
PUC

ISSN 0103-9741

Monografias em Ciência da Computação

n° 08/09

Competitive Deterministic Heuristics for
Permutation Flow Shop Scheduling

Sanjay Dominik Jena

Marcus Vinicius Soledade Poggi de Aragão

David Sotelo Pinheiro da Silva

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monogra�as em Ciência da Computação, No. xx/09 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena March, 2009

Competitive Deterministic Heuristics for

Permutation Flow Shop Scheduling

Sanjay D. Jena and Marcus V. S. Poggi de Aragão and David Sotelo P. da
Silva

sjena@inf.puc-rio.br, poggi@inf.puc-rio.br, dsilva@inf.puc-rio.br

Abstract. In the last 50 years, the Permutation Flow Shop Scheduling Problem with
makespan minimization (PFSP) has been a central and well-studied problem in Schedul-
ing and Operations Research communities, known by its intractability, from theoretical
and practical aspects. This work introduces polynomial time deterministic heuristics for
the PFSP based on pruning techniques of the implicit enumeration tree following new
extensions of the classical NEH heuristic. Experimental results attest that the proposed
methods currently stand among the most e�ectives for the PFSP.

Keywords: Permutation �ow shop scheduling; Deterministic heuristics; NEH extensions.

Resumo. Durante os últimos 50 anos, o problema Permutation Flow Shop Scheduling com
minimização de makespan (PFSP) tem sido um problema central e intensamente estudado
pelas comunidades cientí�cas de escalonamento e pesquisa operacional, sendo conhecido
por sua intratabilidade, em aspectos tanto teóricos quanto práticos. O presente trabalho
apresenta heurísticas determinísticas de tempo polinomial para o PFSP baseadas em téc-
nicas de poda na árvore de enumeração implícita, originando novas extensões da heurís-
tica clássica NEH. Resultados experimentais comprovam que os novos métodos propostos
situam-se atualmente entre os mais efetivos para o NEH.

Palavras-chave: Escalonamento permutation �ow shop; Heurísticas determinísticas; Ex-
tensões para o NEH.

In charge of publications:
Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

ii

1 Introduction

The Permutation Flow Shop Scheduling Problem (PFSP) is one of the most studied
scheduling problems in combinatorial optimization. Given a set J of n jobs, a set M
of m machines and processing times ti,j for each job j on each machine i, the problem
consists of scheduling all n jobs at each one of the m machines. The processing sequence
of the jobs must be the same on all machines and each job j can only start its execution
on a machine i if both the previous job on the same machine i as well as the same job
j on the previous machine i − 1 have already been processed. Furthermore, the order in
which a job must pass through the machine set is prede�ned and identical for all jobs. The
objective of this problem is to determine a job ordering that minimizes the completion time
of the last job in the last machine, called the makespan criterion Cmax. Though Johnson
et al. (1976) showed that the 2-machine problem can be solved in polynomial time, the
general case with m machines is known to be strongly NP-complete. This work focuses
on the PFSP with the makespan criterion, which was �rstly denoted as Fm|prmu|Cmax by
Graham et al. (1979). Its main objective is to introduce new deterministic and polyno-
mial time heuristics which are partially based on the NEH-T heuristic of Taillard (1990),
extended by an improvement phase. The heuristics construct k solutions and perform l
iterations in order to improve them (see Section 3). These extensions lead to a total time
complexity of O(n2 · k · l · (m+ log k)).

This work is organized as follows. A literature review of heuristics for the PFSP is
provided in Section 1.1). In Section 2, the original NEH of Nawaz et al. (1983) and
NEH-T heuristics are considered. Section 3 discusses the e�ect of initial job ordering
and tie breaking rules on the quality of the solutions generated by the NEH heuristic,
suggesting new approaches to explore the solution space of the PFSP. The construction
and improvement phases of the new heuristics proposed in this work, named NEH-Delta
and NEH-Alpha, are presented in Sections 4 e 5, respectively. In Section 6, experiments
on Taillard (1993)'s benchmark instances are taken, showing that these new deterministic
heuristics are competitive with the metaheuristics currently standing among the most
e�ective ones for the PFSP. Final conclusions are drawn in Section 7.

1.1 Previous work review

Since the PFSP is strongly NP-complete, as shown by Graham et al. (1979), fairly much
research was attracted to �nd good heuristic algorithms for this problem. The algorithms
range from deterministic and polynomial time constructive methods to metaheuristics
based on non-deterministic approaches.

Deterministic approaches appeared already four decades ago. Johnson (1954)'s pioneers
work was followed by Page (1961)'s pairing algorithm, Palmer (1965)'s algorithm, Campbell
et al. (1970)'s CDS algorithm, the algorithms of Gupta (1971, 1972) and Bonney and
Gundry (1976), Dannenbring (1977)'s e�ective Rapid Access heuristic (RA) and some
further variations based on RA, the famous NEH heuristic of Nawaz et al. (1983), the
algorithm of Hundal and Rajgopal (1988) and the heuristic of Koulamas (1998). In 1990,
Taillard (1990) showed how to bring the NEH's original runtime of O(n3 · m) down to
O(n2 ·m) (see Section 2). As the NEH is still considered one of the best heuristics for the
PFSP, as demonstrated in recent works such as Ruiz and Maroto (2005) and Kalczynski and
Kamburowski (2008), there can be found many NEH based works, extending or modifying

1

the original algorithm. Framinan et al. (2003), Kalczynski and Kamburowski (2008) and
Dong et al. (2008) work with di�erent initial orders of the jobs and special tie breaking
rules to improve the performance of the original NEH. Other recent works on deterministic
methods include the competitive heuristics of Farahmand et al. (2009).

