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Abstract: Plot composition is examined here at a logic design level, an intermediate stage 
that comes next to the conceptual level wherein the intended narrative genre is specified. 
An abstract data structure is proposed to represent plots, together with an algebra for 
manipulating the data structure. Our purpose is to adapt for narratives the strategy applied 
to databases by Codd's relational model. The basic operators of our Plot-Manipulation 
Algebra (PMA) were introduced in view of the four fundamental relations between events 
that we identified in a previous work. A logic programming prototype was implemented, in 
order to run examples using the algebra.  
 
Keywords: storytelling, narratology, plots, logic design, algebraic formalisms, logic 
programming. 
 
Resumo: A composição de enredos é aqui examinada ao nivel de projeto lógico, estágio 
intermediário que se segue ao nivel conceitual em que o gênero pretendido de narrativas é 
especificado. Uma estrutura abstrata de dados é proposta para representar enredos, 
juntamente com uma álgebra para manipular a estrutura de dados. Nosso propósito é 
adpatar para narrativas a estratégia aplicada a bancos de dados pelo modelo relacional de 
Codd. Os operadores básicos de nossa Álgebra de Manipulação de Enredos (PMA) foram 
introduzidos em vista das quatro relações fundamentais entre eventos que identificamos em 
trabalho anterior. Um protótipo em linguagem de programação em lógica foi 
implementado, para rodar exemplos utilizando a álgebra.  
 
Palavras-chave: narração de estórias, narratologia, enredos, projeto lógico, formalismos 
algébricos, programação em lógica. 
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1. Introduction 
 
Narratology studies distinguish three levels in literary composition: fabula, story and text 
[Bal]. In this paper, we stay at the fabula level, where the characters acting in the narrative 
are introduced, as well as the narrative plot, consisting of a partially-ordered set of events. 
 At least four concerns are involved in plot composition:  
 

• the plot must be formed by a coherent sequence of events; 
• for each position in the sequence, several alternative choices may be applicable;  
• non-trivial interesting sequences must permit unexpected shifts along the way; 
• one may need to go down to details to better visualize the events.  

 
 These concerns led us to identify, drawing on linguistic and semiotic research [Saussure; 
Booth; Chandler], four relations between events, called, respectively, syntagmatic, 
paradigmatic, antithetic, and meronymic relations [Ciarlini & al, 2008]. It turns out that 
such relations hold as a consequence of the conventions regulating the chosen narrative 
genre. Therefore a necessary preliminary step to plot composition is to provide a 
conceptual specification of the intended genre.  
 In our conceptual modelling approach, we focus on events that correspond to the 
execution of predefined operations, deliberately performed by the characters. Each 
operation is defined in terms of its pre-conditions and post-conditions, and the interplay of 
the pre-/ post-conditions is what induces the partial order requirements for the plots, and, 
furthermore, constitutes the basis for characterizing the presence of the four kinds of 
relations between events. 
 However a conceptual specification is still too far removed from a concrete 
computerized system to support plot composition. An analogous problem was successfully 
faced by database researchers, and, as we shall indicate, their three-stage solution can be 
conveniently adapted for our purposes. The key idea is to provide a logic design stage, 
mediating between conceptual design and physical implementation. This was very 
effectively achieved by the Relational Model proposal, whereby first-normal form (1NF)  
tables are utilized as an abstract data type to be ultimately implemented by file hardware. 
And, to model table manipulation at the logic level, a relational algebra was defined 
[Codd]. 
 Accordingly, we propose here a logic design stage for plot composition, involving an 
abstract structure for plots and a Plot Manipulation Algebra (PMA) to handle the structure, 
taking into due account the relations between narrative events implied by the conceptual 
level specification of the genre. To illustrate the discussion, as well as the design and use of 
a logic programming prototype tool, we employ an example involving a small number of 
events, which, in strikingly different combinations, have been treated repeatedly in literary 
works. 
 The paper is organized as follows. Section 2 covers the background for the present work. 
Section 3 gives a brief overview of PMA, whilst section 4 describes each operator. Section 
5 deals, through a number of examples, with the prototype implementation. Section 6 
contains concluding remarks. 
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2. Basic notions 
 
2.1. Relations between events 
 
To illustrate the event relations, we shall employ a simple example to be referenced along 
the paper. Consider four types of events, all having one woman and two men as 
protagonists: abduction, elopement, rescue, and capture. As demonstrated in folktale 
studies [Propp], many plots mainly consist of an act of villainy, i.e. of a violent action that 
breaks the initially stable and peaceful state of affairs, followed ultimately by an action of 
retaliation, which may or may not lead to a happy outcome. 

Propp distinguished seven character roles (dramatis personae) according to the events 
assigned to each one's initiative: hero, villain, victim, dispatcher, donor, helper, false hero. 
Curiously, in literary texts involving the four events above, this distribution is not unique: 
we called the violent initial act “villainy”, but the perpetrator of abduction, and more often 
of elopement, can be the hero of the narrative, and in such cases the woman's original 
guardian (husband, father) is regarded as the villain. 

 
 

2.1.1. Syntagmatic Relations 
 
To declare that it is legitimate to continue a plot containing abduction by placing rescue 
next to it, we say that these two events are connected by a syntagmatic relation. More 
precisely, we can define the semantics of the two events in a way that indicates that the 
occurrence of the first leaves the world in a state wherein the occurrence of the second is 
coherent. Similarly, a plot involving elopement followed by capture looks natural, and 
hence these two events are likewise related. 

The syntagmatic relation between events induces a weak form of causality or 
enablement, which justifies their sequential ordering inside the plot. 

 
 

2.1.2. Paradigmatic Relations 
 
The events of abduction and elopement can be seen as alternative ways to accomplish a 
similar kind of villainy. Both achieve approximately – though not quite – the same effect: 
one man takes away a woman from where she is and starts to live in her company at some 
other place. There are differences, of course, since the woman's behaviour is usually said to 
be coerced in the case of abduction, but quite voluntary in the case of elopement. In fact, it 
is usual to assume that a sentence such as “Helen elopes with Paris”, implies that Helen had 
fallen in love with Paris. 

To express that abduction and elopement play a similar function, we say that there is a 
paradigmatic relation between the two events. Likewise, this type of relation is perceived 
to hold between the events of rescue and capture, which are alternative forms of retaliation. 
And, again, there is a difference between the woman's assumed attitude, associated as 
before with her feelings. An abducted woman expects to be rescued from the villain's 
captivity by the man she loves. On the contrary, she will only return through forceful cap-
ture if she freely eloped with the seducer. 
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As the present example suggests, the so-called syntagmatic and the paradigmatic axes 
[Saussure] are really not orthogonal in that the two relations cannot be considered indepen-
dently when composing a plot. Thus, in principle, the two pairs enumerated in the previous 
section (abduction-rescue and elopement-capture) are the only normal ones, the former 
illustrated by the Sanskrit Ramayana [Valmiki] and the similarly structured Arthurian 
romance of Lancelot [Chrétien; Furtado & Veloso], and the latter by the Irish Story of 
Deirdre [McGarry]. Yet the next section shows that such limitations can, and even should, 
be waived occasionally. 

 
 

2.1.3. Antithetic relations 
 
While normal plots, whose outcome is fully determined, can be composed exclusively on 
the basis of the two preceding relations, the possibility to introduce unexpected turns is 
often desirable in order to make the plots more attractive – and this requires the construct 
that we chose to call antithetic relation. A context where a woman suffers abduction by a 
ravisher whom she does not love would seem incompatible with a capture event, since there 
should be no need to employ force to bring back the victim. So, in this sense, abduction and 
capture are in antithetic relation. 

The mythical Rape of the Sabines shows what can happen as a consequence of a drastic 
reversal of the circumstances. King Romulus is facing a problem at the newly founded city 
of Rome: the population is entirely male at first. To remedy the lack, he leads his men to 
break into the dwellings of the Sabines and abduct their women. Sometime afterwards the 
Sabine warriors march against the Romans, but the women have no wish to be taken back, 
leaving to their countrymen no option except their capture. King Romulus's men had 
lawfully married them and made them bear children. A Roman chronicle [Titus Livius] 
reports the radical change in the women's feelings, and tells how the seemingly inevitable 
confrontation ended with the reconciliation of the two parties. 

In contrast, modern history provides some distinctly regrettable examples of abduction 
actually followed by capture, categorized by psychiatrist Nils Bejerot as the Stockholm 
syndrome. One case in point is the abduction by a group of terrorists of the daughter of a 
millionaire, who ended up joining her tormentors in the practice of crimes, and was finally 
captured by the San Francisco police [Hearst & Moscow]. 

The occurrence of elopement followed by rescue provides a much stronger case of 
antithetic relation. Indeed, elopement only makes sense if the victim loves the seducer, 
whereas, for this very motive, she would resist to any attempt to rescue her, leaving forceful 
capture as the only viable alternative. Even so the legendary story of Helen of Troy, in spite 
of various discordant interpretations, seems to offer a counter-example. Married to king 
Menelaus of Sparta, Helen fled to Troy in the company of Paris, quite voluntarily according 
to a number of versions (e.g. the Heroides [Ovid]). But, after their escapade to Troy where 
they married, her love feelings started to wane while the Trojan War followed its bloody 
course and she kept recalling the far manlier Menelaus. The Iliad [Homer] signals 
repeatedly this critical change of sentiment. At the end her recovery turned from capture 
into rescue, as registered in the Aeneid [Virgil]. Paris was dead, and she had been delivered 
to Paris's brother Deiphobus. When the Greeks came out of the wooden horse and stormed 
the Trojan palaces, Helen herself made sure that Menelaus should win – and know that she 
was helping him in atonement for her previous misconduct. The shadow of Deiphobus tells 
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the episode to Aeneas; and what better example of irony could we find than his calling 
Helen “this peerless wife”? 

