

ISSN 0103-9741

Monografias em Ciência da Computação

n 36/08

Merge Source Coding

Bruno Tenório Ávila

Eduardo Sany Laber

Marcelo Gattass

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 36/08 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena August, 2008

Merge Source Coding

Bruno Tenório Ávila, Eduardo Sany Laber and Marcelo Gattass

bavila@inf.puc-rio.br, laber@inf.puc-rio.br, mgattass@tecgraf.puc-rio.br

Abstract. This paper presents a new entropy coding called Merge Source Coding, which is
based on merging algorithms. We show that any merging algorithm can be used as a basis
for a binary entropy coder. As a consequence, a new binary entropy coder is proposed,
which is called Binary Merge Coder. Experimental evaluation shows that it presents little
redundancy and that it is much faster than arithmetic coders and quantized indexing
coders. We believe that it can be a valuable contribution to those interested in real-time
compression.

Keywords: Entropy Coding, Source Coding, Merging Algorithms

Resumo. Este artigo apresenta uma nova codificação de entropia chamada Codificação
Intercalada de Fonte, na qual é baseada nos algoritmos de intercalação. Nós mostramos que
qualquer algoritmo de intercalação pode ser usado como base para um codificador binário
de entropia. Como conseqüência, um novo codificador binário de entropia é proposto, na
qual é chamado de Codificador de Intercalação Binária. Os experimentos mostraram que
ele apresenta pouca redundância e que é mais rápido que os codificadores aritméticos e os
codificadores de índice quantizados. Nós acreditamos que ele pode ser uma contribuição
valiosa para aqueles interessados em compressão em tempo real.

Palavras-chave: Codificação de Entropia, Codificação de Fonte, Algoritmos de Inter-
calação

In charge for publications:
Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

ii

1 Introduction

An entropy coder is a lossless data compression algorithm that does not use semantic
aspects of the data in order to remove its redundancy. Its optimality is achieved according
to Shannon’s source coding theorem [23]. There are several types of entropy coders that can
be categorized according to: the way the symbols’ frequencies are updated (e.g. static or
adaptive); the block’s length size of symbols (eg. fixed or variable); and the ability to model
different kinds of sources (e.g. binary, multialphabet, memoryless, Markov, stationary and
nonstationary).

Entropy coders play an important role in communication and compression systems.
In modern applications (e.g. high-definition video, ultrasonography and satellite images,
databases, file systems, scientific visualization), an exponential growth in the data needed
to be transmitted and stored has been observed. Therefore, data compression is crucial
to reduce their size, as well as performing it in real-time. For those applications, it is
reasonable to increase the redundancy of the compressed data as a tradeoff for a smaller
compression time.

The two most popular entropy coders are the Huffman coder and the arithmetic coder.
The Huffman coder was initially proposed in [10], developed in [8][9][15], improved in [26]
and analyzed in [18]. Despite its simplicity and speed, it has several disadvantages, such as
the fact that it cannot encode binary sources and that its adaptive version is not very fast.
The arithmetic coder was initially proposed in [20], generalized in [21] and popularized in
[19]. It has overcome most of the Huffman coder’s limitations; for instance, it can encode
binary sources and it has smaller redundancy. However, it is fairly slow due to the many
operations performed per input symbol, including multiplication and division operations.

Two other entropy coders that deserve some attention are the interval and the enu-
merative coder. The interval coder [7] keeps track of the last absolute position of each
symbol and outputs an integer per input symbol with the relative position of the current
symbol and its last occurrence. It is an adaptive coder designed for sources with more
than two symbols. This method presents two major drawbacks: it is not optimal and it
cannot encode binary sources. The enumerative coder was initially proposed in [16] [5] and
improved in [4]. It is an offline method for encoding strings by storing their lexicographic
index. The index size is proportional to the entropy size, so it not a practical method. In
order to overcame this problem, the quantized indexing coder has been proposed in [25],
which constructs a truncated index that fits in a smaller data structure. It also has some
disadvantages, such as the fact that it is still static and performs more operations on less
frequent input symbols.

