these PASSI diagrams using the
PLUS method notation. In the PLUS approach, stereotypes are used to indicate if a use
case is mandatory (kernel), alternative or optional. The method also proposes a feature
dependency table to map use cases to each feature. Figure 2 shows a partial view of the
OLIS MAS-PL use case model.

Besides the stereotypes, we also colored the use cases to indicate which feature they are
related to. This indication is used in all artifacts. However, we also provide another view
to the use cases to better express this relation: we grouped them into features with the
UML package notation, as PLUS proposes. In addition, we have adopted the <<agency
feature>> stereotype to indicate that the use cases of a speci�c package is related to an
agency feature (see Figure 3). We preferred to use the common use case descriptions
to explain use cases, instead of using sequence diagrams, as PASSI suggests. Use case
descriptions are widely used in the literature, and are also adopted by PLUS.

5

Figure 2: OLIS Use Case Diagram (Partial).

4.3 Agent Identi�cation
The input of this phase are the use case diagrams generated in the Domain Requirements
Description phase. Responsibilities are attributed to agents, which are represented as
stereotyped UML packages. The OLIS Agent Identi�cation Diagram is depicted in Fig-
ure 4.

PASSI methodology considers that all functionalities of the system are performed by
agents. Agents are entities that usually presents autonomy and pro-activeness, so only
the functionalities that have these characteristics need to be performed by agents. Thus,
the use cases that are into a UML package stereotyped with <<agency feature>> will be
considered to be performed by an agent. These use cases will be grouped into <<agent>>
stereotyped packages so as to form a new diagram. Each one of these packages de�nes the
functionalities of a speci�c agent.

In OLIS case study, each user of the system has an agent that represents it. This agent
is an instance of the User Agent. We did not �nd how to express the communication
between di�erent instances of the same agent in PASSI, so you draw an arrow between the
two use cases that goes outside the UML package and then comes back (see Figure 4).

4.4 Role Identi�cation
In the Role Identi�cation phase, all the possible paths (a �communicate� relationship be-
tween two agents) of the Agents Identi�cation diagram are explored. A path describes a
scenario of interacting agents working to achieve a required behavior of the system. In
di�erent scenarios, agents can play di�erent roles. The agent interactions are expressed
through sequence diagrams.

6

Figure 3: Grouped Use Cases (Partial).

Usually, each scenario corresponds to only one feature of the system. For these cases,
a feature dependency table to map sequence diagrams to each feature is enough. However,
there are some features that have impact in another feature. We say that the feature
crosscuts the other. An example is the Event Suggestion feature of OLIS. When an event
is inserted on the system, the UserAgent that represents the user who inserted it asks for the
other user agents if they have interest on that event. So, the agent checks the availability
of the user on the event date. Besides, if the event type is academic, the agent checks the
areas of interest and the location of the event according to the user AcademicPreferences.
And if the event type is travel, the agent checks the place type where the event is going to
happen and the activities that can be done according to the user TravelPreferences; and
the agent also consults the WeatherAgent to get the weather forecast and check if it will
be good in the event date. Thus, according to the Event Type feature, the agents behavior
change. The solution that we found for this problem is the use of UML fragments to
express optional and alternative paths. Figure 5 illustrates this scenario. In this diagram,
only the interaction among agents/roles are reported, the internal behavior of agents are
speci�ed in the next phase.

4.5 Task Speci�cation
In the Task Speci�cation phase, activity diagrams are used to specify the capabilities of
each agent. According to PASSI, for every agent in the model, we draw an activity diagram
that is made up of two swimlanes. The one from the right-hand side contains a collection
of activities symbolizing the agent's tasks, whereas the one from the left-hand side contains
some activities representing the other interacting agents.

In these diagrams, we have made three adaptations, some of them were already adopted
in other diagrams: (i) instead of drawing only one diagram per agent, we split the diagram
according to the features; (ii) use of UML fragments to show di�erent paths when there
is a crosscutting feature; (iii) a colored indication showing with which feature the task
is related to. These adaptations can be seen in Figure 6. The main objective of this
adaptations is to provide a better feature modularization and traceability. Splitting the

7

Figure 4: OLIS Agent Identi�cation Diagram.

diagram in the way we proposed allow the selection of the necessary diagrams during the
application engineering according to selected features. Nevertheless, crosscutting features
could not be isolated from the others, and this is a challenge that we are still facing while
developing of MAS-PLs (see Section 5).

Several PASSI extensions were proposed to model agency variabilities. Most of them
came from PLUS (Gomaa 2004) approach, which provides useful notations to model SPLs
(Nunes, Kulesza, Nunes & Lucena 2008). Table 1 summarizes the adaptations we proposed.