One more example appears in the story of Tristan and Isolde, in several versions 
[Marchello-Nizia]. The knight had eloped with the queen; they were living in harsh con-
ditions in a forest. The dramatic change of their love feelings, which allowed Isolde's 
rescue by king Mark to be achieved through a simple invitation, with no need to fight, had a 
very curious cause – the timely expiry date of the love potion they had drunk before, when 
sailing from Ireland to Cornwall [Béroul]. 

Generally speaking, if some binary opposition – the “to love or not to love” dilemma, in 
the present case – is allowed to be manipulated via some agency external to the predefined 
events, then one can have plots that no longer look conventional. A sort of discontinuity is 
produced by such radical shifts in the context. Intervening between abduction and capture, 
or between elopement and rescue, a sudden change of feelings can give rise to these 
surprising sequences. Also, both in fiction and in reality, things not always proceed ac-
cording to planned events. Natural phenomena and disasters, the mere passage of time, the 
intervention of agents empowered to change the rules, supernatural or magic 
manifestations, etc., cannot be discounted. 

Specifically for the tragedy genre, the Poetics [Aristotle] distinguishes between simple 
and complex plots, characterizing the latter by the occurrence of recognition 
(αναγνορισισ) and reversal (περιπετεια). Differently from reversal, recognition does not 
imply that the world itself has changed, but rather the beliefs of one or more characters 
about the actual facts. Because of a change of beliefs, a reason to be added to those 
enumerated in the previous paragraph, a reversal in the course of actions can take place, 
usually in a direction totally opposite to what was going on so far. Yet another possible 
external cause of both recognition and reversal in the tragic scene was the intervention of a 
god, who was lowered onto the stage using a crane, the so-called deus ex machina. 

Aristotle's remarks are clearly relevant to the discussion of plots in general. Following 
his lead, we have admitted in a previous work [Ciarlini & al, 2008] state changes outside 
the regular regime of predefined events by allowing the user – literally acting ex machina 
(via the computer...) – to impose variations to the context (both in terms of facts and of 
beliefs), and thereby deviate the action from its predicted path.  

This extreme device will be necessary to allow the elopement-rescue sequence. It may 
not be indispensable, however, for abduction-capture, if one wishes to leave room for 
erroneous beliefs (a case of Aristotle's ηαµαρτια), contradicting the actual facts. Criminal 
records everywhere are full of simulated abduction pacts for drawing a ransom from a 
deluded family. Conversely, a man can unnecessarily decide that capture is the only way to 
bring back a woman, if he mistakenly believes her to love the ravisher.  

Figure 1 shows the relations thus far discussed. 
 

 
Figure 1: Syntagmatic, paradigmatic, and antithetic relations. 
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2.1.4. Meronymic relations 
 
Meronymy is a word of Greek origin, used in linguistics to refer to the decomposition of a 
whole into its constituent parts. Forming an adjective from this noun, we shall call 
meronymic relations those that hold between an event and a lower-level set of events, with 
whose help it is possible to provide a more detailed account of the action on hand. 

Thus, we could describe the abduction of a woman called Sita by a man called Ravana 
(characters taken from the Ramayana [Valmiki]) as: “Ravana rides from Lanka to forest. 
Ravana seizes Sita. Ravana carries Sita to Lanka.” And her rescue by Rama could take the 
form: “Rama rides from palace to Lanka. Rama defeats Ravana. Rama entreats Sita. Rama 
carries Sita to palace.” (Figure 2). 

 

  
Figure 2: Meronymic relations:    

(a) the forceful actions and (b) the gentle actions. 
 
 Detailing is most useful to pass from a somewhat abstract view of the plot to one, at a 
more concrete physical level, that is amenable (possibly after further decomposition stages) 
to the production of a computer graphics animation [Ciarlini et al., 2005]. Mixed plots, 
combining events of different levels, do also make sense, satisfying the option to represent 
some events more compactly while showing the others in detail. 
 
 
2.2. Conceptual specification of genres 
 
We believe that, in order to model a chosen genre, to which the plots to be composed 
should belong, one must specify at least: 

a. what can exist at some state of the underlying mini-world,  
b. how states can be changed, and  
c. the factors driving the characters to act. 

 Accordingly, we start with a conceptual design method involving three schemas – static, 
dynamic and behavioural – which has been developed for modelling literary genres en-
compassing narratives with a high degree of regularity, such as fairy tales, and application 
domains of business information systems, such as banking, which are obviously con-
strained by providing a basically inflexible set of operations and, generally, by following 
strict and explicitly formulated rules [Furtado et al. 2008].  Indeed, in our model, we equate 
the notion of event with the state change resulting from the execution of a predefined oper-
ation. 
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The static schema specifies, in terms of the Entity-Relationship model [Batini et al.], the 
entity and relationship classes and their attributes. In our simple example, character and 
place are entities. The attributes of characters are name, which serves as identifier, and 
gender. Places have only one identifying attribute, pname. Characters are pair-wise related 
by relationships loves, held_by and consents_with. The last two can only hold between a 
female and a male character; thus held_by(Sita,Ravana) is a fact meaning that Sita is 
forcefully constrained by Ravana, whereas consents_with(Sita,Ravana) would indicate that 
Sita has voluntarily accepted Ravana's proposals. Two relationships associate characters 
with places: home and current_place. A state of the world consists of all facts about the 
existing entity instances and their properties holding at some instant. 

The dynamic schema defines a fixed repertoire of operations for consistently performing 
state changes. The STRIPS [Fikes & Nilsson] model is used. Each operation is defined in 
terms of pre-conditions, which consist of conjunctions of positive and/or negative literals, 
and any number of post-conditions, consisting of facts to be asserted or retracted as the 
effect of executing the operation. Instances of facts such as home and gender, are fixed, not 
being affected by any operation. Of special interest are the user-controlled facts which, 
although also immune to operations, could be, as suggested in [Ciarlini et al, 2008], 
manipulated through arbitrary directives. In our example, loves is user-controlled. 

Again for the present example, we have provided operations at two levels. The four 
main events are performed by level-1 operations: abduct, elope, rescue and capture. 
Operations at level-2 are actions of smaller granularity, in terms of which the level-1 
operations can be detailed: ride, entreat, seize, defeat, and carry. Of course it would be 
possible to continue with this decomposing process, until a level of "primitive acts" is 
reached [Schank & Colby].      

Our provisional version of the behavioural schema consists of goal-inference (a.k.a. 
situation-objective) rules, belief rules, and emotional condition rules. 

For the example, three goal-inference rules are supplied. The first one refers to the 
ravisher. In words, in a situation where the princess is not at her home and the hero is not in 
her company – and hence she is unprotected – the ravisher will want to do whatever is ade-
quate to bring her to his home. The other goal-inference rules refer to the hero, in two 
different situations having in common the fact that the ravisher has the woman in his home: 
either the hero believes that she does not love the other man, or he believes that she does. In 
both situations, he will want to bring her back, freely in the first case and constrained in the 
second. 

Informally speaking, beliefs correspond to the partial view, not necessarily correct, that a 
character currently forms about the factual context (for a formal characterization, cf. the 
BDI model [Cohen & Levesque; Rao & Georgeff]). The belief rules that we formulated for 
our example look rational, but notice that they are treated as defaults, which could be 
overruled by a directive. A man (the hero or the ravisher) believes that the woman does not 
love his rival if the latter has her confined, but if she has ever been observed in his com-
pany and in no occasion (state) was physically constrained, the conclusion will be that she 
is consenting (an attitude seemingly too subjective to be ascertained directly in a real 
context). 
 The emotional condition rules refer to the three characters. A man (or woman) is happy 
if currently in the company of his (or her) beloved, and bored otherwise. A special 
condition applies to the woman: she will be absolutely happy if, in addition to the first 
motive for contentment, she has never been constrained by any of the two adversaries. 
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2.3. Revisiting the database relational algebra 
 