This paper presents a new entropy coding called Merge Source Coding, which is based
on merging algorithms. Our first contribution is to show that any given merging algorithm
can be used as an entropy coder. In fact, we show how to combine any set of merging al-
gorithms to obtain an entropy coder. Therefore, the vast literature on merging algorithms
(e.g. online and offline algorithms, distributed and parallel strategies, hardware imple-
mentations, algorithm analysis, etc.) implies an important consequence: several kinds of
entropy coders can be developed for different applications and needs.

Our second contribution consists of selecting a merging algorithm and transforming it
into an entropy coder, called Binary Merge Coder, which presents several advantages: a) it
is asymptotically optimal; b) it has acceptable redundancy; c) it can model data adaptively
with a constant number of operations per input symbol; d) it can be implemented without

1

floating point operations, which makes it suitable for hardware implementation; e) and a
table with a pre-computed sequence of symbols can be used to speed up the coding process.
Our experimental evaluation shows that it is at least three times faster than the quantized
indexing coder and twenty times faster than an arithmetic coder with one multiplication
per input symbol. As a consequence, the proposed coder can be a valuable contribution to
those interested in real-time compression.

This paper is organized as follows: Section 2 presents the Merge Source Coding; Section
3 presents the Binary Merge Coder along with its implementation details and experimental
evaluation; finally, in Section 4 we present our conclusions.

2 Merge Source Coding

In this section, we present the Merge Source Coding. We noted that there is a relation
between merging algorithms and entropy coders and, as a consequence, they can be used
to develop entropy coders. The inverse was not explored.

Merging is one of the basic problems in theoretical computer science [14]. Given two
disjoint linearly ordered subsets A = a1 < ... < am and B = b1 < ... < bn, with m ≤ n, of
a linearly ordered set S, the problem consists of determining the linear ordering of their
union by means of a sequence of pairwise comparisons between items in A and in B. The
measure of complexity of a merging algorithm is the number of comparisons C(m,n), in the
worst case, made by the algorithm for input subsets of sizes m and n. An optimal merging
algorithm requires I(m,n) =

⌈
log2

(
m+n

m

)⌉
comparisons, in the worst case. Note that when

m = 1, merging degenerates into binary search whose complexity is dlog2(n+ 1)e.
The worst-case complexity of merging algorithms has been well studied. In 1971, Hwang

[12] solved the case form = 2 proving that C(2, n) = dlog27(n+ 1)/12e+dlog214(n+ 1)/17e.
In 1972, Hwang and Lin [13] proposed an efficient algorithm, namely binary merge, which
provides satisfactory results for all values of m and n. In 1973, Hwang and Deutsch [11]
developed a merging algorithm that is better than binary merge for small values of m, but
not significantly faster. In 1979, Manacher [17] proposed the first significant improvement
over binary merge improving it for n ≥ 8m by 31m/336 comparisons. In 1978 (due to
publication delay), it was further improved by Christen [1]. It is better than binary merge
if n > 3m and uses at least m/4 fewer comparisons if n ≥ 4m, and asymptotically it uses
at leastm/3−o(m) fewer comparisons when n/m tends to infinity. On the other hand, this
algorithm is worse than binary merge when n < 3m. In 1980, Stockmeyer and Yao [24] and
Christen [2] obtained the following result: for m ≤ n ≤ d3m/2e, then C(m,n) = m+n−1
and the optimal algorithm is the well-known tape-merge (two-way merge) [14]. In 1993,
La Vega [6] proposed a simple probabilistic algorithm for merging. It is more efficient than
binary merge for n/m > (

√
5 + 1)/2 ≈ 1.618.

2.1 The General Coding Process

Now, we show how to relate merging algorithms with entropy coders. In fact, we show
first how to relate them to binary entropy coders. Then, we show how to combine a set of
merging algorithms to work as one entropy coder and how to extend binary entropy coders
to model other kinds of sources.

Let x be a source with alphabet A = {a0, a1, . . . , ad−1}, where d is the cardinality of A.

2

Let ck be the count of the symbol ak in the source x that defines a probability distribution
X and c =

∑d−1
k=0 ck the size of x. Let H(X) =

∑d−1
k=0

ck
c log2

c
ck

be the entropy of the
source x. Let x(i) be the ith symbol of x from the left to right. Finally, let y be the binary
output generated by the entropy coder.