5 Discussions
In this section, we present and discuss some lessons learned while modeling agency features
in MAS-PLs and challenges that we still have to face. These lessons learned o�er directions
for a methodology for developing MAS-PL that we are currently de�ning.

Integration of SPL techniques with existing Multi-agent Methodologies. Several MAS
methodologies have been proposed (Bresciani et al. 2004, Cossentino 2005, Wooldridge
et al. 2000). These methodologies have the same purpose of building agent-based sys-
tems; however each has its own unique perspective and approach to developing MASs.
Though, no one methodology is useful in every system�development situation. One ques-
tion that we had to deal while modeling MAS-PL is what methodology should be our start
point. PASSI integrates concepts from object-oriented software engineering and arti�cial
intelligence approaches. It uses an UML-based notation, and it brings facilities to the
incorporation of notations already proposed for SPLs (Gomaa 2004). In addition, there
are available tools for modeling and code generation. Some research work (Cossentino,
Sabatucci & Chella 2003) promotes pattern reuse in PASSI methodology. It improves the
possibility of code generation; nevertheless we did not discuss this in this paper.

8

Figure 5: OLIS Role Identi�cation Diagram.

Figure 6: OLIS Task Speci�cation Diagram.

Explicit Separation of the Modeling and Implementation of MAS Features from other
Technologies. MAS methodologies usually propose to distribute all the system function-
alities / responsibilities among agents. Agents are an abstraction that provides some
particular characteristics, such as autonomy and pro-activeness. Therefore, we claim that
features of the SPL that do not take advantage from agent technology can be modeled
and implemented using typical programming techniques. In our approach, we adopted the
<<agency feature>> stereotype to indicate the features that present autonomous behavior
and should be modeled using agent abstraction. This let us use the several technologies
that exist for improving the development of web applications, such as design patterns and
persistence and web application frameworks.

Granularity in Software Product Lines. In the literature, there a many examples of
SPLs with features with coarse granularity. This means that these features can be im-
plemented wrapped in a speci�c unit, such as a class, a method or an agent. Although,

9

�ne-grained extensions, e.g. adding a statement in the middle of a method, usually require
the use of techniques, like conditional compilation, which obfuscate the base code with
annotations. Though many SPLs can and have been implemented with the coarse granu-
larity of existing approaches, �ne-grained extensions are essential when extracting features
from legacy applications (Kästner, Apel & Kuhlemann 2008). Our scope in this study was
dealing with coarse-grained features; however we are currently extending OLIS MAS-PL
by adding new �ne-grained features to explore this scenario.

Table 1: PASSI extensions.
Phase Extensions
Feature Modeling New phase
Domain Requirements Description Use of Stereotypes (kernel, alternative or optional)

New use cases view (grouped in features)
Use of <<agency feature>> stereotype to indicate autonomous
behavior features
Use of colors to trace features

Agent Identi�cation Only use cases in <<agency feature>> stereotyped packages
are distributed among agents
Use of Stereotypes (kernel, alternative or optional)
Use of colors to trace features

Role Identi�cation Use of UML fragments (crosscutting features)
Use of colors to trace features

Task Speci�cation One diagram per agent and feature
Use of UML fragments (crosscutting features)
Use of colors to trace features

Crosscutting agency features. Many of the agency features are implemented by a set
of di�erent system components, agents and classes. They are characterized as crosscut-
ting features, because their design and implementation are typically spread and tangled
along di�erent system modules. Our approach do not provide clear support to deal with
the documentation of these crosscutting features, however we are currently investigating
how existing aspect-oriented approaches (Jacobson & Ng 2004, Clarke & Baniassad 2005)
can help the visual documentation of the agency features. We already have some results
in this direction, by making studies about agency features modularity (Nunes, Kulesza,
Sant'Anna, Nunes & Lucena 2008).

6 Conclusions and Future Work
In this paper, we presented an approach for modeling MAS-PLs at the domain analysis
stage. Our approach is based on PASSI methodology, which supported the speci�cation
of software agents. We have extended this methodology to address agency variabilities
in product lines. An important phase that needs to be added in the methodology is
the feature modeling, which is the activity that identi�es the SPL common and variable
features. In addition, we have extended the PASSI notation, using stereotypes to indicate
the variable abstractions and components of the systems. Since PASSI is based on the
UML notation, it allowed us to adopt notations from PLUS, an existing SPL approach.
We also discussed some important topics that arose from our study, such as the use of
object-oriented techniques in agent-based applications and the need of a clear support for
crosscutting features.

Our focus in this paper was in the domain analysis stage, but we are currently working
on the development of a methodology that allows an explicit documentation and tracing

10

of agency features throughout the SPL development process. Some SPL methodologies are
not used in practice due to their high complexity. Thus, we aim at developing an agile
and adaptable methodology. Our methodology is being organized as a process framework
composed of: (i) a core - that de�nes a set of mandatory activities and artifacts; and (ii)
speci�c customizations - that specify additional activities and artifacts to the core according
to speci�c scenarios that need to be addressed. Tool support for the methodology based
on model-driven engineering techniques is also under development.

