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Abstract. In this paper, we propose an automatic embryonic stem cell detection and counting
method in fluorescence microscopy images. We handle with pluripotent stem cells cultured in
vitro. Our approach uses the luminance information to generate a graph-based image representa-
tion. Then, a graph mining process is used to detect the cells. The proposed method was exten-
sively tested on a database of 92 images and the results were validated by specialists. We obtained
an average precision, recall and F-measure of 93.97%, 92.04% and 92.87%, respectively.

Keywords: Automated cell counting, fluorescence microscopy images, graph based image repre-
sentation, graph mining.

Resumo. Neste artigo, nós propomos um método automático para detecção e contagem de células
tronco embrionárias em imagens de micrsocopia fluorescente. Nós lidamos com células tronco
cultivadas in vitro. Nossa abordagem utiliza a informação de luminância para gerar uma represen-
tacão da imagem baseada em grafo. Então, um processo de mineração é utilizado para detectar
as células. O método proposto foi exaustivamente testado numa base de dados composta por 92
imagens e os resultaos foram revisados por especialistas. Nós obtivemos uma precision, recall e
F-measure média de 93.97%, 92.04% and 92.87%, respectivamente.

Palavras-chave: Contagem automática de células, imagens de micrsocopia fluorescente, repre-
sentacão de imagem baseada em grafo, mineração de grafo.
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1 Introduction

Embryonic stem cells are self-renewing elements that, through mitotic cell division and differen-
tiation process, can generate all three germ layers (endoderm, ectoderm and mesoderm) and also
specialized adult cells such as neurons, osteoblasts, cardiomyocytes, hepatocytes of the human
body. They are found in various parts of the human body at every stage of development from
embryo to adult and are classified according to their potential to develop into other cell types. A
pleuripotent stem cell can develop into cells from all three germinal layers while multipotent stem
cells can generate only closely related family of cells (e.g. hematopoietic stem cells differentiate
into red blood cells, white blood cells, platelets, etc.). These characteristics of pluripotency make
them a promising alternative for cell-based treatments of various diseases. Their differentiation
process can be recapitulated by culturing those cells in non-adherent plates when cystic structures
characterized by cavitations and fluid accumulation called embryoid bodies are formed.

Using different cell markers, specialists are able to determine, by manual counting, the total
number of cells, how many specialized itself into a specific mature cell and how many cells died.
These statistics are used to understand and validate the experiments. However, given the absence of
high contrast, large number of cluttered objects in a single scene, occlusion, tuning in microscopy
parameters and variability of cell size and morphology, detect and count these cells is a difficult
task. Moreover, it requires a high level of concentration that makes manual screening a tedious
and time-consuming task. In addition, the results are subjective and can greatly variate according
to the personal interpretation of each specialist. Therefore, there is a strong motivation for the
development of an automatic cell detection and counting method, which can be a useful tool for
understanding and accelerating the stem cell therapy process.

There are methods [28, 21] to identify and quantify sections of cells cultured in suspension.
However, these methods are expensive and require a trained technical specialist. Another disad-
vantage is that the spatial information is lost, because the cells must be separated. This information
is important because the specialists are able to observe some phenomena, such as, the differenti-
ated cells are located in the colony’s extremity while the specialized stem cells are located at the
colony’s center [9].

Several researchers have been developing automated methods for segmenting and counting
cells in microscopy images [29, 31, 5, 36, 11, 30, 4]. Some approaches are based on machine
learning [22, 23, 34]. Long et al. [22] and Zheng et al. [34] proposed methods based on neural
network and Markiewicz et al. [23] proposed a method to cell recognition and count using Support
Vector Machine. In this kind of approach, the major task is to create the learning set, which is
usually done manually by an independent expert for cell type. Another disadvantage is the time
spend on training and parameter adjust. Approaches that use classical segmentation methods, such
as threshold, morphological filtering and watershed transformation [3, 26, 12, 7] also have been
proposed. With the discovery of the stem cells potential, many researches have been dealing with
this kind of cell [24, 8, 18, 19, 2, 32, 15, 17, 16, 20]. Althoff et al. [2] and Tang et al. [32] proposed
a method for segmentation and tracking of neural stem cells (NSC). Both approaches are based
on classical segmentation methods and use the information about the cells’ previous position to
decide which blobs correspond to real cells. Also working with NSC, Korzynska [20] presented a
method for automatic counting of neural stem cells growing in cultures which is performed in two
steps: 1) segmentation step: the image is separated in several regions and; 2)counting step: each
homogeneous region is counted separately. Some approaches handle with hematopoietic stem
cells (HSC) [15, 17, 16]. Kachouie et al. [15] proposed a deconvolution method in the form of an
optimized ellipse fitting algorithm to locate individuals HSC. The methods proposed in [17, 16],
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uses the cell morphologic information (e. g. cell size, boundary brightness, interior brightness
and boundary uniformity or symmetry) to locate and track HSC. Note that, the works cited above
handled with only one type of stem cell in their images.

