

PUC

ISSN 0103-9741

Monografias em Ciência da Computação

n° 09/09

A Multi-Environment Multi-Agent Simulation
Framework for Self-Organizing Systems

Maíra Athanázio de Cerqueira Gatti
Carlos José Pereira de Lucena

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 09/09 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena March, 2009

A Multi-Environment Multi-Agent Simulation Framework
for Self-Organizing Systems

Maíra Athanázio de Cerqueira Gatti and Carlos José Pereira de Lucena

Laboratório de Engenharia de Software – LES

Departamento de Informática
Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brasil

{mgatti, lucena}@inf.puc-rio.br

Abstract. This paper introduces a multi-environment simulation framework for build-
ing self-organizing multi-agent systems. From an engineering point of view, the multi-
environments approach brings the necessary modularity and separation of concerns to
build self-organizing multi-agent systems that address hierarchy, interoperability and
multi-aspects problems and domains. Our framework provides higher abstractions
and components to support the development of self-organizing systems with multiple
environments, which can be situated or not. Furthermore, the framework provides a
coordination component and self-organizing design patterns to be instantiated and
flexibility to evolve the framework with more complex patterns. To date, the literature
does not present any architectural self-organizing pattern reuse at implementation
level.

Keywords: Multi-Environment, Multi-Agent Systems, Self-organization, Coordination,
Framework.

Resumo. Este artigo apresenta um framework de simulação multi-ambiente para a
construção de sistemas multi-agentes auto-organizáveis. Do ponto de vista de enge-
nharia de software, a abordagem multi-ambiente facilita na modularidade e separação
de concerns para construir sistemas multi-agentes auto-organizáveis com hierarquia,
interoperabilidade e problemas de vários aspectos e domínios. O framework proposto
provê abstrações e componentes de alto nível para apoiar o desenvolvimento de siste-
mas auto-organizáveis com vários ambientes, que podem ser situados ou não. Além
disso, o framework provê um componente de coordenação e padrões de projeto de au-
to-organização a serem instanciados e além de flexibilizar a evolução do framework
quanto a padrões mais complexos. Até o presente momento, a literatura não apresenta
reuso de padrões de auto-organização arquiteturais no nível de implementação.

Palavras-chave: Multi-ambiente, Sistemas Multiagentes, Auto-Organização, Coorde-
nação, Framework.

 ii

In charge of publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br

 iii

Table of Contents

I. Introduction 1

II. Environment Complexity and Self-Organization 1

III. A Multi-Environment Framework 2

III.i. The Architecture 3

III.i.1 The Hot Spots 4

III.i.2 The Coordination Component 5

IV. Framework Evaluation 6

IV.i. Autonomic Application Networking 6

IV.ii. Automated Guided Vehicles 7

IV.iii. Stem Cells 8

IV.iv. Framework Performance 9

V. Related Work 10

VI. Conclusions and Future Work 10

References 10

 1

I. Introduction

Depending on each agent type being developed, the environment types vary. The en-
vironment might be accessible, sensors give access to complete state of the environ-
ment or inaccessible; deterministic, the next state can be determined based on the cur-
rent state and the action, or nondeterministic, and so on.

Each application domain has its own view of what is an environment and what are
the functionalities implemented by an environment. In current approaches, each time a
different aspect of the application domain is identified this aspect is then appended to
the environment in an ad hoc manner. As a result, the environment centralizes all the
different aspects of the targeted application.

The environment defines its own concepts and their logics and the agents must un-
derstand this in order to perceive them and to operate. For a situated environment, an
additional element characterizes this agent-environment relationship: the localization
function is specifically provided by situated environment. In a situated environment,
one can define the location of an agent in terms of coordinates within the environment
[4].

In particular, self-organizing systems - where each component of a system acquires
and maintains information about its environment and neighbors without external con-
trol and where the emergent system behavior may evolve or change over time [1-4], a
self-organizing system has a structurally distributed environment; in other words, at
any point in time, no centralized entity has complete knowledge of the state of the en-
vironment as a whole.

That said, we propose a multi-environment simulation framework for building self-
organizing multi-agent systems. From an engineering point of view, the multi-
environments approach brings the necessary modularity and separation of concerns to
the building of self-organizing multi-agent systems that address hierarchy, interopera-
bility and multi-aspects problems and domains. Our framework provides higher ab-
stractions and components to support the development of self-organizing systems
with multiple environments, which can be situated or not.

