

ISSN 0103-9741

Monografias em Ciência da Computação

n

47/08

A Domain Engineering Process for
Developing Multi-agent Systems Product Lines

Ingrid Oliveira de Nunes

Uirá Kulesza

Camila Patrícia Bazílio Nunes

Carlos José Pereira de Lucena

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monogra�as em Ciência da Computação, No. 47/08 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena November, 2008

A Domain Engineering Process for Developing

Multi-agent Systems Product Lines 1

Ingrid Oliveira de Nunes1, Uirá Kulesza2, Camila Patrícia Bazílio Nunes1,
Carlos José Pereira de Lucena1

1 PUC-Rio, Computer Science Department, LES - Rio de Janeiro - Brazil
2 Federal University of Rio Grande do Norte (UFRN) - Natal - Brazil

{ioliveira,camilan,lucena}@inf.puc-rio.br, uira@dimap.ufrn.br

Abstract. Multi-agent Systems Product Lines (MAS-PLs) have emerged to integrate two
promising trends of software engineering: agent-oriented software engineering, which is a
new paradigm to support the development of complex and distributed systems based on
agent abstraction, and software product lines, a systematic form of reuse that addresses the
development of system families that share common and variable features. In this paper,
we propose a domain engineering process to develop MAS-PLs, built on top of agent-
oriented and software product line approaches, addressing agency features modeling and
documentation. We describe each one of the process stages, and their respective activities.
Our approach is illustrated with a case study, OLIS (OnLine Intelligent Services).

Keywords: Software Product Lines, Multi-agent Systems, Process, Agent-oriented soft-
ware engineering, Domain Engineering.

Resumo. Linhas de Produto de Sistemas Multi-agentes (LP-SMAs) surgiram para inte-
grar duas promissoras tendências da engenharia de software: engenharia de software de
sistemas multi-agentes, que é um novo paradigma para suportar o desenvolvimento de sis-
temas complexos e distribuídos baseado na abstração de agente, e linhas de produto de
software, uma forma sistemática de reuso que visa o desenvolvimento de famílias de sis-
temas que compartilham features comuns e variáveis. Neste artigo, propomos um processo
de engenharia de domínio para o desenvolvimento de LP-SMAs, construído com base em
abordagens orientadas a agentes e de linhas de produtos de software, permitindo a docu-
mentação e modelagem de features de agência. Nós descrevemos cada um dos estágios do
processo, e suas respectivas atividades. Nossa abordagem é ilustrada com um estudo de
caso, o OLIS (OnLine Intelligent Services).

Palavras-chave: Linhas de Produto de Software, Sistemas Multi-agentes, Processo, En-
genharia de Software Orientada a Agentes, Engenharia de Domínio.

1This work has been sponsored by Ministério de Ciência e Tecnologia da Presidência da República
Federativa do Brasil.

In charge of publications:
Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

ii

Contents

1 Introduction 1

2 Approach Overview 2
2.1 Key Concepts . 2
2.2 Agency Features Granularity . 3

3 The Motivating Example: OLIS Case Study 4

4 The Domain Engineering Process 5
4.1 Domain Analysis . 6

4.1.1 Early Requirements . 6
4.1.2 Late Requirements . 8

4.2 Domain Design . 10
4.3 Domain Realization . 13

5 Related Work 14

6 Conclusion and Future Work 14

References 15

iii

1 Introduction

Over the past decade, software agents have become a powerful abstraction to support the
development of complex and distributed systems. They are a natural metaphor to un-
derstand systems that present some particular characteristics such as high interactivity
and multiple loci of control. These systems can be decomposed in several autonomous
and pro-active agents comprising a Multi-agent System (MAS). Agent-oriented software
engineering (AOSE) has emerged as a new software engineering paradigm to help on the
development of MASs, and then new works were proposed in this direction, such as method-
ologies (Wooldridge, Jennings & Kinny 2000, Cossentino 2005, Bresciani, Perini, Giorgini,
Giunchiglia & Mylopoulos 2004) and modeling languages (da Silva & de Lucena 2007).
However, most of the agent-oriented methodologies do not take into account the adop-
tion of extensive reuse practices, which have been widely used in the software engineering
context to provide reduced time-to-marked, quality improvement and lower development
costs.

In the context of software reuse, the concepts of system families and software product
lines (SPLs) have gained a signi�cant popularity throughout the software industry and
research community, leading to the emergence of a new �eld called product-line engineering.
SPLs (Clements & Northrop 2002) refer to a family of systems sharing a common, managed
set of features to satisfy the needs of a selected market and that are developed from
a common set of core assets in a prescribed way. Although many SPL methodologies
have been proposed (Pohl, Böckle & van der Linden 2005, Gomaa 2004), they do not
detail or barely detail the modeling and documentation of SPLs that take advantage of
agent technology. Only some recent research (Dehlinger & Lutz 2005, Pena, Hinchey
& Ruiz-cortés 2006) has explored the integration of SPLs and MASs technologies, by
incorporating their respective bene�ts and helping the industrial exploitation of agent
technology. However, there are still many challenges (Pena, Hinchey & Ruiz-Cortés 2006)
to be overcome in the Multi-agent Systems Product Lines (MAS-PLs) development.