Codd's relational model is widely recognized today as providing effective guidance for 
database design at the logical level. The abstract data type on which it is based is the n-ary 
relation, also known as (relational) table, defined as a subset of the Cartesian product of n 
data domains: R ⊆ D1 × D2 × ... × Dn. The elements of relation R (or, equivalently, lines of 
table R) are called tuples. In other words, tables can be viewed as sets of tuples, a 
convenient abstraction for a hardware file, as tables are ultimately represented at the 
physical design level. 
 To handle database structures, Codd proposed [Codd] a relational algebra sublanguage, 
whose operator set can be reduced, as can be easily demonstrated [Ullman & Widom], to 
five primitives: product, projection, union, selection and difference (to which a sixth 
operator, renaming, is commonly added for practical convenience).  
 All operators have tables as operands and yield tables as their result. Product, union and 
difference are called binary operations (since they involve two operands), whereas 
projection and selection are unary operations (one operand). 
 Codd's database operators can be adapted for our present purposes if we substitute our 
plot abstract data type for tuples and, consequently, sets of plots (to be called libraries) for 
the relational tables. In practice, establishing this sort of analogy between database and 
narrative notions seems justified because the algebraic operators may indeed serve a similar 
purpose, associated in both cases with the first three event relations we have been talking 
about: syntagmatic, paradigmatic, antithetic, and also (as will be shown later) meronymic. 
 Starting with the syntagmatic dimension, one may observe that database product allows 
to put together two tables "horizontally", producing a result table whose tuples will be the 
concatenation of all pairs of operand tuples. One might say that the new table extends the 
information contained in the tuples of the first table, since it contains that information and  
information from additional domains provided by the second table. Projection on a given 
table, acting in an inverse direction, extracts from the operand tuples the elements 
pertaining to the indicated domains.  
 By contrast, turning to the paradigmatic dimension, union puts together two tables 
"vertically", in the sense that the resulting table can be seen as a copy of all tuples of one 
operand table followed by all tuples of the other (eventual duplicates being eliminated). So 
the new table provides alternatives, in the sense that it contains tuples that figure in the first 
or in the second table. Selection, on the other hand, allows to choose from a table those 
tuples whose values at the indicated column-positions meet a given requirement. 
 Codd formulated his algebra as a language mainly directed to model how database 
queries could be formulated. But it became clear that the other essential service of database 
manipulation, namely updates, could also be covered. In particular, inserting a tuple in a 
table can be expressed as the union of the table with a singleton table consisting of the tuple 
to be added. But how could we formulate the other kind of update, the process of removing 
a tuple from a table? The answer will serve to add further justification to difference, which 
is the relational algebra operation associated with the antithetic dimension, intuitively 
expressing a notion of negation. Generally speaking, the difference of two tables is a table 
containing those tuples in the first table that are not present in the second. In particular, a 
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removal update from a table can be formulated as the difference between the table and a 
singleton table consisting of the tuple to be deleted. 
 The meronymic dimension is not directly encompassed by the original version of 
relational algebra, because the formalism purported to handle first-normal form relations 
(1NF) (a.k.a. flat tables) exclusively. But implemented query languages based on the 
relational formalism, such as SQL, provided features that in fact went a step beyond these 
restrictions – such as group-by and a number of attendant aggregate numerical functions.  
 More fundamentally, complex types of data, describing for example assembled products 
or geographical units, characterized conceptually via a semantic part-of hierarchy [Smith & 
Smith], were found to require the addition of the so-called NF2 (non first normal form) or 
nested tables at the logical level of design. To cope with this expansion, an extended 
relational algebra was required, including operators such as "partitioning" and "de-
partitioning" [Furtado & Kerschberg], or "nest" and "unnest" [Jaeschke & Scheck] to 
convert from 1NF into NF2 tables and vice-versa. Some domains of a tuple might in turn be 
a set of tuples, over domains pertaining to a finer-grained scale. Assume, for example, that 
a product p has components c1,c2,...,cn. In an NF2 table, this part-of decomposition 
property would lead to a single tuple of the form <p,{c1,c2,...,cn}>, instead of being 
scattered throughout n separate <p,ci> tuples of a conventional 1NF table. 
 For our present work, we thought of operators for moving down or up in part-of 
hierarchies: factoring for replacing the whole by its parts, and combination for the inverse 
movement. In the example above, factoring applied to p would yield {c1,c2,...,cn}, whereas 
combination would yield p as corresponding to the given set of components. In the domain 
of natural numbers, incidentally, factoring corresponds to the decomposition of a number, 
which may proceed until its prime constituents are obtained. 
 
 
3. Overview of PMA 
 
3.1. The plot data structure 
 
A plot P is a pair [S,D], where: 

• S, the event-set, is a set of tagged events; 
• D, the dependency-set, is a set of order dependencies, expressed as tag-pairs. 

 Tags are terms of the form fi, where i is a positive integer. By convention, the tags in an 
event-set S are numbered consecutively, starting with f1. Also by convention, the tagged 
events in S are required to be placed in a viable sequence, i.e. some sequence compatible 
with the partial order requirements expressed in D. Such conventions lead in general to 
simpler and more efficient algorithms to handle the data structure.  

 The order dependencies are determined exclusively on the basis of the satisfaction of 
post-conditions by pre-conditions. On determining the dependency-set D, another 
simplifying convention is adopted: any dependencies deducible by transitivity are omitted.  

 As an example, consider: 

P = [[f1:  ride(Ravana, Lanka, forest), f2: entreat(Ravana, Sita), f3: seize(Ravana, Sita))], 
[f1-f2,f1-f3]] 
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 We say that two plots Pi and Pj are similar if, even with different parameter values and 
placed in a different (viable) sequence in the event-set, they involve the same: 

• number and type of events 
• order dependencies 
• co-designation/ non-co-designation schemes 

 Co-designation (or, respectively, non-co-designation) allows (forbids) the occurrence of 
the same value at different parameter positions. Notice, for instance, that in the example 
above Sita occurs in the second position of seize and of carry; a plot with Guinevere in both 
places would meet the same co-designation requirement. To verify whether the order 
dependencies are the same, one looks for a renaming of the tags of one of the plots that can 
render the sets of order dependencies in the two plots identical. Two similar plots are said 
to be equal if the values at the corresponding parameter positions are identical, as happens 
with plot P shown above and a plot P' represented as follows: 

P' = [[f1:  ride(Ravana, Lanka, forest), f2: seize(Ravana, Sita), f3: entreat(Ravana, Sita))], 
[f1-f2,f1-f3]] 

 

 
3.2. The operator set 
 
The chosen algebraic operators should be sufficient to allow the composition of plots taking 
the four types of event relations into consideration. Our choice was guided by the analogy 
established with the database relational algebra in section 2.4. 
 Along the syntagmatic axis, plots consisting of one or more events are chained together 
to form longer sequences by the product operator. Inversely, a passage of interest can be 
extracted from a plot by the projection operator. Along the paradigmatic axis, the union 
operator offers different alternatives at the same position in the sequence. Libraries, as sets 
of plots, are created and expanded by applying union. To check if a plot has some desired 
characteristic, or which plots in a library do possess it, the selection operator is used. 
 Binary oppositions [Chandler] require the difference operator, one of whose purposes is 
to remove plots from a library. 
 These first five operators – product, projection, union, selection, difference – correspond 
to the five primitive operators of Codd's relational algebra. As mentioned earlier, the 
relational algebra can be said to be complete only if the database is restricted to flat tables, 
but its operator set is no longer sufficient if NF2 tables are considered, typically to cope 
with part-whole schemes. For narratives, similarly, the meronymic relation between events, 
having to do with the desired level of granularity, led to the inclusion of the factoring and 
combination operators, respectively to detail or to summarize a plot.  
 The table below shows the entire operator set. Note that product, union and difference 
are binary operations, whereas projection, selection, factoring and combination are unary. 
All operators are applicable to both plots and libraries. 
 
product    P1 * P2 
projection  proj [T] @ P 
union    P1 + P2 
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selection  sel [T]/E @ P 
difference  P1 - P2 
factoring  fac P 
combination comb P 
 
 
3.3. Composing algebraic expressions 
 
As expected, operators can be composed to form arbitrarily long expressions, whose 
evaluation will result either in a plot or in a library. The evaluation of an algebraic 
expression E, and the attribution of the result to a variable P, is indicated by writing: 
 
P ::::= E 
 
 The operands in E can either be plots or libraries represented explicitly, or sub-
expressions at any depth. An operand may be represented as a variable, but at the moment it 
is to be handled by an operator it should be instantiated to some term expressing a plot or a 
library – see however how the case of a still uninstantiated variable is treated in our 
prototype implementation (example at section 5.3). 
 A notational shorthand was introduced for plots consisting of a single event. Take the 
event ride('Ravana', 'Lanka', forest), for example. As any other one-event plot it should be 
written as: 
 
[[f1: ride(Ravana, Lanka, forest)], []] 
 
but it is convenient to abbreviate that to a straightforward event syntax, i.e. ride(Ravana, 
Lanka, forest). 
 A slightly more involved expression is shown below (for its evaluation, cf. section 5.2). 
It illustrates the interplay of syntagmatic, paradigmatic and antithetic relations that we 
indicated for our example mini-world – all villainy-retaliation pairs will be formed, except 
elope followed by rescue: 
 
P ::::= (abduct(Ravana, Sita) + elope(Ravana, Sita)) * (rescue(Rama, Sita) + capture(Rama, 
Sita)) - elope(Ravana, Sita) * rescue(Rama, Sita) 
 
  
4. Algebraic operators 
 
4.1. Product 
 
Given two plots P1 = [S1,D1] and P2 = [S2,D2], their product P ::::= P1 * P2 is a plot P = 
[S,D], where S contains the S1 and the S2 events, and D contains the dependency-pairs to 
be computed anew between the S events, regardless of their provenance from S1 or S2.   
 Assuming that the event-sets S1 and S2 are organized in a viable sequence, the classic 
balance-line method to merge two sorted sets can be conveniently adapted, so as to obtain 
the resulting event-set S also with this property. One will recall that the method consists of, 
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at each step, comparing the first element of one set with the first of the other. The smallest 
of the two elements is inserted in the result and removed from its respective set, and the 
comparisons continue until at least one set is empty.  
 To adapt the method for plots, we must replace the notion of "smallness" involved in 
simple lexicographic value comparison by a criterion based on dependency between events. 
On a first approximation, if ei ∈ Si and ej ∈ Sj, we would say that ej < ei if ei depends on ej 
on account of pre-/post-conditions linkage, thus implying that ej should precede ei. 
However the problem is a little more complex: even if there is no dependency in either 
direction between ei and ej, there may exist in Sj an event ej' such that ei depends on ej' and 
ej' depends on ej (directly or transitively across Sj). If this is the case ei clearly also 
depends on ej, and ej must precede ei in the resulting S (it is easy to see that the other 
events in the chain up to ej' will also be inserted in S before ei as the execution continues). 
We considered that, whenever there is no dependency between the events being compared, 
it would seem natural to choose the event coming from the first operand (S1, if the 
expression has the form P ::::= P1 * P2). 
 Once the event-set S is constructed, with consecutive tags f1, f2,.., fn, the dependency-
set D can be readily obtained by examining the pre-/post-conditions connections between 
the S events. Note that in all resulting dependency-pairs fi-fj, fi will be lexicographically 
less than fj, as a consequence of the viable sequence property of S. 
 If one or both operands are (non-empty) libraries rather than plots, the result is a library 
containing the product of each plot taken from the first operand with each plot from the 
second, according to the standard Cartesian product definition. If one of the operands is the 
empty plot, denoted by [], the result of the product operation is the other operand, and thus 
[] behaves as the neutral element for product. The case of an empty library, rather than an 
empty plot, demanded an implementation decision; by analogy with the zero element in the 
algebra of numbers, it would be justifiable to determine that a failure should result 
whenever an empty library occurred as one or both operands. However we preferred to 
once again return the other operand as result, i.e. to regard this case as a frustrated attempt 
to extend plots instead of an error. This option is consistent with our decision to 
ambiguously denote both the empty plot and the empty list by []. 
 