Given a merging algorithm A, we can obtain an entropy coder B as follows: if x is
the binary source to be coded by B, we first construct two linearly ordered sets s0 and
s1, where s0(s1) stores the absolute positions in x containing 0(1). As an example, if
x = 01011100, then s0 = 1, 3, 7, 8 and s1 = 2, 4, 5, 6. The output y of B is the result of the
comparisons performed by A when merging s0 and s1, that is, the ith bit of y is 0 if, in the
ith comparison performed by A, the element of s0 is smaller than that from s1; otherwise,
the ith bit of y is 1.

The entropy decoder receives the output y as the input parameter. It knows that the
elements of s0 are the positions of the symbols 0 in the source x, as the same for s1.
However, it does not know the position values of each element. These positions are defined
by the bits of the output y, which represents the result of the comparisons performed by
the merging algorithm. Note that it is the merging algorithm that defines the order and
the elements of s0 and s1 to be compared. This has to be respected by the decoder. Thus,
if the decoder reads a 0 bit, then this means that the element in s0 is to the left of the
element in s1; otherwise, it is to the right.

The ideas above form the Merge Source Coding and lead to our main result: any
merging algorithm can be used to work as a binary entropy coder. Considering the vast
literature on merging algorithms (e.g. online and offline algorithms, distributed and parallel
strategies, hardware implementations, algorithm analysis, etc.), this implies an important
consequence: several kinds of entropy coders can be developed for different applications
and needs.

There are several asymptotically optimal merging algorithms that can be used as bi-
nary entropy coders. In fact, if they are used, then the coder will also be asymptotically
optimal, in terms of redundancy. In other words, asymptotically optimal merging algo-
rithms with input sizes c0 and c1, where c = c0 + c1, generate a number of comparisons
equal to Copt(c0, c1) = O (I(c0, c1)) = k1I(c0, c1)+k2, where k1 and k2 are constants. Since
I(c0, c1) ≤ cH(c0, c1) (see [3]), then Copt(c0, c1) ≤ k1cH(c0, c1) + k2 = O(cH(c0, c1)). In
order to reduce redundancy, a set of merging algorithms can be combined to form a binary
entropy coder. In fact, one could execute a merging algorithm that performs better for
any given values of c0 and c1.

A merge coder is not limited to memoryless binary sources. The coder can be extended
to model other sources by decomposing them into several memoryless binary sources.
Multi-alphabet sources with d distinct symbols can be converted into a binary dlog2 de-
Markov source. Then, an m-Markov source can be decomposed into 2m independent
memoryless binary sources. Now, we can just apply the Binary Merge Coder on these
several independent memoryless binary sources.

Most merging algorithms use the position of the previous processed element to find
the position of the current element. Thus, if these merging algorithms are used to be
converted into a binary entropy coder, then the bits sent to the output by the encoder
can be interpreted, in binary form, as the relative position of the elements. This method
resembles the interval coder [7], because it also codes the relative position of symbols in
the source. The Binary Merge Coder presented in the next section is based on the binary

3

merge algorithm [13], which uses this approach.

3 Binary Merge Coder

In this section, we present the Binary Merge Coder. The ideas described in section 2 are
applied to the binary merge algorithm [13] in order to convert it into the proposed binary
entropy coder.

3.1 Definitions

A static entropy coder is a two-pass algorithm: first, it counts the symbols’ frequencies;
second, it encodes the symbols without updating their frequencies. The frequency table has
to be stored before compressing the data in the second pass. A semi-static entropy coder
is basically the same as the static one, but it decreases the frequencies after coding each
input symbol. An adaptive entropy coder starts the symbols’ frequencies with a positive
value (e.g. 1) and updates the frequencies after coding each input symbol. The frequency
table does not have to be stored.

3.2 Coding Process

First, we consider the semi-static version of the Binary Merge Coder. Later, we show how
to use the static and the adaptive models. In the semi-static version, we use lfs and mfs to
denote the least frequent symbol and the most frequent symbol, respectively, in the suffix
of the binary source x that has not been processed yet.