Regarding a situated environment, the coordination is achieved using a neighbor-
hood in 2D/ 3D and a discrete/continuous grid. Another main contribution of the
framework consists of providing self-organizing design patterns to be instantiated and
the flexibility to evolve the framework with more complex patterns. To date, the litera-
ture does not present any architectural self-organizing pattern reuse at implementation
level.

II. Environment Complexity and Self-Organization

A centralized environment contradicts the modularity and separation of concerns
principles, which have been proved to be useful when designing complex software
systems. Thus, several environments are required to capture all the aspects of the ap-
plication domain. Moreover, for a situated environment, an additional element charac-
terizes the agent-environment relationship: a situated environment specifically pro-
vides the localization function. In a situated environment, one can define the location
of an agent in terms of coordinates within the environment.

 2

On the other hand, agents contain some level of intelligence, from fixed rules to
learning engines that allow them to adapt to changes in the environment. Agents do
not only act reactively, but sometimes also proactively and have social ability; that is,
they communicate with the user, the system and other agents as required.

In some cases, agents may also cooperate with other agents to carry out more com-
plex tasks than they themselves can handle. They may migrate from one system to an-
other to access remote resources or even to meet other agents.

Depending on each agent type being developed, the environment types vary. The
environment might be accessible, sensors give access to complete state of the environ-
ment or inaccessible; deterministic, the next state can be determined based on the cur-
rent state and the action, or nondeterministic; static or dynamic, if the environment
changes during deliberation, discrete or continuous regarding a situated environment.

During the last years, there has been significant research in the field of self-
organization in computer science. Several definitions [1-4] and mechanisms have been
examined in order to understand how computing can model self-organizing systems
and how self-organizing systems can empower the computer science.

In self-organizing systems, a designer may decide to model environments using
various underlying structures. For example, an environment can be modeled as a
graph, a grid, a continuous space or a combination of these.

Furthermore, a self-organizing system has a structurally distributed environment;
in other words, at any point in time, no centralized entity has a complete knowledge of
the state of the environment as a whole. Moreover, to achieve performance in a cluster
or grid, or even because of the domain application, the environment can be distributed
from a processing perspective if it is designed to be executed in a distributed network.
So, the more choices for environment structures, the broader its application in the field
of multi-agent simulation systems.

III. A Multi-Environment Framework

The process of building such a self-organizing system with a multi-environment
framework that merges several aspects is made clearer at both the design and imple-
mentation levels. So, the agents can exist in several and independent environments.

Each environment is concerned only with a specific aspect and can be developed
independently from other environments. Existing environments do not need to be re-
defined or modified. The environment has a dual role as a first-order abstraction: (i) it
provides the surrounding conditions for agents to exist, which implies that the envi-
ronment is an essential part of every self-organizing multi-agent system, and (ii) the
environment provides an exploitable design abstraction to build multi-agent system
applications.

 At the conceptual meta-model of the multi-environment multi-agent simula-
tion framework proposed in this work, we have the simulator engine that schedules
the main environment. All the agents and sub-environments on the main environment
are scheduled by the main environment and added to the simulator engine depending
on their states. The environment state is dynamic and if one agent leaves the envi-
ronment or moves itself, the environment state changes. Moreover, the environment
provides the conditions under which agents exist and it mediates both the interaction
among agents and their access to resources.

 3

Moreover, the environment is locally observable to agents and if multiple environ-
ments exist, an agent can only exist in one environment at a time. In self-organizing
systems, the environment acts autonomously with adaptive behavior just like agents
and interacts by means of reaction or through the propagation of events.

We classify the events as: (i) emission: signal an asynchronous interaction among
agents and their environment. Broadcasting can be performed through emissions; (ii)
trigger: signal a change of agent state as a consequence of a perceived event. For in-
stance, an agent can raise a trigger event when perceiving an emission event that
changed its state; (iii) movement: signal an agent movement across the environment;
(iv) reaction: signal a synchronous interaction among agents, however without explicit
receiver. It can be a neighbor of the agent or the environment; and (v) communication:
signal a message exchange between agents with explicit receivers (one or more).