 
4.2. Projection 
 
Given a plot P' = [S',D'], its projection P ::::= proj [T] @ P' is a plot P = [S,D], where S only 
contains the events of S' specified in the projection-template T, ordered according to the 
position of the terms in T, and D only contains dependency pairs involving events placed in 
S.  
 In turn the projection-template T is a sequence of terms F:O, where F is a tag and O an 
event. F and/or O can be variables; if O is not a variable, some or all of its parameters can 
be variables. The S events receive new tags, as usual consecutive starting from f1. If one of 
the purposes of a projection, entailed by the sequential disposition of terms in T, is to re-
order S', care must be taken to ensure that S will be a viable sequence.  
 To determine the dependency-pairs in D, one could simply ignore the D' original 
dependencies and examine the pre-/post-conditions between the retained S events. However 
we opted for a strategy that more strongly preserves the order information conveyed by D'. 
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Suppose D' contains the pairs fi'-fj' and fj'-fk'; assume further that, in view of T, the event 
tagged fj' was not chosen but fi' and fk' were, with new tags fi and fk respectively. But since 
fk' depended on fi' in D' (via the suppressed fj', or through a longer transitive chain), the 
pair fi-fk would be considered for insertion in D (and would be present except if found 
redundant in view of transitivity with respect to the other pairs assembled in D, as 
explained before). 
 If the operand is a library, the result is a library containing the projection of the plots of 
the operand library. Note however that, since libraries are sets, they cannot contain 
duplicates, which may arise as the consequence of a projection that suppresses events 
distinguishing two or more plots – and such duplicates are accordingly eliminated from the 
result. Locating plot duplicates is not as trivial as it would appear, as discussed in the next 
section where it is a particularly critical issue. If the projection fails for some reason, e.g. 
because the projection-template T referred to a tag or event that did not figure in S', the 
result will be the empty plot (or empty list) [] rather than an error. 
 
 
4.3. Union 
 
Given two operands U1 and U2, each of them either a plot or a library, their union U ::::= U1 
+ U2 will always be a library containing all plots in U1 and U2, no two equal plots being 
retained. 
 Since plots are partially rather than totally ordered, testing plot equality can be 
somewhat costly. Given P1 = [S1,D1] and P2 = [S2,D2], one would keep S1 fixed and then 
check if some permutation S2' of the events in S2 is such that S1 and S2' are identical, 
except for the tags, which would themselves become identical after retagging the events in 
S2' according to the established convention. Once the new tags are assigned, one would 
finally compute anew the dependency-set D2' over the S2' events, and check if D1 and D2' 
were rendered identical, in which case P1 and P2 are in fact equal. Some expedients can 
alleviate the computational cost; if the cardinalities of S1 and S2 and also of D1 and D2 are 
not the same, then the two plots cannot be equal. The worst case occurs when D1 and D2 
are empty (no ordering) and S1 and S2 contain the same number of events of the same type, 
in which situation there may be no way to avoid computing all permutations of S2. 
 One or both operands can be the empty library, ambiguously denoted as said before by 
[]. If one of the operands is a plot and the other is [], their union is a library consisting of 
this single plot. As expected, the union of [] with itself is also [], and thus the empty library 
functions as the neutral element for union. 
 
 
4.4. Selection 
 
Given a plot P' = [S',D'], its selection P ::::= sel [T]/E @ P' is the plot P' itself if the matching 
of the selection-template T against P' succeeds, as well as the subsequent evaluation of the 
logical expression E, also involving information taken from P'. The presence of expression 
E is optional, except when T is empty. If the test fails, the result to be assigned to P is the 
empty library []. 
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 More often than not the operand of selection will be a library, and its result will also be a 
library, containing all plots that satisfy the test, or the empty library [] if none does. In order 
to select one plot at a time from a library L, even if L contains a single plot, one should use 
an expression of the form P ::::= sel [T]/E @ one(L). 
 
 
4.5. Difference 
 
Given two operands U1 and U2, each of them either a plot or a library, their difference U ::::= 
U1 - U2 will always be a library containing all plots in U1 that are not equal to any plot in 
U2, where plot equality is evaluated exactly as described for union. As happens with 
standard set difference, the result of the operation is not affected by plots in U2 that have no 
equals in U1. 
 If all plots in U1 have their equals in U2, the empty list [] is assigned to P. 
 
 
4.6. Factoring 
 
Given a plot P' = [S',D'], its factoring P ::::= fac P' is a plot P = [S,D], where each level-1 
event ei' present in S' is replaced by a sequence ei1, ei2,...,ein of level-2 events. These are 
obtained from a map declaration map(Ei',[Ei1,Ei2,...,Ein]), which must have been pre-
defined, such that Ei' matches ei'.  
 In map declarations all terms in both arguments represent events, generally containing 
variables at the parameter positions. The first argument must be a level-1 event and the 
second a sequence of level-2 events. 
 When specifying a map declaration for an event Ei', care should be taken that the 
indicated sequence of level-2 operations should work as a plan successfully applicable at 
world situations satisfying the pre-conditions of Ei', and producing at the end the effects 
expressed by the post-conditions of Ei'. Also, if the sequence may have other (secondary) 
effects, these should not contradict those originally expected from the execution of Ei'. 
 As a map declaration for Ei' is found to match an event ei' in the course of factoring, all 
variables in Ei' will be instantiated with the values contained in the respective parameter 
positions of ei', with the consequence that several parameters of the level-2 events will also 
be instantiated by consistent variable substitution. In most cases, however, several level-2 
events will not become fully ground terms. 
 In order to further instantiate the level-2 event parameters, we decided to apply a 
heuristic process based on the pre-condition declarations of these events. As said before, 
some database facts of the mini-world may be invariant, in the specific sense that none of 
the events provided may change them, an example being the gender of the acting 
characters. So, for example, if only one female character exists at the initial state, and the 
pre-condition of an event requires a female character at a certain parameter position, it 
seems natural to assign that character's name to the corresponding variable. 
 Once the events to be placed in S are thus obtained and instantiated as much as possible, 
they are tagged in the usual way and the dependency-set D is computed from the pre-/post-
conditions of the events, a process that is facilitated by the consistent instantiation of the 
parameter positions.    
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 If the operand is a library, the result is a library containing the factoring of all plots in 
the operand library. 
 
 
4.7. Combination 
 
Given a plot P' = [S',D'], its combination P ::::= comb P' is a plot P = [S,D], where each 
sequence ei1', ei2',...,ein' of level-2 events present in S' is replaced by a level-1 event 
obtained by the inverse application of the pre-defined map declaration whose second 
argument happens to match the sequence. 
 To ensure the application of factoring it is sufficient to declare a map for each kind of 
level-1 event, as indicated in the previous section. For combination, however, the situation 
is far more complex, since level-2 operations involve a more detailed view of the mini-
world. Certain unanticipated sequences may appear in plots, which may or may not have 
literary interest but which in any case, being unanticipated, would lack a pre-defined map 
declaration. 
 Another difficulty is that a sequence for which there is a map declaration may be 
interspersed with other extraneous events and would by this reason require a more complex 
matching process. And, even if duly detected and replaced via the combination operator, 
there would remain the tricky problem of where to place the extraneous events (except if 
projection were previously applied to determine the preferred position of such events). 
 If the operand is a library, the result is a library containing all plots in the operand 
library with the eventual modifications performed by applying the combination operation. 
 
 
4.8. Extension: power and iteration 
 
Two features extend the product operator, to achieve repeated plot sequences. 
 Given a plot P' = [S',D'], the nth power of P', expressed by P ::::= P' ** N, for a non-
negative integer N, is evaluated according to the recursive formula: 
 
- if N = 0, P = [] 
- if N = 1, P = P' 
- else P = P' * P' ** (N - 1) 
 
 Given a plot P' = [S',D'], the iteration of P', expressed by P ::::= E@P', where E is a logical 
expression having any number of variables in common with P', is evaluated as follows: 
 
- first, the iterator-template T is obtained, as the set of all possible instantiations of E at the 
initial state, and then: 
- if T is {}, P = [] 
- else, if T = {t1, t2, ..., tn}, P = P't1 * P'{t2, ..., tn} 

where P'ti denotes P' with its variables instantiated consistently with those figuring in ti, and 

the subscrit in P'{ti+1, ..., tn}  refers to the remaining instantiations of T to be be used at the 
next stages. 
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 In particular, iteration can naturally be used to control the application of the power 
operation, since one of the effects of computing the iterator-template can be the 
instantiation of the exponent N, as in P ::::= E@P' ** N.  
 As happens with product (and with the other basic operators), both features apply to 
single plots and to plot libraries. 
 