This paper presents a domain engineering process for developing MAS-PLs. This pro-
cess focuses on system families and includes domain scoping and variability modeling tech-
niques. Our approach is the result of an investigation of how current SPL, MAS and
MAS-PL approaches can model MAS-PLs. Based on this experience, we propose our
process, which is built on top of some MAS and SPL approaches. We combined some
techniques and notations of these approaches (Gomaa 2004, Cossentino 2005, da Silva &
de Lucena 2007) and added some extensions/adaptations. The scenario that we are cur-
rently exploring is the development of MAS-PLs that have some features implemented with
typical web implementation techniques, such as the use of object-oriented frameworks, and
others that take advantage of agent technology providing an autonomous or pro-active
behavior, denominated agency features. There are examples that illustrate the incorpora-
tion of agency features into web applications, and a typical one is the recommendation of
products and information to users (Holz, Hofmann & Reed 2008). Due to the existence of
lots of web applications already developed, the use of a SPL approach can provide a better
modularization of these features, making this evolution with a minimum impact. In this
context, two case studies were developed: the OLIS case study, which is used to illustrate
our approach, and the ExpertCommittee case study, a SPL of conference management
systems.

The main contributions of this paper are: (i) we provide a way to model and document

1

agency variability; (ii) we de�ne the activities of the whole domain engineering process
for MAS-PLs; and (iii) our approach models agency features independently, making the
incorporation of agents in existing systems designed with other technologies, such as object-
oriented, with a low impact.

The structure of this paper is as follows: Section 2 gives an overview of our approach,
describing its key concepts. In Section 3, we present the OLIS case study, which is used to
illustrate our approach. The process we propose is described in Section 4. Related works
are presented in Section 5, followed by Section 6 that concludes this paper.

2 Approach Overview

This section presents an overview of our approach for developing MAS-PLs, detailing its
basic concepts. Current SPL methodologies (Clements & Northrop 2002, Gomaa 2004, Pohl
et al. 2005) cover a great variety of SPL development activities, related to domain and
application engineering, and to the processes management as well. Nevertheless, they
either are too abstract, lacking of design details, or are based on technologies that are, for
example, object-oriented and component-oriented, not addressing the development of SPLs
that use agent technology. On the other hand, agent-oriented methodologies support the
development of MASs, but they do not cover typical activities of SPL development, such
as feature modeling. As a result, we propose a process that is based on the integration of
existing SPL and MAS methodologies, instead of proposing a whole new approach. The
key concepts that guided the elaboration of our approach are presented in Section 2.1.
We have also de�ned the agency features granularity that we are dealing in MAS-PLs
development, which is described in Section 2.2.

2.1 Key Concepts

Our domain engineering process was conceived by the integration of existing works in
the context of MASs and SPLs, which are: (i) PLUS (Gomaa 2004) method; (ii) PASSI
(Cossentino 2005) methodology; and (iii) MAS-ML (da Silva & de Lucena 2007) modeling
language. In addition, we propose additional adaptations and extensions for them. Our
objective is not to create a brand new approach, but to extract the major bene�ts of some
of the current MAS and SPL approaches to compose ours. Figure 1 illustrates our approach
by showing how MAS-PLs are modeled in di�erent abstraction levels.

Figure 1: Approach Overview.

2

In (Nunes, Nunes, Kulesza & Lucena 2008), Nunes et al. investigated the use of current
SPLs and MAS-PLs approaches for modeling and documenting agency features in MAS-
PLs. SPL methodologies provide useful notations to model the agency features. However,
none of them completely covers their speci�cation. Particularly, the PLUS (Product Line
UML-based Software engineering) (Gomaa 2004) approach was very useful for documenting
agency features. PLUS provides a set of concepts and techniques to extend UML-based
design methods and processes for single systems to handle SPLs. As a consequence, this
approach was the base for the elaboration of our process.

Nevertheless, agent technology provides particular characteristics that need to be con-
sidered in order to take advantage of this paradigm. In order to model agency features
in MAS-PL, we have adopted the phases of the System Requirements model of PASSI
methodology. We made some adaptations in these phases and they were incorporated into
the domain analysis stage. PASSI (Process for Agent Societies Speci�cation and Imple-
mentation) (Cossentino 2005) is an agent-oriented methodology that speci�es �ve models
with their respective phases for developing MASs. This methodology covers all the devel-
opment process from requirements to code. PASSI follows the guideline of using standards
whenever possible; and this justi�es the use of UML as modeling language. This helped
us to incorporate some PLUS notations into PASSI diagrams.