Non-deterministic approaches include metaheuristics such as Tabu Search, Simulated
Annealing, Local Search, Genetic Algorithms and Ant Colonies. Taillard (1990)'s tabu
search was one of the �rst non-deterministic approaches for the PFSP. One of the today`s
most competitive metaheuristics is the Iterated Greedy Algorithm of Ruiz and Stützle
(2007). They review many of the most e�ective metaheuristics and, given a speci�ed
time limit, outperform all of them in the computational experiments. Other references
to metaheuristics for the PFSP can be found in numerous surveys and reviews such as
Framinan et al. (2004), Ruiz and Maroto (2005) and Hejazi and Sagha�an (2005) that
appeared due to the large number of algorithms for this problem.

Most of the surveys concerning heuristics for the PFSP tried to address di�erent scopes
instead of giving just an up-to-date review of past works. Framinan et al. (2004) intro-
duced a new framework to classify deterministic as well as non-deterministic approaches
into three phases: index development, solution construction and solution improvement.
Ruiz and Maroto (2005) made a comprehensive evaluation of deterministic heuristics and
metaheuristics for the PFSP, presenting vast computational experiments regarding its com-
parison. Hejazi and Sagha�an (2005) extended this e�ort to exact methods as well.

2 NEH and NEH-T

The NEH algorithm of Nawaz et al. (1983) can be described by the following steps:

1. For each job j, compute the sum Sj of its processing times on all machines:

Sj =
m∑
i=1

ti,j , ∀j ∈ J

2. Sort all jobs in descending order of Sj to form the sequence of jobs j1, .., jn.

3. Take the �rst two jobs j1 and j2 and order them so that the makespan of the sequence
given by the ordering of these two jobs is minimized.

4. Do for each of the jobs j3, ..., jn, successively: Insert the next job into the sequence at
the position that results in the smallest partial makespan among all possible insertion
positions.

The �rst step needs O(n · m) time to calculate the sum of processing times for each
job and O(n log n) to sort the jobs. In the following insertions for the n jobs, the original
NEH evaluates each insertion position by determining the new makespan in O(n ·m). As
there are j insertion positions for the j-th job to be inserted, it takes O(n2 ·m) to evaluate
all insertion positions for one job. Hence, the original NEH has a total time complexity of
O(n3 ·m). Taillard (1990) shows that the j insertion positions can be evaluated in O(n ·m)
time using dynamic programming and thus reduced the total running time to O(n2 ·m).
This improved version is referred to the NEH-T heuristic.

2

Due to its exceptional results in fairly short running time, the NEH is up-to-date
one of the most discussed and analyzed PFSP heuristics. Comprehensive computational
experiments given by Ruiz and Maroto (2005) argue that, considering its low computation
costs, the NEH can still be considered the best heuristic among all deterministic ones.

3 Extending NEH

The outstanding practical performance of the NEH heuristic is mainly related to two
factors: �rst, the job grouping mechanism, based on the operation of inserting a new job
at the best partial position, can be computed in O(m) time. Second, the order in which jobs
are taken for insertion (decreasing sum of processing times) has a considerable impact if
compared with other ordering mechanisms. Framinan et al. (2003) showed that the initial
order of the original NEH is the best among roughly 140 evaluated starting sequences.
Recently, Kalczynski and Kamburowski (2008) presented a new initial order with special
tie breaking rules which yields better results than the original NEH order.

Considering that the makespan of a partial permutation schedule is an e�ective criterion
to decide whether this partial solution must be explored or discarded, two important
points, not directly treated by the NEH, come to mind. First, how to select the partial
permutation schedule to be explored in the case of ties, when two or more solutions have the
same makespan. Nowicki and Smutnicki (1993) constructed a special family of instances
for which the NEH algorithm have an approximation factor of Ω(

√
m) due to ties on the

selection of job insertion positions. Second, what is the e�ect of exploring not only one
partial solution with minimum makespan but a set of partial solutions with low makespans.

The e�ect of initial job ordering and tie breaking rules. The following example
illustrates how the initial job ordering and arbitrary tie breaking for the NEH have e�ect
on the quality of the generated solutions. Consider an instance of the PFSP composed of
n = 3 jobs and m = 9 machines in which the processing times matrix is de�ned in Table
1.

M1 M2 M3 M4 M5 M6 M7 M8 M9

J1 1+2ε 0 0 0 0 1 0 1 0

J2 0 1+ε 0 0 1 0 1 0 0

J3 0 0 1 1 0 0 0 0 1

Table 1: Example of a processing times matrix

Some considerations are necessary at this point. First, zero processing times on the
matrix represent extremely small values, once by de�nition all processing times are strictly
positive on the PFSP. More precisely, the value represented by 0 is less than 1

n+m−1 .
Consider also that 0 ≤ ε < 1/2. The application of the NEH heuristic to such instance
leads to an initial insertion ordering (J1, J2, J3) calculated by the sums of jobs processing
times. On the insertion phase, J2 is positioned right before J1, minimizing the partial
makespan of these two �rst jobs. As consequence, any insertion point for J3 will result
in a �nal makespan of 5+ε. However, the optimal solution π = (J3, J1, J2) generates a

3

makespan of 4+3ε. Making ε also very small, leads to a gap1 of about 25% between the
optimal solution and the one found by the NEH. This simple example illustrates how the
selection of the second best partial solution (insertion of J2 after J1) can result in a better
choice. In particular, when ε = 0 ties can occur on the initial job ordering phase and on the
job insertion phase. Similarly, tie breaking decisions can a�ect the quality of the generated
solutions.

Many works such as Framinan et al. (2003) and Kalczynski and Kamburowski (2005,
2008) con�rmed the strong in�uence of the tie breaking decisions and showed that both
the initial order and the tie breaking decisions are crucial to the good results of the NEH.
Based on such studies, Kalczynski and Kamburowski (2008) presented a new initial order
and a simple tie breaking method which outperform the solutions obtained by the original
NEH method.