In this paper, we propose an automatic method for detecting and counting stem cells sections
obtained under in fluorescence microscopy. We handle with embryoid bodies obtained from em-
bryonic stem cells cultured in vitro. Our approach uses the luminance information to generate a
graph-based image representation. Each cell is represented in the graph as a particular structure
that we called simple path. Then, a graph mining process is used to detect the cells. While our mo-
tivation is to count stem cells, our approach can also be applied in other groups of objects, as long
as the object surface are both smooth and concave with only one punctual illumination source. The
proposed method was extensively tested on a database of 92 images and the results were validated
by specialists. We obtained, in average, a precision, recall and F-measure of 93.97%, 92.04% and
92.87% respectively. We also have tested the proposed approach in others objects, such as seeds,
candies and spots in electrophoresis images [13, 14]. Although counting cells are a well know
problem, we are not aware of any other work that handles with several types of pluripotent stem
cells in the same image.

The remainder of this paper is organized as follows: section 2 details the image characteristics;
section 3 describes the proposed method; section 4 presents the experimental results to show the
effectiveness of the method and; section 5 presents our conclusion and some future works.

2 Image Characterization

The images of embryoid bodies used in this work were collected in the Institute of Biomedical
Sciences at UFRJ/Brazil. Shortly, embryoid bodies were cultured for 8 days under a neural dif-
ferentiation process. In this procedure the embryoid bodies were stimulated to differentiate into
a neural phenotype by the incubation, on the last 4 days, with retinoic acid at final concentration
of 2µM . After this time, they were fixed in 4% parafolmaldehyde (PF) solution for 30 minutes,
passed through a sucrose gradient (10, 20 and 30%, 30 minutes each) and finally embeeded in
tissue tek R© OCT (optimum compound temperature) for cryopreserving. Slices were prepared on
cryostat to discern the number of individual cells on each embryoid body. The slice thickness
used was 10µm, which corresponds to the nuclei average size. Next, the slices were incubated, for
5 minutes, with 4‘-6-Diamidino-2-phenylindole (DAPI), which is a kind of nuclei counter stain.
The acquisition system consists of a Nikon Eclipse TE300 inverted epi-fluoresence microscope, a
MagnaFire Digital CCD camera and the Image Pro Express software. The procedure of acquisi-
tion is semi-automatic and the specialist controls some parameters, such as, magnification, time
exposure and focus. The resolution of the captured images were 1032× 1040 pixels, which corre-
spond to zoom of 40×. They were stored using Tagged Image File (.tif) format with lossless LZW
compression. Figure 1 shows an example of a captured image.

Incorrect adjust of the microscopy parameters generate images with incorrect focus (Figure
2a). In these images, the edges become less clear and some cells are ignored by manual counting.
Another difficulty is the partial occlusion of the cells. Although the slice thickness has the nuclei
average size, some cells can be partially juxtaposed and they can appear partially occluded. This
fact and the presence of many cells in a single scene (Figure 2b) are the main cause of slowness
of the manual counting. Sometimes, it is very difficult to a human to distinguish the number
of cells in a specific region. The DAPI binds to cell DNA and turning it visible, in blue/cyan,
when visualized in the microscope. They appear lighter in the center and its luminance decreases
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Figure 1: Captured stem cell image.

gradually. However, sometimes the DNA is more concentrated in different parts of the nuclei
causing two or more lighter points in the same cell [27] (Figure 2c). When this occurs, the cell
can be confused with two or more cells overlapped.

The occurrence of noise in captured images is natural (Figure 2d). However, the wrong choice
of acquisition parameters produce different pattern of noise (Figure 2e) and stronger noise as in
Figure 2f. The presence of noise and the other problems cited above make a challenge to develop
an automatic counting method for embryonic stem cells. An advantage of such method is to
avoid the subjectivity of the manual counting results, which is aggravated by these issues. In the
next section we present a new method for detecting and counting embryoid bodies formed by
embryonic stem cells undergoing differentiation in the images characterized in this section.