At the domain design stage, PASSI uses convetional class, sequence and activity UML
diagrams to design agents, and this approach has been successfully used in the development
of embedded robotics applications. However, our focus is to allow the design of agents
that follow the BDI (belief-desire-intention) model. This model proposes that agents are
described in terms of three mental attitudes - believes, desires and intentions - which
determine the agent's behavior. Moreover, some important agent-oriented concepts, such
as environment, cannot be modeled with UML and the use of stereotypes is not enough
because objects and agency elements have di�erent properties and di�erent relationships.
Thus, our process uses the MAS-ML (da Silva & de Lucena 2007) modeling language, with
some extensions, to model agents. MAS-ML extends the UML meta-model in order to
express speci�c agent properties and relationships. As discussed in (da Silva & de Lucena
2007), others MAS modeling languages do not allow to model some agency concepts.
For instance, AUML (Bauer, Müller & Odell 2001) does not de�ne organizations and
environments and as a consequence the relationships between agents and these elements
cannot be modeled.

There are some notations and guidelines that were adopted along all our process, which
are: (i) use of <<kernel>>, <<optional>> and <<alternative>> stereotypes to indicate
variability in the models. Additionally the <<agency feature>> stereotype is used to
indicate the use cases related to an agency feature (Section 4.1.1); (ii) use of colors to
structure models in terms of features; (iii) model an agency feature in one or more models,
but never two agency features in the same model; and (iv) provide the features traceability.

2.2 Agency Features Granularity

Features granularity refers to the degree of detail and precision that a design element that
implements a feature presents. In the literature, there are many examples of SPLs with
coarse-grained features. This means that these features can be implemented wrapped in a
speci�c unit, such as a class or an agent. Besides the usual variabilities present in SPLs,
we have considered three di�erent kinds of agent variability in the context of MAS-PLs: (i)

3

agents; (ii) agent roles; and (iii) capabilities. Therefore, using our de�nition, these are the
elements that can be mandatory, optional or alternative when specifying the variability of
a MAS-PL architecture. We have excluded the possibility an optional belief, for instance.

A capability (Padgham & Lambrix 2000) is essentially a set of plans, a fragment of
the knowledge base that is manipulated by those plans and a speci�cation of the interface
to the capability. This concept is implemented by JACK and Jadex agent platforms.
Capabilities have been introduced into some MASs as a software engineering mechanism
to support modularity and reusability while still allowing meta-level reasoning. The reason
for choosing capabilities instead of believes, goals and plans to vary in a MAS-PL is that we
believe that variations in these �negrained elements can be encapsulated into a capability.

Modularity is very important in this context because an essential engineering principle
of SPLs is the separation of concerns. Separation of concerns is the process of breaking
the product line architecture into distinct features that overlap in functionality as little as
possible. A concern is any piece of interest or focus in a program and is used as a synonym
of feature. Techniques, such as modularity and encapsulation with the help of information
hiding, are used in order to obtain separation of concerns.

Even though many SPLs can and have been implemented with the coarse granular-
ity of existing approaches, �ne-grained extensions are essential when extracting features
from legacy applications (Kästner, Apel & Kuhlemann 2008). An example is considering
two versions of a MAS, on which a belief of an agent varied between the two versions.
Nevertheless, dealing with �ne-grained features is out of the scope of this paper.

3 The Motivating Example: OLIS Case Study

This section brie�y describes the OLIS (OnLine Intelligent Services) case study, which
is used to illustrate the phases of our approach in the next section. OLIS is a MAS-PL
built using a reactive development approach (Krueger 2002). This approach advocates the
incremental development of SPLs. Initially, the SPL artifacts address only a few products.
When there is a demand to incorporate new requirements or products, the common and
variable artifacts are incrementally extended in reaction to them.The products that can be
derived from OLIS MAS-PL are web applications customized to provide several personal
services to users. OLIS is composed by four services: (i) User Management - allows the
creation and con�guration of user accounts; (ii) Events Announcement - allows the user
to announce events to other system users through an events board; (iii) Calendar services
- lets the user to schedule events in his/her calendar; and (iv) Weather - provides infor-
mation about the current weather conditions and forecast. Additionally, OLIS provides
an alternative feature: the event type, thus products can deal with generic, academic or
travel events. Figure 2 depicts the OLIS features diagram.

OLIS services can be customized by the addition of optional features that automate
some tasks previously done by users, which are: (i) Events reminder - the system sends
messages to notify the user about events that are about to begin; (ii) Events scheduler -
when an user adds a new calendar event that involves more participants, the system checks
the schedule of the other participants to verify if this event con�icts with other existing
ones. If so, the system suggests a new date for the calendar event that is appropriate
according to schedules from all participants; and (iii) Events Suggester - when a new
event is announced, the system automatically recommends the event after checking if it

4

Figure 2: OLIS Features Diagram.

is interesting to the users based on their preferences. This feature is also responsible for
checking if the weather is going to be appropriate according to the place type where the
event is going to take place. These new features are characterized by a pro-active behavior,
therefore software agents and their respective roles were useful abstractions to implement
these features.