NEH and Enumeration Trees. Consider that the construction mechanism for the
enumeration tree of the PFSP selects, at the level j, the position p ∈ {1, · · · , j} in which
the j-th job should be inserted in the partial permutation consisting of the �rst j− 1 jobs.
Once position p is selected, all jobs previously allocated at positions p′ ≥ p are shifted to
positions p′ + 1. Clearly, all possible permutation schedules can be generated from such
enumeration process. As consequence, the partial permutation schedule represented by a
node is the path from the root of the enumeration tree to it. The NEH heuristic de�nes
a strategy that limits the exploration of every branch of a node on this enumeration tree.
Following the insertion phase of NEH, only the node with minimum cost is explored at level
j. All other nodes and its corresponding subtrees are pruned. The cost of a node in the
enumeration tree is the makespan of the partial permutation schedule that it represents.
Figure 1(a) illustrates such explicit enumeration process for the previous example with
three jobs. The �nal permutation π = (J3, J2, J1) found by NEH is represented by the
node (3, 2, 1) on the enumeration tree, the path from root to this node denotes the job
insertions carried out by NEH. Dashed edges represent pruned nodes on the enumeration
tree.

(a) Original NEH (b) Extended NEH

Figure 1: NEH and Enumeration Trees

1We de�ne the gap of a solution's makespan, denoted by makespansol, as its deviation from the optimal
makespan for this instance, denoted by makespanopt, i.e. gap =

makespansol−makespanopt

makespanopt
.

4

New approaches to explore the PFSP solution space. Following the principles
introduced by NEH, a natural extended strategy to explore the solution space consists of
considering, at each level of the enumeration tree, not only the node with the minimum
cost (makespan of its corresponding partial permutation) but a set of k nodes with costs
close to the lowest one on that level. The previously introduced example illustrates the
bene�ts that can be obtained by following such approach, as shown in Figure 1(b). In such
example, considering that k = 2, both nodes (1, 2) and (2, 1) are kept on the second level
of the enumeration tree. Consequently, the two solutions of lowest costs are selected at the
third level, one of them is the optimal solution. Finally, �xing parameter k or de�ning it
as a polynomial function on input size lead to algorithms that explore the PFSP solution
space in polynomial time.

4 Construction Phase

This work proposes two extensions over the NEH heuristic, named NEH-Delta and NEH-
Alpha. The common framework governing these extensions is related to the de�nition
of a set of nodes to be explored at a level of the enumeration tree. In the classical NEH
heuristic, this set has only one element. The extensions proposed in this work consider sets
of nodes with larger cardinality but always limited to a polynomial function on the input
size so that the �nal heuristic can be executed in polynomial time. Throughout this work,
we refer the execution of the algorithms NEH-Delta and NEH-Alpha to the construction
phase.

4.1 NEH-Delta

Given a positive integer k de�ned as a parameter, this heuristic makes use of a greedy
strategy to select at most k nodes to be explored from a level of the enumeration tree. All
other nodes at this level and its corresponding subtrees are pruned. The k nodes selected
at a level are those of minimum cost that are valid. A node is called valid if none of its
ancestral on the enumeration tree was pruned. A node u is said an ancestral of a node
v on the enumeration tree if and only if u is on the unique path from the root of the
enumeration tree to v. Each level of the enumeration tree corresponds to the insertion of
a job, selected on the initialization phase of NEH that sorts the jobs by decreasing sum
of its processing times. At the end of the execution, k solutions are obtained from which
that of minimum makespan is returned. The complete pseudo-code for the NEH-Delta is
presented in Algorithm 1.

Implementation details and time complexity analysis. The NEH-Delta implemen-
tation implicitly constructs the pruning mechanism on the enumeration tree. Every partial
permutation schedule δ is represented by a linked list so that, given a partial permutation
δ, a new job ji can be inserted at position p, generating partial permutation δ′, in O(1)
amortized time. An important point concerning this time complexity for the construction
of δ′ is that the elements of δ do not necessarily have to be stored in δ′. In fact, it is
possible to store in δ′ only a reference (pointer) to δ and the position p in which job ji
should be inserted. However, at the end of an iteration, when the elements of ∆next are
copied to ∆, every permutation δ′ ∈ ∆next must copy the elements from its originating

5

Algorithm 1: NEH-Delta

Input : Set J of n jobs,
Set M of m machines,
Integer k,
Processing times matrix T ∈ <+

M×J .
Output: permutation function π : {1, . . . , n} 7→ J .
begin

Sort the jobs in set J in decreasing order of its processing time sums resulting in
order (j1, . . . , jn) ;
∆←− {j1};
for each job ji, i = 2 . . . n do

∆next ←− ∅ ;
for each partial permutation δ ∈ ∆ do

for each position p ∈ {1, . . . , i} do
Insert job ji at the position p of partial permutation δ generating
partial permutation δ′ ;
if |∆next| < k then

∆next ←− ∆next ∪ {δ′} ;
else if makespan(δ′) < maxδ′∈∆next {makespan(δ′)} then

∆next ←− ∆next − {δ′} ;
∆next ←− ∆next ∪ {δ′} ;

∆←− ∆next ;

π ←− permutation of ∆ with minimum makespan;
return π ;

end

6

permutation δ in O(k · i) time. The partial permutation sets ∆ and ∆next are implemented
as binary heaps using the permutations' makespan as key. Thus, the permutation δ′ of
maximum makespan in ∆next can be found in O(log k) time. Similarly, permutations can
be inserted or removed from these sets in O(log k) time.

In the case of makespan ties, the solution that was �rstly inserted into the heap always
has the priority of being maintained inside the heap. This criterion is used throughout
this work as a tie breaking rule. The job sorting initial operation can be accomplished in
O(n ·m + n log n) time. Making use of the dynamic programming algorithm of Taillard
(1990), the makespan of all partial solutions δ′ obtained by inserting job ji in every position
of a previous partial solution δ can be generated and calculated in O(i ·m). Consequently,
NEH-Delta can be implemented in O(k · n2 · (m+ log k)) time.