 
4.9. Extension: patterning  
 
Plot patterns can be obtained as a generalization of plots, by consistently substituting 
variables for the parameters and tags. 
 Given a plot P = [S,D], the pattern P of P, expressed by P ::::= patt P, is obtained from P 
by substituting variables for the parameters and tags in both S and D. As expected, 
patterning applies to both single plots and to entire libraries. 
 To take advantage of this feature, we provided an additional version of the selection 
operator, in which a plot can be used as selection-template. Let P' = [S',D'] be a plot at an 
early phase of composition, still with very few events, and let L be a library representing a 
repository of typical narratives collected from diverse sources (for folktale narratives, see 
for instance [Aarne & Thompson]). Suppose further that the constituent plots of L have 
events pertaining to the same genre of P', though possibly defined over entirely different 
parameter values. If one wishes to extend P' to a set of fuller alternative plots containing all 
events in S' and preserving the order requirements imposed by D', it is possible to take as 
suggestions – or more precisely to re-use – the typical narratives in L by way of a pattern-
matching technique. This is accomplished by evaluating the expression P ::::= sel P'@ (patt 
L), wherein plot P' is used to conduct selection against the result of converting all plots in L 
into patterns. To obtain just one plot at a time, the expression P ::::= sel P'@ one(patt L) can 
be employed. 
 
 
5. A prototype implementation 
 
A very simple PMA prototype was implemented to experiment with the notions discussed 
here. It serves to compose plots by applying the repertoire of algebraic operations, 
optionally resorting to pre-defined plots and plot libraries to supply useful clues. The entire 
system was written in SWI-Prolog1, and comprises 3 modules: 
 

1) The controlling module, called alg.pl, where the PMA operations are defined; 
2) the example module, called sita_example.pl, which contains the conceptual 

specification of the example mini-world; 
3) the plan-generator module, called warbeta.pl, containing, besides the plan-

generation algorithm (an extended version of the early Warplan algorithm 
[Warren]), a number of routines for testing pre-conditions and post-conditions of the 
operations and for plan checking and simulated execution. 

 
                                                 
1 http://www.swi-prolog.org/ 
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 The third module was developed as part of a previous work, in which the plan-generator 
module is the central mechanism, so that plot composition is mainly achieved through plan 
generation [Ciarlini & al, 2008]. For the present work, however, wherein plot composition 
arises from the manual formulation of algebraic expressions, the module plays an auxiliary 
role, its routines being called from inside the algebraic operators, especially for handling 
pre-conditions and post-conditions. Appendix I (reproducing a section of [Ciarlini & al, 
2008]) describes some of its features; in particular, the use of different notations for 
formulating different kinds of pre- and post-conditions is a crucial aspect in the definition 
of the event-producing operations listed in Appendix II, where the complete conceptual 
schema and an initial state formulation are shown. Appendix III displays pre-defined plots 
and libraries, some of which are involved in the examples described next.  
 
 
5.1. Example 1 
 
Putting together two plots, via the product operator, cannot always take the form of a 
straightforward concatenation of the respective event sequences. The sequences may need 
to be merged in view of the partial order requirements. 
 Given the plots P1 and P2 below, consider their product P. As we shall repeat for the 
various examples, the result is shown both in plot format and in template-driven natural 
language.  
 
P1::::= carry('Ravana', 'Sita', 'Lanka') * 
         ride('Rama', palace, 'Lanka') *  
         defeat('Rama', 'Ravana'), 
P2::::= ride('Ravana', 'Lanka', forest) *  
    seize('Rama','Sita') * 
    carry('Rama','Sita',palace), 
P ::::= P1 * P2. 
 
P = [[f1:ride(Ravana, Lanka, forest), f2:carry(Ravana, Sita, Lanka), f3:ride(Rama, palace, 
Lanka), f4:defeat(Rama, Ravana), f5:seize(Rama, Sita), f6:carry(Rama, Sita, palace)],  
[f1-f2, f2-f3, f3-f4, f4-f5, f5-f6]] 
 
Ravana rides from Lanka to forest. Ravana carries Sita to Lanka. Rama rides from palace to 
Lanka. Rama defeats Ravana. Rama seizes Sita. Rama carries Sita to palace. 
 
 
5.2. Example 2 
 
The evaluation of plot P below illustrates the interplay between the syntagmatic, 
paradigmatic and antithetic event relations. The union operation is used to obtain a pair of 
libraries, consisting of the alternatives, respectively, for villainy and for retaliation. All 
villainy-retaliation sequences are then formed by computing the product of the two 
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libraries. Finally, via the difference operator, the transgressive sequence elope-rescue is 
excluded. 
 
P ::::= (abduct(V,W) + elope(V,W)) * (rescue(H,W) + capture(H,W)) -  
       elope(V,W) * rescue(H,W). 
 
P = [[[f1:abduct(Ravana, Sita), f2:rescue(Rama, Sita)], [f1-f2]], [[f1:abduct(Ravana, Sita), 
f2:capture(Rama, Sita)], [f1-f2]], [[f1:elope(Ravana, Sita), f2:capture(Rama, Sita)], [f1-
f2]]] 
 
Ravana abducts Sita. Rama rescues Sita.  
 
Ravana abducts Sita. Rama captures Sita.  
 
Ravana elopes with Sita. Rama captures Sita. 
 
 
5.3. Example 3 
 
This example serves to illustrate two points. Firstly, it shows how should be treated a 
variable, such as E in the expression below, if it is still uninstantiated at the moment when 
the evaluation process would take it as operand. The tool regards it as a slot to be filled in 
with a chosen event, and engages the user in a menu-driven dialogue. Secondly, this is in a 
sense a non-story example: no villainy or retaliation occurs; the hero simply goes fetch the 
princess in the forest and brings her back to their home. The choice (by instantiating 
variable E) is whether persuasion (an entreat event) or force (seize) will be employed. 
 
 
P :=ride('Rama', palace, forest) * 
      E *  
      carry('Rama', 'Sita', palace). 
 
options:  
1:abduct 
2:elope 
3:rescue 
4:capture 
5:ride 
6:seize 
7:entreat 
8:carry 
9:defeat 
 
event? - 7. 
entreat(A, B) 
 
[[f1:entreat(A, B)], []] 
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for A, choose number from: 
1:Sita 
2:Rama 
3:Ravana 
4:forest 
5:palace 
6:Lanka 
A goes to? - 2. 
 
for B, choose number from: 
1:Sita 
2:Rama 
3:Ravana 
4:forest 
5:palace 
6:Lanka 
B goes to? - 1. 
 
event: [[f1:entreat(Rama, Sita)], []] 
 
P = [[f1:ride(Rama, palace, forest), f2:entreat(Rama, Sita), f3:carry(Rama, Sita, palace)],  
        [f1-f2, f2-f3]] 
 
Rama rides from palace to forest. Rama entreats Sita. Rama carries Sita to palace. 
 
 
5.4. Example 4 
 
Projection can be used to re-order the events in a plot. Given a pre-defined fake abduction 
plot, a new plot P can be obtained, preserving all the original events but inverting the 
position of the third and forth events. Instead of fake abduction, we now have a situation in 
which the villain initially acts as a seducer but, after having brought the princess to his 
home, decides to keep her in strict confinement.  
 
fake_abduct(V,W,F) :- 
     F ::::= [[f1:ride(V,P1,P2), f2:entreat(V,W), f3:seize(V,W), f4:carry(V,W,P1)],  
              [f1-f2,f1-f3,f2-f4]]. 
 
P ::::= proj [f1:_,f2:_,f4:_,f3:_] @ fake_abduct('Ravana','Sita'). 
 
P = [[f1:ride(Ravana, Lanka, forest), f2:entreat(Ravana, Sita), f3:carry(Ravana, Sita, 
Lanka), f4:seize(Ravana, Sita)], [f1-f2, f2-f3, f3-f4] 
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Ravana rides from Lanka to forest. Ravana entreats Sita. Ravana carries Sita to Lanka. 
Ravana seizes Sita. 
 
 
 
5.5. Example 5 
 
Using selection over the detailed description of the two level-1 villainy events, obtained 
through the factoring operation, we may determine which one involves the violent seize 
level-2 event. Note that the desired level-1 event is reconstituted from the selected level-2 
description by applying the combination operator at the end. 
 
P ::::= comb sel [_:seize(_,_)] @ (fac (abduct(V,W) + elope(V,W))). 
 
[[[f1:abduct(Ravana, Sita)], []]] 
 
Ravana abducts Sita.  
 
 
5.6. Example 6 
 
Consider a plot P that starts with abduction, and should continue with an adequate form of 
retaliation. Choosing this second event can be done by performing a union of the two 
possible alternatives, making the effective presence of each of them dependent on a 
condition: the hero can only rescue the woman if she loves him, otherwise he must capture 
her. Note that this conditional union works as an exclusive-or or as an if-then-else scheme. 
 
P ::::= abduct(V,W) *  
      ((sel []/loves(W,H) @ rescue(H,W)) +  (sel []/(not loves(W,H)) @ capture(H,W))). 
 
P = [[[f1:abduct(Ravana, Sita), f2:rescue(Rama, Sita)], [f1-f2]]] 
 
Ravana abducts Sita. Rama rescues Sita. 
 
 
5.7. Example 7 
 
The level-2 events entreat and seize are the only forms of persuasion that the male 
characters may employ when dealing with the princess. Here, iteration is applied to make 
the two men successively confront Sita, taking her feelings with respect to them into 
consideration when deciding how to act. To a man loved by Sita it is enough to entreat her 
once, whereas an unloved man would have no alternative except seizing her (an action to be 
performed twice, as indicated by appropriately setting the power operator). Notice the use 
of an explicit if construct, provided by the tool as an auxiliary facility. 
 
P ::::= iter  



 20  
 
 

        (gender(M,male),  
   if(loves('Sita',M), 
   (O=entreat(M,'Sita'),N=1), 
   (O=seize(M,'Sita'),N=2)))  @ 
 ride(M,_,forest) * O ** N. 
 
Suppose Sita loves the hero, Rama, but not the villain, Ravana. Then the logical expression 
controlling the iteration operator will evaluate to the iterator-template T as shown below. 
Note that T is represented as a list with two items containing as expected two different 
instantiations for the three variables M, O, and N. 
 