Encoding the encoding process for a binary source x initially verifies if cmfs is bigger
than clfs because the symbol lfs can become more frequent than the symbol mfs in suffix
of x that has not been processed. If this is the case, then they are exchanged. Next, it
sets t = blog2

cmfs

clfs
c and p = 2t. A lfs symbol is sought in the next p bits of x. If found, a

1 bit is sent to the output y; the position r of the lfs symbol is sent to the output using t
bits (in fact, the value r− 1 is coded in standard binary form); cmfs is decreased by r− 1
and; clfs is decremented by 1. Otherwise, if not found, then a 0 bit is sent to the output
y and cmfs is decremented by p. The process goes back to the first step until clfs is 0.

cmfs clfs t p input x output y

1 14 3 2 4 00010000000100100 111
2 11 2 2 4 0000000100100 1110
3 7 2 1 2 000100100 11100
4 5 2 1 2 0100100 11100111
5 4 1 2 4 00100 11100111110
6 2 0 - - 00 11100111110

Table 1: Example of the semi-static encoding process.

For example, let x = 00010000000100100. Thus, the mfs symbol is 0 with cmfs = 14
and the lfs symbol is 1 with clfs = 3. The next step is to calculate t = blog2

14
3 c = 2

and p = 22 = 4. Next, a lfs symbol is found in the position 4, and a 1 bit is sent to the
output so that y = 1; the position 4 is also sent using 2 bits, or 4 − 1 = 3 = (11)2 and
concatenated with y so that the current y becomes 111; the values cmfs = 14 − 3 = 11

4

and clfs = 3 − 1 = 2 are updated. A new iteration starts with the mfs symbol as the 0
bit, since cmfs ≥ clfs. The values t = blog2

11
2 c = 2 and p = 22 = 4 are calculated. Next,

as a lfs symbol is not found in the next p = 4 bits of x, then a 0 bit is sent to y so that
it becomes 1110 and the value cmfs = 11 − 4 = 7 is updated. The encoding process is
summarized in Table 1. The theoretical lower bound for this example is 11 bits and the
output generated by the Binary Merge Coder has 11 bits as well.

Decoding since the coding process is static, the decoder initially reads the values of cmfs

and clfs stored in y. Now, y is the parameter input of the decoder and x the output, which
will be exactly like the original source by the end of the decoding process.

The decoding process of compressed data y exchanges the symbol cmfs with clfs and
its respective values, only if cmfs < clfs. Next, it sets t = blog2

cmfs

clfs
c and p = 2t. Next,

it reads one bit flag from the input y. If the bit is 0, then it sends p mfs symbols to the
output x; cmfs is decremented by p. Otherwise, it reads the next t bits and assigns them
to r; it sends r mfs symbols and one lfs symbol to the output and; cmfs is decremented
by r and; clfs is decremented by 1. The process goes back to the first step until cmfs or
clfs is 0. When this process ends, if cmfs is bigger than 0, then cmfs mfs symbols are sent
to the output.

cmfs clfs t p input y output x

1 14 3 2 4 11100111110 0001
2 11 2 2 4 00111110 00010000
3 7 2 1 2 0111110 0001000000
4 5 2 1 2 111110 000100000001
5 4 1 2 4 110 000100000001001
6 2 0 - - 00010000000100100

Table 2: Example of the semi-static decoding process.

For example, let y = 11100111110. The decoder reads the initial values of cmfs and
clfs, which are 14 and 3, respectively. Thus, the mfs symbol is 0 and the lfs symbol is 1.
The first step is to calculate t = blog2

14
3 c = 2 and p = 22 = 4. Next, it reads the first

bit, which is 1; it reads the next t = 2 bits and decodes them to r = (11)2 = 3; r = 3 mfs
symbols and one lfs symbol are sent to the output; the values cmfs = 14 − 3 = 11 and
clfs = 3 − 1 = 2 are updated. A new iteration is started with the mfs symbol as the 0
bit, since cmfs ≥ clfs, so there is no need to exchange. Next, the values t = blog2

11
2 c = 2

and p = 22 = 4 are calculated. Since the next bit is 0, then p mfs symbols are sent to the
output and the value cmfs = 11 − 4 = 7 is updated. After all iterations, if cmfs is bigger
than 0, then cmfs mfs symbols are sent to the output; otherwise clfs lfs symbols are sent.
The decoding process is summarized in Table 2.