4.2 NEH-Alpha

Though the NEH-Delta tends to yield better results increasing k, this is not a rule. In some
rare cases the increase of k leads to a worse �nal makespan2, as the better solution is pruned
by other partial solutions during the construction phase. This behavior is directly linked to
the fact that only the k partial solutions with best makespan are further explored. In order
to increase the diversity of the explored solutions, the NEH-Alpha heuristic determines, at
each level of the enumeration tree, not an unique set of nodes to be explored but n disjoint
sets of nodes. Each set Ap represents the nodes to be explored at level i of the enumeration
tree so that the ith job (following the job ordering) is inserted at position p. Furthermore,
given a positive integer k de�ned as a parameter, all sets A1, A2, · · · , An must have its
cardinalities limited to b knc. Making use from the same greedy criterion introduced for

the NEH-Delta heuristic, the b knc nodes selected to compose the set Ap at a level of the
enumeration tree are those of minimum cost that are valid. The main di�erence from this
strategy to the one employed by NEH-Delta is that, in this approach, nodes only compete
with nodes at the same level of the enumeration tree in which the current job is inserted at
the same position. The heuristic obtains up to k solutions (in fact, we have a total of n·b knc
solutions) at the end of the heuristic's execution. The one with minimum makespan is the
�nal solution. The complete pseudo-code for the NEH-Alpha is presented in Algorithm 2.

Implementation details and time complexity analysis. Data structures and im-
plementation strategies used for NEH-Alpha are quite similar to the ones of NEH-Delta.
The main di�erence is that partial permutations sets A1 ∪ . . . ∪ An are implemented as
n independent binary heaps so that permutations can be inserted or removed from the
permutation sets in O(logb knc) time. Consequently, NEH-Alpha can be implemented in

O(k · n2 · (m+ logb knc)) time.

4.3 Computational experiments

All computational experiments in this work were performed using the well known bench-
mark instances of Taillard (1993). For all instances that already have been solved to
optimality, the optimum value is used to compute the gap. For all other instances, the
upper bounds shown in Table 2 are used. The algorithms were implemented in C++ and

2As example, we refer to Taillard's benchmark instance tai20_5. The NEH-Delta with k = 1 leads to
a makespan of 1223, whereas k = 5 yields a �nal solution of makespan 1229.

7

Algorithm 2: NEH-Alpha

Input : Set J of n jobs,
Set M of m machines,
Integer k,
Processing times matrix T ∈ <+

M×J .
Output: permutation function π : {1, . . . , n} 7→ J .
begin

Sort the jobs in set J in decreasing order of its processing time sums resulting in
order (j1, . . . , jn) ;
A1 ←− {j1} ;
for p ∈ {2, . . . , n} do

Ap ←− ∅ ;
for each job ji, i = 2 . . . n do

for p ∈ {1, . . . , i} do
Apnext ←− ∅ ;

for each partial permutation α ∈ A1 ∪ . . . ∪Ai do
for each position p ∈ {1, . . . , i} do

Insert job ji at the position p of partial permutation α generating
partial permutation α′ ;
if |Apnext| < k then

Apnext ←− A
p
next ∪ {α′} ;

else if makespan(α′) < maxα∈Ap
next

{makespan(α)} then

Apnext ←− A
p
next − {α} ;

Apnext ←− A
p
next ∪ {α′} ;

for p ∈ {1, . . . , i} do
Ap ←− Apnext ;

π ←− permutation of A1 ∪ . . . ∪An with minimum makespan;
return π ;

end

8

compiled under the standard con�guration of Visual Studio 2005 Version 8. The exper-
iments were carried out on a Notebook Sony VAIO (VGN-FZ21M), Dual Core 2.0GHz,
3Gb memory, on Windows Vista Home.

Figure 2 shows the average gaps over all instances of Taillard's benchmark for the
NEH-Delta and NEH-Alpha for varying k. The results for the NEH-Alpha are only given
for k ≥ 500, as Taillard's benchmark contains instances with up to 500 jobs.

An interesting fact is that the NEH-Alpha performs better than the NEH-Delta for low
values of k, but is then outperformed by the NEH-Delta for higher k. Figure 3 illustrates
the execution times of the algorithms. The linear increase con�rms the linear in�uence of
the parameter k in the asymptotic time complexity of the algorithm. Though the execution
time grows linearly in k, the gap improvement decreases in both methods.

Figure 2: Average gap over Taillard's benchmark instances for the NEH-Delta and NEH-
Alpha construction phase using varying k

Instance lb ub Instance lb ub Instance lb ub

ta051 3771 3847 ta081 6106 6202 ta101 11152 11181
ta052 3668 3704 ta083 6252 6271 ta102 11143 11203
ta053 3591 3640 ta084 6254 6269 ta107 11337 11360
ta054 3635 3719 ta085 6262 6314 ta108 11301 11334
ta055 3553 3610 ta086 6302 6364 ta109 11145 11192
ta057 3672 3704 ta087 6184 6268 ta110 11284 11288
ta058 3627 3691 ta088 6315 6401 ta111 26040 26059
ta059 3645 3741 ta089 6204 6275 ta112 26500 26520
ta060 3696 3756 ta090 6404 6434 ta116 26469 26477

Table 2: Upper and lower bounds for Taillard's benchmark instances (http://mistic.heig-
vd.ch/taillard/, May 2008) that have not been solved to optimality yet

9

Figure 3: Average execution time (in seconds) over Taillard's benchmark instances for the
NEH-Delta and NEH-Alpha construction phase using varying k

5 Improvement Phase

After keeping active k distinct nodes at each level of the enumeration tree, the application
of the algorithms NEH-Alpha and NEH-Delta leads to a �nal set of k distinct solutions.
From this set, the permutation schedule of minimum makespan is selected as the �nal
solution. The central point that motivates these new algorithms relies on the expectation
of obtaining better �nal solutions when increasing the value of parameter k. However,
increasing the value of k beyond large values (for example 50.000) seems not to pay-o�
in relation to the computational e�orts, as it can be observed in Figure 2. Clearly, it is
always possible to achieve optimal solutions by increasing the values of k to n!. These
results induced the development of new strategies to improve the permutation schedules
generated by NEH-Delta and NEH-Alpha, using the knowledge of such threshold values for
k to bene�t better from the computational e�ort and focus on new techniques to enhance
the quality of the solutions obtained by the construction phase.