Each of these events may be raised by actions performed by agents or by the envi-
ronment and updates their states. In self-organizing mechanisms [4], the way in which
the agents interact is of paramount importance and most of the benefits involved in
self-organization are actually due to the right way of interacting. When we talk about
interaction and coordination we refer to any kind of mechanisms allowing some
agents to orchestrate and influence each other’s activities.

Among all the possible interaction mechanisms, our multi-environment framework
supports uncoupled and anonymous ones. Uncoupled and anonymous interaction can
be defined by the fact that the two interaction partners need neither to know each
other in advance, nor to be connected at the same time in the network. Uncoupled and
anonymous interaction has many advantages. It naturally suits open systems, where
the number and the identities of components are not known at design time. It also
suits dynamic scenarios in that components can also interact in the presence of net-
work glitches and temporary failures. Moreover, it fosters robustness, in that compo-
nents are not bound to interact with pre-specified partners but rather interact with
whoever is available. Summarizing, uncoupled and anonymous interaction is suited in
those dynamic scenarios where an unspecified number of possibly varying agents
need to coordinate and self-organize their respective activities. Not surprisingly, this
kind of interaction is ubiquitous in nature; cells, insects and animals adopt it to achieve
a wide range of self-organizing behaviors [4].

Therefore, the taxonomy created of the events in our framework relies on what and
how information is being communicated: explicit or implicit interaction, directly to the
receiver, propagation though neighbors, and so on. Moreover, the agent may react in a
different way according to the information type.

III.i. The Architecture

In this subsection we describe the architecture, hot spots and the coordination compo-
nent of a basic and general multi-environment simulation framework for self-
organizing systems implemented on top of MASON [5-7]. It is a fast, discrete-event
multi-agent simulation library core in Java. MASON contains both a model library and
an optional suite of visualization tools in 2D and 3D, which we extended to provide a
continuous space and the coordination component regarding the environment ap-
proach. For the sake of brevity, we shall neglect a full description of MASON—the in-
terested reader can refer to the official MASON documentation [7]—though some of its
main aspects are presented throughout.

 4

III.i.1 The Hot Spots

The entire core simulation engine provided by MASON was reused and is a frozen
spot. Our framework provides higher abstractions and components to support the de-
velopment of self-organizing systems with multiple environments.

The first hot spot is the core architecture for a simulation without visualization
(Figure1, left side). There is one interface for agents and one for environments. We
provide two classes that implement those interfaces and they provide a set of reusable
behaviors that can be used for any application to be instantiated. The right side of Fig-
ure 1 illustrates the corresponding architecture conceptual model with the existence of
a main environment, the agents interactions encapsulated by the main environment
and by sub-environments which have active behavior and can interact with other
agents or other environments. This explains why the Environment class extends the
Agent class in the class diagram. In a discrete event simulation system, an entity is al-
lowed to behave from time to time. These slices of time are called steps. So, a basic en-
tity will usually implement the step method where it will perform its activities. The
agent or environment has a set of events, i.e., the information provided for the under-
line self-organization and implicit coordination, to handle on each time step of simula-
tion. An agent can behave and execute actions over the environment where it resides
or over itself.

Fig. 1. Left side: the core architecture of the multi-environment multi-agent simulation
framework for a simulation without visualization. Right side: the corresponding archi-
tecture conceptual model.

The Environment manages the schedule of its sub-environment and agents when it is
started by the simulator. And, for each time step, it manages the entrance of agents or
environments and schedules each new entity. The entities being scheduled can be both
executed in all modes provided by MASON library, i.e., sequential types and parallel
sequence.

The second hot spot is the core architecture of the situated multi-environment
multi-agent simulation framework for a discrete 2D/ 3D and continuous 3D simula-
tion. For instance, the framework provides the Agent2D and Environment2D classes
for situated environment using a discrete 2D double point grid, which is represented
by the class Grid2D. This class handles the addition, removal and search of agents and
events in a double point location. The environment uses the grid to realize the several
strategies for self-organizing patterns, such as the atomic ones Replication, Death, Dif-
fusion, and Aggregation [4], or the combined ones as Gradient Fields and Pheromone
Path [9], for instance, as it will be further explained in the Coordination Component
(next section).