3.3 Discussion and Analysis

The Binary Merge Coder encodes each least frequent symbol by its relative position since
the previous occurrence. At each iteration, a range is estimated within which the next lfs
symbol is supposed to be and a bit flag is sent to the output to indicate whether the next
lfs symbol has been found. The range is estimated by assuming the existence of one lfs
symbol for each cmfs/clfs of mfs symbols. If a lfs symbol is found, its position is coded
using exactly t bits. Note that if t = 0 then clfs ≈ cmfs (e.g. the number of mfs symbols is

5

closer to the number of lfs symbols). Thus, the entropy is approximately 1 bit per symbol
and the bit flags sent are exactly the same bits from the source.

The subsets creation as described in subsection 2.1 does not have to be explicitly made
and then applied to the merging algorithm. The cardinality of both subsets clfs and cmfs

is known due to the first pass of the semi-static coder. However, the position values of each
element of both subsets are only determined when it encodes the symbols of the source,
in the second pass. Note that the binary merge algorithm searches for the correct position
of the current element starting at the position of the last previous element. Therefore,
previously searched positions can be stored because the following ones will not need them.
Thus, the Binary Merge Coder can encode the symbols as soon as it reads them.

The results of the comparisons performed by the binary merge algorithm are sent to
the output y. The binary merge algorithm compares the current element of the smallest
subset with the element in the relative position p of the biggest subset. The result of this
comparison is the bit flag referred in the Binary Merge Coder. If the element is smaller,
then a binary search is performed by the binary merge algorithm over those p elements of
the biggest subset. The results of the comparisons have the same bits as the r value in
binary form using t bits. Note that only the lfs symbols have their relative positions coded.
The following theorem analyzes the proposed coder in more detail in terms of redundancy.

Theorem 3.1. The semi-static Binary Merge Coder is asymptotically optimal, in terms
of redundancy.

Proof. Let BM(m,n) denote the complexity of the binary merge algorithm; then, ac-
cording to [13], BM(m,n) < I(m,n) + m. Thus, the Binary Merge Coder outputs
BM(c0, c1) + σ bits, where σ are the bits required to store the symbols’ frequencies c0
and c1. Assuming c0 ≤ c1, then BM(c0, c1) + σ < I(c0, c1) + c0 + σ. According to [3],
BM(c0, c1)+σ ≤ cH(c0, c1)+ c0 +σ, where c = c0 + c1. If we divide everything by c, then
the number of bits per symbol H ′(c0, c1) of the coder is H ′(c0, c1) < H(c0, c1) + (c0 +σ)/c
and it follows that limc→∞H

′(c0, c1) < H(c0, c1).

The semi-static Binary Merge Coder can be converted into a static coder just by not
updating the frequencies after each symbol is coded. It calculates the values of p and t
once at the beginning and uses these fixed values during the coding process. It can also
be converted into an adaptive one, requiring two minor modifications: the values of ck
are initially set to one and, as the encoder proceeds, the occurrences of the symbols are
incremented rather than not decremented. The decoder requires the same modifications:
the symbols’ frequencies ck are set initially to one and, as the decoder proceeds, the
frequencies are incremented.

3.4 Implementation Details and Experimental Evaluation

The static Binary Merge Coder has a simple implementation. However, the semi-static and
adaptive versions have a performance bottleneck: the calculation of variable t at the coding
process, which involves a division, a logarithmic function and a floating-point truncation.
In order to overcome this problem, two observations can be made to improve considerably
the coding performance. First, given an initial value of t, the next value of t will differ
by only one; thus, one only needs to test if the ratio is t − 1 or t + 1. Second, the value
of t is only changed periodically. Thus, the cmfs and clfs limit values that change the

6

value of t can be previously calculated and the above test needs to be done only when
the limit values are reached. In practice, these observations result in a multiplication and
division-free implementation of the Binary Merge Coder with no floating-point operations.
Now, the calculation of t represents merely a small overhead on the coder’s performance.