5.1 Breadth Search Improvement Phase

As result of the construction phase, after applying either the NEH-Delta or the NEH-
Alpha heuristic, a �nal permutation is selected from a set S = {s1, s2, . . . , sk} of candidate
solutions. These candidate solutions are constructed in the last iteration of NEH-Delta or
NEH-Alpha, after inserting the last job on the permutation schedules. The objective of
the Breadth Search Improvement Phase (BSI) is to improve the solutions obtained from
the construction phase by working over the whole set S. The strategy adopted by the
BSI is composed of a sequence of l improvement iterations. Each of such improvement
iterations is constituted of n basic steps. A basic step removes and reinserts the same job
from every permutation in S. After removing a job, all n feasible positions in which it can
be reinserted are considered. Hence, applying a basic step of a BSI improvement iteration

10

to a solution si ∈ S creates n possible solutions, including one identical to si. However,
not all n possible solutions are considered. In fact, from the set of all n · k (possibly new)
solutions obtained by removing and reinserting the same job in every permutation of S
only k of them with minimum makespan values are selected at the end of a basic step. All
other solutions obtained are discarded. The job selected to be removed and reinserted on
the ith basic step of a BSI improvement iteration is the ith job in the initial ordering of
the classical NEH heuristic. Algorithm 3 outlines the pseudo-code of the method.

Algorithm 3: Breadth Search Improvement Phase

Input : Set S = {s1, s2, ..., sk} of solutions obtained from construction phase,
Integer l,
Set J of n jobs,
Set M of m machines,
Processing times matrix T ∈ <+

M×J .
Output: permutation function π : {1, . . . , n} 7→ J .
begin

Sort the jobs in set J in decreasing order of its processing time sums resulting in
order (j1, . . . , jn) ;
S1 ←− S ;
for each iteration t = 1 . . . l do

S′ ←− ∅ ;
for each job position q ∈ {1, . . . , n} do

for each solution s ∈ St do
srem ←− remove job jq from solution s ;
for each position p ∈ {1, . . . , n} do

snew ←− insert job jq at position p in srem ;
if |S′| < k then

S′ ←− S′ ∪ {snew} ;
else if makespan(snew) < maxs′∈S′ {makespan(s′)} then

S′ ←− S′ − {s′} ;
S′ ←− S′ ∪ {snew} ;

St+1 ←− S′ ;
π ←− permutation of Sl+1 with minimum makespan;
return π ;

end

Implementation details and time complexity analysis. Each of the l iterations of
the BSI is composed of a set of n basic steps. A basic step comprises the deletion of a
job from the permutation set, its reinsertion in all n possible positions of every partial
permutation and the selection of k solutions to be considered. Hence, the execution time
of a basic step is dominated by its n operations of reinsertion and makespan calculations.
The deletion of a job can be executed in O(n) time. A job can also be reinserted on
a permutation's position p in O(1) amortized time if reinsertions are always taken on
subsequent positions. The makespan calculation after reinserting a job can be achieved

11

in O(m) time using the dynamic programming algorithm of Taillard. The set S′ can be
maintained as a binary heap, bringing a cost of O(log k) to delete or insert a permutation in
S′. As consequence, a basic step can be executed in O(m+ log k) and the total execution
time of the BSI is therefore O(n2 · k · l · (m + log k)). In fact, this work applies two
slightly distinct implementation strategies for the BSI improvement phase. The decision
of which strategy should be applied is related to the choice of the algorithm used on the
construction phase. In the case that NEH-Delta was applied, the BSI implementation
strategy is identical to Algorithm 3. However, when NEH-Alpha is used there is a slight
modi�cation on the BSI method. Instead of having an unique set S of solutions for each
iteration, k disjoint sets Ap of solutions are considered, following exactly the same idea as
applied to the construction phase of NEH-Alpha.

5.2 Depth Search Improvement Phase

This improvement phase aims to improve separately each of the solutions given by the
construction phase. As the previously presented improvement phase, this method receives
an integer l, indicating the number of times (iterations) that all jobs will be removed and
reinserted following the ordering given by the original NEH. In contrast to the BSI phase,
the Depth Search Improvement Phase (DSI) inserts each job exclusively at the position
that leads to the best makespan and uses the generated solution as starting point for the
next job reinsertion. The procedure applied to each of the given starting solutions can be
seen as a Local Search with a �nite number of steps and a �xed order of the jobs whose
neighborhood is examined. Algorithm 4 outlines the pseudo-code of the method.

Algorithm 4: Depth Search Improvement Phase

Input : Set S = {s1, s2, ..., sk} of solutions obtained from construction phase,
Integer l,
Set J of n jobs,
Set M of m machines,
Processing times matrix T ∈ <+

M×J .
Output: permutation function π : {1, . . . , n} 7→ J .
begin

Sort the jobs in set J in decreasing order of its processing time sums resulting in
order (j1, . . . , jn) ;
for each solution si ∈ S do

for each iteration t = 1 . . . l do
for each job ji, i = 2 . . . n do

srem ←− remove job ji from solution si ;
si ←− insert job ji at its best position in srem ;

π ←− permutation of S with minimum makespan;
return π ;

end

Implementation details and time complexity analysis. For each of the k solutions
from the set S given in the input data, the algorithm performs l iterations, i.e. the deletion

12

and reinsertion of all n jobs will be performed l times. Using Taillard's dynamic program-
ming algorithm to calculate the makespans for all possible insertion positions, the deletion
and reinsertion of a job at the best position costs O(n ·m). This leads to a total asymp-
totic runtime of O(n2 · m · k · l) for this improvement method. In practice, we can skip
further evaluation of a solution if it does not improve during one whole iteration, i.e. after
removing and reinserting all n jobs. We also can prune further iterations t′, t′+ 1, . . . , l on
a solution, if the solution's permutation is the same as one of the already examined ones
from other solutions generated after the �rst t′ − 1 iterations. An implementation of such
redundancy veri�cations may change the overall time complexity. However, in our exper-
iments, the use of such pruning turned out to be very e�ective and signi�cantly reduced
the execution time on all instances.