 5

Regarding the 3D environment, the framework provides a 3D continuous space
through the ContinuousGrid class, and the entities are represented by a triple (x, y, z)
of floating-point numbers. The left side of Figure 2 presents the class diagram for those
entities and the right side illustrates the corresponding architecture conceptual model.
All the agent-environment relationships and simulation schedule described for a non-
situated environment is reused in these components.

Fig.2. Left side: the core architecture of the situated multi-environment multi-agent
simulation framework for a continuous 3D simulation. Right side: the corresponding
architecture conceptual model for a 3D simulation.

III.i.2 The Coordination Component

Coordination is defined as the management of the communication between agents –
coordination defines how agents interact. In self-organizing systems this interaction
occurs through the environment (e.g. gradient fields, pheromones) [9], which is why
the development of an environment for coordination is important. Another motivation
for developing a coordination component that supports more than message passing is
the emergence of highly decentralized and dynamic distributed systems. A middle-
ware that supports an environment where agents can interact indirectly through inten-
tional events, for example by leaving objects in an environment for other agents to see,
is more scalable and convenient for the application developer [9].

For a non-situated environment, on which the environment manages the agents and
events on a graph (for a peer-to-peer network, for instance) the coordination is
achieved using a neighborhood in a graph (Figure 3a). Each event to be fired by an
agent or by the environment will be located in a node and, if desired, propagated to
the neighbors according to the rules specified.

Regarding a situated environment, the coordination is achieved using a neighbor-
hood in 2D/ 3D and discrete/ continuous grid (Figure 3b and 3c). Moreover, there is a
specific type of event, called Positional Event, which can be propagated instead of a
regular event. The Positional Event has a time to live in the environment. Therefore, if
an agent takes too many time steps to reach the source location of the event, it might
have disappeared. This is useful for the Diffusion pattern, for instance, and for its
combination with other patterns.

The framework also provides a set of neighborhood lookups for each environment
type such as: get agents at a node/ position, get agents within distance, get available
nodes/positions within distance, get events at location, and so on. In addition, the en-
vironment uses the Template Method and Strategy design patterns [11]. They provide
reusable classes and methods that can be implemented for the propagations rules that

 6

depend on the self-organizing pattern increasing reuse. Also, we provide two patterns
in the framework that have already been refactored from the applications developed:
the Diffusion and Evaporation patterns. We are still adding patterns to the framework,
such as the Gradient Field, which is the combination of the Evaporation, Aggregation
and Diffusion patterns [9].

Another important concept of the framework that allows the coordination compo-
nent to be flexible and fast is that the grids of the situated environments are sparse
fields. Therefore, many objects can be located in the same position and different search
strategies exist for each type of entity: sub-environment, agent, event or positional
event.

Fig. 3. a)Graph: each agent or sub-environment can be located in a node and perceives
its neighbors; b) 2D double point grid: each agent or sub-environment can be located
in a discrete 2D double point position in the grid; c)3D continuous grid: each agent or
sub-environment can be located in a 3D floating point grid.

IV. Framework Evaluation

The design of the multi-environment framework here proposed and its coordination
component is the result of many iterative cycles of designing and refactoring. We have
been developing self-organizing systems in different domain areas with the goal to
develop a novel and suitable software engineering for these types of systems. Our
main application areas are: distributed autonomic computing and biological systems.

IV.i. Autonomic Application Networking

The autonomic application networking provides a platform that aids developing and
deploying network applications by providing reusable software components. These
components abstract low-level operating and networking details (e.g. I/O and concur-
rency), and provide network applications with a series of runtime services. We want to
achieve two macro properties: scalability and adaptation.

 7

Each application service and middleware platform is modeled as a biological entity,
analogous to an individual ant in an ant colony. An application service is designed as
an autonomous and distributed software agent, which implements a functional service
and follows simple biological behaviors such as replication, death, migration and en-
ergy exchange. In this way, agents may implement a grid application or Internet data
center application on a wired network.

A middleware platform is a non-situated environment. It runs on a network host
and operates agents (application services). Each platform implements a set of runtime
services that agents use to perform their services and behaviors, and follows biological
behaviors such as replication, death and energy exchange. Similar to biological entities,
agents and platforms in our case study store and expend energy for living. Each agent
gains energy in exchange for rendering its service to other agents or human users, and
expends energy to use network and computing resources. Each platform gains energy
in exchange for providing resources to agents, and continuously evaporates energy to
the network environments. Agents expend more energy more often when receiving
more energy from users. Platforms expend more energy more often when receiving
more energy from agents. An abundance of stored energy indicates higher demand for
the agent/platform; thus the agent/platform may be designed to favor replication in
response to higher energy level. A scarcity of stored energy (an indication of lack of
demand) may cause the death of the agent/platform.