4 The Domain Engineering Process

Software product line engineering (SPLE) is in general organized in two main processes
(Pohl et al. 2005): domain engineering and application engineering. Domain engineering is
the process of SPLE in which the commonalities and variabilities of the SPL are identi�ed,
de�ned and realized. Application engineering is the process of SPLE in which applications
of the SPL are built by reusing domain artifacts produced during domain engineering.
Our proposal is a domain engineering process that de�nes the stages and their respective
activities to develop MAS-PLs. It aggregates some activities that are speci�c to model
software agents and their variabilities.

Typical domain engineering processes encompass three stages: (i) domain analysis -
where the main concepts and activities in a domain are identi�ed and modeled using
adequate modeling techniques. The common and variable parts of a system family are
identi�ed; (ii) domain design - whose purpose is to develop a common system family archi-
tecture and production plan for the SPL; and (iii) domain implementation - which involves
implementing the architecture, components, and the production plan using appropriate
technologies. The quali�er �domain� emphasizes the multisystem scope of these stages.

Table 1 summarizes the stages and activities that compose our process, and the artifacts
produced in each one of them as well. Next sections detail the stages of our domain

5

engineering process.

Stage Activity Artifacts

Domain Analysis Early Requirements
Feature Modeling Feature Model
Use Case Modeling Use Case Diagram, Use Case Descrip-

tions
Feature/Use Case Dependency
Modeling

Feature/Use Case Dependency Model

Late Requirements
Agent Identi�cation Agent Identi�cation Diagram
Role Identi�cation Role Identi�cation Diagram
Task Speci�cation Task Speci�cation Diagram
Feature/Agent Dependency Model-
ing

Feature/Agent Dependency Model

Domain Design Static Modeling Class Diagrams, Role Diagrams, Orga-
nization Diagrams

Dynamic Modeling Sequence Diagrams
Feature/Agent Dependency Modeling Re�ned Feature/Agent Dependency

Model
Domain Realization Assets Implementation Reusable Software Elements

Design/Implementation Elements
Mapping

Implementation Model, Con�guration
Model

Table 1: The Domain Engineering Process.

4.1 Domain Analysis

The domain analysis stage de�nes activities for eliciting and documenting the common
and variable requirements of a SPL. It is concerned with the de�nition of the domain
and scope of the SPL, and speci�es the common and variable features of the SPL to be
developed. This stage in our process is divided in two phases: Early Requirements and
Late Requirements2.

4.1.1 Early Requirements

In the Early Requirements phase, the system family is analyzed and its common and
variable features are identi�ed to establish the scope of the SPL. A feature is a system
property that is relevant to some stakeholder and is used to capture commonalities or
discriminate among products in a SPL. Posteriorly, the requirements are described in
terms of use case diagrams and descriptions. Next, we detail each one of the activities that
compose this phase.

Feature Modeling. Feature modeling was originally introduced by the FODA method
and is the activity of modeling the common and variable properties of concepts and their
interdependencies in SPLs. Features are essential abstractions that both customers and
developers understand, and during the feature modeling, they are assigned to di�erent
variability categories, including mandatory, alternative and optional features. After, they
are organized into a tree representation called features diagrams. Figure 2 illustrates
the OLIS features diagram. A feature model refers to a features diagram accompanied by
additional information such as constraints, and it represents the variability within a system
family in an abstract and explicit way.

2These terms were inspired by Tropos(Bresciani et al. 2004) methodology.

6

Use Case Modeling. In this activity, the SPL functional requirements are de-
scribed in terms of use cases. In our process, we have adopted the use case extended
proposed by PLUS approach. In this approach, stereotypes are used to indicate that a
use case: (i) is part of the SPL kernel being present in all products (<<kernel>>); (ii) is
present only in some products (<<optional>>); or (iii) varies among the SPL products
(<<alternative>>). Besides the stereotypes, we also use colors in the use cases to indicate
to which feature they are related to. This color indication is used in almost all artifacts.
Use case descriptions are widely used in the literature, thus we adopted them in our process
using PLUS template.

According to separation of concerns principle (mentioned in Section 2.2), each use case
should correspond to only one feature. If a use case has an optional or alternative part,
it must be decomposed into two or more use cases connected by relationships such as
extend and include. However, there are some features, named crosscutting features, which
have impact in several use cases/features of the SPL, e.g. the event type feature in the
OLIS MAS-PL impacts almost all other features and use cases of the MAS-PL. Therefore,
creating separated use cases for di�erent event types could lead to (i) a high number of
use cases; and (ii) the impossibility of grouping use cases in only one categorization, for
instance, the use cases could be grouped according to the functional features or the event
type feature in the OLIS. So, instead of modularizing crosscutting features in speci�c use
cases, we propose the use of variation points in the use case descriptions. PLUS does not
provide explicit guidelines for modeling crosscutting features and use of variation points
to describe small variations.

Figure 3: Feature/Use Case Dependency Diagram (Partial).