5.3 Computational experiments

Figure 4 illustrates the in�uence of the number of iterations during the improvement phase.
Both NEH-Delta and NEH-Alpha (with a �xed k = 500) are followed by the Depth and
Breadth Search Improvement phases. Two observations can be made. First, the gap
improves similarly for each con�guration of construction and improvement phase so that a
ranking can be established. Second, the average gap seems to converge, i.e. one may limit
the number of iterations without a strong in�uence on the �nal gap.

Figure 4: Gap improvement during 50 iterations of the two improvement phases combined
with the NEH-Delta and NEH-Alpha for k=500 (average gaps over Taillard's benchmark
instances)

6 Performance Comparison

In this section, the competitiveness of the algorithms presented in this work is evaluated
by comparing them with the most e�ective heuristics known for the PFSP. In particu-
lar, the following algorithms are considered: the NEH-T algorithm of Taillard (1990), the

13

NEH based algorithm from Kalczynski and Kamburowski (2008) (NEH-KK1), the NEH
modi�cation by Dong et al. (2008) (NEH-D), Ruiz and Maroto (2006)' genetic algorithms
GA_RMA and HGA_RMA, the Simulated Annealing algorithm of Osman and Potts
(1989) (SA_OP), Widmer and Hertz (1989)' Tabu Search SPIRIT, Chen et al. (1995)'s
genetic algorithm (GA_CHEN), Reeves (1995)' genetic algorithm (GA_REEV), Murata
et al. (1996)'s hybrid genetic algorithm (GA_MIT), Aldowaisan and Allahverdi (2003)'s
genetic algorithm (GA_AA) and Chandrasekharan and Ziegler (2004)'s Ant Colony algo-
rithms (M-MMAS and PACO). Furthermore, we compare our results with the ones of Ruiz
and Stützle (2007)'s Iterated Local Search (ILS), Iterated Greedy method (IG_RS) and
Iterated Greedy with Local Search (IG_RSLS). Our algorithms were con�gured as follows:

• NEH-Delta and NEH-Alpha with Depth Search Improvement phase, denoted by
NEH-Delta/DSI and NEH-Alpha/DSI respectively. The values for k were chosen
as follows: k = 10000 for the instances with 20 jobs, k = 5000 for instances with 50
jobs, k = 2000 for instances with 100 jobs and k = 1000 for instances with 200 or
500 jobs. The improvement phase was limited to 20 iterations.

• NEH-Delta and NEH-Alpha with Breadth Search Improvement phase, denoted by
NEH-Delta/BSI and NEH-Alpha/BSI respectively. The values for k were chosen as
follows: k = 5000 for the instances with 20 jobs, k = 2500 for instances with 50 jobs,
k = 1000 for instances with 100 jobs and k = 500 for instances with 200 or 500 jobs.
The improvement phase was limited to 10 iterations.

The execution time for all algorithms was strictly limited to (n · m · 3/100) seconds,
the same stopping criterion as used by Ruiz and Stützle (2007) to compare their algorithm
with other algorithms for the PFSP. If this time limit was exceeded, the best makespan
found so far was considered.

In order to compare the results of this work with the ones of others, one must consider
two crucial factors that complicate direct comparison. First, the upper bounds of Tail-
lard's benchmark instances were constantly updated in the last years. Hence, works based
on this set of instances may have used di�erent values of upper bounds to compute the
gaps. Second, the performance of the computational resources may directly impact on the
results when the experiments are time limited. Clearly, the fairest way to compare results
of di�erent works is to use the original implementation of the authors and execute the
algorithms under the same conditions. If this is not the case, the above mentioned points
must be considered. For algorithms whose results are not impacted by a time limit within
their execution (i.e. the algorithms always terminate before the time limit is reached), the
impact of computational resources does not have to be considered.

In our comparisons, these crucial factors were considered as best as possible. The
NEH-T algorithm was implemented and executed on the same machine as our algorithms
to guarantee a fair comparison. Table 3 shows the average gaps per instance group. All
NEH-Delta and NEH-Alpha variations considerably improve the results when compared
with the original NEH-T. Clearly, the computational e�ort for these algorithms are much
higher.

We now compare with the other algorithms mentioned in the beginning of this section.
Table 4 compares their average gaps. The original code of Ruiz and Stützle's Iterated
Greedy Algorithm with Local Search (IG_RSLS) was executed 20 times, yielding an av-
erage gap of 0.417%. In order to compare with the results for the other eleven algorithms

14

Instance NEH-T NEH-Delta NEH-Alpha NEH-Delta NEH-Alpha
/DSI /DSI /BSI /BSI

20x5 3.30 0.36 0.20 0.39 0.27
20x10 4.60 0.21 0.19 0.22 0.19
20x20 3.73 0.10 0.09 0.03 0.05
50x5 0.73 0.18 0.02 0.18 0.08
50x10 5.07 1.05 0.94 1.53 1.38
50x20 6.68 1.64 1.77 1.89 1.79
100x5 0.53 0.11 0.06 0.21 0.03
100x10 2.21 0.39 0.35 1.03 0.57
100x20 5.34 1.99 1.94 2.28 2.19
200x10 1.26 0.26 0.25 0.47 0.38
200x20 4.42 1.83 1.60 2.30 2.06
500x20 2.07 0.80 0.85 1.22 1.05
Average 3.33 0.74 0.69 0.98 0.84

Table 3: Comparison of the average gaps of the NEH-Delta and NEH-Alpha with the
original NEH-T

listed by Ruiz and Stützle (2007), we estimated the di�erence within the sets of upper
bounds and computational resources as explained in the following.

The similarity between sets of upper bound values used in di�erent works is measured by
using the average gap of the NEH-T as a reference. Ruiz and Stützle as well as Kalczynski
and Kamburowski reported a NEH-T average gap that is very close to the average gap
found in the experiments of this work. Thus, it is assumed that the set of upper bounds
used by the above authors is similar to the one used in our experiments. Dong et al. seem
to have worked with an older set of upper bounds and reported an NEH-T average gap of
2.74%, which is 21.5% less than the average we found. Hence, the gap reported for their
algorithm was multiplied by this factor.