The exchange energy behavior drives all other behaviors. The exchange energy be-
havior of the application service AS is coordinated with the exchange energy behavior
of the platform P: whenever the AS stores or releases energy, P also perceives and
stores or releases energy. And whenever one of them is in a higher demand, they fire
an emission type event that will activate the respective replication behaviors, contrib-
uting to a positive feedback loop.

IV.ii. Automated Guided Vehicles

Regarding the well known Automated Guided Vehicles (AVG) case study, an AGV
warehouse transportation system uses multiple computer guided vehicles AGVs,
which move loads (e.g. packets, materials) in a warehouse. Each AGV can only carry
out a limited set of local actions such as move, pick up load, and drop load. The goal is
to efficiently transport incoming loads to their destination. The AGV problem is dy-
namic: many lay-outs, loads arrive at any moment, AGVs move constantly and fail,
obstacles and congestion might appear, etc. AGV movement should result in feedback
with each other and the environment.

Each station is a non-situated environment. Therefore, there are three different
types of sub-environments in the main environment, which is a situated 2D environ-
ment and manages the factory layout where the stations are. The vehicles are agents
that move from one station to another in the main environment.

The dispatching and routing requires a mechanism that enables aggregation and
calculation of extra information while flowing through intermediate stations. The gra-
dient fields pattern allows the pick up stations to generate gradients while they have
loads to be delivered and the intermediate stations also propagate them with informa-
tion about obstacles and congestions. And the agents follow the gradient.

For instance, at the implementation level, when a pickup station (PS) executes the
Pick Up Behavior and is dispatching loads, it fires the load_gradient emission event,
which is propagated by the environment. The PS station remains in the dispatching

 8

load state while a vehicle does not pick up the load. On the other hand, a vehicle is fol-
lowing the load_gradient event propagated by the environment. When it finds a dif-
ferent load gradient, it decides which one to follow according to distance and to avoid
obstacles. Once the vehicle chooses one load, it follows the gradient through the inter-
mediate stations until reaching the pick up station. When the vehicle is at the pick up
station, it picks up the load to be routed to one drop off station and fires the
AGV_pick_up_load reaction event. The PS station thus reacts to this event looking for
more loads to dispatch. This feedback loop is executed while there are loads to be dis-
patched.

IV.iii. Stem Cells

In developmental biology, cellular differentiation is the process by which a less spe-
cialized cell becomes a more specialized cell type [12],[13],[14]. The stem cells can be
specialized into several kinds of cells, such as heart cells, skin cells or nerve cells. We
are interested in the case of a stem cell that differentiates into a mature neuron.

In the computational model, there are three kinds of cells: multi-potent cells are
cells with a high power of differentiation that can give rise to several other cell types;
neuron progenitor cells are cells able to self-differentiate into a neuron; and non-
neuron progenitor cells are cells able to self-differentiate into any kind of cell but neu-
ron’s types.

The simulator presents the macro scale to the users by means of a visualization area
(3D) [15] that represents the niche where the cells evolve in their life-cycles. In another
scale, each phase of cell life-cycle has a 3D graphical representation (Figure 4), present-
ing the state of the main entities involved in the process. These graphical representa-
tions, besides presenting a phase of the life-cycle, show the capacity of differentiation
of the cell by means of colors.

The niche is the main environment and manages and regulates a 3D continuous
space. Each protein and intracellular entity is a 3D agent. Each cell is a 3D sub-
environment and contains the intracellular entities. One novel behavior in this compu-
tational model is how the cells perceive the environment, i.e., the neighbor’s cells, pro-
teins, etc. If the protein is in a specific radius scope, then the cells attract the protein to
its surface and the protein is bound to the cell until the specific regulatory network in-
side the cell is activated. Once it is activated, the protein leaves the cell and become
inactive. Only active proteins can be bound. The intracellular entities must perceive
each other and, if the protein is inactive, i.e., not bound to any other substance or inac-
tive or truncated, then it can bind. The rules for binding vary according to the physico-
chemical attraction reactions specified for each entity.