Feature/Use Case Dependency Modeling. A particularity of SPLE is that domain
models should contain traceability links from the features and variation points in the feature
models to their realizations in the other analysis models. So, in this activity of domain
analysis, we provide another use case view (see Figure 3), which adapted from PLUS. This
view maps use cases to features: use cases are grouped into features with the UML package
notation plus stereotypes. In addition, we adopt a new stereotype (<<agency feature>>)

7

to indicate that the use cases of a speci�c package are related to an agency feature. We
de�ne an agency feature as a feature that presents some particular characteristics, such as
pro-activity and autonomy, and the agent abstraction is indicated to model that feature.

4.1.2 Late Requirements

The purpose of the Late Requirements phase is to better describe the pro-active and auton-
omy concerns with respect to the current problem domain. A particularity of this kind of
concerns is that they do not need a user that supervises their execution. Furthermore, they
are not well described in use cases, and consequently they need a more precise speci�cation.
Software agents are an abstraction of the problem space that are a natural metaphor to
model pro-active or autonomous behaviors of the system. Therefore, we incorporated some
phases of the Domain Requirements model of PASSI methodology to our process in order
to specify agency features. The Domain Requirements model generates a model of the
system requirements in terms of agency and purpose. The incorporated phases with our
extensions are described in Table 2. For details of the PASSI extension to model MAS-PLs
in the domain analysis stage, refer to (Nunes, Kulesza, Nunes, Cirilo & Lucena 2008a).
Next we describe the activities that encompass the Late Requirements phase.

Table 2: Our extensions to the PASSI Approach.
Phase Extensions

Agent
Identi�cation

Only use cases in <<agency feature>> stereotyped packages
are distributed among agents
Use of Stereotypes (kernel, alternative or optional)
Use of colors to trace features

Role
Identi�cation

Use of UML 2.0 frames (crosscutting features)
Use of colors to trace features

Task
Speci�cation

One diagram per agent and feature
Use of UML 2.0 frames (crosscutting features)
Use of colors to trace features

Agent Identi�cation. In this activity, responsibilities are attributed to agents, which
are represented as stereotyped UML packages. The input of this phase is the use case
diagrams generated in the Use Case Modeling activity. According to PASSI methodology,
all the use cases are grouped to be performed by agents; however, we propose that only
the use cases that are into a UML package stereotyped with <<agency feature>> will be
considered. These use cases are grouped into <<agent>> stereotyped packages so as to
form a new diagram. Each one of these packages de�nes the functionalities of a speci�c
agent.

Figure 4 shows the OLIS agent identi�cation diagram. The use case stereotypes used
in the previous activity are still present. As a result, if only optional use cases are given
to an agent, this agent will be also optional, for example. Additionally, the agents that
will compose the SPL products are not restricted to the agents identi�ed in this phase;
additional agents can be introduced in the domain design stage (Section 4.2).

Role Identi�cation. In MASs, agents can play di�erent roles in di�erent scenarios.
In the Role Identi�cation activity, all the possible paths (a �communicate� relationship
between two agents) of the agent identi�cation diagram are explored. A path describes a

8

Figure 4: OLIS Agent Identi�cation Diagram.

scenario of interacting agents working to achieve a required behavior of the system. The
agent interactions are expressed through sequence diagrams.

Each role identi�cation diagram usually corresponds to only one feature of the SPL
due to the fact that use cases were already modularized in that way. Consequently, all
identi�ed roles and described interactions in the diagram are related to one speci�c feature.
However, use cases impacted by crosscutting features are an exception for this, and the
interactions related to the crosscutting feature should be explicit documented. For these
cases, we propose the use of UML 2.0 frames to express optional and alternative paths in
the sequence diagrams.

Task Speci�cation. In the Task Speci�cation activity, activity diagrams are used to
specify the capabilities of each agent. According to PASSI, for every agent in the model, we
draw an activity diagram that is made up of two swimlanes. The one from the right-hand
side contains a collection of activities symbolizing the agent's tasks, whereas the one from
the left-hand side contains some activities representing the other interacting agents.

In these diagrams, we have made three adaptations, some of them were already adopted
in other diagrams: (i) instead of drawing only one diagram per agent, we split the diagram
according to the features; (ii) use of UML 2.0 frames to show di�erent paths when there is a
crosscutting feature; (iii) a colored indication showing with which feature the task is related
to. These adaptations can be seen in Figure 5. The main objective of these adaptations is
to provide a better feature modularization and traceability. Splitting the diagram in that
way, we allow the selection of the necessary diagrams during the application engineering
according to selected features.

Feature/Agent Dependency Modeling. In the Late Requirements phase, the
agency features of the SPL are described in terms of agents and their respective roles.
In this activity, a model is generated describing the relationships between features and
these agent concepts in the SPL. This model is organized into a tree, in which each feature
has agents and roles as its children indicating that these elements must be present in the
product being derived if the feature is selected. Figure 6(a) shows the OLIS feature/agent
dependency model.

9

Figure 5: OLIS Task Speci�cation Diagram.