3 Proposed Method

In this section, we describe the proposed procedure to detect and count embryonic stem cells in
microscopy fluorescence images automatically. These images, as the ones presented in section
2, have an interesting characteristic: the pixels of a cell are lighter in the middle and the pixel
luminance value decreases gradually as it reaches the cell boundaries. We explore the luminance
information by considering the image as a topological surface, where each pixel is a point situated
at some altitude as a function of its grey level. Most precisely: let I : Ω ∈ Z2 −→ Z be a function
of gray levels representing a digital image. We have that, the graphic of I is a topological surface

6



(a) (b) (c)

(d) (e) (f)

Figure 2: Image features: a) image out of focus; b) partial occlusion and many objects in a sin-
gle scene; c) the DNA condensation phenomena [27] (the black arrows point out the two lighter
points); d) presence of acceptable level of noise; e) presence of weak noise and; f)presence of
strong noise.

in which the altitude of every point is equal to the gray level of the corresponding pixel (see Figure
3). Moreover, we have that each cell can be identified as a set of local maximum points, because
the presence of noise and the DNA condensation phenomena. Therefore, the classical methods
[25, 6] cannot be applied directly. The method proposed in [6] generate an over segmentation and
many artifacts are classified, wrongly, as cell. The method proposed in [25], uses a neighborhood
of fix size and all pixels whose intensity is not maximal within this neighborhood are ignored.
Thus, if there are more than one cell in this region, only one are counted. On the other hand, if the
region size is too small many artifacts are classified, wrongly, as cell.

(a) (b) (c)

Figure 3: Surface plot: a) input image; b) surface plot and c) surface plot after a Gaussian blur
filter. Note that in b), due to presence of noise and the DNA condensation phenomena, one cell is
represented by a set of maximum point. However, after the Gaussian filter, because it smoothed
the surface and emphasize the maximum points, many cells are represented by only one local
maximum point.

We detected local maximum points tracing level curves in which the set of points (x, y) ∈ Ω
that satisfies c ≤ I(x, y) < c + ε, where c, ε ∈ Z+, corresponds to the image pixels that belongs
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to the level c. Likewise, this can be done parting the histogram image as described below. For
this images, the green channel supply more information than the gray scale image. Thus, our
luminance information is based on this channel.

Our method has four main steps: 1) pre-processing; 2) histogram partition and connected
component detection; 3) graph construction; and 4) graph mining process, which we shall discuss
in the sequel.

3.1 Preprocessing

A Gaussian filter, with radius σ, is applied to reduce the noise and emphasize the maximum points
as showing in Figure 3. Furthermore, as the background image is not uniform, due to fluorescence,
a background segmentation is applied. We separate the cells agglomerate from background using
a threshold t = µ + xδ, where µ is the mean value of image, σ is the image standard deviation
and x is a constant defined experimentally. The pixels with intensity below t are set to 0. Figure
4 presents the results of each step. In Figure 4a and b we have the input image and its green
channel, respectively. The result after Gaussian blur filter is showed in Figure 4c. Finally, Figure
4d presents the result of background segmentation.

(a) (b) (c) (d)

Figure 4: Pre-processing steps: a) input image; b) green channel; c) result of Gaussian blur filter;
d) result of background segmentation.

3.2 Histogram Partition and Connected Component Detection

The goal of this step is detect the connected components in each bitmap created by histogram
partition. We start calculating the histogram of I . The second step, is partition the histogram in
intervals of size ε and identify what pixels belong to each interval. In this work, ε is a divisor of
256. As we are deal with discrete value, the size of an interval [a, b] is (b− a) + 1. Thus, given an
interval [a, b] such as (b− a) + 1 = ε and a pixel p ∈ Ω, we have that p ∈ [a, b]⇔ a ≤ I(p) ≤ b.
For each interval, we construct a bitmap, such that, the black pixels correspond to the pixels
belonging to the current interval. Figure 5a shows the histogram of Figure 4e and the bitmaps for
each interval. In this example, we use ε = 64. Therefore, we have a partition composed by four
intervals. Note that, the nine cells existing in the input image (Figure 4a) appear in the first two
bitmaps.