For instance, when Cyclin D – which is an intracellular entity – is inactive, if it per-
ceives the event synthesize_cyclin_D, it executes the action activate_cyclin_D as a reac-
tion. Then it changes its state to active, and fires an event cyclin_D_synthesized to the
environment. Once the CDK2 is active, it perceives the last event and changes its state
to BINDED TO CYCLIN. The same happens to the Cyclin. Once binded, they enable
the activation of the CDK-Cyclin complex behavior that regulates the cell cycle.

 9

Fig. 4. The Stem Cell multi-environment case study. Each cell is a 3D situated sub-
environment with entities (agents) running on it.

In order to model the 3D spatial self-organization [15] of the stem cells, we must find
an empty space among its neighbors that minimizes the cell effort. Pushing the small-
est amount of neighbor cells minimizes the cell effort. Thus, it can be accomplished by
choosing the nearest empty space in its neighborhood followed by the pushing behav-
ior. The problem was reduced to the 3D Nearest Neighbor problem [17], which is well
studied in the field of Geometric Computational combined with the strategy similar to
a Ray Tracing technique [16].

IV.iv. Framework Performance

Regarding the stem cell domain – which is the most complex case study - in order to
achieve an increase in order, thousand of agents have to be running at the same time.
A computer with the following features was used: Intel(R) Core (TM) 2 CPU T5200@
1.60 GHz, 2GB of RAM. We executed the simulation in a 3D grid with dimensions
50×50×50 that allows visualizations of up to 100,000 cells and 500,000 extra cellular
proteins. For the case for the cell visualization, we need less than 100 entities.

Our current solution does not take advantage of a parallel computation environ-
ment, although we are working on the problem [18],[19]. Even though the number of
cells running together and the time of execution in the simulation for a single com-
puter were satisfactory, we need to increase this number and to achieve this goal we
are distributing the framework and application in a cluster architecture with eight
QUAD CORE Q9300 processors.

 10

V. Related Work

There are two categories for environment related work: those that emphasize the agent
component and downplay the environment [20-21],[23-25], and those that consider the
environment an important component of the system and decouple it from the agents.
The former does not fully value an environment as a first order entity. For instance, in
Jade [21], the agent environment is reduced to a mechanism for passing messages
around to other agents, such as matchmakers and brokers. This is also the norm in the
FIPA standard [22].

Several researchers have shown that coordination through an environment has in-
teresting properties: Mamei et al. [26] provide an environment that allows agents to
coordinate their movements in a mobile network; Parunak [27] describes several opti-
mization algorithms for which an environment is needed; Brueckner [28] has devel-
oped an environment for the application of ant algorithms in manufacturing control;
coordination of parallel processes (agents) through tuplespaces [29] can be seen as
early (and ongoing) work to provide an environment wherein agents can interact.

A recent work [30], [31] evaluated five tools that acknowledge the importance of the
environment in a multi-agent-based simulation system. These are NetLogo [32],
MASON [5-7], Ascape [33-36], RePastS [37], and DIVAs [39].

VI. Conclusions and Future Work

The design of the multi-environment framework here proposed and its coordination
component is the result of many iterative cycles of designing and refactoring. As a re-
sult we think that the framework is both easy to learn and expressive at the same time.

There are also two features currently being developed in the framework: an auto-
nomic experimental verification [40], and transparent middleware for parallelization
and distribution in a cluster using a virtual space [18-19]. The experimental autonomic
verification method may autonomously analyze the emergent behavior and would be
used to eventually refine the models as design feedback.

That said, we are now developing a design tool [41] to support the design of coor-
dinated statecharts [42],[43] and the Java-based source code generation which is an in-
stantiation of the self-organizing framework here proposed.

ACKNOWLEDGMENT. This work was supported by MCT/CNPq through the
“Grandes Desafios da Computação no Brasil: 2006-2016” (Main Computation Challenges
in Brazil: 2006-2016) Project (Proc. CNPq 550865/2007-1).

References

[1] G. Di Marzo Serugendo, M.-P Gleizes And A. Karageorgos; Self-organization in
multi-agent systems. The Knowledge Engineering Review, Vol. 20:2, 165–189. 2005,
Cambridge University Press.