4.2 Domain Design

The main purpose of the domain design stage is to de�ne an architecture that addresses
both the common and variable features of a SPL. Based on the SPL requirements identi-
�ed on the previous stage, designers should model the SPL architecture, determining how
these requirements, including the variability, are re�ected in this architecture. The modu-
larization of features must be taken into account during the design of the architecture core
assets to allow the (un)plugging of optional and alternative features. In addition, there
must be a model to map features to the design elements providing a traceability of the
features. The next sections detail the activities that compose the domain design stage.

Static Modeling. The static modeling of a system determines how its elements,
e.g. objects and agents, are structured. In SPLs, static modeling has also the purpose
of capturing the structural aspects of the SPL; however it has additional notations to
indicate the common and variable parts of the system. Moreover, when structuring a SPL,
techniques, such as generalization/specialization and design patterns, should be used to
model variable parts of the SPL in order to modularize features.

Instead of using UML to model MAS-PLs, we propose the use of MAS-ML (da Silva
& de Lucena 2007), a MAS modeling language. It is a UML extension based on the
Taming Agents and Objects (TAO) conceptual framework (meta-model). Using the MAS-
ML meta-model and diagrams, it is possible to represent the elements associated with a
MASs and to describe the static relationships and interactions between these elements.
The structural diagrams in MAS-ML are the extended UML class diagram and two new
diagrams: organization and role. MAS-ML extends the UML class diagram to represent
the structural relationships between agents, agents and classes, organizations, organizations
and classes, environments, and environments and classes. The organization diagram models
the system organizations and the relationships between them and other system elements.
Finally, the role diagram is responsible for modeling the relationships between the roles
de�ned in the organizations.

10

Figure 6: OLIS Feature Agent Dependency Model.

To address variability in MAS-ML diagrams, we adopted four di�erent adaptations:
(i) use of the <<kernel>> , <<optional>> and <<alternative>> stereotypes to indicate
that diagram elements are part of the core architecture, present in just some products or
vary from one product to another, respectively; (ii) use of colors to indicate that an element
is related to a speci�c feature; (iii) model each feature in a di�erent diagram, whenever
possible. It is not possible to be done when dealing with crosscutting features; however the
use of colors helps to distinguish the elements related to these features; and (iv) introduc-
tion of the capability (Padgham & Lambrix 2000) concept to allow the modularization of
variable parts in agents and roles. We represented a capability in MAS-ML by the agent
role notation with the <<capability>> stereotype. An aggregation relationship can be
used between capabilities and agents, and capabilities and roles.

We illustrate some of the artifacts generated in the static modeling activity with two
diagrams: OLIS Organization Diagram (Figure 7) and OLIS Role Diagram (Figure 8).
These diagrams are related to the Event Suggestion feature. When an event is inserted by
a user on the system, the User Agent associated with that user asks for the other user agents
if they have interest on that particular event. So, the agent checks the availability of the
user on the event date. Besides, if the event type is academic, the agent checks the areas of
interest and the location of the event according to the user AcademicPreferences. And if
the event type is travel, the agent checks the place type where the event is going to happen
and the activities that can be done according to the user TravelPreferences. Finally,
the user agent also consults the Weather Agent to get the weather forecast and check if it
will be good in the event date. The implementation of this feature is accomplished by two
roles: Event Announcer and Event Client. Both roles are played by the User Agent. The

11

Event Client role varies according to the event type feature. It was modularized into two
capabilities: Check Academic Event and Check Travel Event. The last communicates with
the Weather Provider role to request the forecast, what is represented by an association
relationship.

Figure 7: OLIS Organization Diagram.

Figure 8: OLIS Role Diagram.

Dynamic Modeling. The dynamic modeling addresses interaction between objects,
agents and roles, describing how these elements interact with each other. It is based on the
use cases, role identi�cation diagrams and task identi�cation diagrams developed during
domain analysis stage. For each use case, the elements that participate in the use case
are determined, and the way in which the elements interact are shown in order to satisfy
the requirements described in the use case. Information about the autonomous and pro-
active behavior of the system is provided by the role identi�cation and task identi�cation
diagrams.

To model the dynamic behavior in MAS-PLs, we use UML sequence diagrams, which
present a set of interactions between objects playing roles in collaborations, extended by
MAS-ML. The extended version of this diagram represents the interaction between agents,

12

organizations and environments. The only di�erences in the dynamic modeling activity for
single systems and MAS-PLs are: (i) di�erent features are modeled in di�erent sequence
diagrams; and (ii) UML 2.0 frames are used to indicate a behavior related to a crosscutting
feature, as it was done in the Task Speci�cation activity (Section 4.1.2).

Feature/Agent Dependency Modeling. In this activity, we re�ne the model gen-
erated in the Feature/Agent Dependency Modeling activity of the domain analysis stage.
New agents and roles can be introduced in the MAS-PL during the domain design stage
to model agency features. An example is the Environment Agent and the Facade Agent

in the OLIS MAS-PL. The former receives noti�cations about the execution of business
operations and it propagates them to the other agents of the system, and the last is the
access point of the web application to get information from the agents. These agents were
not identi�ed in the domain analysis stage, but were introduced only in the domain design
stage. So the Feature/Agent Dependency Modeling is re�ned to incorporate new agents
and roles, as also capabilities. The OLIS feature/agent dependency model generated after
the domain design stage is depicted in Figure 6(b). Note that some agents appear as a
child of more than one feature, meaning that these agents are present in a certain product
if at least one of these features is selected for this product.