The next step is to find the 8 × 8 connected components of the bitmaps according to the
algorithm described in [10]. We start from the bitmap that corresponds to the interval [255 −
(ε − 1), 255] and continue until the interval [0, ε − 1]. Each component receives a label (just an
integer number) according to the order which it was detected. Thus, we guaranty an order of the
component label value, such that, higher its value smaller is the luminance of the component.
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As a result of this step, we have a matrix Mm×n with same dimensions of input image, where
each entry M(i, j) contains the component label value that the pixel p(i, j) belongs to. Most
precisely:

M(i, j) = k ⇔ p(i, j) ∈ Ck for some 1 ≤ k ≤ R
where p(i, j) ∈ Ω is a pixel image and R is the total number of connected components that were
detected.

(a) (b) (c) (d) (e)

Figure 5: Histogram partition and connected components detection: a) histogram of Figure 4e;
b), c) d) and e) bitmaps representing the intervals 4) [0, 63], 3) [64, 127], 2) [128, 191], and 1)
[192, 255], respectively. The gray numbers are the label of the connected component. Note that
the higher is the label value smaller is the luminance of the component.

3.3 Graph Construction

The goal of this step is construct a region-adjacency graph (RAG) [33] G = (V,E) based on the
matrix M . Each node vi ∈ V correspond to a connected component and its index corresponds
to the component label value. The edges in E connects pairs of 4 × 4 adjacent components in
accordance with the definition 3.1.

Definition 3.1 Two distinct components Ci and Cj are said to be adjacent if there is at least a
pair of points pi ∈ Ci and pj ∈ Cj , which are neighbors of each other.

Thus, in order to construct the graph, we scanM from top to bottom and left to right evaluating
the top and left neighbors of each element of M . If one of them are different from the current el-
ement, then these elements represent pixels that belong to different connected components. Thus,
according to definition 3.1 these components are adjacent and therefore, have to be an edge in the
graph connecting the nodes that represent them. Figure 6a shows all connected components that
were detected on Figure 4a and their labels. The adjacency graph correspondent is presented in
Figure 6b. Note that the nodes with smaller indexes are located at the graph extremity.

3.4 Graph Mining

We are interested in detecting regions of image that have the following pattern: a lighter region
whose luminance adjacency regions are being decreased gradually. Note that, if a set of connected
components belongs to the same object, then they have to be adjacent. Therefore, the nodes which
represent them in G, have to be connected. Note also that, the node index has the same value of
the component label and higher its value smaller is the luminance of the component. Thus, we
have that the pattern above can be identified in G by simple paths (see Definition 3.2).
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Definition 3.2 A simple path in a graph G = (V,E) can be defined as a subgraph S that satisfy:

i) the nodes in S are connected to other nodes in S;

ii) each node of S has a maximum degree of two and;

iii) the index value of a node is smaller than the one of its adjacent node and bigger than the one
of other adjacent node, if it exists (i.e. the index values of the nodes in S are in increasing
order).

Figure 6b shows the input image graph-based representation. Note that since all nodes are
adjacent, at least, to the background, there are not nodes with degree 0. Figure 6c presents the
result of the mining process, that is, the detected simples paths. We have that each cell presented
in input image (Figure 4a) is represented in G by a simple path, even it has only one node. An-
other interesting characteristic is that if a node has degree bigger than 2, the component that it
represents contains more than one cell and therefore can not be classified neither as a new cell nor
as belonging to some cell (see Figure 6a, components 15, 17 and 18, for example).

(a) (b) (c) (d)

Figure 6: Graph representation and mining step: a) connected components detected and their
labels; b) input image graph-based representation; c) result of the graph mining process; and d)
cells detected in red.

The graph mining process allows us detect and count cells by discovering simple paths. The in-
put is a graphG = (V,E), with n nodes andm edges and the output is the setA = α1, α2, . . . , αk

where each αi = {vi, vj , vk, . . . , vl|i < j < k < · · · < l} ∈ A is a simple path representing a
detected cell. All nodes in G are initialized as belonging to any cell and as not visited. Starting
from the node v0, we iterate in V , in increasing order evaluating the nodes that have degree less
than 3. These nodes, are classified according to their neighbor as a new cell or belonging to a some
cell that was detected previously. Let vi be the node that has been evaluated. If vi is classified as a
new cell, then an element αi is created, vi is associated to it and αi added in A. On the other hand,
if vi belongs to a some cell, e.g. kth cell, it is associated to element αk ∈ A. At the end, the node
vi is set as visited. The nodes are classified as described as follows:

The degree of the node vi is 1 It is classified as a new cell if: its neighbor, vj , was not visited
yet or vj was visited but classified as belonging to any cell. On the other hand, if vj was already
visited and belongs to some cell, e.g. kth cell, we have that vi also belongs to this cell.
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The degree of the node vi is 2 Let vj and vk be its neighbors. We have six possibilities: 1) vj

and vk was already visited and both was classified as belonging to the same cell, e.g. mth cell; 2)
vj and vk was visited and classified as belonging to any cell; 3) vj and vk was visited and classified
as belonging to different cells; 4) one of them, e.g. vj , was visited and classified as belonging to
some cell e.g. mth cell, and the other, vk, was not visited yet; 5) one of them, e.g. vj , was visited
and classified as belonging to some cell e.g. mth cell, and the other, vk was visited and classified
as belongs to any cell; and 6) vj and vk was not visited yet. If 1), 4) or 5) occur, vi is classified as
belonging to the mth cell. If 2) or 3) occur, we can not associate vi to any element of A because
we find out a component that contains more than one cell. If 6) occur, as we are going through V
in increasing order, we find a new cell.

4 Experimental Results

In this section, we evaluate the proposed method and analyze the experimental results. The pro-
posed method was implemented in Java language 6.0 using the development tool Eclipse 3.2. The
tests were executed on an Intel Core 2 Duo CPU T7500 2.20GHz with 2Gb RAM.

A database with 92 images of stem cells was constructed and divided in two groups: group
1, with 69 images with an acceptable level of noise and; group 2 formed by 23 images with
the presence of strong noise. Additional experiments were performed for a third image group
composed by 5 images of seeds, candies and spots in electrophoresis images [13]. The values
for the input parameters σ, x and ε of the preprocessing step were obtained through experimental
tests. The value for the Gaussian radius σ were 2,3 and 3 for the groups 1, 2 and 3, respectively.
The threshold t were calculated using x = 0.3 for all groups. The histogram were partitioned in
intervals of size ε = 8 for the groups 1 and 2. For the third group, the value of ε was chosen
among 8, 16 and 32 that best fitted each image.

Specialists from Institute of Biomedical Sciences – UFRJ/Brazil validated the experimental
results obtained by the proposed method. They pointed out cells that were not counted and artifacts
that were incorrectly classified as cells. The results are evaluated by calculating the measures
precision, recall and F-measure as shown as follow:

Precision =
tp

tp+ fp
(1)

Recall =
tp

tp+ fn
(2)

F −measure =
2 ∗ Precision ∗Recall
Precision+Recall

(3)

where tp (true positives) represents the number of items correctly labeled as a cell, fp (false pos-
itives) represents items incorrectly classified, by the method, as a cell and fn (false negatives)
represents items that were not classified as cell but should have been. The measures were cal-
culated for each image and, then, averaged over all images. The results are presented in Table
1.

Note that the precision increased on the second group, while the recall and F-measure de-
creased. Since an aggressive Gaussian blur was required, the image contrast reduced and, as a
result, fewer cells were detected increasing the number of false negative elements. On the other
hand, fewer artifacts were incorrectly classified as cell that decreases the number of false positives.
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Precision Recall F-measure
(%) (%) (%)

Group 1 93.84 92.67 93.12
Group 2 94.32 90.33 92.18

Group 1 and 2 93.97 92.04 92.87
Group 3 94.08 98.15 95.96

Table 1: Experimental results of the proposed method. All numbers are averaged values over all images.

Tables 2 and 3, at Appendix 6, presents the results for all images of groups 1 and 2, respectively.
For the 92 images, we obtained an average precision, recall and F-measure of 93.97%, 92.04% and
92.87%, respectively. These numbers indicate the concordance with the human experts results. In
addition, this is sufficiently accurate for biological practices. In manual counting, performed by
the specialists, the difference of counting scores were 21% in average and a surprisingly maxi-
mum of 59%. Figure 7 shows the subjectivity of manual counting results for five experts. In this
example, there was a mean perceptual error of 39% among their scores results. Furthermore, we
observed that if the interval size ε is large, we cannot detect cells that have luminance value similar
and that are partially overlapped. These cells are counted as only one cell. On the other hand, if
the value of ε is too small, we detect many artifacts that are not cells.