Another improvement can be achieved with the use of tables of pre-coded symbols.
The encoding table is mainly a pre-coding of a given block of symbols of the binary source
using a given number of ratios cmfs/clfs(values of t). However, there may be an impractical
number of ratios to be stored in the table, so only a small number of ratios are used. The
preferred ratio values consist in zero to three. Ratios greater than three mean that the
binary source is sparse and there are more blocks of symbols with no lfs symbols, so it can
be optimized without using any tables. The decoding table follows the same idea, with
exception that its blocks of symbols represent the binary source encoded.

Yet another improvement can be applied: the redundancy can be decreased with the
use of a combination of optimal merging algorithms that perform better for a specific ratio.
In order to avoid performance loss, it can be integrated to the table of pre-coded symbols.
For different ratios, the blocks of symbols are coded with a better merging coder and stored
in the table. Thus, the use of a combination of different coders is transparent.

Arithmetic QIC BMC BMC w. table
File Size Entropy ET DT ET DT ET DT ET Red.
Text 62979072 0.67 25.1 18.6 3.1 15.2 5.3 5.6 0.9 6.9

Calgary 3152896 0.95 37.1 28.4 5.9 25.9 5.5 3.1 1.8 4.6
Video 97425978 0.99 37.4 30.4 7.9 29.3 3.6 3.2 0.8 0.0

Table 3: Test results of static coders.

An arithmetic coder [22], the quantized indexing coder (QIC) [25], the Binary Merge
Coder (BMC) and its version with tables were compared with respect to coding time and
redundancy. All coders were implemented using the C language, compiled with Microsoft
Visual Studio 2005, and using binary static models. In order to minimize operation system
influence in time measurements, all data were copied to memory before coding and the
results also were put in memory. They were executed on an Intel Core 2 Duo with 2GB
RAMmemory. The coders were tested on a text file with pictures, video and on the Calgary
corpus grouped into a single file. The test results are summarized in Table 3. The ET and
DT abreviations stand for encoding and decoding time, respectively, in nanoseconds per
input symbol. The Red. abreviation stands for redundancy in percentage of the theoretical
limit.

The arithmetic coder and the quantized indexing coder have near zero redundancy
and they were not listed in Table 3. The redundancy of the Binary Merge Coder is
practically the same for the versions with and without tables, so it is listed only once. The
BMC’s redundancy is small in relation to the size of the source, because it presents higher
redundancy when a greater compression can be achieved and it has small redundancy when
only a smaller compression can be achieved.

The arithmetic coding time is very high which represents a problem for practical ap-
plications. Although, a multiplication-free and division-free implementation can greatly
decrease coding time, it hardly will reach the BMC’s coding time due to the number of
operations it has to execute. The quantized indexing coder has a better encoding time and
it is proportional to the entropy, since it only codes the lfs symbols. However, its decoding

7

time is high, because it has to decode all symbols. Another practical disadvantage of the
QIC is the fact that it is inherently static, so it has to perform two passes over the source.
The Binary Merge Coder presents encoding and decoding times smaller than arithmetic
and QI coders, except for the QIC’s encoding time. If the tables are used, then the BMC’s
encoding time is the smallest, having reached an encoding rate of 149.01 MB/s. The en-
coding time of the BMC with tables is at least three times faster than the QIC’s encoding
time and twenty times faster than an arithmetic coder with multiplications and divisions.

4 Conclusions and Open Problems

This paper has presented a new entropy coding called Merge Source Coding, which is based
on merging algorithms. We have shown that any merging algorithm can be used to work as
a binary entropy coder. As a consequence, the binary merge algorithm [13] was converted
into a binary entropy coder, called Binary Merge Coder. Our experimental evaluation has
shown that it presents acceptable redundancy and that it is at least twenty times faster
than the arithmetic coder and three times faster than the quantized indexing coder. We
believe that it can be a valuable contribution for those interested in real-time compression.