4.3 Domain Realization

The purpose of the domain realization stage is to implement the reusable software assets,
according to the design diagrams generated in the previous stage. In addition, domain
realization incorporates con�guration mechanisms that enable the product instantiation
process, which is based on the documentation and reusable software assets produced during
the domain engineering process. Two activities compose this stage: Assets Implementation
and Design/Implementation Elements Mapping.

Assets Implementation. In this activity, elements designed in the previous stage are
coded in some programming language. In (da Silva & de Lucena 2007), it is proposed a code
generation from MAS-ML models. Nevertheless, the implementation of software agents are
usually accomplished by the use of agent platforms, such as JADE (agents are implemented
with Java classes) and Jadex (agents are implemented with XML �les and Java classes).
Consequently, the design elements can di�er from implementation elements, e.g. roles are
concepts that are not present in JADE framework, so they can be implemented using classes
structured according to the Role Pattern. Therefore, implementation elements should be
mapped into design elements, what is done in the next activity.

Di�erent implementation techniques can be used to modularize features in the code
(Alves 2007), e.g. polymorphism, design patterns, frameworks, conditional compilation
and aspect-oriented programming. Recent works have explored modularization techniques
related to MASs. An architectural pattern is proposed in (Nunes, Kulesza, Nunes, Cirilo
& Lucena 2008b) to integrate software agents and web applications in a loosely coupled
way. In (Nunes, Kulesza, Sant'Anna, Nunes & Lucena 2008), Nunes et al. presented a
quantitative study of development and evolution of a MAS-PL, consisting of a systematic
comparison between two di�erent versions of a MAS-PL: (i) one version implemented
with object-oriented techniques and conditional compilation; and (ii) the other one using
aspect-oriented techniques. Furthermore, the are some research work (Garcia, Kulesza &
de Lucena 2004) that studies separation of concerns in MAS by means of aspect oriented
techniques.

13

Design/Implementation Elements Mapping. To provide the mapping from the
implementation elements to the design elements, we use the models proposed by the
GenArch (Cirilo, Kulesza & Lucena 2008) tool. It is a model-based product derivation
tool, which encompasses three models: (i) the implementation model; (ii) the feature
model; and (iii) the con�guration model. This tool was also extended (Cirilo, Kulesza,
Nunes, Nunes & Lucena 2008) by the incorporation of a new domain-speci�c architecture
model for Jadex in order to enable the automatic instantiation and customization of MAS-
PLs. For further details about GenArch, please refer to (Cirilo, Kulesza & Lucena 2008)
and (Cirilo, Kulesza, Nunes, Nunes & Lucena 2008).

5 Related Work

Only few attempts have explored the integration synergy of MASs and SPLs technologies.
Pena et al. (Pena, Hinchey & Ruiz-cortés 2006) propose an approach that consists of using
goal-oriented requirement documents, role models, and traceability diagrams in order to
build a �rst model of the system, and later use information on variability and commonalities
throughout the products to propose a transformation of the former models that represent
the core architecture of the family. Their approach is based on MaCMAS, an agent-oriented
methodology. One main di�erence between our approach and theirs is they consider goals
as the features of the SPL. Goals are not a detail of the system that is visible to the end
user; therefore, they should not appear in a feature model. In addition, the approach
�rst proposes modeling the system, then analyzes the variabilities. This can result, for
instance, in an optional feature designed together with a mandatory feature, not keeping
the separation of concerns. Finally, the approach does not detail how the SPL assets can
be implemented in such way that they can be assembled together to derive a product.

Dehlinger & Lutz (Dehlinger & Lutz 2005) have proposed an extensible agent-oriented
requirements speci�cation template for distributed systems that supports safe reuse. Their
proposal adopts a product line to promote reuse in MASs, which was developed using the
Gaia methodology. The requirements are documented in two schemas: (i) role schema
- a role and the variation points that a role can play during its lifetime; and (ii) role
variation point - captures the requirements of role variation points capabilities. The pro-
posed approach allows the reuse of agent con�guration along the system evolution. Each
agent con�guration can be dynamically changed and reused in similar applications. Al-
though this approach provides a template to capture agency variability, it does not o�er
a complete solution to address the modeling of agency features in the domain design and
implementation.

6 Conclusion and Future Work

Software product lines can bring many advantages to the development of multi-agent sys-
tems, providing bene�ts such as reduced time-to-marked and lower development costs. In
addition, agent abstraction is very useful to model features that present an autonomous or
pro-active behavior.