Because of the image quality, which depends on a microscope type, resolution of acquired
image and focus [1, 35], in some image regions, only with visual inspection, is very difficult
to detect the cells. As a consequence, these regions are ignored by specialists. Nevertheless,
according to them and by experimental results, the proposed method was able to detect cells in
regions that they could not. Figures 8 and 9 shows examples of manual and automatic counting
for six images. Note that the automatic counting method detects some cells that were ignored by
manual counting.

The average time spent on each image by a human expert is 15 minutes. The proposed method
performs it in 6.2 seconds, in average. Moreover, the counting results of the same human expert,
on the same image, may vary up to 10%, while the algorithm, obviously, gives always the same
result. Another advantage is that, with the automatic counting, we can eliminate the subjectivity
because, unlike in manual counting, is guaranteed that the same criteria are always used to detect
cells.

For additional experiments, we obtained an average precision, recall and F-measure of 94.08%,
98.15%, and 95.96%, respectively as showing in Table 1. Table 4, in Appendix A, shows the scor-
ing results, measures and the value of input parameter ε for the images present in Figure 10 a, b,
c and f. We noted that, for images where the partial occlusion of the objects is less intense, large
values of ε gives better results. On the other hand, if several objects are overlapped, then better
results are achieved using a small value for ε. The test images and the correspondent counting
results are available at http://www.inf.puc-rio.br/~gfaustino/cellcounter/.
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(a) 852 cells detected (b) 382 cells detected

(c) 471 cells detected (d) 474 cells detected

(e) 499 cells detected (f) 435 cells detected

Figure 7: Subjectivity of manual count result by five different specialists: in this case, there was a
mean perceptual error of 39.7%. f) shows the automatic counting result for the same image.
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(a) manual – 307 cells detected. (b) automatic – 395 cells detected.

(c) manual – 309 cells detected. (d) automatic – 524 cells detected.

(e) manual – 636 cells detected. (f) automatic – 916 cells detected.

Figure 8: Results of the manual and automatic counting: the red dots represent the cells that were
detected and the yellow arrows point out the image regions ignored by the specialist but not by
the automatic counting. The results of the proposed method were revised by specialist and we
obtained F-measure of 89%, 92% and 96% for images b, d and f, respectively.
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(a) manual – 385 cells detected (b) automatic – 527 cells detected

(c) manual – 499 cells detected (d) automatic – 435 cells detected

(e) manual – 163 cells detected (f) automatic – 143 cells detected

Figure 9: Results of the manual and automatic counting: the red dots represent the cells that were
detected and the yellow arrows point out the image regions ignored by the specialist but not by the
automatic counting. Note that, in the last two images, the automatic method detected fewer cells
than specialist. It occurs because the image contrast is smaller than usual. Then, many cells have
the luminance value very similar and ones that are partially overlapped are counted as only one
cell. The automatic count results were revised by specialist and for these images we obtained an
F-measure of 92%, 86% and 88% for images b, d and f, respectively.
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(a) objects detected – 393; manual count – 396 (b) objects detected – 321 ; manual count – 355

(c) objects detected – 44; manual count – 41 (d) objects detected – 122; manual count – 182

(e) objects detected – 40; manual count – 46

Figure 10: Additional examples of counting results by the proposed method, the red dots represent
the objects that were detected: a) and b) candies; c) peas; d) two-dimensional gel electrophoresis
images and e) withe beans.
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5 Conclusion and Future Works

In this work, an automatic method for detecting and counting stem cells sections obtained under
fluorescence microscopy was presented. We handle with embryoid bodies obtained from embry-
onic stem cells cultured in vitro. Our approach uses the luminance information to generate a graph-
based image representation. Each cell was represented by a substructure that we called simple path
pattern. Then, a graph mining process is used to detect such pattern. The accuracy of the proposed
method was demonstrated with experimental results in a large population of stem cells image. The
results was validated by specialists from Institute of Biomedical Sciences – UFRJ/Brazil. We ob-
tained an average precision, recall and F-measure of 93.97%, 92.04% and 92.87%, respectively,
which is satisfactory. Moreover, with the automatic counting, we can eliminate the subjectivity
because, unlike in manual counting, is guaranteed that the same criteria are always used to detect
cells. In addition, the results obtained in another kinds of images demonstrate that the method
could be used in others applications.