The Merge Source Coding proposed herein also suggests further developments. One of
them is to convert other merging algorithms to become a merge coder. Another possibility
is the construction of a hybrid merge coder in order to reduce redundancy.

Acknowledgments

Thanks are due to Geisa M. Faustino for hers most valuable assistance. The authors are
supported by CNPq.

References

[1] C. Christen. Improving the bound on optimal merging. In Proceedings of the 19th
IEEE Symposium on Foundation of Computer Science), pages 259–266, 1978.

[2] C. Christen. On the optimality of the straight merging algorithm. Technical Report
296, University of Montreal, 1978.

[3] J. Cleary and I. Witten. A comparison of enumerative and adaptive codes. IEEE
Transactions on Information Theory, IT-30(2):306–315, March 1984.

[4] T. M. Cover. Enumerative Source Encoding. IEEE Transactions on Information
Theory, IT-19(1):73–77, January 1973.

[5] L. D. Davisson. Comments on ’Sequence time coding for data compression’. Proceed-
ings of IEEE, 54:2010, December 1966.

[6] W. F. de La Vega, S. Kannan, and M. Santha. Two probabilistic results on merging.
SIAM Journal of Computing, 22(2):261–271, April 1993.

[7] P. Elias. Interval and recency rank source coding: two on-line adaptive variable length
schemes. IEEE Transactions on Information Theory, IT-33:3–10, January 1987.

8

[8] N. Faller. An adaptive system for data compression. In 7th Asilomar Conference on
Circuits, Systems and Computing, pages 593–597, 1973.

[9] R. G. Gallager. Variations on a theme by Huffman. IEEE Transactions on Information
Theory, IT-24:668–674, November 1978.

[10] D. A. Huffman. A method for the construction of minimum-redundancy codes. Pro-
ceedings of the IRE, pages 1098–1101, September 1952.

[11] F. K. Hwang and D. N. Deutsch. A class of merging algorithms. Journal of ACM,
20:148–159, 1973.

[12] F. K. Hwang and S. Lin. Optimal merging of 2 elements with n elements. Acta
Informatica, 1:145–158, 1971.

[13] F. K. Hwang and S. Lin. A simple algorithm for merging two disjoint linearly ordered
lists. SIAM Journal of Computing, 1:31–39, 1972.

[14] D. E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3.
Addison-Wesley, 1973.

[15] D. E. Knuth. Dynamic Huffman Coding. Journal of Algorithms, pages 163–180, 1985.

[16] T. M. Lynch. Sequence time coding for data compression. Proceedings of IEEE,
54:1490–1491, October 1966.

[17] G. K. Manacher. Significant improvements to the Hwang-Lin merging algorithm.
Journal of ACM, 26:434–440, 1979.

[18] R. L. Milidiú, E. S. Laber, and A. A. Pessoa. Improved analysis of the FGK algorithm.
Journal of Algorithms, 28:195–211, 1999.

[19] A. Moffat, R. M. Neal, and I. H. Witten. Arithmetic coding revisited. ACM Trans-
actions on Information Systems, 16(3):256–294, July 1998.

[20] J. J. Rissanen. Generalized kraft inequality and arithmetic coding. IBM Journal of
Research and Development, 20(3):198–203, May 1976.

[21] J. J. Rissanen and G. G. Langdon Jr. Arithmetic coding. IBM Journal of Research
and Development, 23(2):146–162, March 1979.

[22] D. A. Scott. fpaq0s
http://www.cs.fit.edu/˜mmahoney/compression/fpaq0s.cpp, 2006.

[23] C. E. Shannon. A mathematical theory of communication. The Bell System Technical
Journal, 27:379–423, 623–656, July 1948.

[24] P. K. Stockmeyer and F. F. Yao. On the optimality of linear merge. SIAM Journal
of Computing, 9:85–90, 1980.

[25] R. V. Tomic. Quantized indexing: beyond arithmetic coding. In Proceedings of the
Data Compression Conference (DCC’06), March 2006.

9

[26] J. S. Vitter. Dynamic huffman coding. ACM Transaction on Mathematical Software,
15:158–167, June 1989.

10