Now, possible di�erences in the computational resources must be considered. Kalczyn-
ski and Kamburowski's NEH-KK1 algorithm does not exceed the given time limit, so it is
valid to compare their results directly with the ones of our algorithms. Ruiz and Stützle
report their results based on the above explained time limit. The average gap reported for
their IG_RSLS algorithm is 0.44%, a di�erence of exactly 5.227% to the gap we found for
this algorithm executing it on our machine. In order to have an estimated average gap for
the other algorithms used in the comparisons of Ruiz and Stützle, we discount this 5.227%
from the average gaps of these algorithms. Such values are marked as �estimated� in the
table.

All algorithms in Table 4, except the NEH-T, NEH-KK1, NEH-D and our algorithms,
are metaheuristics, i.e. are non-polynomial and non-deterministic. The metaheuristics
of Ruiz and Stützle (IG_RSLS, IG_RS), Ruiz (HGA_RMA) and Chandrasekharan and
Ziegler (PACO, M-MMAS) perform extremely well on the set of instances, leading to an
average gap lower than one percent. While the NEH-T, NEH-KK1 and NEH-D reach
average gaps around three percent, our NEH-Delta and NEH-Alpha approaches lead to
gaps lower than one percent, competing well with the other leading metaheuristics.

15

Algorithm Avg gap

IG_RSLS 0.42
HGA_RMA 0.54 (estimated value)
NEH-Alpha/DSI 0.69
PACO 0.71 (estimated value)
IG_RS 0.74 (estimated value)
NEH-Delta/DSI 0.74
M-MMAS 0.84 (estimated value)
NEH-Alpha/BSI 0.84
NEH-Delta/BSI 0.98
ILS 1.01 (estimated value)
GA_RMA 1.07 (estimated value)
GA_REEV 1.52 (estimated value)
GA_AA 2.16 (estimated value)
SA_OP 2.24 (estimated value)
GA_MIT 2.30 (estimated value)
NEH-D 2.87 (estimated value)
NEH-KK1 3.15
NEH-T 3.33
GA_CHEN 4.57
SPIRIT 4.83 (estimated value)

Table 4: Comparison of the average gaps of the NEH-Delta and NEH-Alpha with other
heuristics and metaheuristics by time limited execution

16

Farahmand et al. (2009) presented �ve polynomial deterministic heuristics and Ruiz and
Maroto (2005) reviewed further 13 polynomial-time deterministic heuristics for the PFSP.
None of those algorithms reported an average gap smaller then the ones listed above for
the heuristics introduced in this work, considering Taillard's benchmark instances.

7 Conclusions

This work introduces new deterministic heuristics for the PFSP based on extensions of the
classical NEH algorithm. The development of the new proposed methods was motivated
by an analysis of the partial solutions generated during the NEH construction process,
exploring the quality of partial solutions close to the ones selected by the NEH heuristic
and its relation to the nodes belonging to the enumeration tree of the PFSP. Following
such analysis, the algorithm NEH-Delta was proposed with the objective of considering
not only the best partial permutation schedules on a level of the enumeration tree, but a
set with k promising solutions to be explored. The NEH-Alpha heuristic also preserves
k partial solutions active, but, in order to increase the diversity of solutions, keeps it in
n disjoint sets representing the position of the last inserted job. Computational experi-
ments demonstrated a signi�cant enhancement on the quality of the solutions generated
by NEH-Delta and NEH-Alpha heuristics when compared to the results obtained from the
classical NEH. However, it was observed that, for some threshold values of k, the increase
of parameter k leads to little improvement on solutions in comparison with the increase
of the total execution time. Inspired by this fact, there were proposed two strategies to
comprise a phase of improvement of the solutions generated by NEH-Delta and NEH-
Alpha, named Breadth Search Improvement (BSI) and Depth Search Improvement (DSI).
NEH-Alpha/DSI, NEH-Alpha/BSI, NEH-Delta/DSI and NEH-Delta/BSI are determinis-
tic heuristics, which can be executed in polynomial time taking parameters k and l as a
polynomial function in n or m. Following the methodology introduced by Ruiz and Stützle
(2007), computational experiments were carried out in order to compare the performance
of the new stated methods with currently well performing heuristics for the PFSP.

Regarding the heuristics here proposed, it is interesting to observe that the best results
for the construction phase alone is not con�rmed when the improvement phase is added.
NEH-Delta beats NEH-Alpha for large values of k in the construction phase. One possible
explanation for this phenomenon is that the diversity of the solutions can be enforced by
augmenting the number k of partial solutions, not requiring an explicit mechanism for this
as NEH-Alpha provides. The comparison of the four new NEH heuristics, improvement
phase included, says this is not necessarily true. It allows two observations. The �rst one
is that for both search approaches, BSI and DSI, the NEH-Alpha was dominant. This
may be due to the larger diversity imposed by the explicit mechanism which now, with the
improvement phase, makes a di�erence. The second one is that the DSI (depth search)
seems to be consistently better. Although the purpose of the application of the breadth
search was to provide a more diversi�ed search, it seems that selecting a whole new set of
k best solutions at each step may, in fact, lead to a less diversi�ed one, when comparing
to equivalent sets of the BSI. In other words, assuming that good heuristics are the ones
capable of diversifying and intensifying the search, the dominance of NEH-Alpha/BSI was
somewhat expected.

Finally, the experimental results attest that NEH-Alpha/DSI, NEH-Alpha/BSI, NEH-

17

Delta/DSI and NEH-Delta/BSI stand among the most e�ective heuristics already proposed
for the PFSP. In particular, from the best of our knowledge, following the experimental
methodology introduced by Ruiz and Stützle, no polynomial time deterministic heuristics
proposed so far lead to experimental results close to the ones obtained in this work.

References

Aldowaisan T and Allahverdi A. New heuristics for no-wait �owshops to minimize
makespan. Computers and Operations Research 2003. 30 (8):1219�1231.