Most counting errors performed by the proposed method are due to the existence of more than
one lighter points at the same cell. Future work involves solving such problem by implementing a
node contraction algorithm using their Euclidean distance as a criteria.
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6 Appendix A
In this appendix, we show the measures for all images used in the experimental results. In the first column
we have the image file name, in the second column the number of cells detected with automatic counting.
The three next column show the number of false positive (fp) representing items incorrectly classified as a
cell, false negative (fn) representing items which were not classified as cell but should have been and true
positive (tp) representing items correctly labeled as a cell, respectively. All these elements were point out
by the specialists from Institute of Biomedical Sciences – UFRJ/Brazil that revised the results. Precision
can be seen as a measure of exactness or fidelity, whereas Recall is a measure of completeness. F1-measure,
is a measure of a test’s accuracy and can be interpreted as a weighted average of the precision and recall.
They reach their best value at 1 and worst score at 0.

Image Automatic Counting FP FN TP Precision Recall F-measure
1 509 30 29 479 0.941060904 0.942913386 0.941986234
2 284 21 23 263 0.926056338 0.91958042 0.922807018
3 564 19 47 545 0.966312057 0.920608108 0.942906574
4 388 13 51 375 0.966494845 0.88028169 0.921375921
5 330 21 24 309 0.936363636 0.927927928 0.932126697
6 318 10 21 308 0.968553459 0.936170213 0.952086553
7 420 9 41 411 0.978571429 0.909292035 0.94266055
8 519 17 25 502 0.967244701 0.95256167 0.959847036
9 645 22 37 623 0.965891473 0.943939394 0.954789272
10 400 11 36 389 0.9725 0.915294118 0.943030303
11 406 20 33 386 0.950738916 0.92124105 0.935757576
12 559 36 32 523 0.935599284 0.942342342 0.938958707
13 212 16 12 196 0.924528302 0.942307692 0.933333333
14 352 19 23 333 0.946022727 0.935393258 0.940677966
15 642 22 62 620 0.965732087 0.909090909 0.936555891
16 403 9 15 394 0.977667494 0.963325183 0.97044335
17 419 30 30 389 0.928400955 0.928400955 0.928400955
18 276 16 21 260 0.942028986 0.925266904 0.933572711
19 522 60 26 462 0.885057471 0.946721311 0.914851485
20 717 34 90 683 0.952580195 0.883570505 0.916778523
21 278 34 6 244 0.877697842 0.976 0.924242424
22 458 23 54 435 0.949781659 0.889570552 0.918690602
23 598 73 14 525 0.877926421 0.974025974 0.92348285
24 464 52 17 412 0.887931034 0.96037296 0.922732363
25 368 16 58 352 0.956521739 0.858536585 0.904884319
26 425 27 38 398 0.936470588 0.912844037 0.924506388
27 499 23 30 476 0.953907816 0.940711462 0.947263682
28 401 58 14 343 0.855361596 0.960784314 0.905013193
29 522 54 22 468 0.896551724 0.955102041 0.924901186
30 629 32 45 597 0.949125596 0.929906542 0.939417781
31 448 17 33 431 0.962053571 0.92887931 0.945175439
32 262 29 4 233 0.889312977 0.983122363 0.933867735
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Image Automatic Counting FP FN TP Precision Recall F-measure
33 185 11 26 174 0.940540541 0.87 0.903896104
34 760 92 24 668 0.878947368 0.965317919 0.920110193
35 592 29 54 563 0.951013514 0.912479741 0.931348222
36 537 42 28 495 0.921787709 0.946462715 0.933962264
37 359 18 30 341 0.949860724 0.919137466 0.934246575
38 441 22 33 419 0.950113379 0.92699115 0.938409854
39 790 60 68 730 0.924050633 0.914786967 0.919395466
40 561 25 55 536 0.95543672 0.906937394 0.930555556
41 474 28 21 446 0.94092827 0.95503212 0.947927736
42 615 35 22 580 0.943089431 0.96345515 0.953163517
43 761 31 32 730 0.959264126 0.958005249 0.958634274
44 589 52 14 537 0.911714771 0.974591652 0.942105263
45 1114 60 50 1054 0.946140036 0.954710145 0.950405771
46 550 58 21 492 0.894545455 0.959064327 0.925682032
47 421 13 42 408 0.96912114 0.906666667 0.936854191
48 688 42 15 646 0.938953488 0.97730711 0.957746479
87 663 43 106 620 0.935143288 0.85399449 0.892728582
88 639 80 17 559 0.874804382 0.970486111 0.920164609
89 673 55 52 618 0.918276374 0.92238806 0.920327625
90 466 9 34 457 0.980686695 0.930753564 0.955067921
91 1036 36 81 1000 0.965250965 0.92506938 0.944733113
92 269 20 13 249 0.925650558 0.950381679 0.937853107
93 504 36 21 468 0.928571429 0.957055215 0.942598187
94 149 12 10 137 0.919463087 0.931972789 0.925675676
95 541 35 17 506 0.935304991 0.96749522 0.95112782
96 572 60 20 512 0.895104895 0.962406015 0.927536232
97 719 55 32 664 0.923504868 0.954022989 0.938515901
98 309 13 16 296 0.957928803 0.948717949 0.953301127
99 385 17 26 368 0.955844156 0.934010152 0.944801027
100 663 27 32 636 0.959276018 0.952095808 0.955672427
101 395 12 81 383 0.969620253 0.825431034 0.891734575
102 524 15 72 509 0.971374046 0.876075731 0.921266968
103 916 38 32 878 0.958515284 0.964835165 0.961664841
104 298 6 109 292 0.979865772 0.728179551 0.835479256
105 435 17 109 418 0.96091954 0.79316888 0.869022869
106 143 2 36 141 0.986013986 0.796610169 0.88125
107 772 89 23 683 0.884715026 0.967422096 0.924221922