T = [ (M=Rama, O=entreat(Rama, Sita), N=1), (M=Ravana, O=seize(Ravana, Sita), N=2)] 
 
P = [[f1:ride(Rama, palace, forest), f2:entreat(Rama, Sita), f3:ride(Ravana, Lanka, forest), 
f4:seize(Ravana, Sita), f5:seize(Ravana, Sita)], [f1-f2, f3-f4, f3-f5]] 
 
Rama rides from palace to forest. Rama entreats Sita. Ravana rides from Lanka to forest. 
Ravana seizes Sita. Ravana seizes Sita. 
 
 
5.8. Example 8 
 
The pre-defined library lib_2, listed in Appendix II and repeated below together with its 
rendering in natural language for ease of reference, will be used to extend an initial plot P, 
by applying the special selection option against the pattern-converted library. 
 
lib_2( 
 [ [[f1:ride('Meleagant','Gore',forest), 
     f2:seize('Meleagant','Guinevere'), 
  f3:carry('Meleagant','Guinevere','Gore'), 
  f4:ride('Lancelot','Camelot','Gore'), 
  f5:defeat('Lancelot','Meleagant'), 
  f6:entreat('Lancelot','Guinevere'), 
  f7:carry('Lancelot','Guinevere','Camelot')], 
  [f1-f2,f2-f3,f3-f4,f4-f5,f5-f6,f6-f7]], 
   [[f1:ride('Tristan',forest,garden), 
     f2:entreat('Tristan','Isolde'), 
  f3:carry('Tristan','Isolde',forest), 
  f4:ride('Mark','Cornwall',forest), 
  f5:defeat('Mark','Tristan'), 
  f6:seize('Mark','Isolde'), 
  f7:carry('Mark','Isolde','Cornwall')], 
  [f1-f2,f2-f3,f3-f4,f4-f5,f5-f6,f6-f7]] 
  ]). 
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Meleagant rides from Gore to forest. Meleagant seizes Guinevere. Meleagant carries 
Guinevere to Gore. Lancelot rides from Camelot to Gore. Lancelot defeats Meleagant. 
Lancelot entreats Guinevere. Lancelot carries Guinevere to Camelot.  
 
Tristan rides from forest to garden. Tristan entreats Isolde. Tristan carries Isolde to forest. 
Mark rides from Cornwall to forest. Mark defeats Tristan. Mark seizes Isolde. Mark carries 
Isolde to Cornwall. 
 
If P is formulated as shown next, the Meleagant plot will serve as model to obtain the 
extended plot Pe. Notice the subsequent application of the combination operator to Pe in 
order to recognize the kind of narrative obtained, which turns out to be of the abduct-rescue 
variety. 
 
P = [[f1:carry('Ravana','Sita','Lanka'), 
         f2:entreat('Rama','Sita'), 
     f3:carry('Rama','Sita',palace)], 
       [f1-f2,f2-f3]], 
Pe ::::= sel P @ (patt lib_2), 
Pc ::::= comb Pe. 
 
Ravana carries Sita to Lanka. Rama entreats Sita. Rama carries Sita to palace.  
 
Pe = [[[f1:ride(Ravana, Lanka, forest), f2:seize(Ravana, Sita), f3:carry(Ravana, Sita, 
Lanka), f4:ride(Rama, palace, Lanka), f5:defeat(Rama, Ravana), f6:entreat(Rama, Sita), 
f7:carry(Rama, Sita, palace)], [f1-f2, f2-f3, f3-f4, f4-f5, f5-f6, f6-f7]]] 
 
Ravana rides from Lanka to forest. Ravana seizes Sita. Ravana carries Sita to Lanka. Rama 
rides from palace to Lanka. Rama defeats Ravana. Rama entreats Sita. Rama carries Sita to 
palace.  
 
Pc = [[[f1:abduct(Ravana, Sita), f2:rescue(Rama, Sita)], [f1-f2]]] 
 
Ravana abducts Sita. Rama rescues Sita. 
 
A different result is obtained by applying, to the same library, a different initial plot P 
which only diverges from the previous formulation with respect to the second event (seize, 
instead of entreat). Now the Tristan plot will be taken as model. The resulting plot Pe is 
finally recognized to be of the elope-capture variety, again by applying the combination 
operator to Pe.  
 
P = [[f1:carry('Ravana','Sita','Lanka'), 
         f2:seize('Rama','Sita'), 
     f3:carry('Rama','Sita',palace)], 
   [f1-f2,f2-f3]], 
Pe ::::= sel P @ (patt lib_2), 
Pc ::::= comb Pe. 
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Ravana carries Sita to Lanka. Rama seizes Sita. Rama carries Sita to palace.  
 
Pe = [[[f1:ride(Ravana, Lanka, forest), f2:entreat(Ravana, Sita), f3:carry(Ravana, Sita, 
Lanka), f4:ride(Rama, palace, Lanka), f5:defeat(Rama, Ravana), f6:seize(Rama, Sita), 
f7:carry(Rama, Sita, palace)], [f1-f2, f2-f3, f3-f4, f4-f5, f5-f6, f6-f7]]] 
 
Ravana rides from Lanka to forest. Ravana entreats Sita. Ravana carries Sita to Lanka. 
Rama rides from palace to Lanka. Rama defeats Ravana. Rama seizes Sita. Rama carries 
Sita to palace.  
 
Pc = [[[f1:elope(Ravana, Sita), f2:capture(Rama, Sita)], [f1-f2]]] 
 
Ravana elopes with Sita. Rama captures Sita. 
 
 
6. Concluding remarks 
 
The main contribution to be expected from a logic model is to provide reliable guidelines 
for developing practical systems that may be regarded as "complete" according to some 
criterion. We claim that PMA is complete in the specific sense that it covers plot 
manipulation along the four dimensions induced by the syntagmatic, paradigmatic 
antithetic and meronymic event relations. These relations, as we argued before [Ciarlini et 
al, 2008] seem to encompass some fundamental aspects of plot composition, associated in 
turn with the four major tropes of semiotic research [Booth; Chandler]. 
 The direct use of PMA is not recommended, a remark applicable in fact to any logic 
level formalism, which, as said before, is nothing but an intermediate stage towards a 
computer-based user environment. In the database realm, relational algebra served as a 
well-fundamented basis for DBMS products, but its formulas remained hidden from 
common users behind user-friendly query languages. And notice that user-friendliness is 
not enough: some "intelligence" is needed to avoid meaningless commands, involving for 
instance an equality join based on the comparison of  semantically unrelated fields.  
 Similarly, an effective system to help prospective authors should offer a friendly menu-
based interface on top of the algebraic engine, able to offer opportune guidance – or at least 
helpful clues – at each composition stage. More importantly the system should have access 
to an online representation of the three-level conceptual schema specification, using this 
meta-level information to keep checking (through the plan-generation routines) the 
semantic correction of the plots being generated. Moreover, access to the behavioural 
schema in particular should serve to check what might be called pragmatic plausibility, i.e. 
whether the events caused by each character reflect the character's expected way of 
reacting, especially in view of the declared situation-goal rules. 
 At least two general limitations of our approach must be recognized, which must not be 
attributed to PMA, arising as they do from the conceptual model adopted: 
 

• Since the dynamic schema restricts the narrative events to those resulting from a 
fixed repertoire of operations, only highly repetitive genres can be modelled; 
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• a consistent definition of an entire repertoire of operations by pre-/ post-conditions 
is hard to elaborate, on account of their complex mutual interferences, and may 
require a time-consuming series of trial-and-error adjustments. 

 
 With respect to PMA itself, much remains to be done. Theoretic work is needed to 
systematically investigate the formal properties of the algebra. Practical work, drawing 
from our early experiments with the PlotBoard prototype [Ciarlini et al, 2008], should 
include the design of friendly systems based on PMA, taking maximum advantage of the 
previously developed plan-generation facilities, but also allowing effective user interaction 
along a step-wise plot composition and adaptation process. Different initial states might be 
chosen to start such process, subsequent states being reached by simulated execution of the 
event-producing operations. Authors might ask to be constantly warned about the risk of 
correctness and plausibility breaches, but, nevertheless, should retain the power to 
introduce transgressive changes via user directives, as in PlotBoard, or some other semi-
automatic intervention mechanism.    
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Appendix I - some features of the plan-generator 
 
The plan generator follows a backward chaining strategy. For a fact F (or not F) that is part of a given goal, 
it checks whether it is already true (or false) at the current state. If it is not, it looks for an operation Op 
declared to add (or delete) the fact as part of its effects. Having found such operation, it then checks whether 
the pre-condition Pr of Op currently holds – if not, it tries, recursively, to satisfy Pr. Moreover, the plan 
generator must consider the so-called frame problem [Lloyd], by establishing (in second-order logic notation) 
that the facts holding just before Op is executed stay valid unless explicitly declared to be altered as part of 
the effects of Op. 

Like goals, pre-conditions are denoted by conjunctions of literals and arbitrary logical expressions. We 
distinguish, and treat differently, three cases for the involved positive or negative facts: 

a. facts which, in case of failure, should be treated as goals to be tried recursively by the plan generator; 
b. facts to be tested immediately before the execution of the operation, but which will not be treated as 

goals in case of failure: if they fail the operation simply cannot be applied; 
c. facts that are not declared as added or deleted by any of the predefined operations. 

Note that the general format of a pre-condition clause is precond(Op, Pr) :- B. In cases (a) and (b), a 
fact F (or not F) must figure in Pr, with the distinction that the barred notation /F (or /(not F)) will be 
used in case (b). Case (c) is handled in a particularly efficient way. Since it refers to facts that are invariant 
with respect to the operations, such facts are included in the body B of the clause, being simply tested against 
the current state when the clause is selected.  