Bonney M C and Gundry S W. Solutions to the Constrained Flowshop Sequencing Prob-
lem. Operational Research Quarterly 1976. 27, No. 4, Part 1:869�883.

Campbell H G, Dudek R A and Smith M L. A Heuristic Algorithm for the n Job, m
Machine Sequencing Problem. Management Science 1970. 16:B630�B637.

Chandrasekharan R and Ziegler H. Ant-colony algorithms for permutation �owshop
scheduling to minimize makespan/total �owtime of jobs. European Journal of Oper-
ational Research 2004. 155 (2):426�438.

Chen C L, Vempati V S and Aljaber N. An application of genetic algorithms for �ow shop
problems. European Journal of Operational Research 1995. 80:389�396.

Dannenbring D G. An Evaluation of Flow Shop Sequencing Heuristics. Management
Science 1977. 23:1174�1182.

Dong X, Huang H and Chen P. An improved NEH-based heuristic for the permutation
�owshop problem. Computers and Operations Research 2008. 35:3962 � 3968.

Farahmand R S, Ruiz R and Boroojerdian N. New High Performing Heuristics for Minimiz-
ing Makespan in Permutation Flowshops. Omega-International Journal of Management
Science 2009. 37:331�345.

Framinan J M, Gupta J N D and Leisten R. A review and classi�cation of heuristics for
permutation �ow-shop scheduling with makespan objective. Journal of the Operational
Research Society 2004. 55:1243�1255.

Framinan J M, Leisten R and Rajendran C. Di�erent initial sequences for the heuristic
of Nawaz, Enscore and Ham to minimize makespan, idletime or �owtime in the static
permutation �owshop sequencing problem. International Journal of Production Research
2003. 41, Issue 1:121 � 148.

Graham R L, Lawler E L, Lenstra J K and Kan A H G R. Optimisation and approximation
in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics
1979. 5:287�326.

Gupta J N D. A Functional Heuristic Algorithm for the Flowshop Scheduling Problem.
Operational Research Quarterly (1970-1977) 1971. 22, No. 1:39�47.

Gupta J N D. Heuristic algorithms for multistage �owshop scheduling problem. AIIE
Transactions 4 1972. 1972:11�18.

18

Hejazi S R and Sagha�an S. Flowshop-scheduling with makespan criterion: a review.
International Journal of Production Research 2005. 43:2895�929.

Hundal T S and Rajgopal J. An extension of Palmer' s heuristic for �owshop scheduling
problem. International Journal of Production Research 1988. 26:1119�1124.

Johnson D D, Garey M R and Sethi R. The complexity of �owshop and jobshop scheduling.
Mathematics of Operations Research 1976. 1:117�29.

Johnson S M. Optimal two- and three-stage production schedules with set-up times in-
cluded. Naval Res. Logist. Quart. 1954. 1:61�68.

Kalczynski P J and Kamburowski J. On the NEH heuristic for minimizing the makespan
in permutation �owshops. The International Journal of Management Science 2005. v35
i1:53�60.

Kalczynski P J and Kamburowski J. An improved NEH heuristic to minimize makespan
in permutation �ow shops. Computers and Operations Research 2008. 35(9):3001�3008.
ISSN 0305-0548. doi:http://dx.doi.org/10.1016/j.cor.2007.01.020.

Koulamas C. A new constructive heuristic for the �owshop scheduling problem. European
Journal of Operational Research 1998. 105, Issue 1:66�71.

Murata T, Ishibuchi H and Tanaka H. Genetic algorithms for �owshop scheduling problems.
Computers and Industrial Engineering 1996. 30 (4):1061�1071.

Nawaz M, Jr E E E and Ham I. A heuristic algorithm for the m-machine, n-job �ow-
shop sequencing problem. Omega-International Journal of Management Science 1983.
11:91�95.

Nowicki E and Smutnicki C. New results in the worst-case analysis for �ow-shop scheduling.
Discrete Appl. Math. 1993. 46(1):21�41. ISSN 0166-218X. doi:http://dx.doi.org/10.
1016/0166-218X(93)90156-I.

Osman I and Potts C. Simulated annealing for permutation �ow-shop scheduling. Omega-
International Journal of Management Science 1989. 17 (6):551�557.

Page E S. An Approach to the Scheduling of Jobs on Machines. Journal of the Royal
Statistical Society. Series B (Methodological) 1961. 23, No. 2:484�492.

Palmer D S. Sequencing Jobs Through a Multi-Stage Process in the Minimum Total Time
� A Quick Method of Obtaining a Near Optimum. OR 1965. 16:101�107.

Reeves C R. A genetic algorithm for �owshop sequencing. Computers and Operations
Research 1995. 22 (1):5�13.

Ruiz R and Maroto C. A comprehensive review and evaluation of permutation �owshop
heuristics. European Journal of Operational Research 2005. 165:479�94.

Ruiz R and Maroto C. A genetic algorithm for hybrid �owshops with sequence dependent
setup times and machine eligibility. European Journal of Operational Research 2006.
169:781�800.

19

Ruiz R and Stützle T. A simple and e�ective iterated greedy algorithm for the permutation
�owshop scheduling problem. European Journal of Operational Research 2007. 177:2033�
2049.

Taillard E. Some e�cient heuristic methods for the �ow shop sequencing problem. European
Journal of Operational Research 1990. 47 (1):67�74.

Taillard E. Benchmarks for basic scheduling problems. European Journal of Operational
Research 1993. 64 (2):278�285.

Widmer M and Hertz A. A new heuristic method for the �ow shop sequencing problem.
European Journal of Operational Research 1989. 41 (2):186�193.

20

	Introduction
	Previous work review

	NEH and NEH-T
	Extending NEH
	Construction Phase
	NEH-Delta
	NEH-Alpha
	Computational experiments

	Improvement Phase
	Breadth Search Improvement Phase
	Depth Search Improvement Phase
	Computational experiments

	Performance Comparison
	Conclusions