 11

[2] A. Visser, G. Pavlin, S.P. van Gosliga, M. Maris. "Self-organization of multi-agent
systems,” Proc. of the International workshop Military Applications of Agent Technol-
ogy in ICT and Robotics, The Hague, the Netherlands, 23-24 November 2004.

[3] Di Marzo Serugendo, G., Fitzgerald, J. S., Romanovsky, A., Guelfi, N. Generic
Framework for the Engineering of Self-Adaptive and Self-Organising Systems. CS-TR-
1018, 2007.

[4] Mamei, M., Menezes, R., Tolksdorf, R., and Zambonelli, F. 2006. Case studies for
self-organization in computer science. J. Syst. Archit. 52, 8 (Aug. 2006), 443-460.

[5] MASON, http://cs.gmu.edu/_eclab/projects/mason/ George Mason University

[6] MASON documentation, http://cs.gmu.edu/~eclab/projects/mason/docs/#docs

[7] S Luke, C Cioffi-Revilla, L Panait, and K Sullivan, “MASON A New Multi-Agent
Simulation Toolkit, Department of Computer Science and Center for Social Complex-
ity,” In Proceedings of SwarmFest, Michigan, USA, 2004.

[8] Gardelli, L., Viroli, M., Omicini; A.; Design Patterns for Self-Organizing Multiagent
Systems. 2nd Int. Workshop on Eng. Emergence in Decentralised Autonomic Systems
(EEDAS 2007). To be held at the 4th IEEE Int. Conf. on Autonomic Computing (ICAC
2007). June 11th, 2007, Jacksonville, Florida, USA.

[9] De Wolf, T.; Analysing and engineering self-organising emergent applications,
Ph.D. Thesis, Department of Computer Science, K.U.Leuven, Leuven, Belgium, May,
2007, 183.

[10] Weyns, D., Boucké, N., and Holvoet, T. 2008. A field-based versus a protocol-
based approach for adaptive task assignment. AAMAS, 17, 2 (Oct. 2008), 288-319.

[11] Gamma, Erich; Richard Helm, Ralph Johnson, and John Vlissides (1995). De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley. ISBN
0-201-63361-2.

[12] Loeffler, M. and Grossmann, B.; J. Theor. Biol., 150(2):175-191, 1991.

[13] Loeffler, M. and Roeder, I. Cells Tissues Organs, 171(1):8-26, 2002.

[14] Lord, B.I.; in Stem cells, Cambridge Academic Press, 1997, pp 401-422.

[15] Faustino, G.M. ; Gatti, M. A. C. ; Bispo, D. ; Lucena, C.J.P. de . A 3D Multi-Scale
Agent-based Stem Cell Self-Organization. In: SEAS 2008 - Fourth Workshop on Soft-
ware Engineering for Agent-Oriented Systems, 2008, Capinas. XXV SBES, 2008.

[16] Glassner, Andrew . “An Introduction to Ray Tracing”. Academic Press, (Ed)
1989.

[17] Smid, M. "Closest-Point Problems in Computational Geometry." Ch. 20 in
Handbook of Computational Geometry (Ed. J.-R. Sack and J. Urrutia). Amsterdam,
Netherlands: North-Holland, pp. 877-935, 2000.

 12

[18] Motta, P., Gatti, M.A. de C., Lucena, C.J.P. de: Towards a Transparent Middle-
ware for Self-Organizing Multi-Agent Systems on Clusters. In The Third International
Workshop on Massively Multi-Agent Systems: Models, Methods and Tools (MMAS'09)
at AAMAS’09.

[19] Valeriano, A., Motta, P., Gatti, M., Lucena, C.; Requisitos Funcionais para um
Midleware Paralelo e Distribuído de Sistemas Multi-Agentes Auto-Organizáveis. Mo-
nografias em Ciência da Computação, no 10/09, DI, PUC-Rio, 2009.