An example is the precondition clause of operation seize(M,W), where M is the agent and W the patient 
of the action. Clearly the two characters should be together at the same place, and, accordingly, the Pr 
argument shows two terms containing the same variable P to express this requirement, but the term for W is 
barred: /current_place(W, P), which does not happen in M's case. The difference has an intuitive 
justification: the prospective agent has to go to the place where the patient is, but the latter will just happen to 
be there for some other reason. 

The proper treatment of (a) and (b) is somewhat tricky. Suppose the pre-condition Pr of operation Op is 
tested at a state S1. If it fails, the terms belonging to case (a) will cause a recursive call whereby one or more 
additional operations will be inserted so as to move from S1 to a state S2 where Op itself can be included. It is 
only at S2, not at S1, that the barred terms in case (b) ought to be tested, and so the test must be delayed until 
the return from the recursive call, when the plan sequence reaching S2 will be fully instantiated.  

Operations can admit more than one precondition clause, so as to cope with different circumstances. This 
happens with the carry(M,W,P2) operation, whereby W will either freely consent to be transported to P2 
by M, or will have to be forcefully held by him. 

With respect to the added and deleted clauses declaring effects of operations, the plan generator also 
employs a barred notation, to distinguish between two cases: (a) primary effects, and (b) secondary 
unessential effects. In case (a), if any fact F to be added by Op already holds, or already does not hold if it 
should be deleted, then Op is considered non-productive and fails to be included in the plan. In contrast, in 
case (b), such lack of effect would be admitted and cause no failure.  

As an example, consider the clause of operation capture(M1,W) that declares as deleted the fact 
held_by(W,M2), as a result of M1's action to take away W from M2. Notice that the fact may or may not 
hold prior to capture; it will hold if W was abducted by M2, but will not hold if an elopement occurred instead 
– and that is why the barred notation is used for this particular deleted clause. On the contrary, the fact cur-
rent_place(W,P2), where P2 is the home of M2, must necessarily be deleted by an effective execution 
of the operation, and so does not figure as barred. 

The execution of plans is done through assert or retract commands on the facts to be, respectively, 
added or deleted. The plan's pre- and post-conditions are checked during the process, there being no effect in 
case of failure. A log(L) literal, initiated with L=start, is extended with each successful plan execution 
and can be usefully retrieved for a variety of purposes. On the basis of the log and of the initial state, which is 
saved when a session begins, it is possible to query about facts at any intermediate state. It is also possible to 
save and restore any previous state S (initial or intermediate), which enables simulation runs. 

User interventions, necessary to achieve unplanned situations, are permitted in a limited scale through 
directives that can be either intermixed with the operations in a plan or called separately. Two of these are 
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used in our example, one for changing loves facts, immune to the predefined operations, and the characters' 
beliefs, which may not correspond to actual facts. 
 To finish this partial review of the plan features, we remark that the planning algorithm plans(G,P) is 
called in more than one way. More frequently G is given, as the goal, and P is a variable to which a generated 
plan will be assigned as output. However an inverse usage has been provided, wherein P is given and G is a 
variable; in this case, the algorithm will check whether P is valid and, if so, assign its net effects (a 
conjunction of F and not F terms) to G. 
 
  
Appendix II - conceptual schemas and example initial state 
 
:- dynamic believes/2,loves/2, 
   current_place/2, 
   held_by/2, 
   consents_with/2, 
   op_level/1 . 
 
template(not F,['not true: '|Ft]) :- 
  template(F,Ft). 
  
   
% STATIC SCHEMA 
 
entity(character,name). 
attribute(character,gender). 
entity(place,pname). 
relationship(loves,[character,character]). 
relationship(home,[character,place]). 
relationship(current_place,[character,place]). 
relationship(held_by,[character,character]). 
relationship(consents_with,[character,character]). 
 
template(character(X),['character ',X]). 
template(gender(X,G),[X,' is a ',G1]) :- 
  (G == male, G1 = 'man'; G == female, G1 = 'woman'). 
template(place(X),['place ',X]). 
template(loves(X,Y),[X,' loves ',Y]). 
template(home(X,L),['home of ',X,': ',L]). 
template(current_place(X,L),['Current location of ',X,': ',L]). 
template(held_by(W,M),[W,' is being held by ',M]). 
template(consents_with(W,M),[W,' consents with ',M]). 
 
 
user_controlled(loves(_,_)). 
 
  
% DYNAMIC SCHEMA 
 
added(X,Y) :- /added(X,Y). 
deleted(X,Y) :- /deleted(X,Y). 
 
 
% first level operators 
 
operation(abduct(M2,W),1). 
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parm_type(abduct(M2,W),[character,character]). 
deleted(current_place(W,Pc),abduct(M2,W)) :-  
  home(M2,P2), not (Pc == P2).  
/deleted(current_place(M2,Pc),abduct(M2,W)) :- 
 
  home(M2,P2), not (Pc == P2). 
added(current_place(W,P2),abduct(M2,W)) :- home(M2,P2). 
/added(current_place(M2,P2),abduct(M2,W)) :- home(M2,P2). 
added(held_by(W,M2),abduct(M2,W)). 
precond(abduct(M2,W),current_place(W,Pc)) :- 
   loves(M2,W), 
   gender(W,female), 
   home(M2,P2), 
   home(W,P1), 
   not (P1 == P2), 
   place(Pc), 
   not (Pc == P1),    
   not (Pc == P2). 
template(abduct(M2,W),[M2,' abducts ',W]). 
 
operation(elope(M2,W),1). 
parm_type(elope(M2,W),[character,character]). 
deleted(current_place(W,Pc),elope(M2,W)) :-  
  home(M2,P2), not (Pc == P2).  
/deleted(current_place(M2,Pc),elope(M2,W)) :- 
  home(M2,P2), not (Pc == P2). 
added(current_place(W,P2),elope(M2,W)) :- home(M2,P2). 
/added(current_place(M2,P2),elope(M2,W)) :- home(M2,P2). 
added(consents_with(W,M2),elope(M2,W)). 
precond(elope(M2,W),current_place(W,Pc)) :- 
   loves(M2,W), 
   loves(W,M2), 
   gender(W,female), 
   home(M2,P2), 
   home(W,P1), 
   not (P1 == P2), 
   place(Pc), 
   not (W == M2), 
   not (Pc == P1),    
   not (Pc == P2). 
template(elope(M2,W),[M2,' elopes with ',W]). 
 
operation(rescue(M1,W),1). 
parm_type(rescue(M1,W),[character,character]). 
deleted(current_place(W,P2),rescue(M1,W)) :-  
  home(W,P1), not (P2 == P1).  
/deleted(current_place(M1,P2),rescue(M1,W)) :-  
  home(W,P1), not (P2 == P1). 
/deleted(held_by(W,M2),rescue(M1,W)) :- 
  home(W,P1), home(M2,P2), not (M2 == M1), not (P2 == P1). 
added(current_place(W,P1),rescue(M1,W)) :- home(W,P1). 
/added(current_place(M1,P1),rescue(M1,W)) :- home(W,P1). 
added(consents_with(W,M1),rescue(M1,W)). 
precond(rescue(M1,W),(current_place(W,P2), /(not held_by(W,M1)))) :- 
   gender(W,female), 
   home(W,P1), 
   home(M2,P2), 
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   not loves(W,M2), 
   character(M1), 
   not (M1 == W), 
   not (M1 == M2), 
   not (P1 == P2). 
template(rescue(M1,W),[M1,' rescues ',W]). 
 
operation(capture(M1,W),1). 
parm_type(capture(M1,W),[character,character]). 
deleted(current_place(W,P2),capture(M1,W)) :-  
  home(W,P1), not (P2 == P1). 
/deleted(current_place(M1,P2),capture(M1,W)) :-  
  home(W,P1), not (P2 == P1). 
/deleted(held_by(W,M2),capture(M1,W)) :- 
  home(W,P1), home(M2,P2), not (P2 == P1). 
added(held_by(W,M1),capture(M1,W)).  
added(current_place(W,P1),capture(M1,W)) :- home(W,P1). 
/added(current_place(M1,P1),capture(M1,W)) :- home(W,P1). 
precond(capture(M1,W),current_place(W,P2)) :- 
   gender(W,female), 
   home(W,P1), 
   home(M2,P2), 
   character(M1), 
   not (M1 == W), 
   not (M1 == M2), 
   not (P1 == P2). 
template(capture(M1,W),[M1,' captures ',W]). 
 
template(directive(D),[D,' directive']). 
 