0.938425935 0.926660914 0.931250897

Table 2: Experimental results for stem cell images of group 1 by proposed method. For this group
we obtained. in average. 93.84% of precision. 92.67% of recall and 93.12% of F-measure.
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Image Automatic Counting FP FN TP Precision Recall F-measure
64 272 29 35 243 0.893382353 0.874100719 0.883636364
65 273 13 66 260 0.952380952 0.797546012 0.868113523
66 407 26 40 381 0.936117936 0.904988124 0.920289855
67 184 5 42 179 0.972826087 0.809954751 0.883950617
68 231 10 50 221 0.956709957 0.815498155 0.880478088

069a 331 5 53 326 0.98489426 0.860158311 0.918309859
069b 308 11 34 297 0.964285714 0.897280967 0.929577465

70 232 13 40 219 0.943965517 0.845559846 0.892057026
71 255 5 23 250 0.980392157 0.915750916 0.946969697
72 1884 95 253 1789 0.949575372 0.876101861 0.911360163

073a 557 25 58 532 0.955116697 0.901694915 0.927637315
073b 685 34 64 651 0.950364964 0.91048951 0.93

74 809 54 53 755 0.933250927 0.934405941 0.933828077
75 1093 65 126 1028 0.94053065 0.890814558 0.914997775
76 778 33 71 745 0.957583548 0.912990196 0.934755332
77 1514 126 94 1388 0.91677675 0.9365722 0.926568758
78 1217 95 107 1122 0.921939195 0.912937347 0.91741619
79 1121 59 70 1062 0.947368421 0.938162544 0.942743009
80 1052 76 40 976 0.927756654 0.960629921 0.943907157
81 1329 92 58 1237 0.930775019 0.955212355 0.942835366
82 1421 119 67 1302 0.916256158 0.951059167 0.933333333
83 1848 88 79 1760 0.952380952 0.957041871 0.954705723
84 640 36 39 604 0.94375 0.939346812 0.941543258
85 511 25 35 486 0.951076321 0.932821497 0.941860465
86 767 76 36 691 0.900912647 0.950481431 0.925033467

0.943214768 0.903263997 0.921836315

Table 3: Experimental results for stem cell images of group 2 by proposed method. For this group
we obtained. in average. 94.32% of precision. 90.33% of recall and 92.18% of F-measure.

Image ε Automatic FP FN TP Precision Recall F-measure
Counting

Figure 10a 16 399 4 1 395 0.989974937 0.997474747 0.993710692
Figure 10b 8 321 9 24 312 0.971962617 0.928571429 0.949771689
Figure 10c 16 44 3 0 41 0.931818182 1 0.964705882
Figure 10e 32 46 6 0 40 0.869565217 1 0.930232558

0.940830238 0.981511544 0.959605205

Table 4: Experimental results for additional images by proposed method. For this images we
obtained. in average. 94.08% of precision. 98.15% of recall and 95.96% of F-measure.
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