[20] Giunchiglia, F., et al.: The tropos software methodology: Processes, models and
diagrams. Technical Report Techincal Report No. 0111-20, ICT - IRST (2001)

[21] Bellifemine, F., Poggi, A., Rimassa, G.: Jade, A FIPA-compliant Agent Frame-
work. Proceedings of PAAM’99, London, UK (1999)

[22] FIPA: Foundation for intelligent physical agents (http://www.fipa.org/)

[23] DECAF, http://www.cis.udel.edu/~decaf/

[24] John Graham, Victoria Windley, Daniel McHugh, Foster McGeary, David
Cleaver, and Keith Decker, “Tools for Developing and Monitoring Agents in Distrib-
uted Multi Agent Systems,” Workshop on Agents in Industry at the Fourth Interna-
tional Conference on Autonomous Agents, Barcelona, Spain, June, 2000

[25] JACK: Documentation, http://www.agentsoftware.com/products/jack/documentation

_and_instructi/jack_documentation.html

[26] Mamei, M., Zambonelli, F.: Self-maintained distributed tuples for field-based
coordination in dynamic networks. In: The 19th Symposium on Applied Computing
(SAC 04). (2004)

[27] Parunak, V.: “Go to the Ant”: Engineering principles from natural multi-agent
systems. Annals of Operations Research 75 (1997) 69–101

[28] Brueckner, S.: Return from the Ant - Synthetic Ecosystems for Manufacturing
Control. PhD thesis, Humboldt University Berlin (2000)

[29] Omicini, A., Zambonelli, F., Klusch, M., Tolksdorf, R., eds.: Coordination of
Internet Agents: Models, Technologies, and Applications. Springer (2001).

[30] S. Arunachalam, R. Zalila-Wenkstern and R. Steiner, Environment Mediated
Multi-Agent Simulation Tools: A Comparison, in Proc. of IEEE Workshop on Envi-
ronment-Mediated Coordination in Self-Organizing and Self-Adaptive Systems, Ven-
ice, Italy, October 20-24, 2008.

[31] S.F Railsback, S.L Lytinen, and S.K.Jackson, “Agent based Simulation Plat-
forms: Review and Development Recommendations,” Simulation, vol. 82, 2006

[32] U. Wilensky, NetLogo, http://ccl.northwestern.edu/netlogo/Center for Con-
nected Learning and Computer-Based Modeling, Northwestern University. Evanston,
IL.

[33] Ascape, http://ascape.sourceforge.net/index.html

 13

[34] Ascape documentation, http://ascape.sourceforge.net/index.html/#Documentation

[35] M.T.Parker, “What is Ascape and Why Should You Care”: Journal of Artificial
Societies and Social Simulation, vol. 4, no. 1, January 2001

[36] M E. Inchiosa and M T. Parker, “Overcoming design and development chal-
lenges in agent-based modeling using ASCAPE.” Proceedings of National Academy of
Sciences (PNAS) of United States of America, vol 99, May 2002.

[37] RePastS, http://repast.sourceforge.net/.

[38] M.J North, E. Tatara, N.T. Collier, and J. Ozik, “Visual Agent-based Model De-
velopment with Repast Simphony,” In Proc. of the Agent 2007 Conf. on Complex In-
teraction and Social Emergence, Argonne National Laboratory, Argonne, IL USA, No-
vember 2007.

[39] R.Z. Mili, R Steiner, E Oladimeji, “DIVAs: Illustrating an Abstract Architecture
for Agent-Environment Simulation Systems,” Multi agent and Grid Systems, Special
Issue on Agent-oriented Software Development Methodologies 2 (4), 2006.

[40] Soares, B.C.B.A., Gatti, M.A.C., Lucena, C.J.P; “Towards Verifying and Opti-
mizing Self-Organizing Systems through an Autonomic Convergence Method,” Sub-
mitted to SEAS 2008, Campinas, SP, Brasil.

[41] Gatti, M.A.C., Sangiorgi, U., Lucena, C.J.P. de; Towards a Model Driven Ap-
proach for Engineering Self-Organizing Multi-Agent Systems. Monografias de Ciência
de Computação, no 11/09, PUC-Rio, March, 2009.

[42] Gatti, M.A. de C., Lucena, C.J.P.; “A Bio-inspired Representation Model for En-
gineering Self-Organizing Emergent Systems,” XXII Simpósio Brasileiro de Engenharia
de Software (SBES), Campinas, SP, Brasil, 2008.

[43] Gatti, M.A. de C., Lucena, C.J.P.: Engineering Self-Organizing Multiagent Sys-
tems based on a Bio-inspired Representation Model and Coordinated Statecharts. Sub-
mitted to a Special Issue Track in the Information Sciences Journal, 25 pgs., 2009.