In this paper, we presented a process for domain engineering to develop Multi-agent
Systems Product Lines (MAS-PLs), describing the activities to be performed in each one of
the stages that compose the process. The de�nition of our approach incorporates activities

14

and notations of di�erent well-succeeded works in the context of SPLs and MASs: PLUS
provides notations for documenting variability; PASSI methodology diagrams are used to
specify agency features; and MAS-ML is the modeling language used in the domain analysis
stage. We also proposed some adaptations and extensions to these approaches to address
agency features. An advantage of the approach resides in the fact that we separate the
modeling of agency features, and it makes possible to evolve existing systems, for instance
object-oriented, to incorporate new features that take advantage of agent abstraction. We
have developed our process with the experience of two cases studies: the OLIS case study
(presented in this paper) and the ExpertCommittee case study, which is a product line of
conference management systems.

We are currently extending our research work in several directions. First, we are
working on the development of other case studies to evaluate our process. We are also
investigating how model-driven and aspect-oriented approaches can help to model and
implement crosscutting features in order to provide a better modularization. In addition,
we are exploring scenarios in which the SPL is built from legacy systems. Finally, we aim
at extending our process to address other agent characteristics, such as self-* properties.

References

Alves, V. (2007), Implementing Software Product Line Adoption Strategies, PhD thesis,
UFPE, Brazil.

Bauer, B., Müller, J. P. & Odell, J. (2001), Agent uml: a formalism for specifying multia-
gent software systems, in `AOSE'00'.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F. & Mylopoulos, J. (2004), `Tropos:
An agent-oriented software development methodology', AAMAS 8(3), 203�236.

Cirilo, E., Kulesza, U. & Lucena, C. (2008), `A Product Derivation Tool Based on Model-
Driven Techniques and Annotations', JUCS 14, 1344�1367.

Cirilo, E., Kulesza, U., Nunes, I., Nunes, C. & Lucena, C. (2008), Automatic product
derivation of multi-agent systems product lines, Technical report, PUC-Rio.

Clements, P. & Northrop, L. (2002), Software Product Lines: Practices and Patterns,
Addison-Wesley, Boston, MA, USA.

Cossentino, M. (2005), From Requirements to Code with the PASSI Methodology, Idea
Group Inc., Hershey, PA, USA, chapter IV.

da Silva, V. T. & de Lucena, C. J. (2007), `Modeling multi-agent systems', Comm. of the

ACM 50(5), 103�108.

Dehlinger, J. & Lutz, R. R. (2005), A Product-Line Requirements Approach to Safe Reuse
in Multi-Agent Systems, in `SELMAS'05'.

Garcia, A. F., Kulesza, U. & de Lucena, C. J. P. (2004), Aspectizing multi-agent systems:
From architecture to implementation, in `SELMAS', pp. 121�143.

15

Gomaa, H. (2004), Designing Software Product Lines with UML: From Use Cases to

Pattern-Based Software Architectures, Addison Wesley Longman Publishing Co., Inc.,
USA.

Holz, H., Hofmann, K. & Reed, C., eds (2008), Personalization Techniques and Recom-

mender Systems, Vol. 70, World Scienti�c Publishing.

Kästner, C., Apel, S. & Kuhlemann, M. (2008), Granularity in software product lines, in
`ICSE '08', ACM, USA, pp. 311�320.

Krueger, C. W. (2002), Easing the transition to software mass customization, in `PFE'01',
Springer-Verlag, London, UK, pp. 282�293.

Nunes, C., Kulesza, U., Sant'Anna, C., Nunes, I. & Lucena, C. (2008), On the modularity
assessment of aspect-oriented multi-agent systems product lines: a quantitative study,
in `SBCARS '08', Porto Alegre, Brazil, pp. 122�135.

Nunes, I., Kulesza, U., Nunes, C., Cirilo, E. & Lucena, C. (2008a), Extending passi to
model multi-agent systems product lines, Technical report, PUC-Rio.

Nunes, I., Kulesza, U., Nunes, C., Cirilo, E. & Lucena, C. (2008b), Extending web-based
applications to incorporate autonomous behavior (to appear), in `WebMedia 2008',
Vila Velha, Brazil.

Nunes, I., Nunes, C., Kulesza, U. & Lucena, C. (2008), Documenting and modeling multi-
agent systems product lines, in `SEKE '08', Redwood City, San Francisco Bay, USA,
pp. 745�751.

Padgham, L. & Lambrix, P. (2000), Agent capabilities: Extending bdi theory, in `AAAI
'00', AAAI Press / The MIT Press, pp. 68�73.

Pena, J., Hinchey, M. G. & Ruiz-Cortés, A. (2006), `Multi-agent system product lines:
challenges and bene�ts', Communications of the ACM 49(12), 82�84.

Pena, J., Hinchey, M. G. & Ruiz-cortés, A. (2006), Building the core architecture of a nasa
multiagent system product line, in `AOSE'06'.

Pohl, K., Böckle, G. & van der Linden, F. J. (2005), Software Product Line Engineering:

Foundations, Principles and Techniques, Springer-Verlag, USA.

Wooldridge, M., Jennings, N. R. & Kinny, D. (2000), `The gaia methodology for agent-
oriented analysis and design', AAMAS 3(3), 285�312.

16