References
Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F. & Mylopoulos, J. (2004), `Tropos:

An agent-oriented software development methodology', AAMAS 2004 8(3), 203�236.

Cirilo, E., Kulesza, U. & Lucena, C. (2008), `A Product Derivation Tool Base on Model-
Driven Techniques and Annotations', Journal of Universal Computer Science .

Clarke, S. & Baniassad, E. (2005), Aspect-Oriented Analysis and Design: The Theme Ap-
proach (The Addison-Wesley Object Technology Series), Addison-Wesley Professional.

Clements, P. & Northrop, L. (2002), Software Product Lines: Practices and Patterns,
Addison-Wesley, USA.

Cossentino, M. (2005), From Requirements to Code with the PASSI Methodology, Idea
Group Inc., Hershey, PA, USA, chapter IV.

Cossentino, M., Sabatucci, L. & Chella, A. (2003), Patterns reuse in the passi methodology,
in `ESAW'03', Springer-Verlag, pp. 29�31.

Czarnecki, K. (1998), Generative Programming: Principles and Techniques of Software En-
gineering Based on Automated Con�guration and Fragment-Based Component Mod-
els, PhD thesis, Technical University of Ilmenau.

Czarnecki, K. & Helsen, S. (2006), `Feature-based survey of model transformation ap-
proaches', IBM Systems Journal 45(3), 621�645.

Dehlinger, J. & Lutz, R. R. (2005), A Product-Line Requirements Approach to Safe Reuse
in Multi-Agent Systems, in `SELMAS 2005', ACM Press, USA, pp. 1�7.

Gomaa, H. (2004), Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures, Addison Wesley Longman Publishing Co., Inc.,
USA.

Jacobson, I. & Ng, P.-W. (2004), Aspect-Oriented Software Development with Use Cases
(Addison-Wesley Object Technology Series), Addison-Wesley Professional.

Kang, K. C., Kim, S., Lee, J., Kim, K., Shin, E. & Huh, M. (1998), `Form: A feature-
oriented reuse method with domain-speci�c reference architectures', Ann. Softw. Eng.
5, 143�168.

11

Kang, K., Cohen, S., Hess, J., Novak, W. & Peterson (1990), Feature-oriented domain
analysis (foda) feasibility study, Technical Report CMU/SEI-90-TR-021, Software
Engineering Institute, Carnegie-Mellon University.

Kästner, C., Apel, S. & Kuhlemann, M. (2008), Granularity in software product lines, in
`ICSE '08', ACM, New York, NY, USA, pp. 311�320.

Krueger, C. W. (2002), Easing the transition to software mass customization, in `PFE '01',
Springer-Verlag, London, UK, pp. 282�293.

Nunes, C., Kulesza, U., Sant'Anna, C., Nunes, I. & Lucena, C. (2008), On the modularity
assessment of aspect-oriented multi-agent systems product lines: a quantitative study,
in `SBCARS 2008', Porto Alegre, Brazil.

Nunes, I., Kulesza, U., Nunes, C. & Lucena, C. (2008), Documenting and modeling multi-
agent systems product lines, in `SEKE 2008', Redwood City, USA, pp. 745�751.

Nunes, I., Nunes, C., Kulesza, U. & Lucena, C. (2008), Developing and evolving a multi-
agent system product line: An exploratory study, in `AOSE 2008', Estoril, Portugal,
pp. 177�188.

Pena, J., Hinchey, M. G., Resinas, M., Sterritt, R. & Rash, J. L. (2007), `Designing and
managing evolving systems using a MAS product line approach', Science of Computer
Programming 66(1), 71�86.

Pohl, K., Böckle, G. & van der Linden, F. J. (2005), Software Product Line Engineering:
Foundations, Principles and Techniques, Springer-Verlag, New York,USA.

Rao, A. S. & George�, M. P. (1995), BDI-agents: from theory to practice, in `ICMAS
1995', San Francisco.

Sellers, B. H. & Giorgini, P., eds (2005), Agent-Oriented Methodologies, Idea Group Inc.

Wooldridge, M. & Ciancarini, P. (2000), Agent-Oriented Software Engineering: The State
of the Art, in P. Ciancarini & M. Wooldridge, eds, `AOSE 2000', Vol. 1957, Springer-
Verlag, Berlin, pp. 1�28.

Wooldridge, M., Jennings, N. R. & Kinny, D. (2000), `The gaia methodology for agent-
oriented analysis and design', AAMAS 2000 3(3), 285�312.

12