% second level operators 
 
operation(ride(C,P1,P2),2). 
parm_type(ride(C,P1,P2),[character,place,place]). 
deleted(current_place(C,P1),ride(C,P1,P2)) :- not (P1 == P2). 
added(current_place(C,P2),ride(C,P1,P2)) :- not (P1 == P2). 
precond(ride(C,P1,P2),current_place(W,P2)) :- 
  loves(C,W), 
  gender(C,male), 
  gender(W,female), 
  (home(C,P1); not home(C,P1),place(P1)), 
  place(P1), 
  place(P2), 
  not (P1 == P2). 
template(ride(C,P1,P2),[C,' rides from ',P1,' to ',P2]). 
 
operation(seize(M,W),2). 
parm_type(seize(M,W),[character,character]). 
added(held_by(W,M),seize(M,W)). 
precond(seize(M,W), 
  (/current_place(W,P), 
   current_place(M,P), 
   not held_by(W,M2))) :- 
  gender(M,male), 
  gender(W,female), 
  gender(M2,male), 
  not (M == M2), 



 29  
 
 

  place(P), 
  not home(W,P), 
  not home(M,P).   
precond(seize(M,W), 
  (/current_place(W,P), 
   /current_place(M,P), 
   /consents_with(W,M), 
   /(not held_by(W,M2)))) :- 
  gender(M,male), 
  gender(W,female), 
  gender(M2,male), 
  not (M == M2), 
  place(P), 
  not home(W,P), 
  home(M,P). 
template(seize(M,W),[M,' seizes ',W]). 
 
operation(entreat(M,W),2). 
parm_type(entreat(M,W),[character,character]). 
added(consents_with(W,M),entreat(M,W)). 
precond(entreat(M,W), 
  (/current_place(W,P), 
   current_place(M,P), 
   /(not held_by(W,M)), 
   not held_by(W,M2))) :-  
  loves(M,W), 
  loves(W,M),  
  gender(M,male), 
  gender(W,female), 
  gender(M2,male), 
  not (M == M2), 
  place(P), 
  not home(M,P), 
  not home(W,P). 
template(entreat(M,W),[M,' entreats ',W]). 
 
operation(carry(M,W,P2),2). 
parm_type(carry(M,W,P2),[character,character,place]). 
deleted(current_place(M,P1),carry(M,W,P2)) :- 
  home(M,P2), not (P1 == P2).  
deleted(current_place(W,P1),carry(M,W,P2)) :- 
  home(M,P2), not (P1 == P2).  
added(current_place(M,P2),carry(M,W,P2)) :- 
  home(M,P2). 
added(current_place(W,P2),carry(M,W,P2)) :- 
  home(M,P2). 
precond(carry(M,W,P2), 
  (consents_with(W,M), 
  /current_place(W,P1), 
  /current_place(M,P1))) :-   
  gender(W,female),  
  gender(M,male), 
  loves(M,W), 
  loves(W,M), 
  home(M,P2). 
precond(carry(M,W,P2), 
  (held_by(W,M), 



 30  
 
 

  /current_place(W,P1), 
  /current_place(M,P1))) :- 
  gender(W,female), 
  gender(M,male), 
  loves(M,W), 
  home(M,P2). 
template(carry(M,W,P2),[M,' carries ',W,' to ',P2]). 
 
operation(defeat(M1,M2),2). 
parm_type(defeat(M1,M2),[character,character]). 
deleted(held_by(W,M2),defeat(M1,M2)). 
precond(defeat(M1,M2), 
  (/current_place(M2,P), 
   /current_place(W,P), 
   /held_by(W,M2), 
   /current_place(M1,P))) :- 
   gender(M1,male), 
   gender(M2,male), 
   not (M1 == M2), 
   loves(M1,W), 
   place(P). 
template(defeat(M1,M2),[M1,' defeats ',M2]). 
 
img_template(T,T1) :- 
  T =.. [O,'Ravana'|P], 
  on(O,[ride,entreat,seize,carry]),!, 
  concat(O,1,O1), 
  T1 =.. [O1,'Ravana'|P]. 
img_template(T,T). 
 
 
% BEHAVIOURAL SCHEMA 
 
% goal-inference rules 
 
sit_obj(M2,  
  (current_place(W,P3),not current_place(M1,P3)),  
  (current_place(W,P2))) :- 
  gender(M1,male), 
  gender(M2,male), 
  gender(W,female), 
  not (M1 == M2), 
  place(P3), 
  not home(P3,_), 
  home(W,P1), 
  home(M2,P2), 
  not (P1 == P2). 
 
sit_obj(M1, 
  (current_place(W,P2), believes(M1,not loves(W,M2))), 
  (current_place(W,P1), not held_by(W,M1))) :- 
  gender(M1,male), 
  gender(M2,male), 
  gender(W,female), 
  not (M1 == M2), 
  home(M1,P1), 
  home(W,P1), 
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  home(M2,P2), 
  not (P1 == P2). 
 
sit_obj(M1, 
  (current_place(W,P2), believes(M1,loves(W,M2))), 
  (current_place(W,P1), held_by(W,M1))) :- 
  gender(M1,male), 
  gender(M2,male), 
  gender(W,female), 
  not (M1 == M2), 
  home(M1,P1), 
  home(W,P1), 
  home(M2,P2), 
  not (P1 == P2). 
 
 
% beliefs 
 
believes(C,F,_) :- 
  believes(C,F). 
believes(C,F,S) :- 
  belief(C,F,S), 
  not added_belief(C,F). 
 
added_belief(C,F) :- 
  (F = (not F1),Fe = F1,!; 
   Fe = F), 
  (believes(C,Fe); 
   believes(C,not Fe)). 
 
belief(M1,loves(W,M2),S) :- 
  gender(M1,male), 
  gender(M2,male), 
  not (M1 == M2), 
  gender(W,female), 
  home(M2,P2), 
  (once((current_place(W,P2), 
         current_place(M2,P2), 
         not current_place(M1,P2), 
     not held_by(W,M2)),S),!; 
  holds(held_by(W,M1),S)). 
 
belief(M1,not loves(W,M2),S) :- 
  gender(M1,male), 
  gender(M2,male), 
  not (M1 == M2), 
  gender(W,female), 
  home(M2,P2), 
  once((current_place(W,P2),held_by(W,M2)),S), 
  not holds(held_by(W,M1),S). 
 
beliefs :- 
  log(L), 
  forall(believes(A,F,L),describe(believes(A,F,L))). 
 
template(believes(A,not F,S),[A,' does not believe that '|TF]) :- 
  template(F,TF). 
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template(believes(A,F,S),[A,' believes that '|TF]) :- 
  not (F == (not _)), 
  template(F,TF). 
 
user_controlled(believes(_,_)). 
 
doubts(M,loves(W,M)) :- 
  doubts(M,loves(W,M),start). 
 
doubts(M,loves(W,M),S) :- 
  gender(M,male), 
  gender(W,female), 
  not believes(M,loves(W,M),S), 
  not believes(M,not loves(W,M),S). 
 
 
% emotional conditions 
 
emotional_condition :- 
  log(L), 
  forall(character(C), 
    (once(emotional_condition(C,S,L)), 
     describe(emotional_condition(C,S,L)))). 
 
emotional_condition(C,S) :- 
  emotional_condition(C,S,start). 
 
emotional_condition(C1,absolutely_happy,S) :- 
  gender(C1,female), 
  emotional_condition(C1,happy,S), 
  not (state(Si,S), holds(held_by(C1,_),Si)). 
 
emotional_condition(C1,happy,S) :- 
  character(C1), 
  loves(C1,C2), 
  not (character(C3), 
       not (C3==C2), 
       holds(held_by(C1,C3),S)), 
  once((holds(current_place(C1,P),S), 
        holds(current_place(C2,P),S))). 
 
emotional_condition(C,bored,S) :- 
  character(C), 
  not emotional_condition(C,happy,S). 
 
template(emotional_condition(C,S,P),[C,' is ',S]). 
 
   
% INITIAL STATE 
 
% general settings 
 
state_rep([]). 
op_level(0). 
log(start). 
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% factual database - non-varying 
 
place(forest). 
place(palace). 
place('Lanka'). 
character('Sita'). 
gender('Sita',female). 
home('Sita',palace). 
character('Rama'). 
gender('Rama',male). 
home('Rama',palace). 
character('Ravana'). 
gender('Ravana',male). 
home('Ravana','Lanka'). 
 
% factual database - possibly varying 
 
current_place('Sita',forest). 
current_place('Rama',palace). 
current_place('Ravana','Lanka'). 
loves('Rama','Sita'). 
loves('Ravana','Sita'). 
loves('Sita','Rama'). 
 
 

Appendix III - example pre-defined plots and plot libraries  
 
% example of pre-defined plot 
 
plot(fake_abduct(V,P)).   
 
fake_abduct(V,W,P) :- 
  P := [[f1:ride(V,P1,P2),f2:entreat(V,W), 
         f3:seize(V,W),f4:carry(V,W,P1)], 
        [f1-f2,f1-f3,f2-f4]].   
   
% examples of Plot Libraries   
 
lib(lib_1). 
lib(lib_2). 
lib(lib_3). 
   
lib_1( 
 [ [[f1:abduct('Meleagant','Guinevere'), 
     f2:rescue('Lancelot','Guinevere')], 
  [f1-f2]], 
   [[f1:elope('Naoise','Deirdre'), 
     f2:capture('Conchobar','Deirdre')], 
  [f1-f2]], 
   [[f1:abduct('Simbionese Liberation Army','Patricia Hearst'), 
     f2:capture('San Francisco Police','Patricia Hearst')], 
  [f1-f2]], 
   [[f1:elope('Paris','Helen'), 
     f2:rescue('Menelaus','Helen')], 
  [f1-f2]] ]). 
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lib_2( 
 [ [[f1:ride('Meleagant','Gore',forest), 
     f2:seize('Meleagant','Guinevere'), 
  f3:carry('Meleagant','Guinevere','Gore'), 
  f4:ride('Lancelot','Camelot','Gore'), 
  f5:defeat('Lancelot','Meleagant'), 
  f6:entreat('Lancelot','Guinevere'), 
  f7:carry('Lancelot','Guinevere','Camelot')], 
  [f1-f2,f2-f3,f3-f4,f4-f5,f5-f6,f6-f7]], 
   [[f1:ride('Tristan',forest,garden), 
     f2:entreat('Tristan','Isolde'), 
  f3:carry('Tristan','Isolde',forest), 
  f4:ride('Mark','Cornwall',forest), 
  f5:defeat('Mark','Tristan'), 
  f6:seize('Mark','Isolde'), 
  f7:carry('Mark','Isolde','Cornwall')], 
  [f1-f2,f2-f3,f3-f4,f4-f5,f5-f6,f6-f7]] ]). 
 
lib_3(L) :- 
  L :=  
   [sel []/(not loves(P,V)) @ 
    (ride(V,P1,P2) *  
    (seize(V,P) + entreat(V,P)) *  
    carry(V,P,P1))]. 
 


